Radini et al., 2016 - Google Patents
Synthesis and functionalization of some new pyridazino [4, 5-b] indole derivativesRadini et al., 2016
View PDF- Document ID
- 17127383614003408215
- Author
- Radini I
- El-Kashef H
- Haider N
- Farghaly A
- Publication year
- Publication venue
- ARKIVOC
External Links
Snippet
Starting from the indole-fused pyridazinone 5, a series of new pyridazino [4, 5-b] indoles of potential pharmaceutical interest (9-18), was prepared. Compounds 20 and 21 were obtained by nucleophilic displacement of the chlorine atom of 19. Thionation of the chloro …
- LDBZRFQWKQUHFF-UHFFFAOYSA-N 5H-pyridazino[4,5-b]indole   N1=NC=C2C3=CC=CC=C3NC2=C1 0 title abstract description 11
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/38—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Abdelazeem et al. | Design, synthesis and analgesic/anti-inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile | |
| AU2015341788B2 (en) | Synthesis of copanlisib and its dihydrochloride salt | |
| US10323033B2 (en) | Imidazo[1,2-A]pyridine-3-carboxylate derivative and preparation method thereof | |
| Amin et al. | Synthesis and anticancer activity of novel tetralin-6-yl pyridine and tetralin-6-yl pyrimidine derivatives | |
| Nguyen et al. | Synthesis and Cytotoxic Activity against K562 and MCF7 Cell Lines of Some N‐(5‐Arylidene‐4‐oxo‐2‐thioxothiazolidin‐3‐yl)‐2‐((4‐oxo‐3‐phenyl‐3, 4‐dihydroquinazoline‐2‐yl) thio) acetamide Compounds | |
| Hassan et al. | Thermolysis of symmetrical dithiobiurea and thioureidoethylthiourea derivatives | |
| Behbehani et al. | Microwave-assisted Synthesis in Water: First One-pot Synthesis of a Novel Class of Polysubstituted benzo [4, 5] imidazo [1, 2-b] pyridazines via Intramolecular SN Ar | |
| Radini et al. | Synthesis and functionalization of some new pyridazino [4, 5-b] indole derivatives | |
| Zborovskii et al. | Heterocyclization reactions of 2-(2-propynylthio)-4 (1H)-quinazolinone derivatives when treated with electrophilic and nucleophilic reagents | |
| Sayed et al. | A facile one‐pot synthesis of thiazo [2′, 3′: 2, 1] imidazo [4, 5‐b] pyrane; thiazo [2′, 3′: 2, 1] imidazo [4, 5, b] pyridine; imidazo [2, 1‐b] thiazole and 2‐(2‐amino‐4‐methylthiazol‐5‐yl)‐1‐bromo‐1, 2‐ethanedione‐1‐arylhydrazones | |
| Rahimizadeh et al. | Vicarious nucleophilic substitution in nitro derivatives of imidazo [1, 2-a] pyridine | |
| Ibrahim et al. | Structure-based design of a new class of highly selective pyrazolo [3, 4-d] pyrimidines based inhibitors of cyclin dependent kinases | |
| US10781186B2 (en) | Method of synthesizing l,2,4-triazole-3-thione compounds and intermediates thereof | |
| Davoodnia et al. | Synthesis of novel benzimidazo [1, 2-c][1, 2, 4] triazolo [4, 3-a] quinazoline derivatives | |
| Bilek et al. | Cyclocondensation Reactions of Heterocyclic Carbonyl Compounds VII‡ Synthesis of some substituted benzo-[1, 2, 4] triazino [2, 3-a] benzimidazoles | |
| Smicius et al. | Reactions of 5-(6-Methyl-2, 4-dioxo-1, 2, 3, 4-tetrahydro-3-pyrimidinyl)-methyl-1, 3, 4-oxadiazole-2-thione with Electrophiles | |
| El‐Kerdawy et al. | A convenient synthesis of 3‐aryl‐1, 2, 4‐triazolo [4, 3‐c] quinazolines | |
| Volovenko et al. | Nucleophilic substitution in some 5-chloropyrimidines. Synthesis and properties of condensed pyridopyrimidines | |
| Rozhkov et al. | Nucleophilic substitution in the series of (1, 2, 3-triazol-1-yl)-1, 2, 5-oxadiazoles. Reactions with N-, O-, and S-nucleophiles | |
| Abdel‐Rahman et al. | Synthesis of New Fused and Spiro Heterocyclic Systems from 3, 5‐Pyrazolidinediones | |
| JP3338872B2 (en) | Method for producing 1,2-benzisothiazolinone compound | |
| El-Kashef et al. | Synthesis of 3-azaharman and other new azacarbolines of the pyridazino [4, 5-b] indole type | |
| Anwar et al. | The behaviour of 4-alkoxy methylene-2-phenyl-4H-oxazol-5-one and 4-dimethyl amino methylene-2-phenyl-4H-oxazol-5-one toward nitrogen nucleophiles under microwave heating | |
| SI9300609A (en) | New heterocyclic compounds with antiastmatic/antialergic, antiinflammatory, positively ionotropic and anti-hypertensive activity | |
| Bilek et al. | Synthesis of some 3-oxo-3, 4-dihydro-1, 2, 4-triazino [2, 3-a] benzimidazole-2-carbonitriles |