[go: up one dir, main page]

Chamazcoti et al., 2022 - Google Patents

Exploring pareto-optimal hybrid main memory configurations using different emerging memories

Chamazcoti et al., 2022

View PDF
Document ID
383367185976087297
Author
Chamazcoti S
Gupta M
Oh H
Evenblij T
Catthoor F
Komalan M
Kar G
Furnemont A
Publication year
Publication venue
IEEE Transactions on Circuits and Systems I: Regular Papers

External Links

Snippet

Main memory system design and corresponding technology requirements have become increasingly challenging for data-dominated high-performance applications. To address the leakage and scalability issues of the conventional DRAM-based memory, new memory …
Continue reading at lirias.kuleuven.be (PDF) (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Free address space management in non-volatile memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/20Employing a main memory using a specific memory technology
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/816Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout
    • G11C29/818Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout for dual-port memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5641Multilevel memory having cells with different number of storage levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group

Similar Documents

Publication Publication Date Title
Dong et al. Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory
Zhang et al. Characterizing and mitigating the impact of process variations on phase change based memory systems
Xie Modeling, architecture, and applications for emerging memory technologies
US8650355B2 (en) Non-volatile resistive sense memory on-chip cache
Luo et al. CLR-DRAM: A low-cost DRAM architecture enabling dynamic capacity-latency trade-off
Sun et al. A frequent-value based PRAM memory architecture
Sun et al. Memory that never forgets: Emerging nonvolatile memory and the implication for architecture design
Wang et al. Cross-point resistive memory: Nonideal properties and solutions
Genssler et al. On the reliability of FeFET on-chip memory
Sun et al. Array organization and data management exploration in racetrack memory
George et al. Symmetric 2-D-memory access to multidimensional data
KR20180047481A (en) Magnetoresistive memory module and computing device including the same
Chamazcoti et al. Exploring pareto-optimal hybrid main memory configurations using different emerging memories
Wen et al. Speeding up crossbar resistive memory by exploiting in-memory data patterns
Wang et al. Improving write performance on cross-point RRAM arrays by leveraging multidimensional non-uniformity of cell effective voltage
US20160267002A1 (en) Storage system
Ferdaus et al. Approximate MRAM: High-performance and power-efficient computing with MRAM chips for error-tolerant applications
Mittal et al. Exploring design space of 3d nvm and edram caches using destiny tool
Sun et al. Cost, capacity, and performance analyses for hybrid SCM/NAND flash SSD
Liu et al. Fast cacheline-based data replacement for hybrid DRAM and STT-MRAM main memory
Wu et al. Aliens: A novel hybrid architecture for resistive random-access memory
Kang et al. Pseudo-differential sensing framework for STT-MRAM: A cross-layer perspective
Alinezhad Exploring Pareto-optimal Hybrid Main Memory Configurations using different Emerging Memories
Wu et al. A low power reconfigurable memory architecture for complementary resistive switches
Itoh Embedded memories: Progress and a look into the future