Burkhart et al., 2022 - Google Patents
Inductive AddersBurkhart et al., 2022
View PDF- Document ID
- 18083988137499598765
- Author
- Burkhart C
- Beukers T
- Kemp M
- Anderson D
- Pappas G
- Walden J
- Waldron W
- Publication year
External Links
Snippet
• An external voltage as shown is (a) is used to accelerate charged particles due to Lorentz force. Adding another accelerating structure to the right would require isolation of the voltage source.• A cavity is created in (b), which is convenient for keeping the power supply at …
- 230000001939 inductive effect 0 title description 14
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices using field-effect transistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/53—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
- H03K3/57—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/04—Modifications for accelerating switching
- H03K17/041—Modifications for accelerating switching without feedback from the output circuit to the control circuit
- H03K17/0416—Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the output circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/64—Generators producing trains of pulses, i.e. finite sequences of pulses
- H03K3/72—Generators producing trains of pulses, i.e. finite sequences of pulses with means for varying repetition rate of trains
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M2001/346—Passive non-dissipative snubbers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation Duty cycle modulation
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230093824A1 (en) | Transformer resonant converter | |
| US11171568B2 (en) | Transformer resonant converter | |
| EP1554801B8 (en) | Power modulator | |
| US5905646A (en) | Power modulator | |
| EP0947048B1 (en) | Power modulator | |
| Cook | Review of solid-state modulators | |
| Sakamoto et al. | Solid-state dual Marx generator with a short pulsewidth | |
| EP1254516B1 (en) | High power modulator | |
| US20230187923A1 (en) | A solid-state circuit breaker based on a wireless coupling and resonant circuit for mvdc systems | |
| Bae et al. | Compact solid-state Marx modulator with fast switching for nanosecond pulse | |
| Jo et al. | MOSFET gate driver circuit design for high repetitive (200 kHz) high voltage (10 kV) solid-state pulsed-power modulator | |
| Li et al. | Repetitive high voltage rectangular waveform pulse adder for pulsed discharge of capacitive load | |
| US10411481B2 (en) | Device and method for generating a high voltage pulse | |
| Cook et al. | Solid-state modulators for RF and fast kickers | |
| Burkhart et al. | Inductive Adders | |
| Cassel | The evolution of pulsed modulators from the Marx generator to the Solid State Marx modulator and beyond | |
| CN102468825A (en) | Realization method of optocoupler drive-based broad impulse grid control modulator | |
| WO2016051210A1 (en) | Pulse modulator | |
| Cook et al. | Inductive-adder kicker modulator for DARHT-2 | |
| Burkhart et al. | Pulsed Power Engineering Advanced Topologies | |
| Redondo et al. | Solid-state Marx generator design with an energy recovery reset circuit for output transformer association | |
| Wang et al. | All solid-state pulsed power generator with semiconductor and magnetic compression switches | |
| Akemoto et al. | Solid-state klystron modulator for JLC | |
| Gaudreau et al. | Solid-state high voltage pulse modulators for high power microwave applications | |
| Wang et al. | Research of high voltage RSDS triggering circuit in multi-modules capacitor discharge PFN for EML |