[go: up one dir, main page]

Santagati et al., 2019 - Google Patents

Laboratory Comparison of Natural Fractures and Induced Fracture Permeability Variations Under Simulated Dynamic Reservoir Conditions

Santagati et al., 2019

Document ID
18127843594680027143
Author
Santagati A
Makrami A
Caliboso E
Publication year
Publication venue
International Petroleum Technology Conference

External Links

Snippet

The objective of this study is to compare the laboratory behavior of natural (Mode II) and induced (Mode I and II) fractures during stress-dependent permeability tests (SDk) to verify under which conditions the hydraulic behavior of induced fractures may be assumed to be …
Continue reading at onepetro.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0284Bulk material, e.g. powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N2013/003Diffusion; diffusivity between liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Similar Documents

Publication Publication Date Title
Liu et al. Anisotropic mechanical properties and the permeability evolution of cubic coal under true triaxial stress paths
Liu et al. Directional permeability evolution in intact and fractured coal subjected to true-triaxial stresses under dry and water-saturated conditions
Ranjith et al. The effect of CO2 saturation on mechanical properties of Australian black coal using acoustic emission
Abdallah et al. Compaction banding in high‐porosity carbonate rocks: 1. Experimental observations
Zhou et al. The nonlinear creep behaviors of sandstone under the different confining pressures based on NMR technology
Sato et al. Development of the permeability anisotropy of submarine sedimentary rocks under true triaxial stresses
Wang et al. Fracture behavior of intact rock using acoustic emission: experimental observation and realistic modeling
Guo et al. Coal permeability evolution characteristics: Analysis under different loading conditions
CA2983125A1 (en) Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
Fan et al. Laboratory investigation of coal deformation behavior and its influence on permeability evolution during methane displacement by CO2
CA3119540A1 (en) Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
Liu et al. Deformation and mechanical properties of rock: Effect of hydromechanical coupling under unloading conditions
Jin et al. Permeability measurement of organic-rich shale-comparison of various unsteady-state methods
Ma et al. Experimental investigations of fractured rock deformation: A direct measurement method using strain gauges
Ding et al. Effect of the vertical stress on CO 2 flow behavior and permeability variation in coalbed methane reservoirs
Li et al. Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection
Hu et al. Porosity and permeability evolution with deviatoric stress of reservoir sandstone: insights from triaxial compression tests and in situ compression CT
Huang et al. Permeability evolution of fractured coal subject to confining stress and true triaxial stress loading: experiment and mathematical model
Wang et al. Experimental study on the failure mechanisms in Brittle shales
Zhao et al. An experimental study on stress sensitivity of tight sandstones with different microfractures
Xu et al. Characteristics of pores under the influence of cyclic cryogenic liquid carbon dioxide using low‐field nuclear magnetic resonance
Chapman et al. Laboratory measurements of seismic attenuation and Young's modulus dispersion in a partially and fully water‐saturated porous sample made of sintered borosilicate glass
Zhao et al. Micromechanical properties of different rank coal and their impact on fracture compressibility
Xiao et al. Application of NMR to test sandstone stress sensitivity of the Dongfang X gas field, China
Santagati et al. Laboratory Comparison of Natural Fractures and Induced Fracture Permeability Variations Under Simulated Dynamic Reservoir Conditions