Khan et al., 2009 - Google Patents
Differential Based Area Efficient ROM-Less Quadrature Direct Digital Frequency SynthesisKhan et al., 2009
View PDF- Document ID
- 375559121130057852
- Author
- Khan Y
- Ullah A
- Ali H
- Yahya K
- Ali N
- Khan M
- Publication year
- Publication venue
- 2009 International Conference on Emerging Technologies
External Links
Snippet
Quadrature direct digital frequency synthesis (QDDFS) is a technique which can generate sine and cosine values in digital domain. In this paper we present a novel architecture for implementing QDDFS, suitable for implementation in very large scale integration (VLSI). The …
- 230000015572 biosynthetic process 0 title abstract description 5
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/4806—Computations with complex numbers
- G06F7/4818—Computations with complex numbers using coordinate rotation digital computer [CORDIC]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/535—Dividing only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/68—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using pulse rate multipliers or dividers pulse rate multipliers or dividers per se
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/02—Digital function generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/16—Constructional details or arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2101/00—Indexing scheme relating to the type of digital function generated
- G06F2101/04—Trigonometric functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Madisetti et al. | A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range | |
| Maharatna et al. | Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture | |
| Kumar | FPGA implementation of the trigonometric functions using the CORDIC algorithm | |
| Ramírez et al. | Fast RNS FPL-based communications receiver design and implementation | |
| Maharatna et al. | Virtually scaling-free adaptive CORDIC rotator | |
| Khan et al. | High speed ECC implementation on FPGA over GF (2 m) | |
| Liu et al. | A modified CORDIC FPGA implementation for wave generation | |
| Ashrafi et al. | A direct digital frequency synthesizer based on the quasi-linear interpolation method | |
| Meher et al. | Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for $ GF (2^{m}) $ Based on Irreducible All-One Polynomials | |
| Najafi et al. | Accelerating deterministic bit-stream computing with resolution splitting | |
| Hwang et al. | A 400-MHz processor for the conversion of rectangular to polar coordinates in 0.25-μm CMOS | |
| Zhou et al. | A Fully Pipelined Reconfigurable Montgomery Modular Multiplier Supporting Variable Bit-Widths | |
| Abdullah et al. | A high throughput FFT processor with no multipliers | |
| Palomaki et al. | Direct digital frequency synthesizer architecture based on Chebyshev approximation | |
| Chen et al. | Implementation method of CORDIC algorithm to improve DDFS performance | |
| Anil et al. | FPGA Implementation of DDS for Arbitrary wave generation | |
| Khan et al. | Differential Based Area Efficient ROM-Less Quadrature Direct Digital Frequency Synthesis | |
| Bhakthavatchalu et al. | A comparison of pipelined parallel and iterative CORDIC design on FPGA | |
| Ortiz et al. | A study on the design of floating-point functions in FPGAs | |
| Kumar et al. | Implementation of an area efficient high throughput architecture for sparse matrix LU factorization | |
| Zhang et al. | FPGA implementation of low-power and high-PSNR DCT/IDCT architecture based on adaptive recoding CORDIC | |
| Zhang et al. | Implementation of high accuracy trigonometric function on FPGA by Taylor expansion | |
| Song et al. | A 16 b quadrature direct digital frequency synthesizer using interpolative angle rotation algorithm | |
| Nagayama et al. | A systematic design method for two-variable numeric function generators using multiple-valued decision diagrams | |
| Bhakthavatchalu et al. | Low power design techniques applied to pipelined parallel and iterative CORDIC design |