Boutayeb et al., 2006 - Google Patents
Directivity of an antenna embedded inside a Fabry–Perot cavity: analysis and designBoutayeb et al., 2006
View HTML- Document ID
- 2198157036995151029
- Author
- Boutayeb H
- Mahdjoubi K
- Tarot A
- Denidni T
- Publication year
- Publication venue
- Microwave and Optical Technology Letters
External Links
Snippet
The enhancement of directivity of a monopole located in a Fabry–Perot type cavity is studied. The analysis is based on the response of the cavity excited from its inside by electromagnetic waves. To validate the proposed antenna, an experimental prototype is …
- 238000004458 analytical method 0 title abstract description 6
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/26—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/364—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line aerials; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/30—Resonant aerials with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot aerials
- H01Q13/18—Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/06—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/44—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
- H01Q3/446—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/10—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/28—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0018—Space- fed arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Boutayeb et al. | Directivity of an antenna embedded inside a Fabry–Perot cavity: analysis and design | |
| Alibakhshikenari et al. | Beam‐scanning leaky‐wave antenna based on CRLH‐metamaterial for millimetre‐wave applications | |
| US11502396B2 (en) | Enhanced MIMO communication systems using reconfigurable metasurface antennas and methods of using same | |
| Smith et al. | Analysis of a waveguide-fed metasurface antenna | |
| Temelkuran et al. | Photonic crystal-based resonant antenna with a very high directivity | |
| Thornton et al. | Modern lens antennas for communications engineering | |
| Le Zhang et al. | High-gain millimeter-wave antennas based on spoof surface plasmon polaritons | |
| Weily et al. | A planar resonator antenna based on a woodpile EBG material | |
| Navarro-Cia et al. | Beamforming by left-handed extraordinary transmission metamaterial bi-and plano-concave lens at millimeter-waves | |
| Li et al. | A gain enhancement and flexible control of beam numbers antenna based on frequency selective surfaces | |
| Saenz et al. | Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays | |
| Hosseini et al. | Design formulas for planar Fabry–Pérot cavity antennas formed by thick partially reflective surfaces | |
| Liu et al. | Leaky-wave antenna with switchable omnidirectional conical radiation via polarization handedness | |
| Ourir et al. | Optimization of metamaterial based subwavelength cavities for ultracompact directive antennas | |
| Deng et al. | Performance enhancement of novel antipodal Vivaldi antenna with irregular spacing distance slots and modified-w-shaped metamaterial loading | |
| Emadeddin et al. | A compact ultra-wideband multibeam antenna system | |
| US20200381834A1 (en) | Antennas and Related Methods for Realizing Endfire Radiation with Vertical Polarization | |
| Weily et al. | Photonic crystal horn and array antennas | |
| Keskin et al. | Wide-band gain enhancement of a pyramidal horn antenna with a 3D-printed epsilon-positive and epsilon-near-zero metamaterial lens | |
| da Costa et al. | Combination of electric and magnetic dipoles with single‐element feeding for broadband applications | |
| Lin et al. | Near‐field focusing by a nonuniform leaky‐wave interface | |
| Boutayeb et al. | Analysis and design of a high-gain antenna based on metallic crystals | |
| Rao et al. | Radiation blockage reduction in antennas using radio-frequency cloaks [Antenna Applications Corner] | |
| Almutawa et al. | Strategies for Enhancing the Gain Bandwidth of Fabry-Pérot Cavity Antennas: a review of recent advances | |
| Hao et al. | Antenna‐beam shaping from offset defects in UC‐EBG cavities |