Yamada et al., 1998 - Google Patents
Synthetic study toward myrocin analogues. Highly enantio-and diastereo-selective synthesis of a tetracyclic ring systemYamada et al., 1998
- Document ID
- 3175006192638728571
- Author
- Yamada S
- Nagashima S
- Takaoka Y
- Torihara S
- Tanaka M
- Suemune H
- Aso M
- Publication year
- Publication venue
- Journal of the Chemical Society, Perkin Transactions 1
External Links
Snippet
An intramolecular Diels–Alder reaction for the construction of a lactone ring fused-tricyclic ring system has been developed using propionate as the dienophile. As an application of this reaction, an enantio-and diastereo-selective synthesis of a tetracyclic ring system of a …
- 230000015572 biosynthetic process 0 title abstract description 11
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic System
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C-Si linkages
- C07F7/18—Compounds having one or more C-Si linkages as well as one or more C-O-Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1812—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals
- C07F7/1844—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals a being 3, b being 1
- C07F7/1848—C1 being an unsubstituted acyclic saturated hydrocarbon radical containing less than six carbon atoms, a benzyl radical, a phenyl radical, or a methyl substituted phenyl radical
- C07F7/1856—C2 containing cycloaliphatic, heterocyclic or condensed aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/08—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/93—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
- C07D307/88—Benzo [c] furans; Hydrogenated benzo [c] furans with one oxygen atom directly attached in position 1 or 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic System
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C-Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/0825—Preparations of compounds not comprising Si-Si or Si-cyano linkages
- C07F7/083—Syntheses without formation of a Si-C bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/16—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D309/28—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atom
- C12P17/06—Oxygen as only ring hetero atom containing a six-membered hetero ring, e.g. fluorescein
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D497/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture
- C12P41/003—Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
- C12P41/004—Processes using enzymes or micro-organisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Heathcock et al. | Total synthesis of (.+-.)-methyl homodaphniphyllate | |
| Tachihara et al. | Total synthesis of (+)-epiepoformin,(+)-epiepoxydon and (+)-bromoxone employing a useful chiral building block, ethyl (1R, 2S)-5, 5-ethylenedioxy-2-hydroxycyclohexanecarboxylate | |
| Nakano et al. | Synthesis of an Enantiocomplementary Catalyst of β‐Isocupreidine (β‐ICD) from Quinine | |
| Kona et al. | Total synthesis of naturally occurring cephalosporolides E/F | |
| Nascimento et al. | Stereoselective synthesis of 8, 9-licarinediols | |
| Mehta et al. | An Approach to seco-Prezizaane Sesquiterpenoids: Enantioselective Total Synthesis of (+)-1 S-Minwanenone | |
| Bhuniya et al. | Asymmetric total synthesis of (−)-rasfonin | |
| Brimble et al. | A convergent synthesis of the [4.4]-spiroacetal-γ-lactones cephalosporolides E and F | |
| Fuwa et al. | Synthetic studies on antascomicin A: construction of the C18–C34 fragment | |
| Zhao et al. | Recent advances in the total synthesis of cephalotane-type norditerpenoids from cephalotaxus sinensis | |
| Sakamaki et al. | Biotransformation of (±)-α-ionone and β-ionone by cultured cells of Caragana chamlagu | |
| Peng et al. | Enantioselective total synthesis of (+)-isoaltholactone | |
| Matsuda et al. | First total synthesis of modiolide A, based on the whole-cell yeast-catalyzed asymmetric reduction of a propargyl ketone | |
| Yamada et al. | Synthetic study toward myrocin analogues. Highly enantio-and diastereo-selective synthesis of a tetracyclic ring system | |
| SUEMUNE et al. | Enzymatic Hydrolysis of 2, 2-Bis (acetoxymethyl) cycloalkanones, and Its Application to Formal Synthesis of (-)-Malyngolide | |
| US20040204595A1 (en) | Process for preparing protease inhibitor intermediates | |
| Yasuda et al. | Synthetic Studies on Biscembranoids. Asymmetric Total Synthesis of the 14-Membered Diene Unit of Methyl sarcophytoate. | |
| Kido et al. | Carbocyclic construction by the [2, 3] sigmatropic rearrangement of cyclic sulfonium ylides. A new entry for the stereoselective synthesis of substituted cyclohexanones | |
| Klein et al. | Total synthesis of (.+-.)-dimethyl jaconate | |
| Momose et al. | Bicyclo [3.3. 1] nonanes as synthetic intermediates. Part21. 1 Enantiodivergent synthesis of thecis, cis 2, 6-disubstituted piperidin-3-ol chiralbuilding block for alkaloid synthesis | |
| Macı́as et al. | Studies on the stereostructure of eudesmanolides from umbelliferae: Total synthesis of (+)-decipienin A | |
| De Rosa et al. | Enantioselective synthesis of pyranofuranone moieties of manoalide and cacospongionolide B by enzymatic and chemical approach | |
| Zhuang et al. | Gram-Scale Synthesis of Loganetin from S-(+)-Carvone | |
| Takahashi et al. | The formal synthesis of (+)-15-deoxy-Δ12, 14-prostaglandin J2 by utilizing SmI2-promoted intramolecular coupling of bromoalkynes and α, β-unsaturated esters | |
| Murakami et al. | Synthesis of optically active 1, 3-dioxin-4-one derivatives having a hydroxymethyl group at the 2-position and their use for regio-, diastereo-, and enantioselective synthesis of substituted cyclobutanols |