[go: up one dir, main page]

Kitazume et al., 1986 - Google Patents

Synthesis of the optically pure monoethyl ester of (R)-(+)-2-fluoromalonic acid by use of immobilized lipase-my for asymmetric hydrolysis

Kitazume et al., 1986

Document ID
2618399600889270906
Author
Kitazume T
Murata K
Ikeya T
Publication year
Publication venue
Journal of fluorine chemistry

External Links

Snippet

A synthetic approach to optically pure (+)-2-fluoromalonic acid monoethyl ester was based on the enantiotopic specificity of asymmetric hydrolysis by an immobilized enzyme. The absolute configuration of monoethyl (+)-2-fluoromalonate was determined: it is the (R) …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/004Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using micro-organisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring

Similar Documents

Publication Publication Date Title
Kitazume et al. Microbial approach to the practical monofluorinated chiral synthons
Drueckhammer et al. Chemoenzymic synthesis of chiral furan derivatives: useful building blocks for optically active structures
Bevinakatti et al. Practical chemoenzymic synthesis of both enantiomers of propranolol
Guo et al. Synthesis of ethyl and t-butyl (3R, 5S)-dihydroxy-6-benzyloxy hexanoates via diastereo-and enantioselective microbial reduction
Kitazume et al. Synthesis of the optically pure monoethyl ester of (R)-(+)-2-fluoromalonic acid by use of immobilized lipase-my for asymmetric hydrolysis
US8129173B2 (en) Selective enzymatic esterification and solvolysis of epimeric vitamin D analog and separation of the epimers
Kitazume et al. A synthetic approach to seven-membered lactones by the microbial transformation of ynones having a trifluoromethyl group
Yamazaki et al. Rapid Paper Diametric Stereoselectivity of Pseudomonas fluorescens Lipase and Candida cylindracea Lipase in the Acylation of Organometallic Alcohols
EP0447938B1 (en) Process for preparing 2-halogeno-3-hydroxy-3-phenyl-propionic acid ester compounds
Xiao et al. Optically active propargylic and allylic alcohols with a difluoromethyl group at the terminal carbon
JP2786437B2 (en) Racemic resolution of 3-acyloxy-bicyclo [3,3,0] octane-7-one-2-carboxylate by stereospecific enzyme or microbial acylate hydrolysis
JP3704731B2 (en) Process for producing optically active 3-hydroxyhexanoic acids
HORI et al. SYNTHESIS OF THE B/C-RING SYSTEM OF TETRONASIN (ICI-139603)
Okumura et al. Efficient and practical synthesis of both enantiomers of 3-phenylcyclopentanol derivatives
Kato et al. Optical resolution of 2, 2, 2-trifluoro-1-(9-phenanthryl) ethanol via enzymatic alcoholysis of its activated ester
Takano et al. Enantiocontrolled synthesis of optically pure 5-trimethylsilyl-and 5-tributylstannyl-cyclohex-2-enones
Honda et al. Novel synthesis of enantiomerically enriched 5-hydroxycyclohex-2-enone by enantioselective deprotonation strategy: application to the synthesis of inositol phosphatase inhibitor
Ohta et al. Reduction of acyl enolates of α-substituted β-keto esters by Bakers’ yeast
Djadchenko et al. Enzymes in organic synthesis. Part 3. Synthesis of enantiomerically pure prostaglandin intermediates by enzyme-catalyzed transesterification of (1 SR, 2 RS, 5 SR, 6 RS)-bicyclo [3.3. 0] octane-2, 6-diol with trichloroethyl acetate in an organic solvent
Kato et al. Effective preparation of optically active 4, 4, 4-trifluoro-3-(indole-3-) butyric acid, a novel plant growth regulator, using lipase from Pseudomonas fluorescens
EP1869199B1 (en) A chemoenzymatic process for the stereoselective preparation of (r)-gamma-amino-beta-hydroxybutyric acid ((r) -gabob) and (r)-carnitine
Nishiyama et al. Concise synthesis of (3R, 4S)-3-hydroxy-4-metyl-γ-butyrolactone
Medio-Simón et al. Selective lipase-catalyzed acylation of epimeric α-sulfinyl alcohols: an efficient method of separation
JP4510879B2 (en) Enantioconvergent chemoenzymatic synthesis of (R) -γ-amino-β-hydroxybutyric acid ((R) -GABOB)
Pienaar et al. A highly efficient chemoenzymatic process to produce (R)-6, 7-dihydroxygeraniol