[go: up one dir, main page]

Marcinichen et al., 2010 - Google Patents

Cooling of microprocessors with micro-evaporation: A novel two-phase cooling cycle

Marcinichen et al., 2010

View PDF
Document ID
17667427027958965571
Author
Marcinichen J
Thome J
Michel B
Publication year
Publication venue
International journal of refrigeration

External Links

Snippet

Three micro-evaporator cooling cycles, one with a pump, one with a compressor and a hybrid of the two together, are proposed for cooling a computer blade server. The hybrid cycle is characterized by the interchangeability between the first two cycles, where the …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B25/00Machines, plant, or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B23/00Machines, plant, or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plant, or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2321/00Details of machines, plants, or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B27/00Machines, plant, or systems, using particular sources of energy

Similar Documents

Publication Publication Date Title
Marcinichen et al. Cooling of microprocessors with micro-evaporation: A novel two-phase cooling cycle
Marcinichen et al. On-chip two-phase cooling of datacenters: Cooling system and energy recovery evaluation
Marcinichen et al. Advances in electronics cooling
Marcinichen et al. A review of on-chip micro-evaporation: Experimental evaluation of liquid pumping and vapor compression driven cooling systems and control
Marcinichen et al. Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles
Yumrutaş et al. Exergy analysis of vapor compression refrigeration systems
Lee et al. Investigation of flow boiling in large micro-channel heat exchangers in a refrigeration loop for space applications
Kinab et al. Reversible heat pump model for seasonal performance optimization
Lee et al. Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles
Diaby et al. Simulation of heat pumps for simultaneous heating and cooling using CO2
Ge et al. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems
Zhou et al. The steady-state modeling and optimization of a refrigeration system for high heat flux removal
Liang et al. Study on refrigerant circuitry of condenser coils with exergy destruction analysis
Schoenfield et al. CO2 transcritical vapor compression cycle with thermoelectric subcooler
Wu et al. Experimental evaluation of a controlled hybrid two-phase multi-microchannel cooling and heat recovery system driven by liquid pump and vapor compressor
Maddah et al. Determination of the optimal discharge pressure of the transcritical CO2 heat pump cycles for heating and cooling performances based on new correlation
Li Optimal analysis of gas cooler and intercooler for two-stage CO2 trans-critical refrigeration system
Szczukiewicz et al. Passive thermosyphon cooling system for high heat flux servers
Khalid et al. Characterization of a Rack-Level Thermosyphon-Based Cooling System
Hazarika et al. Role of receiver on the performance of a transcritical CO2 based air-conditioning unit with single-stage and two-stage expansion
Liu et al. Experimental study on thermal characteristics of thermosyphon with water condenser and LTES condenser in parallel (TWCLC)
Mishra et al. Thermoeconomic analysis of novel vapor compression-absorption multi-target-temperature cascade refrigeration system
Marcinichen et al. New novel green computer two-phase cooling cycle: a model for its steady-state simulation
Lamaison et al. Passive two-phase thermosyphon loop cooling system for high-heat-flux servers
Amalfi et al. An optimization algorithm to design compact plate heat exchangers for waste heat recovery applications in high power datacenter racks