[go: up one dir, main page]

Wu et al., 2025 - Google Patents

EITHOT: Efficient In-place Transposition of High Order Tensors on GPUs

Wu et al., 2025

Document ID
3787467860718913876
Author
Wu C
Tu C
Cheng K
Lee C
Publication year
Publication venue
ACM Transactions on Parallel Computing

External Links

Snippet

Tensor transposition is a fundamental operation in tensor calculations with various applications. However, a naive implementation that copies each element from the source tensor to the transposed position in the target tensor requires double space, making it …
Continue reading at dl.acm.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/52Programme synchronisation; Mutual exclusion, e.g. by means of semaphores; Contention for resources among tasks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30076Arrangements for executing specific machine instructions to perform miscellaneous control operations, e.g. NOP
    • G06F9/30087Synchronisation or serialisation instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30442Query optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30946Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • G06F8/41Compilation
    • G06F8/45Exploiting coarse grain parallelism in compilation, i.e. parallelism between groups of instructions
    • G06F8/456Parallelism detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3457Performance evaluation by simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Similar Documents

Publication Publication Date Title
Gale et al. Sparse gpu kernels for deep learning
Filippone et al. Sparse matrix-vector multiplication on GPGPUs
Dongarra et al. Accelerating numerical dense linear algebra calculations with GPUs
Gremse et al. GPU-accelerated sparse matrix-matrix multiplication by iterative row merging
Springer et al. HPTT: A high-performance tensor transposition C++ library
Ashari et al. On optimizing machine learning workloads via kernel fusion
Liu et al. Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors
Tang et al. Accelerating sparse matrix-vector multiplication on GPUs using bit-representation-optimized schemes
Yeralan et al. Algorithm 980: Sparse QR factorization on the GPU
Elafrou et al. Sparsex: A library for high-performance sparse matrix-vector multiplication on multicore platforms
Guo et al. A model-driven partitioning and auto-tuning integrated framework for sparse matrix-vector multiplication on GPUs
Koza et al. Compressed multirow storage format for sparse matrices on graphics processing units
Huang et al. Strassen’s algorithm reloaded on GPUs
Basaran et al. Grex: An efficient MapReduce framework for graphics processing units
Bartezzaghi et al. An explicit dynamics GPU structural solver for thin shell finite elements
Tolmachev VkFFT-a performant, cross-platform and open-source GPU FFT library
Bernaschi et al. A factored sparse approximate inverse preconditioned conjugate gradient solver on graphics processing units
Oyarzun et al. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers
Park et al. mGEMM: Low-latency convolution with minimal memory overhead optimized for mobile devices
Gao et al. A systematic literature survey of sparse matrix-vector multiplication
Liu et al. Parallel reconstruction of neighbor-joining trees for large multiple sequence alignments using CUDA
Wu et al. EITHOT: Efficient In-place Transposition of High Order Tensors on GPUs
Reddy et al. New sparse matrix storage format to improve the performance of total SPMV time
Page et al. Scalability of sparse matrix dense vector multiply (SpMV) on a migrating thread architecture
Corrigan et al. A hybrid grid compressible flow solver for large-scale supersonic jet noise simulations on multi-GPU clusters