Shen et al., 2021 - Google Patents
Medium-Entropy perovskites Sr (FeαTiβCoγMnζ) O3-δ as promising cathodes for intermediate temperature solid oxide fuel cellShen et al., 2021
- Document ID
- 2035732291130162395
- Author
- Shen L
- Du Z
- Zhang Y
- Dong X
- Zhao H
- Publication year
- Publication venue
- Applied Catalysis B: Environmental
External Links
Snippet
Abstract Medium-entropy perovskites Sr (Fe α Ti β Co γ Mn ζ) O 3-δ (SFTCM) are investigated as potential cathodes for intermediate temperature solid oxide fuel cell (IT- SOFC). The effects of entropy on crystal structure, thermal expansion coefficients (TEC) …
- 239000000446 fuel 0 title abstract description 32
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M8/141—Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Shen et al. | Medium-Entropy perovskites Sr (FeαTiβCoγMnζ) O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell | |
| Wan et al. | Thermal cycling durability improved by doping fluorine to PrBaCo2O5+ δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells | |
| Wan et al. | A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells | |
| Lu et al. | Mo-doped Pr0. 6Sr0. 4Fe0. 8Ni0. 2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells | |
| Zhang et al. | Co-deficient PrBaCo2− xO6− δ perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: enhanced electrochemical performance and oxygen reduction kinetics | |
| Huang et al. | Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs | |
| Wang et al. | Superior electrochemical performance and oxygen reduction kinetics of layered perovskite PrBaxCo2O5+ δ (x= 0.90–1.0) oxides as cathode materials for intermediate-temperature solid oxide fuel cells | |
| Kim et al. | Composite cathodes composed of NdBa 0.5 Sr 0.5 Co 2 O 5+ δ and Ce 0.9 Gd 0.1 O 1.95 for intermediate-temperature solid oxide fuel cells | |
| Gao et al. | Enhanced electrocatalytic activity and CO2 tolerant Bi0. 5Sr0. 5Fe1-xTaxO3-δ as cobalt-free cathode for intermediate-temperature solid oxide fuel cells | |
| Kim et al. | Effect of Mn on the electrochemical properties of a layered perovskite NdBa0. 5Sr0. 5Co2− xMnxO5+ δ (x= 0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells | |
| Liu et al. | A high performance thermal expansion offset composite cathode for IT-SOFCs | |
| Du et al. | A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells | |
| Jin et al. | Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+ δ as a novel cathode for intermediate-temperature solid-oxide fuel cell | |
| Park et al. | Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells | |
| Yao et al. | Investigation of layered perovskite NdBa0. 5Sr0. 25Ca0. 25Co2O5+ δ as cathode for solid oxide fuel cells | |
| Guo et al. | Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells | |
| CN110581283A (en) | A bismuth-doped solid oxide battery fuel electrode material and its preparation method and application | |
| Li et al. | A medium-entropy perovskite oxide La0. 7Sr0. 3Co0. 25Fe0. 25Ni0. 25Mn0. 25O3-δ as intermediate temperature solid oxide fuel cells cathode material | |
| Zhou et al. | Application of La0. 3Sr0. 7Fe0. 7Ti0. 3O3-δ/GDC electrolyte in LT-SOFC | |
| CA2761867A1 (en) | Cathode | |
| Yoo et al. | Structural, electrical and electrochemical characteristics of La 0.1 Sr 0.9 Co 1− x Nb x O 3− δ as a cathode material for intermediate temperature solid oxide fuel cells | |
| Qiu et al. | A-site cation deficient SrTa0. 1Fe0. 9O3-δ as a bi-functional cathode for both oxygen ion-and proton-conducting solid oxide fuel cells | |
| Zhang et al. | High performance proton-conducting solid oxide fuel cells with a layered perovskite GdBaCuCoO5+ x cathode | |
| Zheng et al. | A promising Bi-doped La0. 8Sr0. 2Ni0. 2Fe0. 8O3-δ oxygen electrode for reversible solid oxide cells | |
| Zhang et al. | Unraveling the promotional role of BaCO 3 in the electrode reaction kinetics of an SmBaFe 2 O 5+ δ air electrode of reversible solid oxide cells |