Sanders et al., 2010 - Google Patents
Hand-held mass spectrometer for environmentally relevant analytes using a variety of sampling and ionization methodsSanders et al., 2010
- Document ID
- 16956597386429066862
- Author
- Sanders N
- Sokol E
- Perry R
- Huang G
- Noll R
- Duncan J
- Cooks R
- Publication year
- Publication venue
- European Journal of Mass Spectrometry
External Links
Snippet
A recently developed hand-held, rectilinear ion trap mass spectrometer, capable of performing in situ analysis, has been evaluated for a variety of environmentally relevant analytes. Different sampling and ionization methods were implemented, demonstrating the …
- 238000005070 sampling 0 title abstract description 22
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—Specially adapted to detect a particular component
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/405—Concentrating samples by adsorption or absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/165—Electrospray ionisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode separating and identifying ionized molecules based on their mobility in a carrier gas, i.e. ion mobility spectrometry
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0404—Capillaries used for transferring samples or ions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N2001/022—Devices for withdrawing samples sampling for security purposes, e.g. contraband, warfare agents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
- H01J49/0045—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| da Silva et al. | Paper spray ionization and portable mass spectrometers: a review | |
| Contreras et al. | Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds | |
| Chen et al. | Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination | |
| Van Berkel et al. | Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry | |
| Riter et al. | Analytical performance of a miniature cylindrical ion trap mass spectrometer | |
| Cody et al. | Versatile new ion source for the analysis of materials in open air under ambient conditions | |
| Chipuk et al. | Transmission mode desorption electrospray ionization | |
| Sanders et al. | Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer | |
| Mulligan et al. | Desorption electrospray ionization with a portable mass spectrometer: in situ analysis of ambient surfaces | |
| US7968842B2 (en) | Apparatus and systems for processing samples for analysis via ion mobility spectrometry | |
| Wells et al. | Implementation of DART and DESI ionization on a fieldable mass spectrometer | |
| Jjunju et al. | Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives | |
| Burns et al. | Ambient ionisation mass spectrometry for the trace detection of explosives using a portable mass spectrometer | |
| Keil et al. | Monitoring of toxic compounds in air using a handheld rectilinear ion trap mass spectrometer | |
| Mulligan et al. | Direct monitoring of toxic compounds in air using a portable mass spectrometer | |
| Wang et al. | Portable mass spectrometry system: Instrumentation, applications, and path to ‘omics analysis | |
| Ruan et al. | Hexapole-assisted continuous atmospheric pressure interface for a high-pressure photoionization miniature ion trap mass spectrometer | |
| Chen et al. | Synchronized discharge ionization for analysis of volatile organic compounds using a hand-held ion trap mass spectrometer | |
| Li et al. | Pocket-size “MasSpec Pointer” for ambient ionization mass spectrometry | |
| Sanders et al. | Hand-held mass spectrometer for environmentally relevant analytes using a variety of sampling and ionization methods | |
| Huang et al. | Kinetic understanding of the ultrahigh ionization efficiencies (up to 28%) of excited-state CH2Cl2-induced associative ionization: A case study with nitro compounds | |
| Diaz et al. | Portable double‐focusing mass‐spectrometer system for field gas monitoring | |
| Cotte-Rodríguez et al. | Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS) | |
| Sokol et al. | Rapid hydrocarbon analysis using a miniature rectilinear ion trap mass spectrometer | |
| Giannoukos et al. | Direct analysis and monitoring of organosulphur compounds in the gaseous phase using portable mass spectrometry |