[go: up one dir, main page]

Mivelle et al., 2014 - Google Patents

Hybrid photonic antennas for subnanometer multicolor localization and nanoimaging of single molecules

Mivelle et al., 2014

Document ID
3366016536706384112
Author
Mivelle M
van Zanten T
Garcia-Parajo M
Publication year
Publication venue
Nano letters

External Links

Snippet

Photonic antennas amplify and confine optical fields at the nanoscale offering excellent perspectives for nanoimaging and nanospectroscopy. Increased resolution beyond the diffraction limit has been demonstrated using a variety of antenna designs, but multicolor …
Continue reading at pubs.acs.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultra-violet illumination; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination

Similar Documents

Publication Publication Date Title
Mivelle et al. Hybrid photonic antennas for subnanometer multicolor localization and nanoimaging of single molecules
Masullo et al. Pulsed interleaved MINFLUX
Wei et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy
Weisenburger et al. Light microscopy: an ongoing contemporary revolution
Chen et al. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds
Ponsetto et al. Experimental demonstration of localized plasmonic structured illumination microscopy
Isbaner et al. Axial colocalization of single molecules with nanometer accuracy using metal-induced energy transfer
Liu et al. Breaking the Axial Diffraction Limit: A Guide to Axial Super‐Resolution Fluorescence Microscopy
Xiao et al. Three dimensional orientational imaging of nanoparticles with darkfield microscopy
Mivelle et al. Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence
Heintzmann et al. Breaking the resolution limit in light microscopy
Bautista et al. Vector-field nonlinear microscopy of nanostructures
Lew et al. Azimuthal polarization filtering for accurate, precise, and robust single-molecule localization microscopy
Chen et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy
Heucke et al. Placing individual molecules in the center of nanoapertures
Horton et al. Nanoscopy through a plasmonic nanolens
Konorov et al. In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy
Lesoine et al. Supercontinuum stimulated emission depletion fluorescence lifetime imaging
Flauraud et al. Large-scale arrays of bowtie nanoaperture antennas for nanoscale dynamics in living cell membranes
Szalai et al. Super-resolution imaging of energy transfer by intensity-based STED-FRET
Blanquer et al. Relocating single molecules in super-resolved fluorescence lifetime images near a plasmonic nanostructure
Gjonaj et al. Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space
Balzarotti et al. Plasmonics meets far-field optical nanoscopy
Cherukulappurath et al. Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing
Pradhan et al. Gold-nanorod-enhanced fluorescence correlation spectroscopy of fluorophores with high quantum yield in lipid bilayers