[go: up one dir, main page]

Moskovchenko et al., 2024 - Google Patents

Detection of gunshot residue by flash-pulse and long-pulse infrared thermography

Moskovchenko et al., 2024

Document ID
2864863697014708919
Author
Moskovchenko A
Švantner M
Honner M
Publication year
Publication venue
Infrared Physics & Technology

External Links

Snippet

Detection of gunshot residues (GSR) in a bullet hole area is one of the forensic investigations aiding in the reconstruction of crime scenes. Traditionally, chromogenic methods based on chemical exposure or microscopic/spectroscopic methods are used for …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/20Investigating or analysing materials by specific methods not covered by the preceding groups metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam
    • G01N23/2252Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam and measuring excited X-rays

Similar Documents

Publication Publication Date Title
Moskovchenko et al. Detection of gunshot residue by flash-pulse and long-pulse infrared thermography
López-López et al. Recent non-chemical approaches to estimate the shooting distance
Turillazzi et al. Analytical and quantitative concentration of gunshot residues (Pb, Sb, Ba) to estimate entrance hole and shooting-distance using confocal laser microscopy and inductively coupled plasma atomic emission spectrometer analysis: An experimental study
Kock et al. Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine
Someya et al. Instantaneous 2D imaging of temperature in an engine cylinder with flame combustion
Gatien et al. Application of narrow‐spectrum illumination and image processing to measure surface char formation in lateral ignition and flame spread tests
Kersh et al. Detection of gunshot residue on dark‐colored clothing prior to chemical analysis
Zapata et al. Multi-spectral imaging for the estimation of shooting distances
Mendieta et al. A delayed gating approach for interference-free ratio-based phosphor thermometry
Mou et al. Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR
Peng et al. Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment
WO2015050791A1 (en) Spectroscopy for gunshot residue analysis
Cernuschi et al. Thirty Years of Thermal Barrier Coatings (TBC), Photothermal and thermographic techniques: Best practices and lessons learned
Yang et al. Pulsed thermography with laser beam homogenizing for thickness prediction of thin semi-transparent thermal barrier coatings
Li et al. Effect of nonuniform radiation properties on flame temperature reconstruction based on light field imaging
Medici et al. Active Thermography for Gunshot Residue (GSR) Pattern Estimation on Textiles
Yao et al. Correlation between grade of pearlite spheroidization and laser induced spectra
EP1852697A1 (en) Method for determing material parameters of an object from temperature-versus-time (t-t) data
Mihaly et al. In situ diagnostics for a small-bore hypervelocity impact facility
Schumacher et al. Investigation of gunshot residue patterns using milli-XRF-techniques: First experiences in casework
Romolo Advances in analysis of gunshot residue
Cosgriff et al. Thermographic characterization of impact damage in SiC/SiC composite materials
Rollin et al. A standardized method for characterization of matrix effects in laser-induced breakdown spectroscopy
Cheng et al. Parametric study of intensity-ratio-based phosphor thermometry using Mg4FGeO6: Mn4+ for instantaneous temperature measurement
Kaur et al. Statistical post-processing approaches for active infrared thermography: a comparative study