[go: up one dir, main page]

Taura et al., 2000 - Google Patents

A heuristic algorithm for mapping communicating tasks on heterogeneous resources

Taura et al., 2000

View PDF
Document ID
1779215081002816662
Author
Taura K
Chien A
Publication year
Publication venue
Proceedings 9th Heterogeneous Computing Workshop (HCW 2000)(Cat. No. PR00556)

External Links

Snippet

A heuristic algorithm that maps data processing tasks onto heterogeneous resources (ie processors and links of various capacities) is presented. The algorithm tries to achieve a good throughput of the whole data processing pipeline, taking both parallelism (load …
Continue reading at hipersoft.rice.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5044Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5066Algorithms for mapping a plurality of inter-dependent sub-tasks onto a plurality of physical CPUs
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/44Arrangements for executing specific programmes
    • G06F9/455Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1023Server selection in load balancing based on other criteria, e.g. hash applied to IP address, specific algorithms or cost
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • G06F8/41Compilation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design

Similar Documents

Publication Publication Date Title
Taura et al. A heuristic algorithm for mapping communicating tasks on heterogeneous resources
Jena et al. Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment
Belgacem et al. Multi-objective workflow scheduling in cloud computing: trade-off between makespan and cost
Hoefler et al. Generic topology mapping strategies for large-scale parallel architectures
Siegel et al. Techniques for mapping tasks to machines in heterogeneous computing systems
Braun et al. A taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems
Asghari et al. Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents
Fidanova Simulated annealing for grid scheduling problem
Eskandari et al. T3-scheduler: A topology and traffic aware two-level scheduler for stream processing systems in a heterogeneous cluster
Legrand et al. Mapping and load-balancing iterative computations
Noorian Talouki et al. A hybrid meta-heuristic scheduler algorithm for optimization of workflow scheduling in cloud heterogeneous computing environment
Kaya et al. Iterative-improvement-based heuristics for adaptive scheduling of tasks sharing files on heterogeneous master-slave environments
Yadav et al. An opposition-based hybrid evolutionary approach for task scheduling in fog computing network
Wu et al. Hierarchical task mapping for parallel applications on supercomputers
Shubha et al. {USHER}: Holistic interference avoidance for resource optimized {ML} inference
Arif et al. Parental prioritization-based task scheduling in heterogeneous systems
Shirvani A novel discrete grey wolf optimizer for scientific workflow scheduling in heterogeneous cloud computing platforms
CN115562833A (en) Workflow optimization scheduling method based on improved goblet sea squirt algorithm
Iverson et al. Hierarchical, competitive scheduling of multiple dags in a dynamic heterogeneous environment
Chongdarakul et al. Heuristic scheduling algorithm for workflow applications in cloud-fog computing based on realistic client port communication
Kinger et al. Priority-aware resource allocation algorithm for cloud computing
Bu et al. An improved PSO algorithm and its application to grid scheduling problem
Chhabra et al. Qualitative parametric comparison of load balancing algorithms in parallel and distributed computing environment
Zhang et al. Learning driven parallelization for large-scale video workload in hybrid CPU-GPU cluster
Yassir et al. Graph-based model and algorithm for minimising big data movement in a cloud environment