[go: up one dir, main page]

NO345965B1 - Hydraulic rotor motor - Google Patents

Hydraulic rotor motor Download PDF

Info

Publication number
NO345965B1
NO345965B1 NO20201325A NO20201325A NO345965B1 NO 345965 B1 NO345965 B1 NO 345965B1 NO 20201325 A NO20201325 A NO 20201325A NO 20201325 A NO20201325 A NO 20201325A NO 345965 B1 NO345965 B1 NO 345965B1
Authority
NO
Norway
Prior art keywords
rotor
channel
hydraulic
chamber
vanes
Prior art date
Application number
NO20201325A
Other languages
Norwegian (no)
Other versions
NO20201325A1 (en
Inventor
Ånund Ottesen
Original Assignee
Innovako Aanund Ottesen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovako Aanund Ottesen filed Critical Innovako Aanund Ottesen
Priority to NO20201325A priority Critical patent/NO345965B1/en
Publication of NO20201325A1 publication Critical patent/NO20201325A1/no
Publication of NO345965B1 publication Critical patent/NO345965B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/321Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)

Description

Benevnelse Designation

«Hydraulisk rotormotor» "Hydraulic rotor motor"

Anvendelse Application

Hydraulisk rotormotor er et alternativ til dagens stempelmotorer, og kan brukes hvor det er behov for motorer. Hydraulic rotor motors are an alternative to today's piston motors, and can be used where there is a need for motors.

Da motortypen ikke bruker kompresjon for å tenne drivstoffet er drivstoffalternativene flere enn i stempelmotoren. As the engine type does not use compression to ignite the fuel, there are more fuel options than in the piston engine.

Teknikkens stilling The position of the technique

Hydraulisk rotormotor er en videreutvikling av «Sentermatet rotormotor», som er beskrevet i patent NO 345283 B. Hydraulic rotor motor is a further development of the "Center-fed rotor motor", which is described in patent NO 345283 B.

Patent NO 345283 B bygger på teknologien i patent NO 20180636 A, «Sentermatet skovleturbin». Patent US 2010170469 A1 viser en rotormotor, men er uten et senterkammer hvor drivstoffet tilføres og antennes, og er forskjellig fra det som er beskrevet i den innledende delen av denne patentsøknaden. Hydraulisk styrte skovler er ikke tema i patent US 2010170469 A1. Patent NO 345283 B builds on the technology in patent NO 20180636 A, "Center-fed vane turbine". Patent US 2010170469 A1 shows a rotor engine, but is without a central chamber where the fuel is supplied and ignited, and is different from what is described in the introductory part of this patent application. Hydraulically controlled buckets are not the subject of patent US 2010170469 A1.

Patent US 4072132 A er en rotormotor hvor stempler lager kompresjon ved bruk av en glidemekanisme, og jobber derfor etter et annet prinsipp enn det som er beskrevet i denne patentsøknaden. Patent US 4072132 A is a rotor engine where pistons create compression using a sliding mechanism, and therefore work according to a different principle than that described in this patent application.

Patent US 2008310985 A1 er en rotormotor med eksentrisk rotor, og derfor også prinsipielt forskjellig fra denne patentsøknaden. Patent US 2008310985 A1 is a rotor motor with an eccentric rotor, and therefore also fundamentally different from this patent application.

Det nye The new

1 Ved å bruke hydraulisk trykk for å bevege skovlene kan omdreiningshastigheten øke, og effekten blir større med lik størrelse på motoren. 1 By using hydraulic pressure to move the vanes, the rotational speed can be increased, and the power will be greater with the same size of the motor.

2 Ved å bruke et mindre eksplosjonskammer vil drivstofforbruket bli mindre. 2 By using a smaller explosion chamber, fuel consumption will be lower.

3 Ved at flere rotormotorer kobles på samme aksel vil motoren få jevnere dreiemoment. 3 By connecting several rotor motors to the same shaft, the motor will have more even torque.

Formelen 360/antall motorer bestemmer hvor mange grader motorene skal forskyves i forhold til hverandre, og patentsøknaden beskriver en variant med 3 motorer, som betyr at hver motor er vridd 120 grader. The formula 360/number of motors determines how many degrees the motors must be offset in relation to each other, and the patent application describes a variant with 3 motors, which means that each motor is twisted 120 degrees.

Figurbeskrivelse: Figure description:

Figur 1 Hydraulisk rotormotor. Figure 1 Hydraulic rotor motor.

A Hus. A House.

B Rotor. B Rotor.

C Luftinntak med tilbakeslagsventiler. C Air intake with non-return valves.

D1 Lokk for hydraulisk kammer (P1). D1 Lid for hydraulic chamber (P1).

D2 Lokk for hydraulisk kammer (P2). D2 Lid for hydraulic chamber (P2).

c Avstandsstykker for å slippe luft til rotormotoren. c Spacers to release air to the rotor motor.

F Festeblokk for eksterne tilkoblinger, (u1, u2) for hydraulisk veske, (f1, f2) for drivstoff og (f3) for elektriske kabler. F Fixing block for external connections, (u1, u2) for hydraulic bag, (f1, f2) for fuel and (f3) for electrical cables.

a Yttervegg i huset (A). a Outer wall of the house (A).

b Rotortopp i rotor (B). b Rotor top in rotor (B).

d Tilbakeslagsventil. d Check valve.

e Luftinntaksring for feste av tilbakeslagsventiler (d). e Air intake ring for attaching non-return valves (d).

f1, f2 Tilkobling av drivstoff. f1, f2 Connection of fuel.

f3 Elektrisk tilkobling. f3 Electrical connection.

u1 Tilførsel av hydraulisk veske (høyt trykk). u1 Supply of hydraulic bag (high pressure).

u2 Retur av hydraulisk veske (lavt trykk). u2 Return of hydraulic bag (low pressure).

o Omdreiningsretning. o Direction of rotation.

Figur 2 Hus (A) Figure 2 House (A)

k Bunn i hus (A). k Bottom of housing (A).

j Senterforing i hus (A), for opplagring av rotoraksel (t). j Center liner in housing (A), for storage of rotor shaft (t).

g Kammer hvor skovlene (w) beveger seg. g Chamber where the vanes (w) move.

q Avløp for brenngasser. q Exhaust for combustion gases.

N Innervegg, mellom senterkammer (h) og skovlekammer (g) N Inner wall, between central chamber (h) and vane chamber (g)

h Senterkammer. h Center chamber.

m Plate som deler senterkammer (h) i et mindre ekspolosjonskammer (E). n1 Luke, hengslet i innervegg (N), styrt av elektromagnet. m Plate that divides the central chamber (h) into a smaller explosion chamber (E). n1 Hatch, hinged in inner wall (N), controlled by electromagnet.

n2 Luke, hengslet i innervegg (N), styrt av elektromagnet. n2 Hatch, hinged in inner wall (N), controlled by electromagnet.

p Luke i plate (m), styrt av elektromagnet. p Hatch in plate (m), controlled by electromagnet.

K Kanal i skovlekammer (g), for skovlene (w) i transportstilling. K Channel in bucket chamber (g), for the buckets (w) in transport position.

M Glideskinner for å styre skovle (w) i transportstilling. M Slide rails to guide the bucket (w) in transport position.

Figur 3 Rotor (B), uten lokk (D1) og (D2). Figure 3 Rotor (B), without lid (D1) and (D2).

w1 Skovle i aktiv stilling. w1 Bucket in active position.

b Rotortopp. b Rotor top.

s Ring for feste av avstandsstavene (r) og skovler (w). s Ring for attaching the distance rods (r) and vanes (w).

r Avstandsstaver mellom rotortopp (b) og ring (s). r Distance rods between rotor top (b) and ring (s).

i1 Sirkulær skovleplate, fast i tetteplate (z1). i1 Circular vane plate, fixed in sealing plate (z1).

i2 Sirkulær skovleplate, fast i tetteplate (z2). i2 Circular vane plate, fixed in sealing plate (z2).

x1 Hydraulisk stempel, fast i skovleplate (i1). x1 Hydraulic piston, fixed in vane plate (i1).

x2 Hydraulisk stempel, fast i skovleplate (i2). x2 Hydraulic piston, fixed in vane plate (i2).

v1 Stopper for hydraulisk stempel (x1). v1 Stopper for hydraulic piston (x1).

v2 Stopper for hydraulisk stempel (x2). v2 Stopper for hydraulic piston (x2).

Figur 4 Del av Rotor (B) med kanaler for hydraulisk veske. Figure 4 Part of Rotor (B) with channels for hydraulic bag.

u3 Kanal med hydraulisk veske i rotor (B) som veksler mellom høyt og lavt trykk. u3 Channel with hydraulic bag in rotor (B) which alternates between high and low pressure.

u4 Kanal med hydraulisk veske i rotor (B) som veksler mellom høyt og lavt trykk. u4 Channel with hydraulic bag in rotor (B) which alternates between high and low pressure.

w1 Skovle i aktiv stilling. w1 Bucket in active position.

w2 Skovle like før transportstilling, gjennom kanal (K). w2 Shovel just before transport position, through channel (K).

t Rotoraksel med kanaler for hydraulisk veske (u3) og (u4). t Rotor shaft with channels for hydraulic bag (u3) and (u4).

z1 Rund tetteplate festet i skovlen (w1), og med pakning mot rotortopp (b) z2 Rund tetteplate festet i skovlen (w2), og med pakning mot rotortopp (b). T Åpning i rotoraksel (t), tilpasset kanalene (R1) og (R2) i senterforing (j). P1 Kammer for hydraulisk veske for stempel (x1). z1 Round sealing plate fixed in the bucket (w1), and with gasket against rotor top (b) z2 Round sealing plate fixed in the bucket (w2), and with gasket against rotor top (b). T Opening in rotor shaft (t), adapted to channels (R1) and (R2) in center lining (j). P1 Chamber for hydraulic bag for piston (x1).

H Åpning for hydraulisk vaske fra kanal (u3) til kammer (P1) H Opening for hydraulic washing from channel (u3) to chamber (P1)

Figur 5 Rotormotor hvor rotortopp (b), rotoraksel (t) og senterforing (j) er borte. Figure 5 Rotor motor where the rotor top (b), rotor shaft (t) and center liner (j) are missing.

K Kanal for skovlene (w) i transportstilling. K Channel for the vanes (w) in transport position.

M Glideskinner for å få skovlene (w) i transportstilling. M Slide rails to bring the buckets (w) into transport position.

Y Del av senterforing (j) som skiller kanal (R1) og (R2) fra hverandre. Y Part of center liner (j) that separates channel (R1) and (R2) from each other.

G Ring som viser figur 6. G Ring as shown in figure 6.

Figur 6 G Viser nøytral posisjonen, hvor skovlene (w) ikke er påvirket av det hydrauliske trykket, og viser posisjonen like før skovlene (w) skifter stilling. Figure 6 G Shows the neutral position, where the vanes (w) are not affected by the hydraulic pressure, and shows the position just before the vanes (w) change position.

y1 og y2 Del av senterforing (j) som skiller kanal (R1) og (R2) fra hverandre. y1 and y2 Part of center liner (j) that separates channel (R1) and (R2) from each other.

P1 Hydraulisk kammer for stempel (x1). P1 Hydraulic chamber for piston (x1).

R1 Kanal i senterforing i hus (A) for høyt oljetrykk (u1). R1 Channel in center liner in housing (A) for high oil pressure (u1).

R2 Kanal i senterforing i hus (A) for lavt oljetrykk (u2). R2 Channel in center liner in housing (A) for low oil pressure (u2).

S1 og S2 Kontaktpunkter mellom senterforing (j) i hus (A) og rotoraksel (t) i rotor (B). S1 and S2 Contact points between center liner (j) in housing (A) and rotor shaft (t) in rotor (B).

Figur 7 Viser posisjonen mellom senterforing (j) og rotoraksel (t) hvor høyt trykk (u1) Figure 7 Shows the position between center liner (j) and rotor shaft (t) where high pressure (u1)

i kanal (R1) overføres til kanal (u3) i rotor (B) og vi får posisjonen til skovlene (w1) og (w2) som figur 4 viser. in channel (R1) is transferred to channel (u3) in rotor (B) and we get the position of the vanes (w1) and (w2) as Figure 4 shows.

Figur 8 Posisjonen mellom senterforing (j) og rotoraksel (t) hvor høyt trykk (u1) i kanal (R1) overføres til kanal (u4) i rotor (B) og skovlene (w) skifter stilling. Figur 9 Skovle (w1) Figure 8 The position between center liner (j) and rotor shaft (t) where high pressure (u1) in channel (R1) is transferred to channel (u4) in rotor (B) and the vanes (w) change position. Figure 9 Shovel (w1)

P1 Kammer for hydraulisk veske for stempel (x1). P1 Chamber for hydraulic bag for piston (x1).

H Viser hvordan oljekanalene (u3) er tilkoblet oljekammer (P1). H Shows how the oil channels (u3) are connected to the oil chamber (P1).

Figur 10 Plate (m) som deler senterkammeret i huset (A), slik at vi får et eksplosjonskammer (E) under. Figure 10 Plate (m) that divides the central chamber in the housing (A), so that we get an explosion chamber (E) underneath.

m Plate som deler høyden i senterkammer (h). m Plate that divides the height in the center chamber (h).

h Senterkammer med åpning til skovlekammer (g). h Center chamber with opening for vane chamber (g).

p Hengslet luke i plate (m), styrt av elektromagnet. p Hinged hatch in plate (m), controlled by electromagnet.

n1 Luke, hengslet i innervegg (N), for å slippe ut drivgasser (lukket stilling). n2 Luke, hengslet i innervegg (N), for å slippe ut drivgasser (åpen stilling). j Senterforing i hus (A) n1 Hatch, hinged in inner wall (N), to release propellant gases (closed position). n2 Hatch, hinged in inner wall (N), to release propellant gases (open position). j Center liner in housing (A)

E Eksplosjonskammer. E Explosion chamber.

Figur 11 A1, A2 og A3 viser 3 rotormotorer på samme aksel, som er 120 grader dreiet i forhold til hverandre. Figure 11 A1, A2 and A3 show 3 rotor motors on the same shaft, which are rotated 120 degrees in relation to each other.

Forklaring Explanation

Da det som søkes patentert er forbedringer av patent NO 345283 har forklaringen prinsipielle likheter med dette patentet. As what is sought to be patented are improvements to patent NO 345283, the explanation has fundamental similarities with this patent.

Drivstoff tilføres eksplosjonskammer (E) gjennom rørene (f1) og (f2) og antennes for å skape trykk, som ledes til skovlekammer (g) gjennom en åpning i senterkammer (h). Trykket utnyttes av skovlene (w) som lager dreiemoment til rotor (B). Fuel is supplied to the explosion chamber (E) through the pipes (f1) and (f2) and is ignited to create pressure, which is directed to the vane chamber (g) through an opening in the center chamber (h). The pressure is utilized by the vanes (w) which create torque for the rotor (B).

Avgassene slippes ut gjennom åpningen (q) i huset (A). The exhaust gases are released through the opening (q) in the housing (A).

Rotor (B) har rotortopp (b) og ringen (s), og mellom de er montert staver (r), som bestemmer lengden på skovlene (w). Rotor (B) has the rotor top (b) and the ring (s), and between them are mounted rods (r), which determine the length of the vanes (w).

Figur 5 viser at skovlekammer (g) har en kanal (K) som slipper stavene (r) og skovlene (w) gjennom når de er i transportstilling. Figure 5 shows that the vane chamber (g) has a channel (K) which lets the rods (r) and the vanes (w) through when they are in transport position.

Luftinntakene (C) har tilbakeslagsventiler (d) som er hengslet på luftinntaksring (e). Luftinntakene (C) skal lede luft inn i eksplosjonskammer (E) og senterkammer (h) når trykket er lavere enn utenfor rotormotoren. The air intakes (C) have non-return valves (d) which are hinged on the air intake ring (e). The air intakes (C) must lead air into the explosion chamber (E) and center chamber (h) when the pressure is lower than outside the rotor motor.

Avstandsstykkene (c) i hus (A) er montert med avstand for å slippe luft til luftinntak (C). The spacers (c) in housing (A) are fitted with a distance to allow air to air intake (C).

Forklaringen videre omhandler det som er nytt og som ønskes patentert. The explanation further deals with what is new and which is wanted to be patented.

I bunnen (k) av huset (A) er kanaler for hydraulisk veske, som vist på figur 5, hvor det tilføres høyt trykk gjennom kanal (u1), med retur gjennom kanal (u2). Skovlene (w) er fast i en sirkulær tetteplate (z) som kan bevege seg i rotortopp (b), og skovlene (w) styres av et hydraulisk stempel (x). Figur 9 viser skovle (w1) med stempel (x1), som beveger seg i stempelkammer (P1). Hullet (H) viser hvordan det hydrauliske trykket tilføres stempelkammer (P). Trykket i kanal (u1) ledes til senterforing (j) og utsparing (R1), og tilføres rotor (B) gjennom hull (T), vist på figur 4, og til kanal (u3). Stempel (x1) får da stillingen som er vist i figur 9, og skovle (w1) får en aktiv posisjon. Retur av hydraulisk veske er gjennom kanal (u4) og videre gjennom et hull (T) på motsatt side av rotoraksel (t) og gjennom kanal (u2) og tilbake til den hydrauliske pumpen. In the bottom (k) of the housing (A) are channels for hydraulic fluid, as shown in figure 5, where high pressure is supplied through channel (u1), with return through channel (u2). The vanes (w) are fixed in a circular sealing plate (z) which can move in the rotor top (b), and the vanes (w) are controlled by a hydraulic piston (x). Figure 9 shows vane (w1) with piston (x1), which moves in piston chamber (P1). The hole (H) shows how the hydraulic pressure is supplied to the piston chamber (P). The pressure in channel (u1) is led to the center liner (j) and recess (R1), and is supplied to the rotor (B) through hole (T), shown in figure 4, and to channel (u3). Piston (x1) then gets the position shown in figure 9, and vane (w1) gets an active position. Return of hydraulic fluid is through channel (u4) and further through a hole (T) on the opposite side of the rotor shaft (t) and through channel (u2) and back to the hydraulic pump.

Bevegelsesfriheten til stempel(x1) er bestemt av stopper (v1), festet i rotortopp (b), som vist på figur 3. The freedom of movement of the piston (x1) is determined by the stop (v1), fixed in the rotor top (b), as shown in figure 3.

En hydraulisk kontrollert bevegelse av skovlene (w) gjør at omdreiningene kan øke uten at skovlene tar skade ved fysisk kontakt med ledeskinnene (M), og er en vesentlig forbedring for å øke omdreiningshastighet og effekt. A hydraulically controlled movement of the vanes (w) means that the revolutions can increase without the vanes being damaged by physical contact with the guide rails (M), and is a significant improvement to increase revolution speed and power.

Den hydrauliske anordningen fungerer ved at 2 hull (T), montert motsatt av hverandre på aksel (t), er tilpasset sporene (R1) og (R2) i senterforing (j) i hus (A). The hydraulic device works in that 2 holes (T), mounted opposite each other on the shaft (t), are adapted to the grooves (R1) and (R2) in the center liner (j) in the housing (A).

(S1) og (S2) på figur 6 viser kontaktpunktene mellom senterforing (j) og rotoraksel (t). (S1) and (S2) in Figure 6 show the contact points between the center liner (j) and the rotor shaft (t).

Når rotor beveger seg vil hullene (T) vekselvis være i sporene (R1) og (R2). When the rotor moves, the holes (T) will alternately be in the grooves (R1) and (R2).

Stempelkammer (P) er lukket av lokkene (D1) og (D2) som er fast i rotortopp (b). Piston chamber (P) is closed by lids (D1) and (D2) which are fixed in rotor top (b).

Stempel (x) vil da bevege seg fra ene til den andre ytterkant, styrt av rotor (B). Piston (x) will then move from one outer edge to the other, controlled by rotor (B).

Stempel (x) er fast i skovlene (w) gjennom senterplate (i) og tetteplate (z). Piston (x) is fixed in the vanes (w) through center plate (i) and sealing plate (z).

Kanalene (u3) og (u4) er koblet til hver sin side av stempelkammer (P). The channels (u3) and (u4) are connected to each side of the piston chamber (P).

Ved at de 2 åpningene (T) er diagonalt plassert overfor hverandre på rotoraksel (t), vil skovlene (w1) og (w2) skifte stilling samtidig. As the 2 openings (T) are positioned diagonally opposite each other on the rotor shaft (t), the vanes (w1) and (w2) will change position at the same time.

Kanalene (R1) og (R2) er skilt fra hverandre av godset i senterforing (j) i punkt (y1) og (y2), som vist på figur 6, som da skiller høyt trykk fra lavt trykk. The channels (R1) and (R2) are separated from each other by the goods in the center lining (j) at points (y1) and (y2), as shown in figure 6, which then separates high pressure from low pressure.

Når hullene (T) er ved (y) er skovlene (w1) og (w2) upåvirket, og er tidspunktet like før skovlene (w1) og (w2) skifter stilling. When the holes (T) are at (y) the vanes (w1) and (w2) are unaffected, and the time is just before the vanes (w1) and (w2) change position.

Hver skovle (w) har en aktiv stilling og transport stilling i hver omdreining. Each vane (w) has an active position and transport position in each revolution.

Dreiemomentet fra den aktive skoven (w) overføres til stempel (x), og videre til stopper (v) i rotortopp (b). The torque from the active bush (w) is transferred to the piston (x), and further to the stop (v) in the rotor top (b).

Rotortopp (b) overfører dreiemomentet til aksel (t), som har påmontert gear og kraftuttak. Rotor top (b) transfers the torque to shaft (t), which has mounted gears and power take-off.

Den andre vesentlige forbedringen oppnår en ved at senterkammer (h) blir delt med en plate (m), slik at vi får et mindre eksplosjonskammer (E) og redusert drivstofforbruk. Eksplosjonskammeret (E) blir lukket med luke (p) like før drivstoffet tilføres. The second significant improvement is achieved by the central chamber (h) being divided by a plate (m), so that we get a smaller explosion chamber (E) and reduced fuel consumption. The explosion chamber (E) is closed with hatch (p) just before the fuel is added.

Lukene (p) og (n) er styrt av elektromagneter og lukker samtidig, men bare lukene (n) åpnes av trykket når drivstoffet antennes. The hatches (p) and (n) are controlled by electromagnets and close simultaneously, but only the hatches (n) are opened by the pressure when the fuel is ignited.

Strøm tilføres gjennom tilkobling (f3). Power is supplied through connection (f3).

På figur 10 viser luke (n1) lukket stilling og luke (n2) åpen stilling. Eksplosjonskammer (E), under plate (m), er lukket mot senterforing (j) og innervegg (N) i hus (A). Figure 10 shows hatch (n1) in closed position and hatch (n2) in open position. Explosion chamber (E), under plate (m), is closed against center liner (j) and inner wall (N) in housing (A).

En 3. vesentlig forbedring er vist på figur 11, hvor flere «rotormotorer» er montert på samme aksel, dreiet i forhold til hverandre etter formelen 360/antall rotormotorer. A 3rd significant improvement is shown in figure 11, where several "rotor motors" are mounted on the same shaft, rotated in relation to each other according to the formula 360/number of rotor motors.

Denne forbedringen fører til jevnere dreiemoment. This improvement leads to smoother torque.

Claims (3)

Patentkrav:Patent claims: 1. Hydraulisk rotormotor med hus (A) og rotor (B), og at huset (A) har et senterkammer (h) og et eksplosjonskammer (E) hvor eksplosjonstrykket skapes ved at drivstoff tilført gjennom rørene (f1) og (f2) og antennes, og at eksplosjonstrykket tilføres skovlekammer (g) hvor skovlene (w) bruker trykket for å lage dreiemoment til rotor (B),1. Hydraulic rotor motor with housing (A) and rotor (B), and that the housing (A) has a center chamber (h) and an explosion chamber (E) where the explosion pressure is created by fuel supplied through the pipes (f1) and (f2) and is ignited, and that the explosion pressure is supplied to the vane chamber (g) where the vanes (w) use the pressure to create torque for the rotor (B), K a r a k t e r i s e r t v e dC a r a c t e r i s e r t v e d -at skovlene styres av et hydraulisk trykk som føres gjennom kanal (u1) i bunnen av huset ( A) og videre gjennom senterforing (j) til utsparing (R1), som er tilpasset et hull (T) i rotoraksel (t), og at det hydrauliske trykket så ledes gjennom kanal (u3) eller kanal (u4) i rotortopp (b) og videre til stempel (x) som er festet til skovlene (w) og at skovle (w1) får en aktiv stilling når det er høyt trykk i kanal (u3) med retur i kanal (u4) og at skovle (w1) blir ført i transportstilling når det er høyt trykk i kanal (u4) med retur i kanal (u3), og at den hydrauliske returvesken følger kanal (u2) tilbake til hydraulisk pumpe, og når rotor dreier vil hullene (T), som er diagonalt plassert på rotor, treffe hver sin kanal (R2) og (R1) og skovlene (w) veksler mellom aktiv stilling og transportstilling, og den hydrauliske anordningen vil på den måten gjøre at hver skovle får en aktiv stilling og en transportstilling for hver omdreining av rotor (B).-that the vanes are controlled by a hydraulic pressure which is passed through channel (u1) at the bottom of the housing (A) and further through the center liner (j) to recess (R1), which is adapted to a hole (T) in the rotor shaft (t), and that the hydraulic pressure is then led through channel (u3) or channel (u4) in the rotor top (b) and on to piston (x) which is attached to the vanes (w) and that vane (w1) gets an active position when it is high pressure in channel (u3) with return in channel (u4) and that the bucket (w1) is moved to transport position when there is high pressure in channel (u4) with return in channel (u3), and that the hydraulic return bag follows channel (u2 ) back to the hydraulic pump, and when the rotor turns, the holes (T), which are diagonally placed on the rotor, will each hit their respective channels (R2) and (R1) and the vanes (w) alternate between active position and transport position, and the hydraulic device will thus ensure that each vane gets an active position and a transport position for each revolution of the rotor (B). 2. Hydraulisk rotormotor ifølge krav 1,2. Hydraulic rotor motor according to claim 1, k a r a k t e r i s e r t v e dc a r a c t e r i s e r t w e d -at det blir laget et eksplosjonskammer (E) i senterkammer (h) av huset (A) med en plate (m), som har de magnetstyrte lukene (p) og (n), i den hensikt å lukke eksplosjonskammer (E) når drivstoff tilføres, og på den måten reduserer drivstofforbruket.- that an explosion chamber (E) is made in the center chamber (h) of the housing (A) with a plate (m), which has the magnetically controlled hatches (p) and (n), in order to close the explosion chamber (E) when fuel is supplied, thereby reducing fuel consumption. 3. Hydraulisk rotormotor ifølge krav 1,3. Hydraulic rotor motor according to claim 1, k a r a k t e r i s e r t v e dc a r a c t e r i s e r t v e d -at flere rotormotorer monteres på samme aksel, og at formelen 360/antall motormotorer bestemmer hvor mange grader hver rotormotor skal dreies i forhold til hverandre, i den hensikt å få et jamnere dreiemoment. - that several rotor motors are mounted on the same axle, and that the formula 360/number of motor motors determines how many degrees each rotor motor must be rotated in relation to each other, with the aim of obtaining a more even torque.
NO20201325A 2020-12-02 2020-12-02 Hydraulic rotor motor NO345965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20201325A NO345965B1 (en) 2020-12-02 2020-12-02 Hydraulic rotor motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20201325A NO345965B1 (en) 2020-12-02 2020-12-02 Hydraulic rotor motor

Publications (2)

Publication Number Publication Date
NO20201325A1 NO20201325A1 (en) 2021-11-22
NO345965B1 true NO345965B1 (en) 2021-11-22

Family

ID=80258621

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20201325A NO345965B1 (en) 2020-12-02 2020-12-02 Hydraulic rotor motor

Country Status (1)

Country Link
NO (1) NO345965B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072132A (en) * 1976-08-27 1978-02-07 Mighty-Mini Rotary Engine, Limited Rotary internal combustion engine
US20080310985A1 (en) * 2004-07-28 2008-12-18 Rkg Holding As Motor Driven by Pressure Medium Supplied From an External Pressure Source
US20100170469A1 (en) * 2009-01-06 2010-07-08 Scott Hudson Rotary energy converter with retractable barrier
NO20180636A1 (en) * 2018-05-04 2019-04-01 Ottesen Aanund Center-fed bucket turbine
NO345283B1 (en) * 2019-05-21 2020-11-30 Ottesen Aanund Center-fed rotor motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072132A (en) * 1976-08-27 1978-02-07 Mighty-Mini Rotary Engine, Limited Rotary internal combustion engine
US20080310985A1 (en) * 2004-07-28 2008-12-18 Rkg Holding As Motor Driven by Pressure Medium Supplied From an External Pressure Source
US20100170469A1 (en) * 2009-01-06 2010-07-08 Scott Hudson Rotary energy converter with retractable barrier
NO20180636A1 (en) * 2018-05-04 2019-04-01 Ottesen Aanund Center-fed bucket turbine
NO345283B1 (en) * 2019-05-21 2020-11-30 Ottesen Aanund Center-fed rotor motor

Also Published As

Publication number Publication date
NO20201325A1 (en) 2021-11-22

Similar Documents

Publication Publication Date Title
US7137371B2 (en) Phaser with a single recirculation check valve and inlet valve
JP5953310B2 (en) Cam torque drive type-torsion assist type phaser
JP5876061B2 (en) Cam torque driven phaser with intermediate position lock
CN102032332B (en) Electro-hydraulic liquid composite driving mechanism adapting to narrow bent space as well as control system and method
US20160069226A1 (en) Camshaft phaser
US7484939B2 (en) Variable displacement radial piston pump
EP3023607A1 (en) Oil control device for fully variable hydraulic valve system of internal combustion engine
CN103334805A (en) Oil control device of internal combustion engine whole changeable hydraulic valve system
NO345965B1 (en) Hydraulic rotor motor
JP2013511640A (en) Opposed piston engine with gas exchange control by a sliding sleeve driven by static pressure
NO20190631A1 (en)
JP6287898B2 (en) Variable valve timing device for engine
AU2012201473B2 (en) A Rotary Engine
US5179918A (en) Timing-range gear
CN106939808B (en) Exhaust valve device with hydraulic rotary valve device applied to low-speed diesel engine
US1307631A (en) Rotary engine and pttmp
CN104712428B (en) Reverse compression ratio internal combustion engine with throttling cavity and auxiliary crankshaft (timing shaft)
US1302442A (en) Engine.
US1980145A (en) Transmission device
US3684413A (en) Engine
US1854670A (en) ridder
US864613A (en) Rotary engine.
US1196149A (en) Botaet valve
WO2010128558A1 (en) Engine having displacement expander as regenerator
US442572A (en) Steam-engine