[go: up one dir, main page]

NO338410B1 - An electrode for making aluminum and a method for forming the same - Google Patents

An electrode for making aluminum and a method for forming the same Download PDF

Info

Publication number
NO338410B1
NO338410B1 NO20130123A NO20130123A NO338410B1 NO 338410 B1 NO338410 B1 NO 338410B1 NO 20130123 A NO20130123 A NO 20130123A NO 20130123 A NO20130123 A NO 20130123A NO 338410 B1 NO338410 B1 NO 338410B1
Authority
NO
Norway
Prior art keywords
electrode
barrier layer
accordance
forming
conductive elements
Prior art date
Application number
NO20130123A
Other languages
Norwegian (no)
Other versions
NO20130123A1 (en
Inventor
Eirik Hagen
Bjarte Øye
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to NO20130123A priority Critical patent/NO338410B1/en
Priority to CN201480005438.7A priority patent/CN104937144B/en
Priority to PCT/NO2014/000002 priority patent/WO2014116117A1/en
Priority to EP14743388.2A priority patent/EP2948577B1/en
Priority to AU2014210417A priority patent/AU2014210417B2/en
Priority to NZ709857A priority patent/NZ709857A/en
Priority to CA2896472A priority patent/CA2896472C/en
Priority to BR112015017071A priority patent/BR112015017071A2/en
Priority to EA201500763A priority patent/EA028191B1/en
Publication of NO20130123A1 publication Critical patent/NO20130123A1/en
Priority to SA515360744A priority patent/SA515360744B1/en
Publication of NO338410B1 publication Critical patent/NO338410B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

Foreliggende oppfinnelse relateres tii en elektrode for aluminiumproduksjon samt en fremgangsmåte for tilvirkning av samme. The present invention relates to an electrode for aluminum production as well as a method for producing the same.

Aluminium metal produseres vanligvis ved elektrolyse av et blanding inneholdende aluminium som oppløses i en smeltet elektrolytt, og elektrolyseprosessen er utført i smelte celler av konvensjonelt Hall-Héroult design. Aluminum metal is usually produced by electrolysis of a mixture containing aluminum which is dissolved in a molten electrolyte, and the electrolysis process is carried out in molten cells of conventional Hall-Héroult design.

Disse elektrolysecellene er utstyrt med horisontalt innrettede elektroder, og hvor de elektrisk ledende anoder og katoder i dagens celler er tildannet av karbonmaterialer. These electrolysis cells are equipped with horizontally arranged electrodes, and where the electrically conductive anodes and cathodes in today's cells are made of carbon materials.

Elektrolytten er basert på en blanding av natriumfluorid og aluminiumfluorid, med tillegg av alkalisk og alkaliske jord halogenider. The electrolyte is based on a mixture of sodium fluoride and aluminum fluoride, with the addition of alkaline and alkaline earth halides.

Elektrolyseprosessen finner sted ved at strømmen som passerer gjennom elektrolytten fra anoden til katoden driver den elektriske utfelling av aluminiumioner ved katoden, og således produserer aluminium metal. The electrolysis process takes place in that the current passing through the electrolyte from the anode to the cathode drives the electrical precipitation of aluminum ions at the cathode, thus producing aluminum metal.

Vanligvis er samleskinner av stål montert inn i for-formede spor i katodeblokkene. Rommet eller åpningen mellom veggen i sporene og skinnene kan fylles med smeltet støpejern, og/eller en ledende pasta kan benyttes. Typically, steel busbars are fitted into pre-formed slots in the cathode blocks. The space or opening between the wall of the tracks and the rails can be filled with molten cast iron, and/or a conductive paste can be used.

På tilsvarende måte kan forbakte karbon anoder festes til stålnipler i en anodehenger. Anoden har for-formede hull for opptak av stålniplene. Innfestingen av niplene til anoden er vanligvis utført ved at smeltet støpejern fylles i ringrommet mellom hver nippel og det korresponderende hull i anoden. In a similar way, pre-baked carbon anodes can be attached to steel nipples in an anode hanger. The anode has pre-shaped holes for receiving the steel nipples. The attachment of the nipples to the anode is usually carried out by filling the annular space between each nipple and the corresponding hole in the anode with molten cast iron.

En alternativ løsning er å benytte ledende partikler for anodesammenstilting som vist i søkerens egen patentsøknad WO09/099335. An alternative solution is to use conductive particles for anode composition as shown in the applicant's own patent application WO09/099335.

I kappløpet mot lavere spesifikt energiforbruk ved aluminiumsproduksjon er et kjent og potent grep å søke å redusere det katodiske og/eller det anodiske spenningsfall. In the race towards lower specific energy consumption in aluminum production, a well-known and potent move is to seek to reduce the cathodic and/or anodic voltage drop.

Dersom en reduserer det katodiske spenningsfall, vil også ohmsk energitap i katoden reduseres, noe som muliggjør å enten øke strømstyrken i cellene og/eller å redusere spenningen som igjen vil føre til en reduksjon i det spesifikke energiforbruket pr tonn produsert aluminium. If you reduce the cathodic voltage drop, ohmic energy loss in the cathode will also be reduced, which makes it possible to either increase the current strength in the cells and/or to reduce the voltage, which in turn will lead to a reduction in the specific energy consumption per tonne of aluminum produced.

Ulike midler har vært benyttet for å oppnå reduksjon i det katodiske spenningsfall, og en velkjent metode er å benytte kobber elementer for å forbedre ledningsevnen til de vanligvis benyttede samleskinner av stål. Mange publikasjoner viser at slike kobber element har i det minste én ekstern side eller overflate som er beliggende inntil en korresponderende overflate til samleskinnen av stål. Various means have been used to achieve a reduction in the cathodic voltage drop, and a well-known method is to use copper elements to improve the conductivity of the usually used steel busbars. Many publications show that such copper elements have at least one external side or surface which is situated next to a corresponding surface of the steel busbar.

Eksempler på dette finnes i WO04031452 som viser samleskinner av stål omfattende en kobberkjerne, US5976333A og WO0163014 som begge viser ulike design hvor en kobberstang er innsatt i et stålrør som er innlagt i et spor i en katodeblokk. Examples of this can be found in WO04031452 which shows steel busbars comprising a copper core, US5976333A and WO0163014 which both show different designs where a copper rod is inserted into a steel tube which is inserted into a slot in a cathode block.

US 6231745 A nevner fenomenet med diffusjon av jern inn i kobber og med tilhørende reduksjon i ledningsevne i relasjon til en celle for aluminiumelektrolyse, men det kan ikke ses at dokumentet angir noen løsning for å forebygge dette utover det at ved benyttelse av et tilstrekkelig stort tverrsnitt på kobberstaven kan metning av jern i kobber unngås inntil levetiden av cellen er nådd. US 6231745 A mentions the phenomenon of diffusion of iron into copper and the associated reduction in conductivity in relation to a cell for aluminum electrolysis, but it cannot be seen that the document indicates any solution to prevent this beyond that by using a sufficiently large cross-section on the copper rod, saturation of iron in copper can be avoided until the lifetime of the cell is reached.

US 5704993 A omhandler en kompositt metall strømleder med høy ledningsevne og høy mekanisk styrke så som strekkfasthet, omfattende karbon stål (0,3-0,8 vekt % C) og et materiale som kan utgjøre kobber, nikkel, sølv eller gull. Strømlederen tildannes ved sammenstilling av de to metalliske komponentene i form av en stang og et rør med påfølgende evakuering av luft og deformering til ønsket dimensjon og videre med påfølgende varmebehandling. Som anvendelse oppgis blant annet elektrisk motorer, elektriske transmisjonslinjer og mekaniske batterier. Det benyttes diffusjonsbarriere mellom karbonstålet og de nevnte alternative materialer som kobber, nikkel, sølv eller gull. Som barrieremateriale nevnes niob, vanadium eller tantal. US 5704993 A relates to a composite metal current conductor with high conductivity and high mechanical strength such as tensile strength, comprising carbon steel (0.3-0.8% by weight C) and a material which may comprise copper, nickel, silver or gold. The current conductor is formed by assembling the two metallic components in the form of a rod and a tube with subsequent evacuation of air and deformation to the desired dimension and further with subsequent heat treatment. Examples of applications include electric motors, electric transmission lines and mechanical batteries. A diffusion barrier is used between the carbon steel and the aforementioned alternative materials such as copper, nickel, silver or gold. Niobium, vanadium or tantalum are mentioned as barrier materials.

Tester viser at kobber element innsatt i samleskinner av stål kan redusere det katodiske spenningsfall med omkring 60mV i forhold til konvensjonelle samleskinner av stål. Tests show that copper elements inserted in steel busbars can reduce the cathodic voltage drop by around 60mV compared to conventional steel busbars.

En annen fordel ved å benytte kobber som et høy-konduktivt element i katoder er den mer uniforme katodiske strømtetthet som oppnås ved slike design. Spesielt for grafitiserte katoder vil en mer uniform strømtetthet redusere den maksimale erosjonsrate, og dermed øke katodelevetiden. Another advantage of using copper as a high-conductivity element in cathodes is the more uniform cathodic current density achieved by such designs. Especially for graphitized cathodes, a more uniform current density will reduce the maximum erosion rate, thereby increasing the cathode lifetime.

Det skal bemerkes at hver eneste mV som spares ved de løsninger som involverer at det legges inn høy-konduktive elementer er kostbar, fordi i tillegg til de kostbare kobber stenger som benyttes så vil sammenstilling (boring av samieskinne og kobberstang montering) nært utgjøre det tredoble av kostnadene som selve kobberet utgjør. It should be noted that every single mV that is saved by the solutions that involve the insertion of highly conductive elements is expensive, because in addition to the expensive copper rods that are used, the assembly (drilling of the Samie rail and copper rod assembly) will almost triple the of the costs incurred by the copper itself.

I tillegg har det blitt observert av oppfinnerne at ved de høye temperaturer som er tilstede for denne type komposittledere, så vil Fe som finnes i samleskinnene av stål diffundere inn i Cu metallet i et tilliggende kopperinnlegg. In addition, it has been observed by the inventors that at the high temperatures present for this type of composite conductors, the Fe contained in the steel busbars will diffuse into the Cu metal in an adjacent copper insert.

Denne diffusjonen kan resultere i en økt ohmsk motstand i kompositt samleskinnen, og følgelig et øket katodisk spenningsfall over tid. This diffusion can result in an increased ohmic resistance in the composite busbar, and consequently an increased cathodic voltage drop over time.

Tilsvarende effekt med hensyn til ohmsk motstand kan oppstå når komposittledere av Fe A similar effect with regard to ohmic resistance can occur when composite conductors of Fe

- Cu typen benyttes for anoder. - The Cu type is used for anodes.

Den foreliggende oppfinnelse relatere til elektroder, anoder eller katoder, med kompositt ledere og en fremgangsmåte for å tildanne samme, hvor disse ødeleggende effektene kan reduseres eller unngås. The present invention relates to electrodes, anodes or cathodes, with composite conductors and a method for forming the same, where these destructive effects can be reduced or avoided.

Mer spesifikt, oppfinnelsen relateres til en elektrode for produksjon av aluminium metall ved elektrolyse av en aluminium inneholdende blanding oppløst i en smeltet elektrolytt, hvor elektrolyseprosessen utføres i smelteceller av konvensjonelt Hall-Héroult type. Elektroden omfatter et kalsinert karboninneholdende legeme som har tilordnet i det minste en kompositt metallisk leder omfattende ledende elementer av et Fe inneholdende materiale og ledende elementer av et Cu inneholdende materiale. Komposittlederen omfatter en diffusjonsbarriere på grensesnittet mellom de to ledende materialer. Flere materialer for benyttelse som diffusjonsbarriere har blitt nådd frem til så vel som metoder for pålogging av sjiktet More specifically, the invention relates to an electrode for the production of aluminum metal by electrolysis of an aluminum-containing mixture dissolved in a molten electrolyte, where the electrolysis process is carried out in melting cells of the conventional Hall-Héroult type. The electrode comprises a calcined carbon-containing body to which is assigned at least one composite metallic conductor comprising conductive elements of an Fe-containing material and conductive elements of a Cu-containing material. The composite conductor comprises a diffusion barrier at the interface between the two conductive materials. Several materials for use as a diffusion barrier have been reached as well as methods for logging the layer

Idet minste to viktige målsettinger ved oppfinnelsen kan nevnes; Since at least two important objectives of the invention can be mentioned;

1) Bevare minimum motstand i cellens levetid og 1) Maintain minimum resistance during the life of the cell and

2) å anvende tynnere Cu-seksjoner i komposittledere, dvs. Cu-plater, for å forbedre kvaliteten og kost situasjonen ved den kompositte lederen. 2) to use thinner Cu sections in composite conductors, i.e. Cu plates, to improve the quality and cost situation of the composite conductor.

Disse og ytterligere fordeler kan oppnås I samsvar med oppfinnelsen som angitt i de vedføyde patentkrav. I det etterfølgende skal oppfinnelsen ytterligere beskrives ved figurer hvor: These and further advantages can be achieved in accordance with the invention as stated in the appended patent claims. In what follows, the invention will be further described by means of figures where:

Fig. 1 er et fasediagram som viser Fe diffusjon inn i Cu, Fig. 1 is a phase diagram showing Fe diffusion into Cu,

Fig. 2 er et diagram som viser økningen i motstand når Fe diffunderer inn i Cu Fig. 2 is a diagram showing the increase in resistance as Fe diffuses into Cu

Fig. 3 er et diagram som viser konsentrasjoner av Fe i Cu for komposittledere uten og med forskjellige barrierematerialer. Fig. 3 is a diagram showing concentrations of Fe in Cu for composite conductors without and with different barrier materials.

Oppfinnelsen relateres til elektroder generelt, men når det angår katoder så er det et problem med samleskinner generelt, og det er at drrftstemperaturen er godt over 900°C, og andre elementer i kontakt med samleskinnen kan diffundere inn i materialet og forringe motstanden i materialet. For vanlige stål samleskinner, vil karbon ( C ) diffundere inn i stålet og motstanden øker. The invention relates to electrodes in general, but when it concerns cathodes, there is a problem with busbars in general, and that is that the drying temperature is well above 900°C, and other elements in contact with the busbar can diffuse into the material and reduce the resistance in the material. For normal steel busbars, carbon (C) will diffuse into the steel and the resistance increases.

For kompositt samleskinner av for eksempel Cu og Fe oppstår en interdiffusjon i tillegg. Fe vil diffundere inn i Cu i den mengde som er gitt i fasediagrammet i Fig. 1. Omvendt vil Cu også diffundere inn i Fe, men dette er mindre kritisk for motstanden til sammenstillingen. For composite busbars of, for example, Cu and Fe, interdiffusion also occurs. Fe will diffuse into Cu in the amount given in the phase diagram in Fig. 1. Conversely, Cu will also diffuse into Fe, but this is less critical for the resistance of the assembly.

Økningen i motstand når Fe diffunderer inn i Cu er målt, og vist i Fig. 2. Motstanden i Cu øker nesten 100% når Cu blir mettet med Fe. Det er derfor ønskelig å ha en barriere som forhindrer interdiffusjon av Fe inn i Cu. The increase in resistance when Fe diffuses into Cu has been measured, and shown in Fig. 2. The resistance in Cu increases almost 100% when Cu is saturated with Fe. It is therefore desirable to have a barrier that prevents interdiffusion of Fe into Cu.

De nødvendige egenskaper til en barriere som skal forhindre Fe å diffundere inn i Cu i en kompositt samleskinne er følgende: The necessary properties of a barrier to prevent Fe from diffusing into Cu in a composite busbar are the following:

1) En lav løselighet av blandingen i både Fe og Cu 1) A low solubility of the mixture in both Fe and Cu

2) Stabil ved cellens driftstemperatur 2) Stable at the cell's operating temperature

3) Bevare den elektriske ledningsevnen 3) Preserve electrical conductivity

4) Enkel å påføre i tynne lag 4) Easy to apply in thin layers

Ved et første eksperiment, ble et tynt belegg av TiB2pulver påført en Cu-stang og effekten ble målt ved et diffusjons eksperiment. In a first experiment, a thin coating of TiB2 powder was applied to a Cu rod and the effect was measured by a diffusion experiment.

En Cu stang ble dyppet i en TiB2 slurry og et 100 mikron tykt belegg ble etablert. Stangen ble innsatt i et hult stållegeme og sammenstillingen ble varmet opp til 950 °C i 14 dager. A Cu rod was dipped in a TiB2 slurry and a 100 micron thick coating was established. The rod was inserted into a hollow steel body and the assembly was heated to 950 °C for 14 days.

t det neste eksperimentet ble en Mo og en W folie på 100 mikron testet på samme vis, dvs. påført overflaten til en Cu stang som etterpå ble puttet inn i et hult stållegeme og varmet tilsvarende. In the next experiment, a Mo and a W foil of 100 microns were tested in the same way, i.e. applied to the surface of a Cu rod which was then put into a hollow steel body and heated accordingly.

Konsentrasjonsprofilene er vist i Fig. 3. En betydelig reduksjon i diffusjonen er observert. For TiB2 belegget ble det observert en tifolds reduksjon. Mo og W folien ser ut til å effektivt blokkere diffusjon i tidsforløpet av testen (14 dager). The concentration profiles are shown in Fig. 3. A significant reduction in diffusion is observed. For the TiB2 coating, a tenfold reduction was observed. The Mo and W foils appear to effectively block diffusion over the course of the test (14 days).

Når man skal velge et materiale med lav diffusjonskoeffisient så er også lav løselighet en viktig egenskap. Den elektriske ledningsevnen til kobber er meget avhengig av dets grad av renhet, mens løseligheten definerer den øvre grense for hvor mye skade materialet kan gjøre. When choosing a material with a low diffusion coefficient, low solubility is also an important property. The electrical conductivity of copper is highly dependent on its degree of purity, while its solubility defines the upper limit of how much damage the material can do.

Barrierematerialet bør være i stand til å blokkere Fe, på samme tid må ikke barrierematerialet gå inn i kobberfasen. The barrier material should be able to block Fe, at the same time the barrier material must not enter the copper phase.

Generelt så oppstår diffusjon raskere langs korngrenser og over frie overflater enn gjennom det indre av krystaller, dvs. urenheter vil diffundere raskere inn i metallet langs korngrenser. In general, diffusion occurs faster along grain boundaries and over free surfaces than through the interior of crystals, i.e. impurities will diffuse faster into the metal along grain boundaries.

Så lenge som løseligheten er lav, er det ventet at akkumulasjon i kobber også er lav, og således vil den potensielle reduksjonen av ledningsevnen være begrenset. I tillegg til lav diffusjonsevne, må en god diffusjonsbarriere også ha lav løselighet i kobber, samt inneha tilstrekkelig elektrisk ledningsvne. As long as the solubility is low, it is expected that accumulation in copper will also be low, and thus the potential reduction in conductivity will be limited. In addition to low diffusivity, a good diffusion barrier must also have low solubility in copper, as well as possess sufficient electrical conductivity.

Utvel<g>elseskriterier for metalliske barriere materialer Selection criteria for metallic barrier materials

Hume-Rothery (Ref.: Lee J.D.: "Concise Inorganic Chemistry", 4th Ed., Chapman & Hall, London 1991, p. 136) angir et sett av enkle regler som beskriver forhold som må innfris dersom utstrakt faststoff løselighet mellom metaller skal oppstå: Atomers størrelsesfaktor regel: Den relative forskjell mellom de atomiske diametere (radier) av to typer bør være mindre enn 15%. Dersom differansen er > 15%, så er løseligheten begrenset. Hume-Rothery (Ref.: Lee J.D.: "Concise Inorganic Chemistry", 4th Ed., Chapman & Hall, London 1991, p. 136) states a set of simple rules that describe conditions that must be met if extended solid solubility between metals is to occur: Atomic size factor rule: The relative difference between the atomic diameters (radii) of two types should be less than 15%. If the difference is > 15%, the solubility is limited.

Krystallstruktur regelen: for å oppnå en utpreget faststoff løselighet, må krystallstrukturen av de to elementene være identisk. Crystal structure rule: to achieve a distinct solid solubility, the crystal structure of the two elements must be identical.

Valensregelen: Et metall vil løse et metall med høyere valens i større grad enn ett med lavere valens. De oppløste og oppløselige atomer bør typisk ha den samme valensen for å oppnå maksimal oppløselighet. The valence rule: A metal will dissolve a metal with a higher valence to a greater extent than one with a lower valence. The dissolved and soluble atoms should typically have the same valence to achieve maximum solubility.

Elektronegativitetsregelen: Elektronegativitetsforskjell nær 0 gir maksimal oppløselighet. Desto mer elektropositivt ett element er og desto mer elektronegativt det andre er, jo større er sannsynligheten at de vil forme en intermetallisk blanding i stedet for en erstattende faststoff løsning. Det oppløste og oppløselige bør ligge relativt nær i den elektrokjemiske rekken. The electronegativity rule: Electronegativity difference close to 0 gives maximum solubility. The more electropositive one element is and the more electronegative the other, the greater the probability that they will form an intermetallic mixture instead of a replacement solid solution. The dissolved and soluble should be relatively close in the electrochemical series.

Et barriere metall i samsvar med den foreliggende oppfinnelsen bør komme på utsiden av de ovennevnte regler I forhold til Cu og Fe, siden de ikke bør interferere med disse. A barrier metal in accordance with the present invention should fall outside the above-mentioned rules in relation to Cu and Fe, since they should not interfere with these.

Utvel<g>elseskriterier for keramiske barriere materialer Selection criteria for ceramic barrier materials

Ved anvendelse av keramiske materialer slik som Ildfaste Harde Materialer (RHM) som barriere materiale, interstitiell faststoff oppløsning kan finne sted dersom det minste atomet kan opptas mellom atomene i metall gitteret. I henhold tit Hågg's regel (se under) dannes interstitiell faststoff oppløsning bare dersom det atomiske radius forhold av de to komponentene rjrm < 0.59. When using ceramic materials such as Refractory Hard Materials (RHM) as barrier material, interstitial solid solution can take place if the smallest atom can be absorbed between the atoms in the metal lattice. According to Hågg's rule (see below), an interstitial solid solution is only formed if the atomic radius ratio of the two components rjrm < 0.59.

Ref.: Hågg G.: Gesetzmåssigkeiten in Kristallbau by Hydriden, Boriden, Carbiden und Nitriden" der Obergangselemente", S. Phys. Chem. B12 (1931) 33-56 and Hågg G.: "Eigenschaften der Phasen von Ubergangselementen in bin'aren Systemen mit Bor, Kolestoff und Stickstofr, 2.Phys. Chem. B12 (1931) 221-232. Ref.: Hågg G.: Gesetzmåssigkeiten in Kristallbau by Hydriden, Boriden, Carbiden und Nitriden" der Obergangselemente", S. Phys. Chem. B12 (1931) 33-56 and Hågg G.: "Eigenschaften der Phasen von Ubergangselementen in bin'aren Systemen mit Bor, Kolestoff und Stickstofr, 2.Phys. Chem. B12 (1931) 221-232.

Basert på disse kriterier, har det blitt fastlagt at i kontakt med Cu ser metaller som Ta, Mo og W lovende ut. B inneholdende keramer ser ut til å være en god kandidat for å hindre barrierematerialet fra å gå inn i Cu. Videre, Ildfaste Harde Materialer (RHM) kan omfatte gode kandidater så vel som nitrider og borider, mer spesifikt TiN, TaN, ZrN, og ZrB2, TiB2og muligens borider generelt. Based on these criteria, it has been determined that in contact with Cu, metals such as Ta, Mo and W look promising. B containing ceramics appear to be a good candidate to prevent the barrier material from entering Cu. Furthermore, Refractory Hard Materials (RHM) may include good candidates as well as nitrides and borides, more specifically TiN, TaN, ZrN, and ZrB2, TiB2, and possibly borides in general.

Vedørende barrierematerialets evne til å blokkere Fe, så ble det funnet at W ser mest lovende ut, og muligens Mo og Ru. W diffusjonsdata fra CRC handbook 58m Ed, 1977- 1978, F-63-F-71, indikerer at Fe diffunderer i størrelsesorden fire ganger langsommere inn i W enn det gjør i Cu. Regarding the ability of the barrier material to block Fe, it was found that W looks most promising, and possibly Mo and Ru. W diffusion data from CRC handbook 58m Ed, 1977- 1978, F-63-F-71, indicate that Fe diffuses about four times slower into W than it does into Cu.

Som nevnt ovenfor, omfatter den kompositte lederen i elektroden et diffusjonsbarrierelag ved grensesnittet mellom de to ledende materialene. Det har blitt vist at; As mentioned above, the composite conductor in the electrode comprises a diffusion barrier layer at the interface between the two conductive materials. It has been shown that;

Diffusjonsbarrierelaget kan tildannes av et keramisk material eiler et RHM material. The diffusion barrier layer can be formed from a ceramic material or a RHM material.

Diffusjonsbarrierelag av Nitrider eller Borider så som TiN, TaN, ZrN, ZrB2, eller TiB2 kan også anvendes. Diffusion barrier layers of Nitrides or Borides such as TiN, TaN, ZrN, ZrB2, or TiB2 can also be used.

Fremgangsmåter for å påføre disse diffusjonsbarriere lag materialene kan omfatte å tildanne en slurry og påføre det på de ledende elementene ved å dyppe i det minste ett av de to ledene elementene i nevnte slurry med etterfølgende tørking, eller det kan påføres som pulver belegging. Methods of applying these diffusion barrier layer materials may include forming a slurry and applying it to the conductive elements by dipping at least one of the two conductive elements in said slurry with subsequent drying, or it may be applied as a powder coating.

Videre, en fremgangsmåte for påføring av diffusjonsbarirerematerialet kan omfatte at barriere belegget påføres ved hjelp av en plasmabeteggingsteknikk. Furthermore, a method for applying the diffusion barrier material may comprise applying the barrier coating using a plasma coating technique.

Foretrukne metaftiske barriere lag inkluderer; Mo, W, Ta eller Ru. Preferred metaphtic barrier layers include; Mo, W, Ta or Ru.

Disse diffusjonsbarrierelagene kan også tildannes som en folie, ved kjemisk damp avsetning eller elektroplettering, og anvendes på i det minste en av de to ledende elementene før de bringes sammen. These diffusion barrier layers can also be formed as a foil, by chemical vapor deposition or electroplating, and applied to at least one of the two conductive elements before they are brought together.

Tykkelsen av barrierelaget kan fortrinnsvis ligge i området 1-1000 pm. The thickness of the barrier layer can preferably be in the range 1-1000 pm.

Claims (8)

1. Elektrode for fremstilling av aluminium metall ved elektrolyse av en aluminium inneholdende blanding oppløst i en smeltet elektrolytt, hvor elektrolyseprosessen er utført i smelteceller av konvensjonelt Hall-Héroult design, hvor elektroden omfatter et kalsinert karbonholdig legeme som har tilordnet i det minste en metallisk kompositt leder omfattende ledende elementer av et Fe inneholdende materiale og ledende elementer av et Cu inneholdende materiale,karakterisert vedat den kompositte lederen omfatter et materiale som utgjør et elektrisk ledende diffusjonsbarrierelag på grenseflaten mellom de to ledende materialene idet barrierelaget utgjøres av et keramisk materiale eller et metallisk materiale av Mo, W eller Ru.1. Electrode for the production of aluminum metal by electrolysis of an aluminum-containing mixture dissolved in a molten electrolyte, where the electrolysis process is carried out in melting cells of conventional Hall-Héroult design, where the electrode comprises a calcined carbonaceous body which has assigned at least one metallic composite conductor comprising conductive elements of an Fe-containing material and conductive elements of a Cu-containing material, characterized by the composite conductor comprises a material which forms an electrically conductive diffusion barrier layer on the interface between the two conductive materials, the barrier layer being made of a ceramic material or a metallic material of Mo, W or Ru. 2. Elektrode i samsvar med krav 1, karakterisert vedat det keramiske barrierelaget utgjøres av et RHM materiale.2. Electrode in accordance with claim 1, characterized by the ceramic barrier layer consists of a RHM material. 3. Elektrode i samsvar med krav 2, karakterisert vedat barrierelaget er laget av Nitrider eller Borider valgt blant TiN, TaN, ZrN, ZrB2, eller JiB23. Electrode in accordance with claim 2, characterized by The barrier layer is made of Nitrides or Borides selected from TiN, TaN, ZrN, ZrB2, or JiB2 4. Elektrode i samsvar med hvilket som helst foregående krav, karakterisert vedat tykkelsen på barrierelaget er i området 1-1000 pm.4. Electrode according to any preceding claim, characterized by the thickness of the barrier layer is in the range of 1-1000 pm. 5. Fremgangsmåte for tildannelse av en elektrode i samsvar med krav 1karakterisert vedat det keramiske barrierelaget er påført i en tilstand som slurry eller ved plasmabelegging.5. Method for forming an electrode in accordance with claim 1 characterized by the ceramic barrier layer is applied in a slurry state or by plasma coating. 6. Fremgangsmåte for tildannelse av en elektrode i samsvar med krav 1,karakterisert vedat det keramiske diffusjonsbarrierelaget tildannes som en slurry og påføres de ledende elementene ved å dyppe minst en av de to ledende elementene i nevnte slurry etterfulgt av tørking, eller påføres ved pulver belegging.6. Method for forming an electrode in accordance with claim 1, characterized by the ceramic diffusion barrier layer is formed as a slurry and applied to the conductive elements by dipping at least one of the two conductive elements in said slurry followed by drying, or applied by powder coating. 7. Fremgangsmåte for tildannelse av en elektrode i samsvar med krav 1,karakterisert vedat diffusjonsbarrierelaget påføres i det minste en av de to ledende elementene før disse sammenstilles.7. Method for forming an electrode in accordance with claim 1, characterized by the diffusion barrier layer is applied to at least one of the two conductive elements before these are assembled. 8. Fremgangsmåte for tildannelse av elektrode i samsvar med krav 1,karakterisert vedat metalliske barrierelaget utgjøres av en folie eller er påført på annet vis så som ved kjemisk damp avsetning, elektroplettering eller lignende.8. Method for forming an electrode in accordance with claim 1, characterized by The metallic barrier layer consists of a foil or is applied in another way such as by chemical vapor deposition, electroplating or the like.
NO20130123A 2013-01-22 2013-01-22 An electrode for making aluminum and a method for forming the same NO338410B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NO20130123A NO338410B1 (en) 2013-01-22 2013-01-22 An electrode for making aluminum and a method for forming the same
NZ709857A NZ709857A (en) 2013-01-22 2014-01-20 An electrode for aluminium production and a method of making same
PCT/NO2014/000002 WO2014116117A1 (en) 2013-01-22 2014-01-20 An electrode for aluminium production and a method of making same
EP14743388.2A EP2948577B1 (en) 2013-01-22 2014-01-20 An electrode for aluminium production and a method of making same
AU2014210417A AU2014210417B2 (en) 2013-01-22 2014-01-20 An electrode for aluminium production and a method of making same
CN201480005438.7A CN104937144B (en) 2013-01-22 2014-01-20 Electrode for aluminum production and method of making the same
CA2896472A CA2896472C (en) 2013-01-22 2014-01-20 An electrode for aluminium production and a method of making same
BR112015017071A BR112015017071A2 (en) 2013-01-22 2014-01-20 electrode for producing metallic aluminum, and method for producing an electrode
EA201500763A EA028191B1 (en) 2013-01-22 2014-01-20 Electrode for aluminium production and method of making same
SA515360744A SA515360744B1 (en) 2013-01-22 2015-07-09 An Electrode for Aluminium Production and a Method of Making Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20130123A NO338410B1 (en) 2013-01-22 2013-01-22 An electrode for making aluminum and a method for forming the same

Publications (2)

Publication Number Publication Date
NO20130123A1 NO20130123A1 (en) 2014-07-23
NO338410B1 true NO338410B1 (en) 2016-08-15

Family

ID=51227824

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20130123A NO338410B1 (en) 2013-01-22 2013-01-22 An electrode for making aluminum and a method for forming the same

Country Status (10)

Country Link
EP (1) EP2948577B1 (en)
CN (1) CN104937144B (en)
AU (1) AU2014210417B2 (en)
BR (1) BR112015017071A2 (en)
CA (1) CA2896472C (en)
EA (1) EA028191B1 (en)
NO (1) NO338410B1 (en)
NZ (1) NZ709857A (en)
SA (1) SA515360744B1 (en)
WO (1) WO2014116117A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704993A (en) * 1995-10-10 1998-01-06 The Regents Of The Univerisity Of California, Office Of Technology Transfer High conductivity composite metal
US6231745B1 (en) * 1999-10-13 2001-05-15 Alcoa Inc. Cathode collector bar
US20030230394A1 (en) * 2002-06-17 2003-12-18 Hans-Juergen Hemschemeier Copper casting mold
US20060151333A1 (en) * 2002-12-30 2006-07-13 Sgl Carbon Ag Cathode systems for electrolytically obtaining aluminum
WO2009055844A1 (en) * 2007-10-29 2009-05-07 Bhp Billiton Innovation Pty Ltd Composite collector bar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528185B2 (en) * 2001-02-28 2003-03-04 Hong Kong Polytechnic University Cobalt-tungsten-phosphorus alloy diffusion barrier coatings, methods for their preparation, and their use in plated articles
WO2004035870A1 (en) * 2002-10-18 2004-04-29 Moltech Invent S.A. Anode current feeding connection stem
EP1927679B1 (en) * 2006-11-22 2017-01-11 Rio Tinto Alcan International Limited Electrolysis cell for the production of aluminium comprising means to reduce the voltage drop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704993A (en) * 1995-10-10 1998-01-06 The Regents Of The Univerisity Of California, Office Of Technology Transfer High conductivity composite metal
US6231745B1 (en) * 1999-10-13 2001-05-15 Alcoa Inc. Cathode collector bar
US20030230394A1 (en) * 2002-06-17 2003-12-18 Hans-Juergen Hemschemeier Copper casting mold
US20060151333A1 (en) * 2002-12-30 2006-07-13 Sgl Carbon Ag Cathode systems for electrolytically obtaining aluminum
WO2009055844A1 (en) * 2007-10-29 2009-05-07 Bhp Billiton Innovation Pty Ltd Composite collector bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Thermal stability of nitride thin films", Hultman, L., Vacuum, Vol. 57, Issue 1, April 2000, s. 1¿30, Dated: 01.01.0001 *

Also Published As

Publication number Publication date
EP2948577A1 (en) 2015-12-02
NZ709857A (en) 2019-07-26
AU2014210417A1 (en) 2015-07-16
CN104937144A (en) 2015-09-23
CN104937144B (en) 2019-09-03
WO2014116117A1 (en) 2014-07-31
EA028191B1 (en) 2017-10-31
EP2948577A4 (en) 2016-04-20
SA515360744B1 (en) 2018-12-10
BR112015017071A2 (en) 2017-07-11
CA2896472C (en) 2020-04-14
AU2014210417B2 (en) 2017-06-29
EP2948577B1 (en) 2018-12-05
NO20130123A1 (en) 2014-07-23
EA201500763A1 (en) 2015-11-30
CA2896472A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
Padamata et al. Progress of inert anodes in aluminium industry
Haarberg et al. Electrodeposition of silicon from fluoride melts
Yang et al. Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: application to separation of nuclear wastes
Nikolaev et al. Cathode process in the KF-AlF3-Al2O3 melts
Cao et al. Electrochemical oxidation of Fe–Ni alloys in cryolite–alumina molten salts at high temperature
Cheng et al. High-temperature oxidation behavior of Ni-11Fe-10Cu alloy: Growth of a protective oxide scale
US4411762A (en) Titanium clad copper electrode and method for making
Suzdal’tsev et al. Aluminum electrode for electrochemical studies in cryolite-alumina melts at 700–960° C
Liu et al. Electrochemical behavior of graphite in KF–AlF3-based melt with low cryolite ratio
US8313624B2 (en) Electrode materials
RU2692759C1 (en) Lead-carbon metal composite material for electrodes of lead-acid batteries and a method for synthesis thereof
US11519090B2 (en) Method and apparatus for producing electrolytic aluminum foil
NO338410B1 (en) An electrode for making aluminum and a method for forming the same
JP7402981B2 (en) Structure and method for manufacturing the structure
Mais et al. Electrochemical deposition of Cu and Ta from pyrrolidinium based ionic liquid
Willing et al. Synthesis and structural analysis of intermetallic compounds in electrical connections
TWI525225B (en) Electrolyte for electrodepositing molybdenum and method for forming molybdenum-containing layer
Singleton et al. Influence of cobalt additions on electrochemical behaviour of Ni-Fe-based anodes for aluminium electrowinning
Antipov et al. Electrochemical behavior of metals and binary alloys in cryolite-alumina melts
Rudenko et al. Electrolytic production of aluminum alloys in cells with a low-consumption metal anode and a wettable cathode
US4483752A (en) Valve metal electrodeposition onto graphite
RU2418889C2 (en) Electric contact unit of inert anode for obtaining aluminium in fused salt and method for its erection
Zhang et al. Direct electroreduction of solid cuprous chloride to copper powder in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
TWI893256B (en) Manufacturing method for metal filled microstructure
JP7516903B2 (en) Aluminum foil manufacturing method

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees