AU1721000A - Transgenic animals - Google Patents
Transgenic animals Download PDFInfo
- Publication number
- AU1721000A AU1721000A AU17210/00A AU1721000A AU1721000A AU 1721000 A AU1721000 A AU 1721000A AU 17210/00 A AU17210/00 A AU 17210/00A AU 1721000 A AU1721000 A AU 1721000A AU 1721000 A AU1721000 A AU 1721000A
- Authority
- AU
- Australia
- Prior art keywords
- protein
- genome
- virus
- leu
- polynucleotide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009261 transgenic effect Effects 0.000 title claims description 119
- 241001465754 Metazoa Species 0.000 title claims description 93
- 210000000287 oocyte Anatomy 0.000 claims description 192
- 108090000623 proteins and genes Proteins 0.000 claims description 178
- 238000000034 method Methods 0.000 claims description 144
- 241001430294 unidentified retrovirus Species 0.000 claims description 107
- 241000700605 Viruses Species 0.000 claims description 105
- 102000004169 proteins and genes Human genes 0.000 claims description 98
- 230000001177 retroviral effect Effects 0.000 claims description 95
- 239000013598 vector Substances 0.000 claims description 95
- 102000040430 polynucleotide Human genes 0.000 claims description 71
- 108091033319 polynucleotide Proteins 0.000 claims description 71
- 239000002157 polynucleotide Substances 0.000 claims description 71
- 230000035800 maturation Effects 0.000 claims description 68
- 230000014509 gene expression Effects 0.000 claims description 67
- 241000711975 Vesicular stomatitis virus Species 0.000 claims description 59
- 241000283690 Bos taurus Species 0.000 claims description 49
- 230000004720 fertilization Effects 0.000 claims description 49
- 208000015181 infectious disease Diseases 0.000 claims description 46
- 238000004519 manufacturing process Methods 0.000 claims description 40
- 210000001161 mammalian embryo Anatomy 0.000 claims description 36
- 108010052285 Membrane Proteins Proteins 0.000 claims description 35
- 102000018697 Membrane Proteins Human genes 0.000 claims description 35
- 241000713869 Moloney murine leukemia virus Species 0.000 claims description 27
- 210000000170 cell membrane Anatomy 0.000 claims description 26
- 235000013336 milk Nutrition 0.000 claims description 25
- 239000008267 milk Substances 0.000 claims description 25
- 210000004080 milk Anatomy 0.000 claims description 25
- 210000004340 zona pellucida Anatomy 0.000 claims description 23
- 108090000288 Glycoproteins Proteins 0.000 claims description 20
- 102000003886 Glycoproteins Human genes 0.000 claims description 20
- 210000004369 blood Anatomy 0.000 claims description 20
- 239000008280 blood Substances 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 20
- 230000002458 infectious effect Effects 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 19
- 210000002700 urine Anatomy 0.000 claims description 15
- 210000001124 body fluid Anatomy 0.000 claims description 14
- 239000010839 body fluid Substances 0.000 claims description 14
- 230000001566 pro-viral effect Effects 0.000 claims description 13
- 241000711931 Rhabdoviridae Species 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 239000012528 membrane Substances 0.000 claims description 11
- 241000711969 Chandipura virus Species 0.000 claims description 10
- 241000725171 Mokola lyssavirus Species 0.000 claims description 10
- 241000711965 Piry virus Species 0.000 claims description 10
- 108010067390 Viral Proteins Proteins 0.000 claims description 9
- 108091007433 antigens Proteins 0.000 claims description 9
- 210000000582 semen Anatomy 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 8
- 239000000427 antigen Substances 0.000 claims description 8
- 102000036639 antigens Human genes 0.000 claims description 8
- 230000035935 pregnancy Effects 0.000 claims description 8
- 241000036569 Carp sprivivirus Species 0.000 claims description 6
- 208000002672 hepatitis B Diseases 0.000 claims description 6
- 241000711798 Rabies lyssavirus Species 0.000 claims description 5
- 238000003306 harvesting Methods 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 4
- 230000013011 mating Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 211
- 102000053602 DNA Human genes 0.000 description 103
- 108020004414 DNA Proteins 0.000 description 103
- 230000003612 virological effect Effects 0.000 description 77
- 150000007523 nucleic acids Chemical group 0.000 description 62
- 108091006027 G proteins Proteins 0.000 description 58
- 102000030782 GTP binding Human genes 0.000 description 58
- 108091000058 GTP-Binding Proteins 0.000 description 58
- 210000002257 embryonic structure Anatomy 0.000 description 57
- 102000039446 nucleic acids Human genes 0.000 description 52
- 108020004707 nucleic acids Proteins 0.000 description 52
- 239000002245 particle Substances 0.000 description 48
- 239000013615 primer Substances 0.000 description 46
- COYHRQWNJDJCNA-NUJDXYNKSA-N Thr-Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O COYHRQWNJDJCNA-NUJDXYNKSA-N 0.000 description 36
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 35
- 238000002347 injection Methods 0.000 description 35
- 239000007924 injection Substances 0.000 description 35
- 238000004806 packaging method and process Methods 0.000 description 32
- 239000003623 enhancer Substances 0.000 description 30
- 244000309466 calf Species 0.000 description 28
- 239000002609 medium Substances 0.000 description 27
- 229920002477 rna polymer Polymers 0.000 description 27
- 230000000694 effects Effects 0.000 description 23
- 108700019146 Transgenes Proteins 0.000 description 22
- 238000000520 microinjection Methods 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 238000012546 transfer Methods 0.000 description 20
- 241000894007 species Species 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 18
- 230000010354 integration Effects 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 150000001413 amino acids Chemical group 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- 238000001514 detection method Methods 0.000 description 14
- 230000008488 polyadenylation Effects 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 108091026890 Coding region Proteins 0.000 description 13
- 102100034349 Integrase Human genes 0.000 description 13
- 108091028043 Nucleic acid sequence Proteins 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 13
- 230000010076 replication Effects 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- 239000001963 growth medium Substances 0.000 description 12
- 210000003491 skin Anatomy 0.000 description 12
- 238000001890 transfection Methods 0.000 description 12
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 11
- 241001494479 Pecora Species 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 108010064235 lysylglycine Proteins 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 241000282887 Suidae Species 0.000 description 10
- 210000000349 chromosome Anatomy 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 235000013601 eggs Nutrition 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000002105 Southern blotting Methods 0.000 description 9
- 244000309464 bull Species 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 210000004681 ovum Anatomy 0.000 description 9
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 8
- 239000007995 HEPES buffer Substances 0.000 description 8
- SBANPBVRHYIMRR-UHFFFAOYSA-N Leu-Ser-Pro Natural products CC(C)CC(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O SBANPBVRHYIMRR-UHFFFAOYSA-N 0.000 description 8
- 108010079364 N-glycylalanine Proteins 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000005199 ultracentrifugation Methods 0.000 description 8
- ITGFVUYOLWBPQW-KKHAAJSZSA-N Asp-Thr-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O ITGFVUYOLWBPQW-KKHAAJSZSA-N 0.000 description 7
- 101710091045 Envelope protein Proteins 0.000 description 7
- 241000725303 Human immunodeficiency virus Species 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 7
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 7
- 241001045988 Neogene Species 0.000 description 7
- 101710188315 Protein X Proteins 0.000 description 7
- 108010013835 arginine glutamate Proteins 0.000 description 7
- 108010047857 aspartylglycine Proteins 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 108010077515 glycylproline Proteins 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 230000021121 meiosis Effects 0.000 description 7
- 101150091879 neo gene Proteins 0.000 description 7
- 210000000633 nuclear envelope Anatomy 0.000 description 7
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 6
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 6
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 6
- 241000714474 Rous sarcoma virus Species 0.000 description 6
- JKGGPMOUIAAJAA-YEPSODPASA-N Thr-Gly-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O JKGGPMOUIAAJAA-YEPSODPASA-N 0.000 description 6
- 241000711970 Vesiculovirus Species 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 108010093581 aspartyl-proline Proteins 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 6
- 210000001771 cumulus cell Anatomy 0.000 description 6
- 108010050848 glycylleucine Proteins 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 108010057821 leucylproline Proteins 0.000 description 6
- 230000031864 metaphase Effects 0.000 description 6
- 210000000472 morula Anatomy 0.000 description 6
- 108010029020 prolylglycine Proteins 0.000 description 6
- 108010090894 prolylleucine Proteins 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 241000701022 Cytomegalovirus Species 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 101710177291 Gag polyprotein Proteins 0.000 description 5
- 229930182566 Gentamicin Natural products 0.000 description 5
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 5
- IMDJSVBFQKDDEQ-MGHWNKPDSA-N Lys-Tyr-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CCCCN)N IMDJSVBFQKDDEQ-MGHWNKPDSA-N 0.000 description 5
- OSOLWRWQADPDIQ-DCAQKATOSA-N Met-Asp-Leu Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O OSOLWRWQADPDIQ-DCAQKATOSA-N 0.000 description 5
- 241000713333 Mouse mammary tumor virus Species 0.000 description 5
- 241000714177 Murine leukemia virus Species 0.000 description 5
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 5
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 5
- VTVVYQOXJCZVEB-WDCWCFNPSA-N Thr-Leu-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O VTVVYQOXJCZVEB-WDCWCFNPSA-N 0.000 description 5
- HZYOWMGWKKRMBZ-BYULHYEWSA-N Val-Asp-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HZYOWMGWKKRMBZ-BYULHYEWSA-N 0.000 description 5
- PMDOQZFYGWZSTK-LSJOCFKGSA-N Val-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)C(C)C PMDOQZFYGWZSTK-LSJOCFKGSA-N 0.000 description 5
- 108020000999 Viral RNA Proteins 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 239000006481 glucose medium Substances 0.000 description 5
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 5
- 244000309465 heifer Species 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 108010078274 isoleucylvaline Proteins 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 210000001672 ovary Anatomy 0.000 description 5
- 108010089520 pol Gene Products Proteins 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- CXRCVCURMBFFOL-FXQIFTODSA-N Ala-Ala-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O CXRCVCURMBFFOL-FXQIFTODSA-N 0.000 description 4
- JDIQCVUDDFENPU-ZKWXMUAHSA-N Ala-His-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CNC=N1 JDIQCVUDDFENPU-ZKWXMUAHSA-N 0.000 description 4
- LLUGJARLJCGLAR-CYDGBPFRSA-N Arg-Ile-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N LLUGJARLJCGLAR-CYDGBPFRSA-N 0.000 description 4
- BTJVOUQWFXABOI-IHRRRGAJSA-N Arg-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCNC(N)=N BTJVOUQWFXABOI-IHRRRGAJSA-N 0.000 description 4
- CZUHPNLXLWMYMG-UBHSHLNASA-N Arg-Phe-Ala Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 CZUHPNLXLWMYMG-UBHSHLNASA-N 0.000 description 4
- VUGWHBXPMAHEGZ-SRVKXCTJSA-N Arg-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CCCN=C(N)N VUGWHBXPMAHEGZ-SRVKXCTJSA-N 0.000 description 4
- RYQSYXFGFOTJDJ-RHYQMDGZSA-N Arg-Thr-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O RYQSYXFGFOTJDJ-RHYQMDGZSA-N 0.000 description 4
- NMTANZXPDAHUKU-ULQDDVLXSA-N Arg-Tyr-Lys Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(O)=O)CC1=CC=C(O)C=C1 NMTANZXPDAHUKU-ULQDDVLXSA-N 0.000 description 4
- RAQMSGVCGSJKCL-FOHZUACHSA-N Asn-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(N)=O RAQMSGVCGSJKCL-FOHZUACHSA-N 0.000 description 4
- WCRQQIPFSXFIRN-LPEHRKFASA-N Asn-Met-Pro Chemical compound CSCC[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N WCRQQIPFSXFIRN-LPEHRKFASA-N 0.000 description 4
- FLJVGAFLZVBBNG-BPUTZDHNSA-N Asn-Trp-Arg Chemical compound N[C@@H](CC(=O)N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(=N)N)C(=O)O FLJVGAFLZVBBNG-BPUTZDHNSA-N 0.000 description 4
- VPPXTHJNTYDNFJ-CIUDSAMLSA-N Asp-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)O)N VPPXTHJNTYDNFJ-CIUDSAMLSA-N 0.000 description 4
- SNDBKTFJWVEVPO-WHFBIAKZSA-N Asp-Gly-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(O)=O SNDBKTFJWVEVPO-WHFBIAKZSA-N 0.000 description 4
- LBFYTUPYYZENIR-GHCJXIJMSA-N Asp-Ile-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N LBFYTUPYYZENIR-GHCJXIJMSA-N 0.000 description 4
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- GMGKDVVBSVVKCT-NUMRIWBASA-N Gln-Asn-Thr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GMGKDVVBSVVKCT-NUMRIWBASA-N 0.000 description 4
- LVCHEMOPBORRLB-DCAQKATOSA-N Glu-Gln-Lys Chemical compound NCCCC[C@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCC(O)=O)C(O)=O LVCHEMOPBORRLB-DCAQKATOSA-N 0.000 description 4
- AOCARQDSFTWWFT-DCAQKATOSA-N Glu-Met-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O AOCARQDSFTWWFT-DCAQKATOSA-N 0.000 description 4
- VSVZIEVNUYDAFR-YUMQZZPRSA-N Gly-Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN VSVZIEVNUYDAFR-YUMQZZPRSA-N 0.000 description 4
- NSTUFLGQJCOCDL-UWVGGRQHSA-N Gly-Leu-Arg Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N NSTUFLGQJCOCDL-UWVGGRQHSA-N 0.000 description 4
- DBJYVKDPGIFXFO-BQBZGAKWSA-N Gly-Met-Ala Chemical compound [H]NCC(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(O)=O DBJYVKDPGIFXFO-BQBZGAKWSA-N 0.000 description 4
- IXHQLZIWBCQBLQ-STQMWFEESA-N Gly-Pro-Phe Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IXHQLZIWBCQBLQ-STQMWFEESA-N 0.000 description 4
- LCRDMSSAKLTKBU-ZDLURKLDSA-N Gly-Ser-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN LCRDMSSAKLTKBU-ZDLURKLDSA-N 0.000 description 4
- UMRIXLHPZZIOML-OALUTQOASA-N Gly-Trp-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)NC(=O)CN UMRIXLHPZZIOML-OALUTQOASA-N 0.000 description 4
- HRGGKHFHRSFSDE-CIUDSAMLSA-N His-Asn-Ser Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N HRGGKHFHRSFSDE-CIUDSAMLSA-N 0.000 description 4
- TZCGZYWNIDZZMR-NAKRPEOUSA-N Ile-Arg-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](C)C(=O)O)N TZCGZYWNIDZZMR-NAKRPEOUSA-N 0.000 description 4
- TZCGZYWNIDZZMR-UHFFFAOYSA-N Ile-Arg-Ala Natural products CCC(C)C(N)C(=O)NC(C(=O)NC(C)C(O)=O)CCCN=C(N)N TZCGZYWNIDZZMR-UHFFFAOYSA-N 0.000 description 4
- CKRFDMPBSWYOBT-PPCPHDFISA-N Ile-Lys-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N CKRFDMPBSWYOBT-PPCPHDFISA-N 0.000 description 4
- IBMVEYRWAWIOTN-UHFFFAOYSA-N L-Leucyl-L-Arginyl-L-Proline Natural products CC(C)CC(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O IBMVEYRWAWIOTN-UHFFFAOYSA-N 0.000 description 4
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 4
- ILJREDZFPHTUIE-GUBZILKMSA-N Leu-Asp-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O ILJREDZFPHTUIE-GUBZILKMSA-N 0.000 description 4
- APFJUBGRZGMQFF-QWRGUYRKSA-N Leu-Gly-Lys Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN APFJUBGRZGMQFF-QWRGUYRKSA-N 0.000 description 4
- KEVYYIMVELOXCT-KBPBESRZSA-N Leu-Gly-Phe Chemical compound CC(C)C[C@H]([NH3+])C(=O)NCC(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 KEVYYIMVELOXCT-KBPBESRZSA-N 0.000 description 4
- OYQUOLRTJHWVSQ-SRVKXCTJSA-N Leu-His-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(O)=O OYQUOLRTJHWVSQ-SRVKXCTJSA-N 0.000 description 4
- USLNHQZCDQJBOV-ZPFDUUQYSA-N Leu-Ile-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(O)=O USLNHQZCDQJBOV-ZPFDUUQYSA-N 0.000 description 4
- KYIIALJHAOIAHF-KKUMJFAQSA-N Leu-Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 KYIIALJHAOIAHF-KKUMJFAQSA-N 0.000 description 4
- JVTYXRRFZCEPPK-RHYQMDGZSA-N Leu-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)N)O JVTYXRRFZCEPPK-RHYQMDGZSA-N 0.000 description 4
- SBANPBVRHYIMRR-GARJFASQSA-N Leu-Ser-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N SBANPBVRHYIMRR-GARJFASQSA-N 0.000 description 4
- IXHKPDJKKCUKHS-GARJFASQSA-N Lys-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCCCN)N IXHKPDJKKCUKHS-GARJFASQSA-N 0.000 description 4
- PAMDBWYMLWOELY-SDDRHHMPSA-N Lys-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCCCN)N)C(=O)O PAMDBWYMLWOELY-SDDRHHMPSA-N 0.000 description 4
- IVFUVMSKSFSFBT-NHCYSSNCSA-N Lys-Ile-Gly Chemical compound OC(=O)CNC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCCCN IVFUVMSKSFSFBT-NHCYSSNCSA-N 0.000 description 4
- 101710125418 Major capsid protein Proteins 0.000 description 4
- XOMXAVJBLRROMC-IHRRRGAJSA-N Met-Asp-Phe Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 XOMXAVJBLRROMC-IHRRRGAJSA-N 0.000 description 4
- UROWNMBTQGGTHB-DCAQKATOSA-N Met-Leu-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O UROWNMBTQGGTHB-DCAQKATOSA-N 0.000 description 4
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 4
- 238000010222 PCR analysis Methods 0.000 description 4
- MYQCCQSMKNCNKY-KKUMJFAQSA-N Phe-His-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)N[C@@H](CO)C(=O)O)N MYQCCQSMKNCNKY-KKUMJFAQSA-N 0.000 description 4
- KXUZHWXENMYOHC-QEJZJMRPSA-N Phe-Leu-Ala Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O KXUZHWXENMYOHC-QEJZJMRPSA-N 0.000 description 4
- KLXQWABNAWDRAY-ACRUOGEOSA-N Phe-Lys-Phe Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 KLXQWABNAWDRAY-ACRUOGEOSA-N 0.000 description 4
- FZBGMXYQPACKNC-HJWJTTGWSA-N Phe-Pro-Ile Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O FZBGMXYQPACKNC-HJWJTTGWSA-N 0.000 description 4
- JHSRGEODDALISP-XVSYOHENSA-N Phe-Thr-Asn Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O JHSRGEODDALISP-XVSYOHENSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- NHDVNAKDACFHPX-GUBZILKMSA-N Pro-Arg-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O NHDVNAKDACFHPX-GUBZILKMSA-N 0.000 description 4
- XROLYVMNVIKVEM-BQBZGAKWSA-N Pro-Asn-Gly Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O XROLYVMNVIKVEM-BQBZGAKWSA-N 0.000 description 4
- MGDFPGCFVJFITQ-CIUDSAMLSA-N Pro-Glu-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O MGDFPGCFVJFITQ-CIUDSAMLSA-N 0.000 description 4
- UIMCLYYSUCIUJM-UWVGGRQHSA-N Pro-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H]1CCCN1 UIMCLYYSUCIUJM-UWVGGRQHSA-N 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- WDXYVIIVDIDOSX-DCAQKATOSA-N Ser-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N WDXYVIIVDIDOSX-DCAQKATOSA-N 0.000 description 4
- YIUWWXVTYLANCJ-NAKRPEOUSA-N Ser-Ile-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YIUWWXVTYLANCJ-NAKRPEOUSA-N 0.000 description 4
- HDBOEVPDIDDEPC-CIUDSAMLSA-N Ser-Lys-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O HDBOEVPDIDDEPC-CIUDSAMLSA-N 0.000 description 4
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 4
- QILPDQCTQZDHFM-HJGDQZAQSA-N Thr-Gln-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O QILPDQCTQZDHFM-HJGDQZAQSA-N 0.000 description 4
- MPUMPERGHHJGRP-WEDXCCLWSA-N Thr-Gly-Lys Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)O)N)O MPUMPERGHHJGRP-WEDXCCLWSA-N 0.000 description 4
- KRGDDWVBBDLPSJ-CUJWVEQBSA-N Thr-His-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(O)=O KRGDDWVBBDLPSJ-CUJWVEQBSA-N 0.000 description 4
- TZQWJCGVCIJDMU-HEIBUPTGSA-N Thr-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)O)N)O TZQWJCGVCIJDMU-HEIBUPTGSA-N 0.000 description 4
- XGUAUKUYQHBUNY-SWRJLBSHSA-N Thr-Trp-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCC(O)=O)C(O)=O XGUAUKUYQHBUNY-SWRJLBSHSA-N 0.000 description 4
- ILUOMMDDGREELW-OSUNSFLBSA-N Thr-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)[C@@H](C)O ILUOMMDDGREELW-OSUNSFLBSA-N 0.000 description 4
- VIWQOOBRKCGSDK-RYQLBKOJSA-N Trp-Arg-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N)C(=O)O VIWQOOBRKCGSDK-RYQLBKOJSA-N 0.000 description 4
- HJTYJQVRIQXMHM-XIRDDKMYSA-N Trp-Asp-Lys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N HJTYJQVRIQXMHM-XIRDDKMYSA-N 0.000 description 4
- GQEXFCQNAJHJTI-IHPCNDPISA-N Trp-Phe-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N GQEXFCQNAJHJTI-IHPCNDPISA-N 0.000 description 4
- STTVVMWQKDOKAM-YESZJQIVSA-N Tyr-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CC3=CC=C(C=C3)O)N)C(=O)O STTVVMWQKDOKAM-YESZJQIVSA-N 0.000 description 4
- NSGZILIDHCIZAM-KKUMJFAQSA-N Tyr-Leu-Ser Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N NSGZILIDHCIZAM-KKUMJFAQSA-N 0.000 description 4
- MQGGXGKQSVEQHR-KKUMJFAQSA-N Tyr-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 MQGGXGKQSVEQHR-KKUMJFAQSA-N 0.000 description 4
- SCBITHMBEJNRHC-LSJOCFKGSA-N Val-Asp-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](C(C)C)C(=O)O)N SCBITHMBEJNRHC-LSJOCFKGSA-N 0.000 description 4
- FBVUOEYVGNMRMD-NAKRPEOUSA-N Val-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](C(C)C)N FBVUOEYVGNMRMD-NAKRPEOUSA-N 0.000 description 4
- VLDMQVZZWDOKQF-AUTRQRHGSA-N Val-Glu-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N VLDMQVZZWDOKQF-AUTRQRHGSA-N 0.000 description 4
- DJEVQCWNMQOABE-RCOVLWMOSA-N Val-Gly-Asp Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC(=O)O)C(=O)O)N DJEVQCWNMQOABE-RCOVLWMOSA-N 0.000 description 4
- FEXILLGKGGTLRI-NHCYSSNCSA-N Val-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N FEXILLGKGGTLRI-NHCYSSNCSA-N 0.000 description 4
- AJNUKMZFHXUBMK-GUBZILKMSA-N Val-Ser-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N AJNUKMZFHXUBMK-GUBZILKMSA-N 0.000 description 4
- LTTQCQRTSHJPPL-ZKWXMUAHSA-N Val-Ser-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)O)C(=O)O)N LTTQCQRTSHJPPL-ZKWXMUAHSA-N 0.000 description 4
- JVGDAEKKZKKZFO-RCWTZXSCSA-N Val-Val-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)N)O JVGDAEKKZKKZFO-RCWTZXSCSA-N 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 108010069020 alanyl-prolyl-glycine Proteins 0.000 description 4
- 108010087924 alanylproline Proteins 0.000 description 4
- 108010050025 alpha-glutamyltryptophan Proteins 0.000 description 4
- 108010077245 asparaginyl-proline Proteins 0.000 description 4
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 4
- 108010068265 aspartyltyrosine Proteins 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 4
- 108010079547 glutamylmethionine Proteins 0.000 description 4
- 108010000434 glycyl-alanyl-leucine Proteins 0.000 description 4
- 108010020688 glycylhistidine Proteins 0.000 description 4
- 108010037850 glycylvaline Proteins 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 108010028295 histidylhistidine Proteins 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 108010051673 leucyl-glycyl-phenylalanine Proteins 0.000 description 4
- 108010054155 lysyllysine Proteins 0.000 description 4
- 108010038320 lysylphenylalanine Proteins 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- -1 organic solvents Chemical class 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 108010084525 phenylalanyl-phenylalanyl-glycine Proteins 0.000 description 4
- 108010051242 phenylalanylserine Proteins 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 108010020755 prolyl-glycyl-glycine Proteins 0.000 description 4
- 210000001082 somatic cell Anatomy 0.000 description 4
- 108010005652 splenotritin Proteins 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 3
- MVBWLRJESQOQTM-ACZMJKKPSA-N Ala-Gln-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(O)=O MVBWLRJESQOQTM-ACZMJKKPSA-N 0.000 description 3
- LMFXXZPPZDCPTA-ZKWXMUAHSA-N Ala-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N LMFXXZPPZDCPTA-ZKWXMUAHSA-N 0.000 description 3
- IETUUAHKCHOQHP-KZVJFYERSA-N Ala-Thr-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](C)N)[C@@H](C)O)C(O)=O IETUUAHKCHOQHP-KZVJFYERSA-N 0.000 description 3
- VDBKFYYIBLXEIF-GUBZILKMSA-N Arg-Gln-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O VDBKFYYIBLXEIF-GUBZILKMSA-N 0.000 description 3
- JGIAYNNXZKKKOW-KKUMJFAQSA-N Asn-His-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CC(=O)N)N JGIAYNNXZKKKOW-KKUMJFAQSA-N 0.000 description 3
- BSBNNPICFPXDNH-SRVKXCTJSA-N Asn-Phe-Cys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N BSBNNPICFPXDNH-SRVKXCTJSA-N 0.000 description 3
- UWOPETAWXDZUJR-ACZMJKKPSA-N Asp-Cys-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O UWOPETAWXDZUJR-ACZMJKKPSA-N 0.000 description 3
- WLKVEEODTPQPLI-ACZMJKKPSA-N Asp-Gln-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O WLKVEEODTPQPLI-ACZMJKKPSA-N 0.000 description 3
- LIJXJYGRSRWLCJ-IHRRRGAJSA-N Asp-Phe-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O LIJXJYGRSRWLCJ-IHRRRGAJSA-N 0.000 description 3
- AWPWHMVCSISSQK-QWRGUYRKSA-N Asp-Tyr-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(O)=O AWPWHMVCSISSQK-QWRGUYRKSA-N 0.000 description 3
- YKKHFPGOZXQAGK-QWRGUYRKSA-N Cys-Gly-Tyr Chemical compound SC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 YKKHFPGOZXQAGK-QWRGUYRKSA-N 0.000 description 3
- XVLMKWWVBNESPX-XVYDVKMFSA-N Cys-His-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CS)N XVLMKWWVBNESPX-XVYDVKMFSA-N 0.000 description 3
- TXCCRYAZQBUCOV-CIUDSAMLSA-N Cys-Pro-Gln Chemical compound [H]N[C@@H](CS)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O TXCCRYAZQBUCOV-CIUDSAMLSA-N 0.000 description 3
- DQGIAOGALAQBGK-BWBBJGPYSA-N Cys-Ser-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CS)N)O DQGIAOGALAQBGK-BWBBJGPYSA-N 0.000 description 3
- FCXJJTRGVAZDER-FXQIFTODSA-N Cys-Val-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O FCXJJTRGVAZDER-FXQIFTODSA-N 0.000 description 3
- 102000002322 Egg Proteins Human genes 0.000 description 3
- 108010000912 Egg Proteins Proteins 0.000 description 3
- HUWSBFYAGXCXKC-CIUDSAMLSA-N Glu-Ala-Met Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O HUWSBFYAGXCXKC-CIUDSAMLSA-N 0.000 description 3
- AUTNXSQEVVHSJK-YVNDNENWSA-N Glu-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O AUTNXSQEVVHSJK-YVNDNENWSA-N 0.000 description 3
- XTZDZAXYPDISRR-MNXVOIDGSA-N Glu-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N XTZDZAXYPDISRR-MNXVOIDGSA-N 0.000 description 3
- IRXNJYPKBVERCW-DCAQKATOSA-N Glu-Leu-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O IRXNJYPKBVERCW-DCAQKATOSA-N 0.000 description 3
- HRBYTAIBKPNZKQ-AVGNSLFASA-N Glu-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCC(O)=O HRBYTAIBKPNZKQ-AVGNSLFASA-N 0.000 description 3
- SOEPMWQCTJITPZ-SRVKXCTJSA-N Glu-Met-Lys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N SOEPMWQCTJITPZ-SRVKXCTJSA-N 0.000 description 3
- DMYACXMQUABZIQ-NRPADANISA-N Glu-Ser-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O DMYACXMQUABZIQ-NRPADANISA-N 0.000 description 3
- VXEFAWJTFAUDJK-AVGNSLFASA-N Glu-Tyr-Ser Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O VXEFAWJTFAUDJK-AVGNSLFASA-N 0.000 description 3
- HBMRTXJZQDVRFT-DZKIICNBSA-N Glu-Tyr-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O HBMRTXJZQDVRFT-DZKIICNBSA-N 0.000 description 3
- JNGJGFMFXREJNF-KBPBESRZSA-N Gly-Glu-Trp Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O JNGJGFMFXREJNF-KBPBESRZSA-N 0.000 description 3
- HQRHFUYMGCHHJS-LURJTMIESA-N Gly-Gly-Arg Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N HQRHFUYMGCHHJS-LURJTMIESA-N 0.000 description 3
- VBOBNHSVQKKTOT-YUMQZZPRSA-N Gly-Lys-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O VBOBNHSVQKKTOT-YUMQZZPRSA-N 0.000 description 3
- IEGFSKKANYKBDU-QWHCGFSZSA-N Gly-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)CN)C(=O)O IEGFSKKANYKBDU-QWHCGFSZSA-N 0.000 description 3
- DBUNZBWUWCIELX-JHEQGTHGSA-N Gly-Thr-Glu Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O DBUNZBWUWCIELX-JHEQGTHGSA-N 0.000 description 3
- CGAMSLMBYJHMDY-ONGXEEELSA-N His-Val-Gly Chemical compound CC(C)[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CC1=CN=CN1)N CGAMSLMBYJHMDY-ONGXEEELSA-N 0.000 description 3
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 3
- JQLFYZMEXFNRFS-DJFWLOJKSA-N Ile-Asp-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N JQLFYZMEXFNRFS-DJFWLOJKSA-N 0.000 description 3
- AMSYMDIIIRJRKZ-HJPIBITLSA-N Ile-His-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N AMSYMDIIIRJRKZ-HJPIBITLSA-N 0.000 description 3
- CSQNHSGHAPRGPQ-YTFOTSKYSA-N Ile-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)O)N CSQNHSGHAPRGPQ-YTFOTSKYSA-N 0.000 description 3
- WVUDHMBJNBWZBU-XUXIUFHCSA-N Ile-Lys-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)O)N WVUDHMBJNBWZBU-XUXIUFHCSA-N 0.000 description 3
- FHPZJWJWTWZKNA-LLLHUVSDSA-N Ile-Phe-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N2CCC[C@@H]2C(=O)O)N FHPZJWJWTWZKNA-LLLHUVSDSA-N 0.000 description 3
- NLZVTPYXYXMCIP-XUXIUFHCSA-N Ile-Pro-Lys Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O NLZVTPYXYXMCIP-XUXIUFHCSA-N 0.000 description 3
- YKZAMJXNJUWFIK-JBDRJPRFSA-N Ile-Ser-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)O)N YKZAMJXNJUWFIK-JBDRJPRFSA-N 0.000 description 3
- HGCNKOLVKRAVHD-UHFFFAOYSA-N L-Met-L-Phe Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 HGCNKOLVKRAVHD-UHFFFAOYSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- IBMVEYRWAWIOTN-RWMBFGLXSA-N Leu-Arg-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(O)=O IBMVEYRWAWIOTN-RWMBFGLXSA-N 0.000 description 3
- KXODZBLFVFSLAI-AVGNSLFASA-N Leu-His-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)CC1=CN=CN1 KXODZBLFVFSLAI-AVGNSLFASA-N 0.000 description 3
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 3
- MGKFCQFVPKOWOL-CIUDSAMLSA-N Lys-Ser-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)O)C(=O)O)N MGKFCQFVPKOWOL-CIUDSAMLSA-N 0.000 description 3
- ZFNYWKHYUMEZDZ-WDSOQIARSA-N Lys-Trp-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CCCCN)N ZFNYWKHYUMEZDZ-WDSOQIARSA-N 0.000 description 3
- 241000711828 Lyssavirus Species 0.000 description 3
- QGQGAIBGTUJRBR-NAKRPEOUSA-N Met-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCSC QGQGAIBGTUJRBR-NAKRPEOUSA-N 0.000 description 3
- MYAPQOBHGWJZOM-UWVGGRQHSA-N Met-Gly-Leu Chemical compound CSCC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(C)C MYAPQOBHGWJZOM-UWVGGRQHSA-N 0.000 description 3
- 206010068052 Mosaicism Diseases 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- RJYBHZVWJPUSLB-QEWYBTABSA-N Phe-Gln-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC1=CC=CC=C1)N RJYBHZVWJPUSLB-QEWYBTABSA-N 0.000 description 3
- RMKGXGPQIPLTFC-KKUMJFAQSA-N Phe-Lys-Asn Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O RMKGXGPQIPLTFC-KKUMJFAQSA-N 0.000 description 3
- IWZRODDWOSIXPZ-IRXDYDNUSA-N Phe-Phe-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NCC(O)=O)C1=CC=CC=C1 IWZRODDWOSIXPZ-IRXDYDNUSA-N 0.000 description 3
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 3
- LXVLKXPFIDDHJG-CIUDSAMLSA-N Pro-Glu-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O LXVLKXPFIDDHJG-CIUDSAMLSA-N 0.000 description 3
- HAAQQNHQZBOWFO-LURJTMIESA-N Pro-Gly-Gly Chemical compound OC(=O)CNC(=O)CNC(=O)[C@@H]1CCCN1 HAAQQNHQZBOWFO-LURJTMIESA-N 0.000 description 3
- KWMUAKQOVYCQJQ-ZPFDUUQYSA-N Pro-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@@H]1CCCN1 KWMUAKQOVYCQJQ-ZPFDUUQYSA-N 0.000 description 3
- DRKAXLDECUGLFE-ULQDDVLXSA-N Pro-Leu-Phe Chemical compound CC(C)C[C@H](NC(=O)[C@@H]1CCCN1)C(=O)N[C@@H](Cc1ccccc1)C(O)=O DRKAXLDECUGLFE-ULQDDVLXSA-N 0.000 description 3
- CPRLKHJUFAXVTD-ULQDDVLXSA-N Pro-Leu-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CPRLKHJUFAXVTD-ULQDDVLXSA-N 0.000 description 3
- WCNVGGZRTNHOOS-ULQDDVLXSA-N Pro-Lys-Tyr Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O WCNVGGZRTNHOOS-ULQDDVLXSA-N 0.000 description 3
- FNGOXVQBBCMFKV-CIUDSAMLSA-N Pro-Ser-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O FNGOXVQBBCMFKV-CIUDSAMLSA-N 0.000 description 3
- 108700005075 Regulator Genes Proteins 0.000 description 3
- 206010038997 Retroviral infections Diseases 0.000 description 3
- VQBLHWSPVYYZTB-DCAQKATOSA-N Ser-Arg-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CO)N VQBLHWSPVYYZTB-DCAQKATOSA-N 0.000 description 3
- VMVNCJDKFOQOHM-GUBZILKMSA-N Ser-Gln-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CO)N VMVNCJDKFOQOHM-GUBZILKMSA-N 0.000 description 3
- YRBGKVIWMNEVCZ-WDSKDSINSA-N Ser-Glu-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O YRBGKVIWMNEVCZ-WDSKDSINSA-N 0.000 description 3
- GYDFRTRSSXOZCR-ACZMJKKPSA-N Ser-Ser-Glu Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O GYDFRTRSSXOZCR-ACZMJKKPSA-N 0.000 description 3
- JGUWRQWULDWNCM-FXQIFTODSA-N Ser-Val-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O JGUWRQWULDWNCM-FXQIFTODSA-N 0.000 description 3
- LSHUNRICNSEEAN-BPUTZDHNSA-N Ser-Val-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CO)N LSHUNRICNSEEAN-BPUTZDHNSA-N 0.000 description 3
- 206010042573 Superovulation Diseases 0.000 description 3
- DWYAUVCQDTZIJI-VZFHVOOUSA-N Thr-Ala-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O DWYAUVCQDTZIJI-VZFHVOOUSA-N 0.000 description 3
- OHAJHDJOCKKJLV-LKXGYXEUSA-N Thr-Asp-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O OHAJHDJOCKKJLV-LKXGYXEUSA-N 0.000 description 3
- ADPHPKGWVDHWML-PPCPHDFISA-N Thr-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H]([C@@H](C)O)N ADPHPKGWVDHWML-PPCPHDFISA-N 0.000 description 3
- JAJOFWABAUKAEJ-QTKMDUPCSA-N Thr-Pro-His Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N)O JAJOFWABAUKAEJ-QTKMDUPCSA-N 0.000 description 3
- KERCOYANYUPLHJ-XGEHTFHBSA-N Thr-Pro-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O KERCOYANYUPLHJ-XGEHTFHBSA-N 0.000 description 3
- ZMYCLHFLHRVOEA-HEIBUPTGSA-N Thr-Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ZMYCLHFLHRVOEA-HEIBUPTGSA-N 0.000 description 3
- GJOBRAHDRIDAPT-NGTWOADLSA-N Thr-Trp-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H]([C@@H](C)O)N GJOBRAHDRIDAPT-NGTWOADLSA-N 0.000 description 3
- HLDFBNPSURDYEN-VHWLVUOQSA-N Trp-Ile-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N HLDFBNPSURDYEN-VHWLVUOQSA-N 0.000 description 3
- ZKVANNIVSDOQMG-HKUYNNGSSA-N Trp-Tyr-Gly Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CC=C(C=C3)O)C(=O)NCC(=O)O)N ZKVANNIVSDOQMG-HKUYNNGSSA-N 0.000 description 3
- AKXBNSZMYAOGLS-STQMWFEESA-N Tyr-Arg-Gly Chemical compound NC(N)=NCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AKXBNSZMYAOGLS-STQMWFEESA-N 0.000 description 3
- UZDHNIJRRTUKKC-DLOVCJGASA-N Val-Gln-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](C(C)C)C(=O)O)N UZDHNIJRRTUKKC-DLOVCJGASA-N 0.000 description 3
- VCIYTVOBLZHFSC-XHSDSOJGSA-N Val-Phe-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N2CCC[C@@H]2C(=O)O)N VCIYTVOBLZHFSC-XHSDSOJGSA-N 0.000 description 3
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 108010047495 alanylglycine Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000000234 capsid Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000005547 deoxyribonucleotide Substances 0.000 description 3
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 3
- 229960005542 ethidium bromide Drugs 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 210000003754 fetus Anatomy 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 108010081551 glycylphenylalanine Proteins 0.000 description 3
- 108010085325 histidylproline Proteins 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 108010027338 isoleucylcysteine Proteins 0.000 description 3
- 108010009298 lysylglutamic acid Proteins 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 108010068488 methionylphenylalanine Proteins 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 230000011278 mitosis Effects 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- HMFHBZSHGGEWLO-UHFFFAOYSA-N pentofuranose Chemical group OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 3
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 210000004508 polar body Anatomy 0.000 description 3
- 230000000270 postfertilization Effects 0.000 description 3
- 108010070643 prolylglutamic acid Proteins 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 230000017960 syncytium formation Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 239000001226 triphosphate Substances 0.000 description 3
- 235000011178 triphosphate Nutrition 0.000 description 3
- 108010073969 valyllysine Proteins 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- AXFMEGAFCUULFV-BLFANLJRSA-N (2s)-2-[[(2s)-1-[(2s,3r)-2-amino-3-methylpentanoyl]pyrrolidine-2-carbonyl]amino]pentanedioic acid Chemical compound CC[C@@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AXFMEGAFCUULFV-BLFANLJRSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- XYTNPQNAZREREP-XQXXSGGOSA-N Ala-Glu-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XYTNPQNAZREREP-XQXXSGGOSA-N 0.000 description 2
- LTSBJNNXPBBNDT-HGNGGELXSA-N Ala-His-Gln Chemical compound N[C@@H](C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(N)=O)C(=O)O LTSBJNNXPBBNDT-HGNGGELXSA-N 0.000 description 2
- SUMYEVXWCAYLLJ-GUBZILKMSA-N Ala-Leu-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O SUMYEVXWCAYLLJ-GUBZILKMSA-N 0.000 description 2
- MDNAVFBZPROEHO-UHFFFAOYSA-N Ala-Lys-Val Natural products CC(C)C(C(O)=O)NC(=O)C(NC(=O)C(C)N)CCCCN MDNAVFBZPROEHO-UHFFFAOYSA-N 0.000 description 2
- IHMCQESUJVZTKW-UBHSHLNASA-N Ala-Phe-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 IHMCQESUJVZTKW-UBHSHLNASA-N 0.000 description 2
- HCBKAOZYACJUEF-XQXXSGGOSA-N Ala-Thr-Gln Chemical compound N[C@@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCC(N)=O)C(=O)O HCBKAOZYACJUEF-XQXXSGGOSA-N 0.000 description 2
- KUFVXLQLDHJVOG-SHGPDSBTSA-N Ala-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C)N)O KUFVXLQLDHJVOG-SHGPDSBTSA-N 0.000 description 2
- AOAKQKVICDWCLB-UWJYBYFXSA-N Ala-Tyr-Asn Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N AOAKQKVICDWCLB-UWJYBYFXSA-N 0.000 description 2
- JPOQZCHGOTWRTM-FQPOAREZSA-N Ala-Tyr-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPOQZCHGOTWRTM-FQPOAREZSA-N 0.000 description 2
- LYILPUNCKACNGF-NAKRPEOUSA-N Ala-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)N LYILPUNCKACNGF-NAKRPEOUSA-N 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- XPSGESXVBSQZPL-SRVKXCTJSA-N Arg-Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O XPSGESXVBSQZPL-SRVKXCTJSA-N 0.000 description 2
- IIAXFBUTKIDDIP-ULQDDVLXSA-N Arg-Leu-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O IIAXFBUTKIDDIP-ULQDDVLXSA-N 0.000 description 2
- DIIGDGJKTMLQQW-IHRRRGAJSA-N Arg-Lys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCN=C(N)N)N DIIGDGJKTMLQQW-IHRRRGAJSA-N 0.000 description 2
- CLICCYPMVFGUOF-IHRRRGAJSA-N Arg-Lys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O CLICCYPMVFGUOF-IHRRRGAJSA-N 0.000 description 2
- OMKZPCPZEFMBIT-SRVKXCTJSA-N Arg-Met-Arg Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O OMKZPCPZEFMBIT-SRVKXCTJSA-N 0.000 description 2
- DRDWXKWUSIKKOB-PJODQICGSA-N Arg-Trp-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C)C(O)=O DRDWXKWUSIKKOB-PJODQICGSA-N 0.000 description 2
- RZVVKNIACROXRM-ZLUOBGJFSA-N Asn-Ala-Asp Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N RZVVKNIACROXRM-ZLUOBGJFSA-N 0.000 description 2
- DXZNJWFECGJCQR-FXQIFTODSA-N Asn-Asn-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N DXZNJWFECGJCQR-FXQIFTODSA-N 0.000 description 2
- ZUFPUBYQYWCMDB-NUMRIWBASA-N Asn-Thr-Glu Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZUFPUBYQYWCMDB-NUMRIWBASA-N 0.000 description 2
- HOBNTSHITVVNBN-ZPFDUUQYSA-N Asp-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CC(=O)O)N HOBNTSHITVVNBN-ZPFDUUQYSA-N 0.000 description 2
- SPKCGKRUYKMDHP-GUDRVLHUSA-N Asp-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)O)N SPKCGKRUYKMDHP-GUDRVLHUSA-N 0.000 description 2
- OEDJQRXNDRUGEU-SRVKXCTJSA-N Asp-Leu-His Chemical compound N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)O OEDJQRXNDRUGEU-SRVKXCTJSA-N 0.000 description 2
- GPPIDDWYKJPRES-YDHLFZDLSA-N Asp-Phe-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O GPPIDDWYKJPRES-YDHLFZDLSA-N 0.000 description 2
- BPAUXFVCSYQDQX-JRQIVUDYSA-N Asp-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(=O)O)N)O BPAUXFVCSYQDQX-JRQIVUDYSA-N 0.000 description 2
- XQFLFQWOBXPMHW-NHCYSSNCSA-N Asp-Val-His Chemical compound N[C@@H](CC(=O)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)O XQFLFQWOBXPMHW-NHCYSSNCSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 2
- 241000252233 Cyprinus carpio Species 0.000 description 2
- GMXSSZUVDNPRMA-FXQIFTODSA-N Cys-Arg-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O GMXSSZUVDNPRMA-FXQIFTODSA-N 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 241001200922 Gagata Species 0.000 description 2
- SWDSRANUCKNBLA-AVGNSLFASA-N Gln-Phe-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CCC(=O)N)N SWDSRANUCKNBLA-AVGNSLFASA-N 0.000 description 2
- LYCDZGLXQBPNQU-WDSKDSINSA-N Glu-Gly-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@@H](CS)C(O)=O LYCDZGLXQBPNQU-WDSKDSINSA-N 0.000 description 2
- CBWKURKPYSLMJV-SOUVJXGZSA-N Glu-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CCC(=O)O)N)C(=O)O CBWKURKPYSLMJV-SOUVJXGZSA-N 0.000 description 2
- JVYNYWXHZWVJEF-NUMRIWBASA-N Glu-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O JVYNYWXHZWVJEF-NUMRIWBASA-N 0.000 description 2
- IXKRSKPKSLXIHN-YUMQZZPRSA-N Gly-Cys-Leu Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O IXKRSKPKSLXIHN-YUMQZZPRSA-N 0.000 description 2
- UUYBFNKHOCJCHT-VHSXEESVSA-N Gly-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN UUYBFNKHOCJCHT-VHSXEESVSA-N 0.000 description 2
- IBYOLNARKHMLBG-WHOFXGATSA-N Gly-Phe-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 IBYOLNARKHMLBG-WHOFXGATSA-N 0.000 description 2
- WNZOCXUOGVYYBJ-CDMKHQONSA-N Gly-Phe-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)CN)O WNZOCXUOGVYYBJ-CDMKHQONSA-N 0.000 description 2
- WDXLKVQATNEAJQ-BQBZGAKWSA-N Gly-Pro-Asp Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O WDXLKVQATNEAJQ-BQBZGAKWSA-N 0.000 description 2
- YOBGUCWZPXJHTN-BQBZGAKWSA-N Gly-Ser-Arg Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YOBGUCWZPXJHTN-BQBZGAKWSA-N 0.000 description 2
- RIYIFUFFFBIOEU-KBPBESRZSA-N Gly-Tyr-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=C(O)C=C1 RIYIFUFFFBIOEU-KBPBESRZSA-N 0.000 description 2
- NMJREATYWWNIKX-UHFFFAOYSA-N GnRH Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CC(C)C)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 NMJREATYWWNIKX-UHFFFAOYSA-N 0.000 description 2
- 239000012981 Hank's balanced salt solution Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- BXOLYFJYQQRQDJ-MXAVVETBSA-N His-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CN=CN1)N BXOLYFJYQQRQDJ-MXAVVETBSA-N 0.000 description 2
- UPJODPVSKKWGDQ-KLHWPWHYSA-N His-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N)O UPJODPVSKKWGDQ-KLHWPWHYSA-N 0.000 description 2
- JVEKQAYXFGIISZ-HOCLYGCPSA-N His-Trp-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(O)=O)C1=CN=CN1 JVEKQAYXFGIISZ-HOCLYGCPSA-N 0.000 description 2
- IDAHFEPYTJJZFD-PEFMBERDSA-N Ile-Asp-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N IDAHFEPYTJJZFD-PEFMBERDSA-N 0.000 description 2
- CCHSQWLCOOZREA-GMOBBJLQSA-N Ile-Asp-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCSC)C(=O)O)N CCHSQWLCOOZREA-GMOBBJLQSA-N 0.000 description 2
- PFTFEWHJSAXGED-ZKWXMUAHSA-N Ile-Cys-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)O)N PFTFEWHJSAXGED-ZKWXMUAHSA-N 0.000 description 2
- CMNMPCTVCWWYHY-MXAVVETBSA-N Ile-His-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CC(C)C)C(=O)O)N CMNMPCTVCWWYHY-MXAVVETBSA-N 0.000 description 2
- GAZGFPOZOLEYAJ-YTFOTSKYSA-N Ile-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)O)N GAZGFPOZOLEYAJ-YTFOTSKYSA-N 0.000 description 2
- PHRWFSFCNJPWRO-PPCPHDFISA-N Ile-Leu-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N PHRWFSFCNJPWRO-PPCPHDFISA-N 0.000 description 2
- UYODHPPSCXBNCS-XUXIUFHCSA-N Ile-Val-Leu Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(C)C UYODHPPSCXBNCS-XUXIUFHCSA-N 0.000 description 2
- 108010065920 Insulin Lispro Proteins 0.000 description 2
- 102100034353 Integrase Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- KVRKAGGMEWNURO-CIUDSAMLSA-N Leu-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(C)C)N KVRKAGGMEWNURO-CIUDSAMLSA-N 0.000 description 2
- STAVRDQLZOTNKJ-RHYQMDGZSA-N Leu-Arg-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O STAVRDQLZOTNKJ-RHYQMDGZSA-N 0.000 description 2
- OIARJGNVARWKFP-YUMQZZPRSA-N Leu-Asn-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O OIARJGNVARWKFP-YUMQZZPRSA-N 0.000 description 2
- AUBMZAMQCOYSIC-MNXVOIDGSA-N Leu-Ile-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(O)=O AUBMZAMQCOYSIC-MNXVOIDGSA-N 0.000 description 2
- QJXHMYMRGDOHRU-NHCYSSNCSA-N Leu-Ile-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(O)=O QJXHMYMRGDOHRU-NHCYSSNCSA-N 0.000 description 2
- DSFYPIUSAMSERP-IHRRRGAJSA-N Leu-Leu-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DSFYPIUSAMSERP-IHRRRGAJSA-N 0.000 description 2
- VCHVSKNMTXWIIP-SRVKXCTJSA-N Leu-Lys-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O VCHVSKNMTXWIIP-SRVKXCTJSA-N 0.000 description 2
- UCBPDSYUVAAHCD-UWVGGRQHSA-N Leu-Pro-Gly Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UCBPDSYUVAAHCD-UWVGGRQHSA-N 0.000 description 2
- QWWPYKKLXWOITQ-VOAKCMCISA-N Leu-Thr-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(C)C QWWPYKKLXWOITQ-VOAKCMCISA-N 0.000 description 2
- BGGTYDNTOYRTTR-MEYUZBJRSA-N Leu-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(C)C)N)O BGGTYDNTOYRTTR-MEYUZBJRSA-N 0.000 description 2
- AAKRWBIIGKPOKQ-ONGXEEELSA-N Leu-Val-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O AAKRWBIIGKPOKQ-ONGXEEELSA-N 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- NTSPQIONFJUMJV-AVGNSLFASA-N Lys-Arg-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(O)=O NTSPQIONFJUMJV-AVGNSLFASA-N 0.000 description 2
- AAORVPFVUIHEAB-YUMQZZPRSA-N Lys-Asp-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O AAORVPFVUIHEAB-YUMQZZPRSA-N 0.000 description 2
- BYEBKXRNDLTGFW-CIUDSAMLSA-N Lys-Cys-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O BYEBKXRNDLTGFW-CIUDSAMLSA-N 0.000 description 2
- GJJQCBVRWDGLMQ-GUBZILKMSA-N Lys-Glu-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O GJJQCBVRWDGLMQ-GUBZILKMSA-N 0.000 description 2
- VUTWYNQUSJWBHO-BZSNNMDCSA-N Lys-Leu-Tyr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O VUTWYNQUSJWBHO-BZSNNMDCSA-N 0.000 description 2
- OZVXDDFYCQOPFD-XQQFMLRXSA-N Lys-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCCCN)N OZVXDDFYCQOPFD-XQQFMLRXSA-N 0.000 description 2
- QXEVZBXTDTVPCP-GMOBBJLQSA-N Met-Asn-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCSC)N QXEVZBXTDTVPCP-GMOBBJLQSA-N 0.000 description 2
- DZMGFGQBRYWJOR-YUMQZZPRSA-N Met-Pro Chemical compound CSCC[C@H](N)C(=O)N1CCC[C@H]1C(O)=O DZMGFGQBRYWJOR-YUMQZZPRSA-N 0.000 description 2
- WYDFQSJOARJAMM-GUBZILKMSA-N Met-Pro-Asp Chemical compound CSCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O WYDFQSJOARJAMM-GUBZILKMSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- LZDIENNKWVXJMX-JYJNAYRXSA-N Phe-Arg-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC1=CC=CC=C1 LZDIENNKWVXJMX-JYJNAYRXSA-N 0.000 description 2
- OQTDZEJJWWAGJT-KKUMJFAQSA-N Phe-Lys-Asp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O OQTDZEJJWWAGJT-KKUMJFAQSA-N 0.000 description 2
- BNRFQGLWLQESBG-YESZJQIVSA-N Phe-Lys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O BNRFQGLWLQESBG-YESZJQIVSA-N 0.000 description 2
- NJJBATPLUQHRBM-IHRRRGAJSA-N Phe-Pro-Ser Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)N)C(=O)N[C@@H](CO)C(=O)O NJJBATPLUQHRBM-IHRRRGAJSA-N 0.000 description 2
- AOKZOUGUMLBPSS-PMVMPFDFSA-N Phe-Trp-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(C)C)C(O)=O AOKZOUGUMLBPSS-PMVMPFDFSA-N 0.000 description 2
- VFDRDMOMHBJGKD-UFYCRDLUSA-N Phe-Tyr-Arg Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N VFDRDMOMHBJGKD-UFYCRDLUSA-N 0.000 description 2
- XALFIVXGQUEGKV-JSGCOSHPSA-N Phe-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 XALFIVXGQUEGKV-JSGCOSHPSA-N 0.000 description 2
- OYEUSRAZOGIDBY-JYJNAYRXSA-N Pro-Arg-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O OYEUSRAZOGIDBY-JYJNAYRXSA-N 0.000 description 2
- ZBAGOWGNNAXMOY-IHRRRGAJSA-N Pro-Cys-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O ZBAGOWGNNAXMOY-IHRRRGAJSA-N 0.000 description 2
- DRIJZWBRGMJCDD-DCAQKATOSA-N Pro-Gln-Met Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCSC)C(O)=O DRIJZWBRGMJCDD-DCAQKATOSA-N 0.000 description 2
- BRJGUPWVFXKBQI-XUXIUFHCSA-N Pro-Leu-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BRJGUPWVFXKBQI-XUXIUFHCSA-N 0.000 description 2
- GOMUXSCOIWIJFP-GUBZILKMSA-N Pro-Ser-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GOMUXSCOIWIJFP-GUBZILKMSA-N 0.000 description 2
- CZCCVJUUWBMISW-FXQIFTODSA-N Pro-Ser-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O CZCCVJUUWBMISW-FXQIFTODSA-N 0.000 description 2
- PRKWBYCXBBSLSK-GUBZILKMSA-N Pro-Ser-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O PRKWBYCXBBSLSK-GUBZILKMSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 241001492360 Retroviral provirus Species 0.000 description 2
- QVOGDCQNGLBNCR-FXQIFTODSA-N Ser-Arg-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O QVOGDCQNGLBNCR-FXQIFTODSA-N 0.000 description 2
- KMWFXJCGRXBQAC-CIUDSAMLSA-N Ser-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CO)N KMWFXJCGRXBQAC-CIUDSAMLSA-N 0.000 description 2
- RFBKULCUBJAQFT-BIIVOSGPSA-N Ser-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CO)N)C(=O)O RFBKULCUBJAQFT-BIIVOSGPSA-N 0.000 description 2
- KJMOINFQVCCSDX-XKBZYTNZSA-N Ser-Gln-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KJMOINFQVCCSDX-XKBZYTNZSA-N 0.000 description 2
- UOLGINIHBRIECN-FXQIFTODSA-N Ser-Glu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UOLGINIHBRIECN-FXQIFTODSA-N 0.000 description 2
- MUARUIBTKQJKFY-WHFBIAKZSA-N Ser-Gly-Asp Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O MUARUIBTKQJKFY-WHFBIAKZSA-N 0.000 description 2
- MOQDPPUMFSMYOM-KKUMJFAQSA-N Ser-His-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CO)N MOQDPPUMFSMYOM-KKUMJFAQSA-N 0.000 description 2
- QYSFWUIXDFJUDW-DCAQKATOSA-N Ser-Leu-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O QYSFWUIXDFJUDW-DCAQKATOSA-N 0.000 description 2
- XNCUYZKGQOCOQH-YUMQZZPRSA-N Ser-Leu-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O XNCUYZKGQOCOQH-YUMQZZPRSA-N 0.000 description 2
- UBRMZSHOOIVJPW-SRVKXCTJSA-N Ser-Leu-Lys Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O UBRMZSHOOIVJPW-SRVKXCTJSA-N 0.000 description 2
- XXNYYSXNXCJYKX-DCAQKATOSA-N Ser-Leu-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(O)=O XXNYYSXNXCJYKX-DCAQKATOSA-N 0.000 description 2
- OWCVUSJMEBGMOK-YUMQZZPRSA-N Ser-Lys-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O OWCVUSJMEBGMOK-YUMQZZPRSA-N 0.000 description 2
- OVQZAFXWIWNYKA-GUBZILKMSA-N Ser-Pro-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CO)N OVQZAFXWIWNYKA-GUBZILKMSA-N 0.000 description 2
- QUGRFWPMPVIAPW-IHRRRGAJSA-N Ser-Pro-Phe Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QUGRFWPMPVIAPW-IHRRRGAJSA-N 0.000 description 2
- DKGRNFUXVTYRAS-UBHSHLNASA-N Ser-Ser-Trp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O DKGRNFUXVTYRAS-UBHSHLNASA-N 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 2
- XIULAFZYEKSGAJ-IXOXFDKPSA-N Thr-Leu-His Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 XIULAFZYEKSGAJ-IXOXFDKPSA-N 0.000 description 2
- WFAUDCSNCWJJAA-KXNHARMFSA-N Thr-Lys-Pro Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@@H]1C(O)=O WFAUDCSNCWJJAA-KXNHARMFSA-N 0.000 description 2
- VGYVVSQFSSKZRJ-OEAJRASXSA-N Thr-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)[C@H](O)C)CC1=CC=CC=C1 VGYVVSQFSSKZRJ-OEAJRASXSA-N 0.000 description 2
- AAZOYLQUEQRUMZ-GSSVUCPTSA-N Thr-Thr-Asn Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(N)=O AAZOYLQUEQRUMZ-GSSVUCPTSA-N 0.000 description 2
- KAFKKRJQHOECGW-JCOFBHIZSA-N Thr-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)[C@H](O)C)C(O)=O)=CNC2=C1 KAFKKRJQHOECGW-JCOFBHIZSA-N 0.000 description 2
- XVHAUVJXBFGUPC-RPTUDFQQSA-N Thr-Tyr-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O XVHAUVJXBFGUPC-RPTUDFQQSA-N 0.000 description 2
- OGOYMQWIWHGTGH-KZVJFYERSA-N Thr-Val-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O OGOYMQWIWHGTGH-KZVJFYERSA-N 0.000 description 2
- VYVBSMCZNHOZGD-RCWTZXSCSA-N Thr-Val-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O VYVBSMCZNHOZGD-RCWTZXSCSA-N 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- UDCHKDYNMRJYMI-QEJZJMRPSA-N Trp-Glu-Ser Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O UDCHKDYNMRJYMI-QEJZJMRPSA-N 0.000 description 2
- NLWCSMOXNKBRLC-WDSOQIARSA-N Trp-Lys-Val Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O NLWCSMOXNKBRLC-WDSOQIARSA-N 0.000 description 2
- KXFYAQUYJKOQMI-QEJZJMRPSA-N Trp-Ser-Gln Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O)=CNC2=C1 KXFYAQUYJKOQMI-QEJZJMRPSA-N 0.000 description 2
- ZZDFLJFVSNQINX-HWHUXHBOSA-N Trp-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N)O ZZDFLJFVSNQINX-HWHUXHBOSA-N 0.000 description 2
- PMDWYLVWHRTJIW-STQMWFEESA-N Tyr-Gly-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 PMDWYLVWHRTJIW-STQMWFEESA-N 0.000 description 2
- JKUZFODWJGEQAP-KBPBESRZSA-N Tyr-Gly-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)O)N)O JKUZFODWJGEQAP-KBPBESRZSA-N 0.000 description 2
- XJPXTYLVMUZGNW-IHRRRGAJSA-N Tyr-Pro-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O XJPXTYLVMUZGNW-IHRRRGAJSA-N 0.000 description 2
- BIVIUZRBCAUNPW-JRQIVUDYSA-N Tyr-Thr-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O BIVIUZRBCAUNPW-JRQIVUDYSA-N 0.000 description 2
- ZLFHAAGHGQBQQN-GUBZILKMSA-N Val-Ala-Pro Natural products CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O ZLFHAAGHGQBQQN-GUBZILKMSA-N 0.000 description 2
- ZMDCGGKHRKNWKD-LAEOZQHASA-N Val-Asn-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N ZMDCGGKHRKNWKD-LAEOZQHASA-N 0.000 description 2
- TZVUSFMQWPWHON-NHCYSSNCSA-N Val-Asp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)C)N TZVUSFMQWPWHON-NHCYSSNCSA-N 0.000 description 2
- ICFRWCLVYFKHJV-FXQIFTODSA-N Val-Cys-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)O)N ICFRWCLVYFKHJV-FXQIFTODSA-N 0.000 description 2
- MHHAWNPHDLCPLF-ULQDDVLXSA-N Val-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=CC=C1 MHHAWNPHDLCPLF-ULQDDVLXSA-N 0.000 description 2
- SJRUJQFQVLMZFW-WPRPVWTQSA-N Val-Pro-Gly Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O SJRUJQFQVLMZFW-WPRPVWTQSA-N 0.000 description 2
- QZKVWWIUSQGWMY-IHRRRGAJSA-N Val-Ser-Phe Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QZKVWWIUSQGWMY-IHRRRGAJSA-N 0.000 description 2
- JAIZPWVHPQRYOU-ZJDVBMNYSA-N Val-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C(C)C)N)O JAIZPWVHPQRYOU-ZJDVBMNYSA-N 0.000 description 2
- RSEIVHMDTNNEOW-JYJNAYRXSA-N Val-Trp-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CS)C(=O)O)N RSEIVHMDTNNEOW-JYJNAYRXSA-N 0.000 description 2
- OWFGFHQMSBTKLX-UFYCRDLUSA-N Val-Tyr-Tyr Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)N OWFGFHQMSBTKLX-UFYCRDLUSA-N 0.000 description 2
- 206010058874 Viraemia Diseases 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 2
- 229950006790 adenosine phosphate Drugs 0.000 description 2
- 108010041407 alanylaspartic acid Proteins 0.000 description 2
- 108010068380 arginylarginine Proteins 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 210000002969 egg yolk Anatomy 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 108010078428 env Gene Products Proteins 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 108700004026 gag Genes Proteins 0.000 description 2
- 230000006543 gametophyte development Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 108010078144 glutaminyl-glycine Proteins 0.000 description 2
- 108010049041 glutamylalanine Proteins 0.000 description 2
- 108010089804 glycyl-threonine Proteins 0.000 description 2
- 108010087823 glycyltyrosine Proteins 0.000 description 2
- 108010092114 histidylphenylalanine Proteins 0.000 description 2
- 108010018006 histidylserine Proteins 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 230000006651 lactation Effects 0.000 description 2
- 108010034529 leucyl-lysine Proteins 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000034217 membrane fusion Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 108010056582 methionylglutamic acid Proteins 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000016087 ovulation Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 108010082795 phenylalanyl-arginyl-arginine Proteins 0.000 description 2
- 108010012581 phenylalanylglutamate Proteins 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 108010025826 prolyl-leucyl-arginine Proteins 0.000 description 2
- 108010031719 prolyl-serine Proteins 0.000 description 2
- 108010079317 prolyl-tyrosine Proteins 0.000 description 2
- 108010015796 prolylisoleucine Proteins 0.000 description 2
- 230000000246 remedial effect Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 210000000801 secondary oocyte Anatomy 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 102000055501 telomere Human genes 0.000 description 2
- 108091035539 telomere Proteins 0.000 description 2
- 108010061238 threonyl-glycine Proteins 0.000 description 2
- 108010031491 threonyl-lysyl-glutamic acid Proteins 0.000 description 2
- 108010071097 threonyl-lysyl-proline Proteins 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 2
- 108010080629 tryptophan-leucine Proteins 0.000 description 2
- 108010051110 tyrosyl-lysine Proteins 0.000 description 2
- 108010020532 tyrosyl-proline Proteins 0.000 description 2
- 108010078580 tyrosylleucine Proteins 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- COEXAQSTZUWMRI-STQMWFEESA-N (2s)-1-[2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]pyrrolidine-2-carboxylic acid Chemical compound C([C@H](N)C(=O)NCC(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=C(O)C=C1 COEXAQSTZUWMRI-STQMWFEESA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-M (S)-lactate Chemical compound C[C@H](O)C([O-])=O JVTAAEKCZFNVCJ-REOHCLBHSA-M 0.000 description 1
- KZKAYEGOIJEWQB-UHFFFAOYSA-N 1,3-dibromopropane;n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound BrCCCBr.CN(C)CCCCCCN(C)C KZKAYEGOIJEWQB-UHFFFAOYSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 1
- 101150098072 20 gene Proteins 0.000 description 1
- VBDMWOKJZDCFJM-FXQIFTODSA-N Ala-Ala-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)N VBDMWOKJZDCFJM-FXQIFTODSA-N 0.000 description 1
- LNNSWWRRYJLGNI-NAKRPEOUSA-N Ala-Ile-Val Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O LNNSWWRRYJLGNI-NAKRPEOUSA-N 0.000 description 1
- MDNAVFBZPROEHO-DCAQKATOSA-N Ala-Lys-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O MDNAVFBZPROEHO-DCAQKATOSA-N 0.000 description 1
- XSTZMVAYYCJTNR-DCAQKATOSA-N Ala-Met-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O XSTZMVAYYCJTNR-DCAQKATOSA-N 0.000 description 1
- DGLQWAFPIXDKRL-UBHSHLNASA-N Ala-Met-Phe Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N DGLQWAFPIXDKRL-UBHSHLNASA-N 0.000 description 1
- IPZQNYYAYVRKKK-FXQIFTODSA-N Ala-Pro-Ala Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O IPZQNYYAYVRKKK-FXQIFTODSA-N 0.000 description 1
- IORKCNUBHNIMKY-CIUDSAMLSA-N Ala-Pro-Glu Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O IORKCNUBHNIMKY-CIUDSAMLSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 101710154825 Aminoglycoside 3'-phosphotransferase Proteins 0.000 description 1
- VBFJESQBIWCWRL-DCAQKATOSA-N Arg-Ala-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VBFJESQBIWCWRL-DCAQKATOSA-N 0.000 description 1
- HPKSHFSEXICTLI-CIUDSAMLSA-N Arg-Glu-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O HPKSHFSEXICTLI-CIUDSAMLSA-N 0.000 description 1
- BDMIFVIWCNLDCT-CIUDSAMLSA-N Asn-Arg-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O BDMIFVIWCNLDCT-CIUDSAMLSA-N 0.000 description 1
- WVCJSDCHTUTONA-FXQIFTODSA-N Asn-Asp-Arg Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WVCJSDCHTUTONA-FXQIFTODSA-N 0.000 description 1
- JREOBWLIZLXRIS-GUBZILKMSA-N Asn-Glu-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O JREOBWLIZLXRIS-GUBZILKMSA-N 0.000 description 1
- FTCGGKNCJZOPNB-WHFBIAKZSA-N Asn-Gly-Ser Chemical compound NC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O FTCGGKNCJZOPNB-WHFBIAKZSA-N 0.000 description 1
- KMCRKVOLRCOMBG-DJFWLOJKSA-N Asn-Ile-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC(=O)N)N KMCRKVOLRCOMBG-DJFWLOJKSA-N 0.000 description 1
- ACKNRKFVYUVWAC-ZPFDUUQYSA-N Asn-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)N)N ACKNRKFVYUVWAC-ZPFDUUQYSA-N 0.000 description 1
- IXIWEFWRKIUMQX-DCAQKATOSA-N Asp-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O IXIWEFWRKIUMQX-DCAQKATOSA-N 0.000 description 1
- XAJRHVUUVUPFQL-ACZMJKKPSA-N Asp-Glu-Asp Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O XAJRHVUUVUPFQL-ACZMJKKPSA-N 0.000 description 1
- YDJVIBMKAMQPPP-LAEOZQHASA-N Asp-Glu-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O YDJVIBMKAMQPPP-LAEOZQHASA-N 0.000 description 1
- KHGPWGKPYHPOIK-QWRGUYRKSA-N Asp-Gly-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O KHGPWGKPYHPOIK-QWRGUYRKSA-N 0.000 description 1
- UBPMOJLRVMGTOQ-GARJFASQSA-N Asp-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CC(=O)O)N)C(=O)O UBPMOJLRVMGTOQ-GARJFASQSA-N 0.000 description 1
- PYXXJFRXIYAESU-PCBIJLKTSA-N Asp-Ile-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O PYXXJFRXIYAESU-PCBIJLKTSA-N 0.000 description 1
- YFGUZQQCSDZRBN-DCAQKATOSA-N Asp-Pro-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O YFGUZQQCSDZRBN-DCAQKATOSA-N 0.000 description 1
- MGSVBZIBCCKGCY-ZLUOBGJFSA-N Asp-Ser-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MGSVBZIBCCKGCY-ZLUOBGJFSA-N 0.000 description 1
- HCOQNGIHSXICCB-IHRRRGAJSA-N Asp-Tyr-Arg Chemical compound N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)O HCOQNGIHSXICCB-IHRRRGAJSA-N 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 101150019620 CAD gene Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000501789 Cocal virus Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- DZSICRGTVPDCRN-YUMQZZPRSA-N Cys-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CS)N DZSICRGTVPDCRN-YUMQZZPRSA-N 0.000 description 1
- BLGNLNRBABWDST-CIUDSAMLSA-N Cys-Leu-Asp Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N BLGNLNRBABWDST-CIUDSAMLSA-N 0.000 description 1
- LWYKPOCGGTYAIH-FXQIFTODSA-N Cys-Met-Asp Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N LWYKPOCGGTYAIH-FXQIFTODSA-N 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102100034581 Dihydroorotase Human genes 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000714165 Feline leukemia virus Species 0.000 description 1
- 101150082239 G gene Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102400001302 Gasdermin-B, N-terminal Human genes 0.000 description 1
- IHSGESFHTMFHRB-GUBZILKMSA-N Gln-Lys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCC(N)=O IHSGESFHTMFHRB-GUBZILKMSA-N 0.000 description 1
- JILRMFFFCHUUTJ-ACZMJKKPSA-N Gln-Ser-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O JILRMFFFCHUUTJ-ACZMJKKPSA-N 0.000 description 1
- UEILCTONAMOGBR-RWRJDSDZSA-N Gln-Thr-Ile Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O UEILCTONAMOGBR-RWRJDSDZSA-N 0.000 description 1
- NLKVNZUFDPWPNL-YUMQZZPRSA-N Glu-Arg-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O NLKVNZUFDPWPNL-YUMQZZPRSA-N 0.000 description 1
- RQNYYRHRKSVKAB-GUBZILKMSA-N Glu-Cys-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O RQNYYRHRKSVKAB-GUBZILKMSA-N 0.000 description 1
- KVBPDJIFRQUQFY-ACZMJKKPSA-N Glu-Cys-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O KVBPDJIFRQUQFY-ACZMJKKPSA-N 0.000 description 1
- MWMJCGBSIORNCD-AVGNSLFASA-N Glu-Leu-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O MWMJCGBSIORNCD-AVGNSLFASA-N 0.000 description 1
- BBBXWRGITSUJPB-YUMQZZPRSA-N Glu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CCC(O)=O BBBXWRGITSUJPB-YUMQZZPRSA-N 0.000 description 1
- IDEODOAVGCMUQV-GUBZILKMSA-N Glu-Ser-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O IDEODOAVGCMUQV-GUBZILKMSA-N 0.000 description 1
- ZSIDREAPEPAPKL-XIRDDKMYSA-N Glu-Trp-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CCC(=O)O)N ZSIDREAPEPAPKL-XIRDDKMYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- UGVQELHRNUDMAA-BYPYZUCNSA-N Gly-Ala-Gly Chemical compound [NH3+]CC(=O)N[C@@H](C)C(=O)NCC([O-])=O UGVQELHRNUDMAA-BYPYZUCNSA-N 0.000 description 1
- RJIVPOXLQFJRTG-LURJTMIESA-N Gly-Arg-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N RJIVPOXLQFJRTG-LURJTMIESA-N 0.000 description 1
- AAHSHTLISQUZJL-QSFUFRPTSA-N Gly-Ile-Ile Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O AAHSHTLISQUZJL-QSFUFRPTSA-N 0.000 description 1
- IUZGUFAJDBHQQV-YUMQZZPRSA-N Gly-Leu-Asn Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O IUZGUFAJDBHQQV-YUMQZZPRSA-N 0.000 description 1
- WSWWTQYHFCBKBT-DVJZZOLTSA-N Gly-Thr-Trp Chemical compound C[C@@H](O)[C@H](NC(=O)CN)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(O)=O WSWWTQYHFCBKBT-DVJZZOLTSA-N 0.000 description 1
- DNVDEMWIYLVIQU-RCOVLWMOSA-N Gly-Val-Asp Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O DNVDEMWIYLVIQU-RCOVLWMOSA-N 0.000 description 1
- BAYQNCWLXIDLHX-ONGXEEELSA-N Gly-Val-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)CN BAYQNCWLXIDLHX-ONGXEEELSA-N 0.000 description 1
- 101710114810 Glycoprotein Proteins 0.000 description 1
- VPZXBVLAVMBEQI-VKHMYHEASA-N Glycyl-alanine Chemical compound OC(=O)[C@H](C)NC(=O)CN VPZXBVLAVMBEQI-VKHMYHEASA-N 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- RVKIPWVMZANZLI-UHFFFAOYSA-N H-Lys-Trp-OH Natural products C1=CC=C2C(CC(NC(=O)C(N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- WYWBYSPRCFADBM-GARJFASQSA-N His-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CC2=CN=CN2)N)C(=O)O WYWBYSPRCFADBM-GARJFASQSA-N 0.000 description 1
- PMWSGVRIMIFXQH-KKUMJFAQSA-N His-His-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1NC=NC=1)C1=CN=CN1 PMWSGVRIMIFXQH-KKUMJFAQSA-N 0.000 description 1
- XDIVYNSPYBLSME-DCAQKATOSA-N His-Met-Asp Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N XDIVYNSPYBLSME-DCAQKATOSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101150003028 Hprt1 gene Proteins 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- 241000713673 Human foamy virus Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 1
- LLHYWBGDMBGNHA-VGDYDELISA-N Ile-Cys-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N LLHYWBGDMBGNHA-VGDYDELISA-N 0.000 description 1
- ZXIGYKICRDFISM-DJFWLOJKSA-N Ile-His-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CC(=O)N)C(=O)O)N ZXIGYKICRDFISM-DJFWLOJKSA-N 0.000 description 1
- PWDSHAAAFXISLE-SXTJYALSSA-N Ile-Ile-Asp Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(O)=O PWDSHAAAFXISLE-SXTJYALSSA-N 0.000 description 1
- PARSHQDZROHERM-NHCYSSNCSA-N Ile-Lys-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)O)N PARSHQDZROHERM-NHCYSSNCSA-N 0.000 description 1
- CIDLJWVDMNDKPT-FIRPJDEBSA-N Ile-Phe-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)O)N CIDLJWVDMNDKPT-FIRPJDEBSA-N 0.000 description 1
- JNLSTRPWUXOORL-MMWGEVLESA-N Ile-Ser-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N JNLSTRPWUXOORL-MMWGEVLESA-N 0.000 description 1
- ANTFEOSJMAUGIB-KNZXXDILSA-N Ile-Thr-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@@H]1C(=O)O)N ANTFEOSJMAUGIB-KNZXXDILSA-N 0.000 description 1
- WIYDLTIBHZSPKY-HJWJTTGWSA-N Ile-Val-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 WIYDLTIBHZSPKY-HJWJTTGWSA-N 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- TYYLDKGBCJGJGW-UHFFFAOYSA-N L-tryptophan-L-tyrosine Natural products C=1NC2=CC=CC=C2C=1CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 TYYLDKGBCJGJGW-UHFFFAOYSA-N 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- XWOBNBRUDDUEEY-UWVGGRQHSA-N Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 XWOBNBRUDDUEEY-UWVGGRQHSA-N 0.000 description 1
- FAELBUXXFQLUAX-AJNGGQMLSA-N Leu-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C FAELBUXXFQLUAX-AJNGGQMLSA-N 0.000 description 1
- LXKNSJLSGPNHSK-KKUMJFAQSA-N Leu-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N LXKNSJLSGPNHSK-KKUMJFAQSA-N 0.000 description 1
- FOBUGKUBUJOWAD-IHPCNDPISA-N Leu-Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 FOBUGKUBUJOWAD-IHPCNDPISA-N 0.000 description 1
- ZRHDPZAAWLXXIR-SRVKXCTJSA-N Leu-Lys-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O ZRHDPZAAWLXXIR-SRVKXCTJSA-N 0.000 description 1
- BIZNDKMFQHDOIE-KKUMJFAQSA-N Leu-Phe-Asn Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(O)=O)CC1=CC=CC=C1 BIZNDKMFQHDOIE-KKUMJFAQSA-N 0.000 description 1
- VULJUQZPSOASBZ-SRVKXCTJSA-N Leu-Pro-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O VULJUQZPSOASBZ-SRVKXCTJSA-N 0.000 description 1
- SVBJIZVVYJYGLA-DCAQKATOSA-N Leu-Ser-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O SVBJIZVVYJYGLA-DCAQKATOSA-N 0.000 description 1
- VDIARPPNADFEAV-WEDXCCLWSA-N Leu-Thr-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O VDIARPPNADFEAV-WEDXCCLWSA-N 0.000 description 1
- FPFOYSCDUWTZBF-IHPCNDPISA-N Leu-Trp-Leu Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H]([NH3+])CC(C)C)C(=O)N[C@@H](CC(C)C)C([O-])=O)=CNC2=C1 FPFOYSCDUWTZBF-IHPCNDPISA-N 0.000 description 1
- XZNJZXJZBMBGGS-NHCYSSNCSA-N Leu-Val-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XZNJZXJZBMBGGS-NHCYSSNCSA-N 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- WQWZXKWOEVSGQM-DCAQKATOSA-N Lys-Ala-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN WQWZXKWOEVSGQM-DCAQKATOSA-N 0.000 description 1
- JGAMUXDWYSXYLM-SRVKXCTJSA-N Lys-Arg-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O JGAMUXDWYSXYLM-SRVKXCTJSA-N 0.000 description 1
- LXNPMPIQDNSMTA-AVGNSLFASA-N Lys-Gln-His Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 LXNPMPIQDNSMTA-AVGNSLFASA-N 0.000 description 1
- QBEPTBMRQALPEV-MNXVOIDGSA-N Lys-Ile-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCCCN QBEPTBMRQALPEV-MNXVOIDGSA-N 0.000 description 1
- GAHJXEMYXKLZRQ-AJNGGQMLSA-N Lys-Lys-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O GAHJXEMYXKLZRQ-AJNGGQMLSA-N 0.000 description 1
- AIXUQKMMBQJZCU-IUCAKERBSA-N Lys-Pro Chemical compound NCCCC[C@H](N)C(=O)N1CCC[C@H]1C(O)=O AIXUQKMMBQJZCU-IUCAKERBSA-N 0.000 description 1
- MEQLGHAMAUPOSJ-DCAQKATOSA-N Lys-Ser-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O MEQLGHAMAUPOSJ-DCAQKATOSA-N 0.000 description 1
- ZOKVLMBYDSIDKG-CSMHCCOUSA-N Lys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCCN ZOKVLMBYDSIDKG-CSMHCCOUSA-N 0.000 description 1
- RVKIPWVMZANZLI-ZFWWWQNUSA-N Lys-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-ZFWWWQNUSA-N 0.000 description 1
- VKCPHIOZDWUFSW-ONGXEEELSA-N Lys-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCCCN VKCPHIOZDWUFSW-ONGXEEELSA-N 0.000 description 1
- ACYHZNZHIZWLQF-BQBZGAKWSA-N Met-Asn-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O ACYHZNZHIZWLQF-BQBZGAKWSA-N 0.000 description 1
- QTZXSYBVOSXBEJ-WDSKDSINSA-N Met-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O QTZXSYBVOSXBEJ-WDSKDSINSA-N 0.000 description 1
- XMMWDTUFTZMQFD-GMOBBJLQSA-N Met-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCSC XMMWDTUFTZMQFD-GMOBBJLQSA-N 0.000 description 1
- DNDVVILEHVMWIS-LPEHRKFASA-N Met-Asp-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N DNDVVILEHVMWIS-LPEHRKFASA-N 0.000 description 1
- WPTHAGXMYDRPFD-SRVKXCTJSA-N Met-Lys-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O WPTHAGXMYDRPFD-SRVKXCTJSA-N 0.000 description 1
- GMMLGMFBYCFCCX-KZVJFYERSA-N Met-Thr-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O GMMLGMFBYCFCCX-KZVJFYERSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 108010087066 N2-tryptophyllysine Proteins 0.000 description 1
- BQVUABVGYYSDCJ-UHFFFAOYSA-N Nalpha-L-Leucyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)CC(C)C)C(O)=O)=CNC2=C1 BQVUABVGYYSDCJ-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101710189818 Non-structural protein 2a Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- YQNBKXUTWBRQCS-BVSLBCMMSA-N Phe-Arg-Trp Chemical compound C([C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 YQNBKXUTWBRQCS-BVSLBCMMSA-N 0.000 description 1
- HHOOEUSPFGPZFP-QWRGUYRKSA-N Phe-Asn-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O HHOOEUSPFGPZFP-QWRGUYRKSA-N 0.000 description 1
- HWMGTNOVUDIKRE-UWVGGRQHSA-N Phe-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 HWMGTNOVUDIKRE-UWVGGRQHSA-N 0.000 description 1
- CSYVXYQDIVCQNU-QWRGUYRKSA-N Phe-Asp-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O CSYVXYQDIVCQNU-QWRGUYRKSA-N 0.000 description 1
- RVEVENLSADZUMS-IHRRRGAJSA-N Phe-Pro-Asn Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O RVEVENLSADZUMS-IHRRRGAJSA-N 0.000 description 1
- QARPMYDMYVLFMW-KKUMJFAQSA-N Phe-Pro-Glu Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=CC=C1 QARPMYDMYVLFMW-KKUMJFAQSA-N 0.000 description 1
- MMJJFXWMCMJMQA-STQMWFEESA-N Phe-Pro-Gly Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)C1=CC=CC=C1 MMJJFXWMCMJMQA-STQMWFEESA-N 0.000 description 1
- WWPAHTZOWURIMR-ULQDDVLXSA-N Phe-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CC1=CC=CC=C1 WWPAHTZOWURIMR-ULQDDVLXSA-N 0.000 description 1
- GNRMAQSIROFNMI-IXOXFDKPSA-N Phe-Thr-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O GNRMAQSIROFNMI-IXOXFDKPSA-N 0.000 description 1
- 101710151911 Phosphoprotein p30 Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- CGBYDGAJHSOGFQ-LPEHRKFASA-N Pro-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 CGBYDGAJHSOGFQ-LPEHRKFASA-N 0.000 description 1
- JQOHKCDMINQZRV-WDSKDSINSA-N Pro-Asn Chemical compound NC(=O)C[C@@H](C([O-])=O)NC(=O)[C@@H]1CCC[NH2+]1 JQOHKCDMINQZRV-WDSKDSINSA-N 0.000 description 1
- INXAPZFIOVGHSV-CIUDSAMLSA-N Pro-Asn-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H]1CCCN1 INXAPZFIOVGHSV-CIUDSAMLSA-N 0.000 description 1
- WPQKSRHDTMRSJM-CIUDSAMLSA-N Pro-Asp-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1 WPQKSRHDTMRSJM-CIUDSAMLSA-N 0.000 description 1
- PTLOFJZJADCNCD-DCAQKATOSA-N Pro-Glu-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@@H]1CCCN1 PTLOFJZJADCNCD-DCAQKATOSA-N 0.000 description 1
- FEPSEIDIPBMIOS-QXEWZRGKSA-N Pro-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H]1CCCN1 FEPSEIDIPBMIOS-QXEWZRGKSA-N 0.000 description 1
- YXHYJEPDKSYPSQ-AVGNSLFASA-N Pro-Leu-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CCCN1 YXHYJEPDKSYPSQ-AVGNSLFASA-N 0.000 description 1
- AFWBWPCXSWUCLB-WDSKDSINSA-N Pro-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H]1CCC[NH2+]1 AFWBWPCXSWUCLB-WDSKDSINSA-N 0.000 description 1
- IIRBTQHFVNGPMQ-AVGNSLFASA-N Pro-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@@H]1CCCN1 IIRBTQHFVNGPMQ-AVGNSLFASA-N 0.000 description 1
- ZMLRZBWCXPQADC-TUAOUCFPSA-N Pro-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 ZMLRZBWCXPQADC-TUAOUCFPSA-N 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- WTWGOQRNRFHFQD-JBDRJPRFSA-N Ser-Ala-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WTWGOQRNRFHFQD-JBDRJPRFSA-N 0.000 description 1
- RNFKSBPHLTZHLU-WHFBIAKZSA-N Ser-Cys-Gly Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)O)N)O RNFKSBPHLTZHLU-WHFBIAKZSA-N 0.000 description 1
- LAFKUZYWNCHOHT-WHFBIAKZSA-N Ser-Glu Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O LAFKUZYWNCHOHT-WHFBIAKZSA-N 0.000 description 1
- SNVIOQXAHVORQM-WDSKDSINSA-N Ser-Gly-Gln Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O SNVIOQXAHVORQM-WDSKDSINSA-N 0.000 description 1
- DOSZISJPMCYEHT-NAKRPEOUSA-N Ser-Ile-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O DOSZISJPMCYEHT-NAKRPEOUSA-N 0.000 description 1
- HEUVHBXOVZONPU-BJDJZHNGSA-N Ser-Leu-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O HEUVHBXOVZONPU-BJDJZHNGSA-N 0.000 description 1
- FPCGZYMRFFIYIH-CIUDSAMLSA-N Ser-Lys-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O FPCGZYMRFFIYIH-CIUDSAMLSA-N 0.000 description 1
- XVWDJUROVRQKAE-KKUMJFAQSA-N Ser-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CC1=CC=CC=C1 XVWDJUROVRQKAE-KKUMJFAQSA-N 0.000 description 1
- AZWNCEBQZXELEZ-FXQIFTODSA-N Ser-Pro-Ser Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O AZWNCEBQZXELEZ-FXQIFTODSA-N 0.000 description 1
- XZKQVQKUZMAADP-IMJSIDKUSA-N Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(O)=O XZKQVQKUZMAADP-IMJSIDKUSA-N 0.000 description 1
- SRSPTFBENMJHMR-WHFBIAKZSA-N Ser-Ser-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SRSPTFBENMJHMR-WHFBIAKZSA-N 0.000 description 1
- BMKNXTJLHFIAAH-CIUDSAMLSA-N Ser-Ser-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O BMKNXTJLHFIAAH-CIUDSAMLSA-N 0.000 description 1
- PMTWIUBUQRGCSB-FXQIFTODSA-N Ser-Val-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O PMTWIUBUQRGCSB-FXQIFTODSA-N 0.000 description 1
- RCOUFINCYASMDN-GUBZILKMSA-N Ser-Val-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCSC)C(O)=O RCOUFINCYASMDN-GUBZILKMSA-N 0.000 description 1
- 101710167605 Spike glycoprotein Proteins 0.000 description 1
- 241000713896 Spleen necrosis virus Species 0.000 description 1
- 241000713675 Spumavirus Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- JBHMLZSKIXMVFS-XVSYOHENSA-N Thr-Asn-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JBHMLZSKIXMVFS-XVSYOHENSA-N 0.000 description 1
- IVDFVBVIVLJJHR-LKXGYXEUSA-N Thr-Ser-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O IVDFVBVIVLJJHR-LKXGYXEUSA-N 0.000 description 1
- WPSKTVVMQCXPRO-BWBBJGPYSA-N Thr-Ser-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WPSKTVVMQCXPRO-BWBBJGPYSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- RRXPAFGTFQIEMD-IVJVFBROSA-N Trp-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N RRXPAFGTFQIEMD-IVJVFBROSA-N 0.000 description 1
- MYVYPSWUSKCCHG-JQWIXIFHSA-N Trp-Ser Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CO)C(O)=O)=CNC2=C1 MYVYPSWUSKCCHG-JQWIXIFHSA-N 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- GIOBXJSONRQHKQ-RYUDHWBXSA-N Tyr-Gly-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O GIOBXJSONRQHKQ-RYUDHWBXSA-N 0.000 description 1
- QHLIUFUEUDFAOT-MGHWNKPDSA-N Tyr-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CC=C(C=C1)O)N QHLIUFUEUDFAOT-MGHWNKPDSA-N 0.000 description 1
- NHOVZGFNTGMYMI-KKUMJFAQSA-N Tyr-Ser-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NHOVZGFNTGMYMI-KKUMJFAQSA-N 0.000 description 1
- GOPQNCQSXBJAII-ULQDDVLXSA-N Tyr-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N GOPQNCQSXBJAII-ULQDDVLXSA-N 0.000 description 1
- ZEVNVXYRZRIRCH-GVXVVHGQSA-N Val-Gln-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N ZEVNVXYRZRIRCH-GVXVVHGQSA-N 0.000 description 1
- DIOSYUIWOQCXNR-ONGXEEELSA-N Val-Lys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O DIOSYUIWOQCXNR-ONGXEEELSA-N 0.000 description 1
- YTNGABPUXFEOGU-SRVKXCTJSA-N Val-Pro-Arg Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O YTNGABPUXFEOGU-SRVKXCTJSA-N 0.000 description 1
- PZTZYZUTCPZWJH-FXQIFTODSA-N Val-Ser-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)O)N PZTZYZUTCPZWJH-FXQIFTODSA-N 0.000 description 1
- DLRZGNXCXUGIDG-KKHAAJSZSA-N Val-Thr-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N)O DLRZGNXCXUGIDG-KKHAAJSZSA-N 0.000 description 1
- DVLWZWNAQUBZBC-ZNSHCXBVSA-N Val-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N)O DVLWZWNAQUBZBC-ZNSHCXBVSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000031016 anaphase Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108010052670 arginyl-glutamyl-glutamic acid Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 108010038633 aspartylglutamate Proteins 0.000 description 1
- 238000000211 autoradiogram Methods 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 101150030339 env gene Proteins 0.000 description 1
- 244000309457 enveloped RNA virus Species 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical compound CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 210000004186 follicle cell Anatomy 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 101150098622 gag gene Proteins 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 108010010147 glycylglutamine Proteins 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 101150106093 gpt gene Proteins 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229950007870 hexadimethrine bromide Drugs 0.000 description 1
- 108010040030 histidinoalanine Proteins 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 1
- VVIUBCNYACGLLV-UHFFFAOYSA-N hypotaurine Chemical compound [NH3+]CCS([O-])=O VVIUBCNYACGLLV-UHFFFAOYSA-N 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 101150109249 lacI gene Proteins 0.000 description 1
- 101150086595 lat gene Proteins 0.000 description 1
- DVCSNHXRZUVYAM-BQBZGAKWSA-N leu-asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O DVCSNHXRZUVYAM-BQBZGAKWSA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 208000004396 mastitis Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 210000001704 mesoblast Anatomy 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 210000002380 oogonia Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 108700004029 pol Genes Proteins 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000000799 primary oocyte Anatomy 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108010004914 prolylarginine Proteins 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 108010044292 tryptophyltyrosine Proteins 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000005570 vertical transmission Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003253 viricidal effect Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/101—Bovine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
WO 00/30437 PCTIUS99/26848 TRANSGENIC ANIMALS FIELD OF THE INVENTION The present invention relates to improved methods for the generation of transgenic 5 non-human animals. In particular, the present invention relates to the introduction of retroviral particles into the perivitelline space of gametes, zygotes and early stage embryos to allow the insertion of genetic material into the genome of the recipient gamete or embryo. BACKGROUND 0 The ability to alter the genetic make-up of animals, such as domesticated mammals such as cows, pigs and sheep, allows a number of commercial applications. These applications include the production of animals which express large quantities of exogenous proteins in an easily harvested form (e.g., expression into the milk), the production of animals which are resistant to infection by specific microorganisms and the production of animals 5 having enhanced growth rates or reproductive performance. Animals which contain exogenous DNA sequences in their genome are referred to as transgenic animals. The most widely used method for the production of transgenic animals is the microinjection of DNA into the pronuclei of fertilized embryos. This method is efficient for the production of transgenic mice but is much less efficient for the production of transgenic t0 animals using large mammals such as cows and sheep. For example, it has been reported that 1,000 to 2,000 bovine embryos at the pronuclear stage must be microinjected to produce a single transgenic cow at an estimated cost of more than $500,000 (Wall et al., J. Cell. Biochem. 49:113 [1992]). Furthermore, microinjection of pronuclei is more difficult when embryos from domestic livestock (e.g., cattle, sheep, pigs) is employed as the pronuclei are 5 often obscured by yolk material. While techniques for the visualization of the pronuclei are known (i.e., centrifugation of the embryo to sediment the yolk), the injection of pronuclei is an invasive technique which requires a high degree of operator skill. Alternative methods for the production include the infection of embryos with retroviruses or with retroviral vectors. Infection of both pre- and post-implantation mouse 0 embryos with either wild-type or recombinant retroviruses has been reported (Janenich, Proc. - 1 - WO 00/30437 PCTIUS99/26848 Natl. Acad. Sci. USA 73:1260 [1976]; Janenich et al., Cell 24:519 [1981]; Stuhlmann et al., Proc. Natl. Acad. Sci. USA 81:7151 [1984]; Jahner et al., Proc. Natl. Acad Sci. USA 82:6927 [1985]; Van der Putten et al., Proc. Natl. Acad Sci. USA 82:6148-6152 [1985]; Stewart et al., EMBO J. 6:383-388 [1987]). The resulting transgenic animals are typically mosaic for the 5 transgene since incorporation occurs only in a subset of cells which form the transgenic animal. The consequences of mosaic incorporation of retroviral sequences (i.e., the transgene) include lack of transmission of the transgene to progeny due to failure of the retrovirus to integrate into the germ line, difficulty in detecting the presence of viral sequences in the founder mice in those cases where the infected cell contributes to only a small part of the 10 fetus and difficulty in assessing the effect of the genes carried on the retrovirus. In addition to the production of mosaic founder animals, infection of embryos with retrovirus (which is typically performed using embryos at the 8 cell stage or later) often results in the production of founder animals containing multiple copies of the retroviral provirus at different positions in the genome which generally will segregate in the offspring. 15 Infection of early mouse embryos by co-culturing early embryos with cells producing retroviruses requires enzymatic treatment to remove the zona pellucida (Hogan et al., In Manipulating the Mouse Embryo: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, [1994], pp. 251-252). In contrast to mouse embryos, bovine embryos dissociate when removed from the zona pellucida. Therefore, 20 infection protocols which remove the zona pellucida cannot be employed for the production of transgenic cattle or other animals whose embryos dissociate or suffer a significant decrease in viability upon removal of the zona pellucida (e.g., ovine embryos). An alternative means for infecting embryos with retroviruses is the injection of virus or virus-producing cells into the blastocoele of mouse embryos (Jahner, D. et al., Nature 25 298:623 [1982]). As is the case for infection of eight cell stage embryos, most of the founders produced by injection into the blastocoele will be mosaic. The introduction of transgenes into the germline of mice has been reported using intrauterine retroviral infection of the midgestation mouse embryo (Jahner et al., supra [1982]). This technique suffers from WO 00/30437 PCTIUS99/26848 a low efficiency of generation of transgenic animals and in addition produces animals which are mosaic for the transgene. Infection of bovine and ovine embryos with retroviruses or retroviral vectors to create transgenic animals has been reported. These protocols involve the micro-injection of 5 retroviral particles or growth arrested (i.e., mitomycin C-treated) cells which shed retroviral particles into the perivitelline space of fertilized eggs or early embryos (PCT International Application WO 90/08832 [1990]; and Haskell and Bowen, Mol. Reprod. Dev., 40:386 [1995]). PCT International Application WO 90/08832 describes the injection of wild-type feline leukemia virus B into the perivitelline space of sheep embryos at the 2 to 8 cell stage. 10 Fetuses derived from injected embryos were shown to contain multiple sites of integration. The efficiency of producing transgenic sheep was low (efficiency is defined as the number of transgenics produced compared to the number of embryos manipulated); only 4.2% of the injected embryos were found to be transgenic. Haskell and Bowen (supra) describe the micro-injection of mitomycin C-treated cells 15 producing retrovirus into the perivitelline space of 1 to 4 cell bovine embryos. The use of virus-producing cells precludes the delivery of a controlled amount of viral particles per embryo. The resulting fetuses contained between 2 and 12 proviruses and were shown to be mosaic for proviral integration sites, the presence of provirus, or both. The efficiency of producing transgenic bovine embryos was low, only 7% of the injected embryos were found 20 to be transgenic. The art needs improved methods for the production of transgenic animals, particularly for the production of transgenics using large domestic livestock animals. The ideal method would be simple to perform and less invasive than pronuclear injection, efficient, would produce mosaic transgenic founder animals at a low frequency and would result in the 25 integration of a defined number of copies of the introduced sequences into the genome of the transgenic animal. SUMMARY OF THE INVENTION The present invention provides improved methods and compositions for the production 30 of transgenic non-human animals. In one embodiment, the present invention provides a - 3 - WO 00/30437 PCT/US99/26848 composition comprising a non-human unfertilized oocyte comprising a heterologous oligonucleotide (i.e., a heterologous polynucleotide) integrated into the genome of the oocyte. In a preferred embodiment the unfertilized oocyte is a pre-maturation oocyte. In another preferred embodiment the unfertilized oocyte is a pre-fertilization oocyte. The present 5 invention is not limited by the nature of the heterologous oligonucleotide contained within the genome of the oocyte. In a preferred embodiment, the heterologous oligonucleotide is the proviral form of a retroviral vector. The invention is not limited by the nature of the retroviral vector employed. Retroviral vectors containing a variety of genes may be employed. For example, the 10 retroviral vector may contain sequences encoding proteins which modify growth rate, size and/or carcass composition (e.g., bovine growth hormone or other growth hormones) or foreign proteins of commercial value that are expressed in, and harvested from, a particular tissue component (e.g., blood or milk). The retroviral vector may contain genes that confer disease resistance to viruses or other microorganisms, including DNA sequences that are 15 transcribed into RNA sequences that catalytically cleave specific RNAs (Le., ribozymes) such as viral RNAs and DNA sequences that are transcribed into anti-sense RNA of an essential gene of a pathogenic microorgapnsf The above protein-encoding genes and DNA sequences are examples of "genes of interest." The compositions of the present invention are not limited by the nature of the non 20 human animal employed to provide oocytes. In a preferred embodiment, the non-human animal is a mammal (e.g., cows, pigs, sheep, goats, rabbits, rats, mice, etc.). In a particularly preferred embodiment, the non-human animal is a cow. The present invention further provides a method for introducing a heterologous polynucleotide into the genome of a non-human unfertilized oocyte, comprising: a) 25 providing: i) a non-human unfertilized egg comprising an oocyte having a plasma membrane and a zona pellucida, the plasma membrane and the zona pellucida defining a perivitelline space; ii) an aqueous solution comprising a heterologous polynucleotide; and b) introducing the solution comprising the heterologous polynucleotide into the perivitelline space under conditions which permit the introduction of the heterologous polynucleotide into the genome -4 - WO 00/30437 PCT/US99/26848 of the oocyte. The method of the present invention is not limited by the nature of the heterologous polynucleotide employed. In a preferred embodiment, the heterologous polynucleotide encodes a protein of interest. In a particularly preferred embodiment, the heterologous polynucleotide is contained within genome of a recombinant retrovirus. 5 The method of the present invention may be practiced using unfertilized eggs comprising a pre-maturation oocyte. Alternatively, the method of the present invention may employ pre-fertilization oocytes as the unfertilized egg. When a recombinant retrovirus is employed infectious retroviral particles comprising the heterologous polynucleotide are preferentially employed. The method of the present 10 invention is not limited by the nature of the infectious retrovirus employed to deliver nucleic acid sequences to an oocyte. Any retrovirus which is capable of infecting the species of oocyte to be injected may be employed. In a preferred embodiment, the infectious retrovirus comprises a heterologous membrane-associated protein. In a preferred embodiment, the heterologous membrane-associated protein is a G glycoprotein selected from a virus within the 15 family Rhabdoviridae. In another preferred embodiment, the heterologous membrane associated protein is selected from the group consisting of the G glycoprotein of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus and Mokola virus. In a particularly preferred embodiment, the heterologous membrane-associated protem is the G glycoprotein of vesicular stomatitis virus. 20 The method of the present invention is not limited by the nature of the non-human animal employed to provide oocytes. In a preferred embodiment, the non-human animal is a mammal (e.g., cows, pigs, sheep, goats, rabbits, rats, mice, etc.). In a particularly preferred embodiment, the non-human animal is a cow. The present invention further provides a method for the production of a transgenic 25 non-human animal comprising: a) providing: i) an unfertilized egg. comprising an oocyte having a plasma membrane and a zona pellucida, the plasma membrane and the zona pellucida defining a perivitelline space; ii) an aqueous solution containing infectious retrovirus; b) introducing the solution containing infectious retrovirus into the perivitelline space under conditions which permit the infection of the oocyte; and c) contacting the infected 30 oocyte with sperm under conditions which permit the fertilization of the infected oocyte to - 5 - WO 00/30437 PCT/US99/2684 8 produce an embryo. In a preferred embodiment, the method of the present invention further comprises, following the fertilization of the infected oocyte, the step of transferring the embryo into a hormonally synchronized non-human recipient animal (i.e., a female animal hormonally synchronized to stimulate early pregnancy). In another preferred embodiment, the 5 method comprises the step of allowing the transferred embryo to develop to term. In still another referred embodiment, at least one transgenic offspring is identified from the offspring allowed to develop to term. The method of the present invention may be practiced using unfertilized eggs comprising a pre-maturation oocyte. Alteratively, the method of the present invention may 10 employ pre-fertilization oocytes as the unfertilized egg. When pre-maturation oocytes are employed in the method of the present invention, the method may further comprise, following the introduction of the solution containing infectious retrovirus into the pre-maturation oocyte, the further step of culturing the infected pre maturation oocyte under conditions which permit the maturation of the pre-maturation oocyte. 15 The art is well aware of culture conditions which permit the in vitro maturation of pre maturation oocytes from a variety of mammalian species. The method of the present invention is not limited by the nature of the infectious retrovirus employed to deliver nucleic acid sequences to an oocyte. Any retrovirus which is capable of infecting the species of oocyte to be injected may be employed. In a preferred 20 embodiment, the infectious retrovirus comprises a heterologous membrane-associated protein. In a preferred embodiment, the heterologous membrane-associated protein is a G glycoprotein selected from a virus within the family Rhabdoviridae. In another preferred embodiment, the heterologous membrane-associated protein is selected from the group consisting of the G glycoprotein of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp 25 virus and Mokola virus. In a particularly preferred embodiment, the heterologous membrane associated protein is the G glycoprotein of vesicular stomatitis virus. The method of the present invention is not limited by the nature of the non-human animal employed to provide oocytes. In a preferred embodiment, the non-human animal is a mammal (e.g., cows, pigs, sheep, goats, rabbits, rats, mice, etc.). In a particularly preferred 30 embodiment, the non-human animal is a bovine. - 6- WO 00/30437 PCTIUS99/26 8 4 8 The present invention further provides compositions comprising a stably maintained recombinant manmnalian zygote, wherein the zygote comprises a polynucleotide containing the proviral form of a retroviral vector integrated into the genome of the zygote. In particularly preferred embodiments, the mammalian zygote is a bovine zygote, while in other preferred 5 embodiments, the zygote is any mammalian zygote. Indeed, it is not intended that the present invention be limited to any particular animal species. In still other embodiments, the proviral form of the retroviral vector encodes a protein of interest. in yet further preferred for s Moloney murine leukemia virus embodiments, the recombinant retroviral vector comprises one mie leukeiarus LTR. However, it is not intended that the present invention be limited to any particular 10 retroviral LTR Indeed, it is contemplated that other retroviral LTRs, including, but not limited, to mouse mammary tumor virus LTR, will find use in the present invention. The present invention also provides methods for introducing a polynucleotide contained within the genome of a recombinant retrovirus into the genome of a mammalian zygote, comprsng: a) providing: i) a mammalian zygote having a plasma membrane and a 15 zona. pellucida wherein the plasma membrane and zona pellucida define a perivitelline space; 1) an aqueous solution comprising a polnucleotide contained within the genome of a recombinant retrovirus; and b) introducing the solution comprising the polynucleotide contained within the genome Of a recombinant retrovirus into the perivitelline space, under conditions which permit the introduction of the polynucleotide contained within the genome 20 of the recombinant retrovirus into the genome of the zygote, such that the polynucleotide is stable maintained, In particularly preferred embodiments of the method, the efficiency of the introduction of the polynucleotide into the genome of the zygote is at least twenty percent. In still other embodiments, the efficiency ranges from approximately twenty percent to one hundred percent. In yet other preferred embodiments, the polynucleotide contained within the 25 genome of the recombinant retrovirus encodes a protein of interest. In further embodiments, the method further comprises the step of transferring the zygote into a mammalian female recipient that is hormonally synchronized to simulate early pregnancy, thereby giving a transferred embryo. In other particularly preferred embodiments, the method further comprises the step of allowing the transferred embryo to develop to term. In further 30 embodiments, the method comprises the additional step of identifying at least one transgenic 30 embodiments,~~- th ehdcmpie WO 00/30437 PCTUS99/26848 offspring, In other particularly preferred embodiments, the present invention provides transgenic animals produced according to the above methods. In particularly preferred embodiments, the mammalian zygote is a bovine zygote, while in other preferred embodiments, the zygote is any other mammalian zygote. Indeed, is not intended that the 5 present invention be limited to any particular animal species. In still other embodiments of the above methods and transgenic animals, the recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat. However, it is not intended that the present invention be limited to any particular retroviral LTR Indeed, it is contemplated that other retroviral LTRs, including, but not limited to 10 mouse mammary tumor virus LTR,will find use in the present invention. In particularly preferred embodiments, the protein of interest is expressed by the transgenic offspring. In some embodiments, the protein of interest is expressed in at least one body fluid of the transgenic offspring. In some particularly preferred embodiments, the expression of the protein of interest is preferentially mammary-specific expression. 15 In further embodiments of the above methods and transgenic animals, the recombinant retrovrus comprises a heterologous membrane-associated protein. In some embodiments, the heterologous membrane-associated protein is a G glycoprotein selected from a virus within the family Rhabdoviridae. In other embodiments, the G glycoprotein is selected from the group comprising the G glycoprotein of vesicular stomatitis virus, Piry virus, Chandipura virus, 20 Spring viremia of carp virus, Rabies virus, and Mokola virus. The present invention also provides methods for producing transgenic non-human animals, wherein the genome of the transgenic non-human animal comprises a polynucleotide encoding a recombinant retrovirus and at least one protein of interest, comprising the steps of: a) providing: i) a non-human mammalian zygote having a plasma membrane and a zona 25 pellucida, wherein the plasma membrane and the zona pellucida define a perivitelline space; ii) an aqueous solution comprising a polynucleotide contained within the genome of a recombinant retrovirus; b) introducing the solution comprising the polynucleotide contained within the genome of a recombinant retrovirus into the perivitelline space under conditions which permit the introduction of the polynucleotide contained within the genome of a 30 recombinant retrovirus into the genome of the zygote, such that the polynucleotide is stably - 8 - WO 00/30437 PCT/US99/26848 maintained in a recombinant zygote; c) transferring the recombinant zygote into a non-human female mammalian recipient that is hormonally synchronized to simulate early pregnancy, thereby giving a transferred embryo; d) allowing the transferred embryo to develop to term to produce a transgenic animal. In some particularly embodiments, at least one protein of 5 interest is expressed by the transgenic animal. in other preferred embodiments, the recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat. However, it is not intended that the present invention be limited to any particular retroviral LTR. indeed, it is contemplated that other retroviral LTRs, including, but not limited to mouse manmnary tumor virus LTR, will find use in the present invention. 10 in still other embodiments of the above methods, the efficiency of the introduction of the polynucleotide is at least twenty percent In still other embodiments, the efficiency ranges from approximately twenty percent to one hundred percent. In further particularly preferred embodiments, the expression of the polynucleotide is preferentially mammary-specific expression. In other embodiments, the methods comprise the further step of mating the 15 tansgenic animal to a oonnt.lsgenc animal under conditions such that transgenic offspring are produced. In particularly preferred embodiments, the transgenic offspring express the polynucleotide. In other particularly preferred embodiments, the expression of the polynucleotide is mammary-specific expression. In yet other particularly preferred embodiments, the mammalian zygote is a bovine zygote, while in other preferred 20 embodiments, the zygote is any other mammalian zygote. Indeed, is not intended that the present invention be limited to any particular animal species. The present invention also provides methods for expressing a protein of interest, wherein the protein of interest is encoded by a polynucleotide contained within the genome of a recombinant retrovirus, comprising the steps of: a) providing: i) a non-human mammalian 25 zygote having a plasma membrane and a zona pellucida, wherein the plasma membrane and the zona pellucida define a perivitelline space; ii) an aqueous solution comprising a polynucleotide encoding a protein of interest contained within the genome of a recombinant retrovirus; and b) introducing the solution comprising the polynucleotide encoding a protein of interest contained within the genome of a recombinant retrovirus into the perivitelline space, 30 under conditions which permit the introduction of the polynucleotide contained within the -9 - WO 00/30437 PCT/US99/26848 genome of a recombinant retrovirus into the genome of the zygote, such that the polynucleotide is stably maintained; and c) allowing the zygote to develop into viable non human animal, under conditions such that the protein of interest is expressed by the non human animal. 5 In some preferred embodiments of the above methods, the recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat. However, it is not intended that the present invention be limited to any particular retroviral LTR. Indeed, it is contemplated that other retroviral LTRs, including, but not limited, to mouse mammary tumor virus LTR, will find use in the present invention. In yet other preferred embodiments, 10 introduction of the polynucleotide into the genome of the zygote is at least twenty percent. In still other embodiments, the efficiency ranges from approximately twenty percent to one hundred percent. In yet other embodiments, the polynucleotide contained within the genome of a recombinant retrovirus encodes a viral protein. In other embodiments, viral protein is hepatitis B surface antigen. In still other embodiments, the present invention provides protein 15 produced according to the above methods. In yet other embodiments, the method further comprises the step of harvesting the expressed protein of interest in further embodiments, the expressed protein is expressed in the body fluids of the non-human animal. In particularly preferred embodiments, body fluids are selected from the group consisting of blood, milk, semen, and urine. In particularly preferred embodiments, the mammalian zygote is a bovine 20 zygote, while in other preferred embodiments, the zygote is any mammalian zygote. Indeed, it is not intended that the present invention be limited to any particular animal species. The present invention also provides methods for expressing a protein of interest wherein the protein of interest is encoded by a polynucleotide contained within the genome of a recombinant retrovirus, and the polynucleotide is integrated into the genome of a 25 mammalian unfertilized oocyte, comprising the steps of: a) providing: i) an unfertilized mammalian egg comprising an oocyte having a plasma membrane and a zona pellucida, wherein the plasma membrane and the zona pellucida define a perivitelline space; ii) an aqueous solution containing recombinant retrovirus, wherein the recombinant retrovirus comprises a polynucleotide encoding a protein of interest; b) introducing the solution 30 containing recombinant retrovirus into the perivitelline space under conditions which permit - 10 - WO 00/30437 PCTIUS99/26848 the infection of the oocyte to provide an infected oocyte; c) contacting the infected oocyte with sperm under conditions which permit the fertilization of the infected oocyte to produce an embryo; d) transferring the embryo into a hormonally synchronized mammalian recipient animal; e) allowing the embryo to develop into at least one viable transgenic mammalian 5 animal, under conditions such that the protein of interest is expressed by the transgenic mammalian animal. In some preferred embodiments, the unfertilized oocyte is a pre-maturation oocyte. In other embodiments, following the introduction of the solution containing infectious retrovirus into the pre-maturation oocyte, the method comprises the further step of culturing the infected 10 pre-maturation oocyte under conditions which permit the maturation of the pre-maturation oocyte. In other preferred embodiments, the unfertilized oocyte is a pre-fertilization oocyte. In still other preferred embodiments, the method further comprises the step of identifying at least one transgenic offspring. In particularly preferred embodiments, the mammal is a bovine. However, it is not intended that the present invention be limited to any 15 particular animal species. In further preferred embodiments, the recombinant retrovirus comprises Moloney murine leukemia virus long terminal repea However, it is not intended that the present invention be limited to any particular retroviral LTR. Indeed, it is contemplated that other retroviral LTRs, including, but not limited, to mouse mammary tumor virus LTR, will find 20 use in the present invention. In yet other preferred embodiments, the expression of the protein of interest is preferentially mammary specific expression. In some particularly preferred embodiments of the method, the introduction of the polynucleotide into the genome of the infected oocyte, is greater than twenty percent. In still other embodiments, the efficiency ranges from approximately twenty percent to one hundred percent. In some 25 preferred embodiments, the polynucleotide contained within the genome of a recombinant retrovirus encodes a viral protein. In some particularly preferred embodiments the viral protein is hepatitis B surface antigen. In alternative particularly preferred embodiments, the expressed protein is expressed in the body fluids of the mammalian animal. In some particularly preferred embodiments, the body fluids are selected from the group consisting of 30 blood, milk, semen, and urine. In still other embodiments, the methods further comprise the - 11 - WO 00/30437 PCT/US99/26848 step of f) harvesting the expressed protein of interest. The present invention also provides a protein of interest expressed using the above methods. In yet other embodiments of the methods, the recombinant retrovirus comprises a heterologous membrane-associated protein. In some embodiments, the heterologous 5 membrane-associated protein is a G glycoprotein selected from a virus within the family Rhabdoviridae. In yet other embodiments, the G glycoprotein is selected from the group comprising the G glycoprotein of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus and Mokola virus. 10 DESCRIPTION OF THE DRAWINGS Figure 1 provides a schematic showing the production of pre-maturation oocytes, pre fertilization oocytes and fertilized oocytes (zygotes). Figure 2 shows an autoradiogram of a Southern blot of genomic DNA isolated from the skin (A) and blood (B) of calves derived from pre-fertilization oocytes and zygotes which 15 were injected with pseudotyped LSRNL retrovirus. Figure 3 shows an ethidium bromide stained agarose gel containing electrophoresed PCR products which were amplified using neo gene primers (A) or H.BsAg primers (B) from the blood and skin of calves derived from pre-fertilization oocytes and zygotes injected with pseudotyped LSRNL retrovirus. 20 Figure 4 shows an ethidium bromide stained agarose gel containing electrophoresed PCR products amplified using the neo gene primers (A) or HBsAg primers (B) from skin samples obtained from twin calves, who were offspring of a transgenic bull. Definitions 25 To facilitate understanding of the invention, a number of terms are defined below. As used herein, the term "egg," when used in reference to a mammalian egg, means an oocyte surrounded by a zona pellucida and a mass of cumulus cells (follicle cells) with their associated proteoglycan. The term "egg" is used in reference to eggs recovered from antral follicles in an ovary (these eggs comprise pre-maturation oocytes) as well as to eggs which 30 have been released from an antral follicle (a ruptured follicle). - 12 - WO 00/30437 PCT/US99/26848 As used herein, the term "oocyte" refers to a female gamete cell and includes primary oocytes, secondary oocytes and mature, unfertilized ovum. An oocyte is a large cell having a large nucleus (i.e., the germinal vesicle) surrounded by ooplasm. The ooplasm contains non nuclear cytoplasmic contents including mRNA, ribosomes, mitochondria, yolk proteins, etc. 5 The membrane of the oocyte is referred to herein as the "plasma membrane." The term "pre-maturation oocyte," as used herein refers to a female gamete cell following the oogonia stage (i.e., mitotic proliferation has occurred) that is isolated from an ovary (e.g., by aspiration) but which has not been exposed to maturation medium in vitro. Those of skill in the art know that the process of aspiration causes oocytes to begin the 10 maturation process but that completion of the maturation process (i.e., formation of a secondary oocyte which has extruded the first polar body) in vitro requires the exposure of the aspirated oocytes to maturation medium. Pre-maturation oocytes will generally be arrested at the first anaphase of meiosis. The term "pre-fertilization oocyte" as used herein, refers to a female gamete cell such 15 as a pre-maturation oocyte following exposure to maturation medium in vitro but prior to exposure to sperm (i.e., matured but not fertilized). The pre-fertilization oocyte has completed the first meiotic division, has released the first polar body and lacks a nuclear membrane (the nuclear membrane will not reform until fertilization occurs; after fertilization, the second meiotic division occurs along with the extrusion of the second polar body and the 20 formation of the male and female pronuclei). Pre-fertilization oocytes may also be referred to as matured oocytes at metaphase II of the second meiosis. The terms "unfertilized egg" or "unfertilized oocyte" as used herein, refers to any female gamete cell which has not been fertilized and these terms encompass both pre maturation and pre-fertilization oocytes. 25 The term "zygote" as used herein, refers to a fertilized oocyte that has not yet undergone the first cleavage step in the development of an embryo (i.e., it is at the single-cell stage). The term "perivitelline space" refers to the space located between the zona pellucida and the plasma membrane of a mammalian egg or oocyte. - 13 - WO 00/30437 PCT/US99/26848 As used herein, the term "trans" is used in reference to the positioning of genes of interest on the different strands of nucleic acid (e.g., alleles present on the two chromosomes of a chromosomal pair). The term "trans-acting" is used in reference to the controlling effect of a regulatory gene on a gene present on a different chromosome. In contrast to promoters, 5 repressors are not limited in their binding to the DNA molecule that includes their genetic information. Therefore, repressors are sometimes referred to as trans-acting control elements. The term "trans-activation" as used herein refers to the activation of gene sequences by factors encoded by a regulatory gene which is not necessarily contiguous with the gene sequences which it binds to and activates. 10 As used herein, the term "cis" is used in reference to the presence of genes on the same chromosome. The term "cis-acting" is used in reference to the controlling effect of a regulatory gene on a gene present on the same chromosome. For example, promoters, which affect the synthesis of downstream mRNA are cis-acting control elements. As used herein, the term "retrovirus" is used in reference to RNA viruses which utilize 15 reverse transcriptase during their replication cycle (i.e., retroviruses are incapable of replication; rather, these are useful RNA sequences that are packaged with at least two enzymes that are required for the insertion of the RNA sequences into the host cell genome). The retroviral genomic RNA is converted into double-stranded DNA by reverse transcriptase. This double-stranded DNA form of the virus integrates into the chromosome of the infected 20 cell and is referred to as a "provirus." In preferred embodiments of the present invention, the term "proviral" is used in reference to constructs that are similar to "retrotransposons." These are integrated genes that are bracketed by LTRs in the host cell genome. However, in preferred embodiments, the proviral constructs cannot replicate. In contrast, in wild-type viruses, the provirus serves as a template for RNA polymerase II and directs the expression of 25 RNA molecules which encode the structural proteins and enzymes needed to produce new viral particles. At each end of the provirus are structures called "long terminal repeats" or "LTRs". The LTR contains numerous regulatory signals including transcriptional control elements, polyadenylation signals and sequences needed for replication and integration of the viral genome. The viral LTR is divided into three regions called U3, R and U5. - 14 - WO 00/30437 PCT/US99/26848 The U3 region contains the enhancer and promoter elements. The U5 region contains the polyadenylation signals. The R (repeat) region separates the U3 and U5 regions and transcribed sequences of the R region appear at both the 5' and 3' ends of the viral RNA As used herein, the term "provirus" is used in reference to a virus that is integrated 5 into a host cell chromosome (or genome), and is transmitted from one cell generation to the next, without causing lysis or destruction of the host cell. The term is also used in reference to a duplex DNA sequence present in an eukaryotic chromosome, which corresponds to the genome of an RNA retrovirus. As used herein, the term "endogenous virus" is used in reference to an inactive virus 10 which is integrated into the chromosome of its host cell (often in multiple copies), and can thereby exhibit vertical transmission. Endogenous viruses can spontaneously express themselves and may result in malignancies. As used herein, the terms "amphotrope" and "amphotropic" are used in reference to endogenous viruses that readily multiply in cells of the species in which they were induced, as 15 well as cells of other species. As used herein, the term "ecotrope" and "ecotropic" are used in reference -to endogenous viruses that multiply readily in cells of the species in which they were induced, but cannot multiply in cells of other species. As used herein, the term "xenotrope" and "xenotropic" are used in reference to 20 endogenous viruses that cannot infect cells of the species in which they were induced, but can infect and multiply in cells of other species. The term "infectious retrovirus" refers to a retroviral particle which is capable of entering a cell (i.e., the particle contains a membrane-associated protein such as an envelope protein or a viral G glycoprotein which can bind to the host cell surface and facilitate entry of 25 the viral particle into the cytoplasm of the host cell) and integrating the retroviral genome (as a double-stranded provirus) into the genome of the host cell. As used herein, the term "retroviral vector" is used in reference to retroviruses which have been modified so as to serve as vectors for introduction of nucleic acid into cells. As used herein, the term "vector" is used in reference to nucleic acid molecules that 30 transfer DNA segment(s) from one cell to another. Retroviral vectors transfer RNA, which is - 15 - WO 00/30437 PCTIUS99/26848 then reverse transcribed into DNA. The term "vehicle" is sometimes used interchangeably with "vector." The term "expression vector" as used herein refers to a recombinant molecule containing a desired coding sequence and appropriate nucleic acid sequences necessary for the 5 expression of the operably linked coding sequence in a particular host organism. Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals. The terms "in operable combination," "in operable order," and "operably linked," as 10 used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced. As used herein, the term "protein of interest" refers to any protein for which 15 expression is desired. For example, the term encompasses any recombinant forms of a protein that is desired. The term "gene of interest" refers to any gene that is desired. In particularly preferred embodiments, the gene of interest encodes at least a portion of a protein of interest. The term "genetic cassette" as used herein refers to a fragment or segment of nucleic acid containing a particular grouping of genetic elements. The cassette can be removed and 20 inserted into a vector or plasmid as a single unit. As used herein, the term "long terminal repeat (LTR)" is used in reference to domains of base pairs located at the ends of retroviral DNA's. These LTRs may be several hundred base pairs in length. LTR's often provide functions fundamental to the expression of most eukaryotic genes (e.g., promotion, initiation and polyadenylation of transcripts). 25 Retroviral vectors can be used to transfer genes efficiently into host cells by exploiting the viral infectious process. Foreign or heterologous genes cloned (i.e., inserted using molecular biological techniques) into the retroviral genome can be delivered efficiently to host cells which are susceptible to infection by the retrovirus. Through well known genetic manipulations, the replicative capacity of the retroviral genome can be destroyed. The 30 resulting replication-defective vectors can be used to introduce new genetic material to a cell - 16- WO 00/30437 PCT/US99/26848 but they are unable to replicate. A helper virus or packaging cell line can be used to permit vector particle assembly and egress from the cell. The terms "vector particle" or "retroviral particle" refer to viral-like particles that are capable of introducing nucleic acid into a cell through a viral-like entry mechanism. 5 The host range of a retroviral vector (i.e., the range of cells that these vectors can infect) can be altered by including an envelope protein from another closely related virus. As used herein, the term "packaging signal" or "packaging sequence" refers to non coding sequences located within the retroviral genome which are required for insertion of the viral RNA into the viral capsid or particle. Several retroviral vectors use the minimal 10 packaging signal (also referred to as the psi sequence) needed for encapsidation of the viral genome. This minimal packaging signal encompasses bases 212 to 563 of the Mo-MuLV genome (Mann et al., Cell 33:153 [1983]). As used herein, the term "extended packaging signal" or "extended packaging sequence" refers to the use of sequences around the psi sequence with further extension into 15 the gag gene. In Mo-MuLV, this extended packaging sequence corresponds to the region encompassing base 1039 to base 1906 (Akagi et al., Gene 106:255 [1991]). The frequently used M-MuLV vector, pLNL6 (Bender et al., J. Virol., 61:1639 [1987]), contains the entire 5' region of the genome including an extended packaging signal from bases 206 to 1039 of the Moloney murine sarcoma virus genome (numbering from Supplements and Appendices in 20 RNA Tumor Viruses, 2nd Ed. [1985) pp. 986-988). The inclusion of these additional packaging sequences increases the efficiency of insertion of vector RNA into viral particles. As used herein, the term "packaging cell lines" is used in reference to cell lines that express viral structural proteins (e.g., gag, pol and env), but do not contain a packaging signal. When retroviral vector DNA is transfected into the cells, it becomes integrated into the 25 chromosomal DNA and is transcribed, thereby producing full-length retroviral vector RNA that has a psi' sequence. Under these conditions, only the vector RNA is packaged into the viral capsid structures These complete, yet replication-defective, virus particles can then be used to deliver the retroviral vector to target cells with relatively high efficiency. - 17 - WO 00/30437 PCT/US99/26848 The term "transfection" as used herein refers to the introduction of foreign DNA into eukaryotic cells. Transfection may be accomplished by a variety of means known in the art including calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, 5 protoplast fusion, retroviral infection, and biolistics. In contrast, as used herein, the term "transduction" refers to the delivery of a gene(s) using a retroviral vector by means of infection rather than by transfection. The term "membrane-associated protein" refers to a protein (e.g., a viral envelope glycoprotein or the G proteins of viruses in the Rhabdoviridae family such as VSV, Piry, 10 Chandipura and Mokola) which are associated with the membrane surrounding a viral particle; these membrane-associated proteins mediate the entry of the viral particle into the host cell. The membrane associated protein may bind to specific cell surface protein receptors, as is the case for retroviral envelope proteins or the membrane-associated protein may interact with a phospholipid component of the plasma membrane of the host cell, as is the case for the G 15 proteins derived from members of the Rhabdoviridae family. The term "heterologous membrane-associated protein" refers to a membrane-associated protein which is derived from a virus which is not a member of the same viral class or family as that from which the nucleocapsid protein of the vector particle is derived. "Viral class or family" refers to the taxonomic rank of class or family, as assigned by the International 20 Committee on Taxonomy of Viruses. The term "Rhabdoviridae" refers to a family of enveloped RNA viruses that infect animals, including humans, and plants. The Rhabdoviridae family encompasses the genus Vesiculovirus which includes vesicular stomatitis virus (VSV), Cocal virus, Piry virus, Chandipura virus, and Spring viremia of carp virus (sequences encoding the Spring viremia of 25 carp virus are available under GenBank accession number U18101). The G proteins of viruses in the Vesiculovirus genera are virally-encoded integral membrane proteins that form externally projecting homotrimeric spike glycoproteins complexes that are required for receptor binding and membrane fusion. The G proteins of viruses in the Vesiculovirus genera have a covalently bound palmitic acid (C, 6 ) moiety. The amino acid sequences of the G 30 proteins from the Vesiculoviruses are fairly well conserved. For example, the Piry virus G - 18 - WO 00/30437 PCT/US99/26848 protein share about 38% identity and about 55% similarity with the VSV G proteins (several strains of VSV are known, e.g., Indiana, New Jersey, Orsay, San Juan, etc., and their G proteins are highly homologous). The Chandipura virus G protein and the VSV G proteins share about 37% identity and 52% similarity. Given the high degree of conservation (amino 5 acid sequence) and the related functional characteristics (e.g., binding of the virus to the host cell and fusion of membranes, including syncytia formation) of the G proteins of the Vesiculoviruses, the G proteins from non-VSV Vesiculoviruses may be used in place of the VSV G protein for the pseudotyping of viral particles. The G proteins of the Lyssa viruses (another genera within the Rhabdoviridae family) also share a fair degree of conservation with 10 the VSV G proteins and function in a similar manner (e.g., mediate fusion of membranes) and therefore may be used in place of the VSV G protein for the pseudotyping of viral particles. The Lyssa viruses include the Mokola virus and the Rabies viruses (several strains of Rabies virus are known and their G proteins have been cloned and sequenced). The Mokola virus G protein shares stretches of homology (particularly over the extracellular and transmembrane 15 domains) with the VSV G proteins which show about 31% identity and 48% similarity with the VSV G proteins. Preferred G proteins share at least 25% identity, preferably at least 30% identity and most preferably at least 35% identity with the VSV G proteins. The VSV G protein from which New Jersey strain (the sequence of this G protein is provided in GenBank accession numbers M27165 and M21557) is employed as the reference VSV G protein. 20 The term "conditions which permit the maturation of a pre-maturation oocyte" refers to conditions of in vitro cell culture which permit the maturation of a pre-maturation oocyte to a mature ovum (e.g., a pre-fertilization oocyte). These culture conditions permit and induce the events which are associated with maturation of the pre-maturation oocyte including stimulation of the first and second meiotic divisions. In vitro culture conditions which permit 25 the maturation of pre-maturation oocytes from a variety of mammalian species (e.g., cattle, hamster, pigs and goats) are well know to the art (See e.g., Parrish et al., Theriogenol., 24:537 [1985]; Rosenkrans and First, J. Anim. Sci., 72:434 [1994]; Bavister and Yanagimachi, Biol. Reprod., 16:228 [1977); Bavister et al., Biol. Reprod., 28:235 [1983]; Leibfried and - 19 - WO 00/30437 PCT/US99/26848 Bavister, J. Reprod. Fert., 66:87 [1982]; Keskintepe et al., Zygote 2:97 [19941; Funahashi et al., . Reprod. Fert., 101:159 [1994]; and Funahashi et al., Biol. Reprod 50:1072 [1994]. As used herein, the term "remedial gene" refers to a gene whose expression is desired in a cell to correct an error in cellular metabolism, to inactivate a pathogen or to kill a 5 cancerous cell. As used herein, the term "selectable marker" refers to the use of a gene which encodes an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed. Selectable markers may be "dominant"; a dominant selectable marker encodes an enzymatic activity which can be detected in any eukaryotic cell 10 line. Examples of dominant selectable markers include the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the neo gene) which confers resistance to the drug G418 in mammalian cells, the bacterial hygromycin G phosphotransferase (hyg) gene which confers resistance to the antibiotic hygromycin and the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the gpt gene) which confers the ability to 15 grow in the presence of mycophenolic acid. Other selectable markers are not dominant in that there use must be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of non-dominant selectable markers include the thymidine kinase (tk) gene which is used in conjunction with tk cell lines, the CAD gene which is used in conjunction with CAD deficient cells and the mammalian hypoxanthine-guanine phosphoribosyl transferase (hprt) 20 gene which is used in conjunction with hpr- cell lines. A review of the use of selectable markers in mammalian cell lines is provided in Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989) pp.1 6
.
9 -1 6 .15. As used herein, the terms "complementary" or "complementarity" are used in reference 25 to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence "A-G-T," is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic - 20 - WO 00/30437 PCT/US99/26848 acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods which depend upon binding between nucleic acids. As used herein, the term "hybridization" is used in reference to the pairing of 5 complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids. As used herein, the term "T." is used in reference to the "melting temperature." The 10 melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the T. of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the T. value may be calculated by the equation: T. = 81.5 + 0.41(% G + C), when a nucleic acid is in aqueous solution at 1 M NaCl (See e.g., Anderson and Young, Quantitative 15 Filter Hybridization, in Nucleic Acid Hybridization (1985). Other- references include more sophisticated computations which take structural as well as sequence characteristics into account for the calculation of T, As used herein the term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, 20 under which nucleic acid hybridizations are conducted. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "weak" or "low" stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less. 25 As used herein, the term "amplifiable nucleic acid" is used in reference to nucleic acids which may be amplified by any amplification method. It is contemplated that "amplifiable nucleic acid" will usually comprise "sample template." As used herein, the term "sample template" refers to nucleic acid originating from a sample which is analyzed for the presence of "target" (defined below). In contrast, 30 "background template" is used in reference to nucleic acid other than sample template which - 21 - WO 00/30437 PCT/US99/26848 may or may not be present in a sample. Background template is most often inadvertent. It may be the result of carryover, or it may be due to the presence of nucleic acid contaminants sought to be purified away from the sample. For example, nucleic acids from organisms other than those to be detected may be present as background in a test sample. 5 As used herein, the term "primer" refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced, (i.e., in the presence of nucleotides and an inducing agent such as DNA polymerase and at a 10 suitable temperature and pH). The primer is preferably single stranded for maximum efficiency in amplification, but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact 15 lengths of the primers will depend on many factors, including temperature, source of primer and the use of the method. As used herein, the term "probe" refers to an oligonucleotide (ie., a sequence of nucleotides), whether occurrig naually as in a purified restriction digest or produced synthetically, which is capable of hybridizing to another oligonucleotide of interest. Probes 20 are useful in the detection, identification and isolation of particular gene sequences. It is contemplated that any probe used in the present invention will be labelled with any "reporter molecule," so that is detectable in any detection system, including, but not limited to enzyme (e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. It is further contemplated that the oligonucleotide of interest (i.e., to be 25 detected) will be labelled with a reporter molecule. It is also contemplated that both the probe and oligonucleotide of interest will be labelled. It is not intended that the present invention be limited to any particular detection system or label. As used herein, the term "target" refers to the region of nucleic acid bounded by the primers used for polymerase chain reaction. Thus, the "target" is sought to be sorted out from - 22 - WO 00/30437 PCTIUS99/26848 other nucleic acid sequences. A "segment" is defined as a region of nucleic acid within the target sequence. As used herein, the term "polymerase chain reaction" ("PCR") refers to the methods of U.S. Patent Nos. 4,683,195, 4,683,202, and 4,965,188, all of which are hereby incorporated 5 by reference, directed to methods for increasing the concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are 10 complementary to their respective strands of the double stranded target sequence. To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing and polymerase extension can be repeated many times (i.e., denaturation, 15 annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the "polymerase 20 chain reaction" (hereinafter "PCR"). Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are the to be "PCR amplified". With PCR, it is possible to amplify a single copy of a specific target sequence in genomic DNA to a level detectable by several different methodologies (e.g., hybridization 25 with a labeled probe; incorporation of biotinylated primers followed by avidin-enzyme conjugate detection; incorporation of "P-labeled deoxynucleotide triphosphates, such as dCTP or dATP, into the amplified segment). In addition to genomic DNA, any oligonucleotide sequence can be amplified with the appropriate set of primer molecules. In particular, the amplified segments created by the PCR process itself are, themselves, efficient templates for 30 subsequent PCR amplifications. - 23 - WO 00/30437 PCT/US99/26848 -24- WO 00/30437 PCTIUS99/26848 As used herein, the term "nested primers" refers to primers that anneal to the target sequence in an area that is inside the annealing boundaries used to start PCR (Mullis, et al., Cold Spring Harbor Symposia, Vol. 11, pp.
2 6 3
-
2 73 [1986]). Because the nested primers anneal to the target inside the annealing boundaries of the starting primers, the predominant 5 PCR-amplified product of the starting primers is necessarily a longer sequence, than that defined by the annealing boundaries of the nested primers. The PCR-amplified product of the nested primers is an amplified segment of the target sequence that cannot, therefore, anneal with the starting primers. Advantages to the use of nested primers include the large degree of specificity, as well as the fact that a smaller sample portion may be used and yet obtain 10 specific and efficient amplification. As used herein, the term "amplification reagents" refers to those reagents (deoxyribonucleoside triphosphates, buffer, etc.), needed for amplification except for primers, nucleic acid template and the amplification enzyme. Typically, amplification reagents along with other reaction components are placed and contained in a reaction vessel (test tube, 15 microwell, etc.). As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence. As used herein, the term "recombinant DNA molecule" as used herein refers to a DNA 20 molecule which is comprised of segments of DNA joined together by means of molecular biological techniques. DNA molecules are said to have "5' ends" and "3' ends" because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a 25 phosphodiester linkage. Therefore, an end of an oligonucleotides referred to as the "5' end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3' end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5' and 3' ends. In either a linear or circular DNA 30 molecule, discrete elements are referred to as being "upstream" or 5' of the "downstream" or - 25 - WO 00/30437 PCT/US99/26848 3' elements. This terminology reflects the fact that transcription proceeds in a 5' to 3' fashion along the DNA strand. The promoter and enhancer elements which direct transcription of a linked gene are generally located 5' or upstream of the coding region However, enhancer elements can exert their effect even when located 3' of the promoter 5 element and the coding region. Transcription termination and polyadenylation signals are located 3' or downstream of the coding region. As used herein, the term "an oligonucleotide having a nucleotide sequence encoding a gene" means a DNA sequence comprising the coding region of a gene or in other words the DNA sequence which encodes a gene product. The coding region may be present in either a 10 cDNA or genomic DNA form. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice 15 junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements. As used herein, the term "transcription unit" refers to the segment of DNA between the sites of initiation and termination of transcription and the regulatory elements necessary for the efficient initiation and termination. For example, a segment of DNA comprising an 20 enhancer/promoter, a coding region and a termination and polyadenylation sequence comprises a transcription unit. As used herein, the term "regulatory element" refers to a genetic element which controls some aspect of the expression of nucleic acid sequences. For example, a promoter is a regulatory element which facilitates the initiation of transcription of an operably linked 25 coding region. Other regulatory elements are splicing signals, polyadenylation signals, termination signals, etc. (defined infra). Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription (Maniatis et al., Science 236:1237 30 [19871). Promoter and enhancer elements have been isolated from a variety of eukaryotic - 26 - WO 00/30437 PCTIUS99/26848 sources including genes in yeast, insect and mammalian cells and viruses (analogous control elements, i.e., promoters, are also found in prokaryotes). The selection of a particular promoter and enhancer depends on what cell type is to be used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are 5 functional in a limited subset of cell types (for review see Voss et al., Trends Biochem. Sci., 11:287 [1986]; and Maniatis et al., supra [1987]). For example, the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in mammalian cells (Dijkema et al., EMBO J., 4:761 [1985]). Two other examples of promoter/enhancer elements active in a broad range 10 of mammalian cell types are those from the human elongation factor lat gene (Uetsuki et al., J. Biol. Chem., 264:5791 [1989]; Kim et al., Gene 91:217 [1990]; and Mizushima and Nagata, Nuc. Acids. Res., 18:5322 [1990]) and the long terminal repeats of the Rous sarcoma virus (Gorman et al., Proc. Natl. Acad. Sci. USA 79:6777 [1982]) and the human cytomegalovirus (Boshart et al., Cell 41:521 [1985]). 15 As used herein, the term "promoter/enhancer" denotes a segment of DNA which contains sequences capable of providing both promoter and enhancer functions (iLe., the functions provided by a promoter element and an enhancer element, see above for a discussion of these functions). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous" or 20 "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one which is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one which is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of that gene is directed by the linked enhancer/promoter. 25 The term "factor" refers to a protein or group of proteins necessary for the transcription or replication of a DNA sequence. For example, SV40 T antigen is a replication factor which is necessary for the replication of DNA sequences containing the SV40 origin of replication. Transcription factors are proteins which bind to regulatory elements such as promoters and enhancers and facilitate the initiation of transcription of a gene. - 27 - WO 00/30437 PCT/US99/26848 Promoters and enhancers may bind to specific factors which increase the rate of activity from the promoter or enhancer. These factors may be present in all cell types or may be expressed in a tissue-specific manner or in virus infected cells. In the absence of such a factor the promoter may be inactive or may produce a low level of transcriptional activity. 5 Such a low level of activity is referred to as a baseline or "basal" rate of activity. Additionally, viral promoter and enhancers may bind to factors encoded by the virus such that the viral promoter or enhancer is "activated" in the presence of the viral factor (in a virus infected cell or in a cell expressing the viral factor). The level of activity in the presence of the factor (i.e., activity "induced" by the factor) will be higher than the basal rate. 10 Different promoters may have different levels of basal activity in the same or different cell types. When two different promoters are compared in a given cell type in the absence of any inducing factors, if one promoter expresses at a higher level than the other it is said to have a higher basal activity. The activity of a promoter and/or enhancer is measured by detecting directly or 15 indirectly the level of transcription from the element(s). Direct detection involves quantitating the level of the RNA transcripts produced from that promoter and/or enhancer. Indirect detection involves quantitation of the level of a protein, often an enzyme, produced from RNA transcribed from the promoter and/or enhancer. An commonly employed assay for promoter or enhancer activity utilizes the chloramphenicol acetyltransferase (CAT) gene. A 20 promoter and/or enhancer is inserted upstream from the coding region for the CAT gene on a plasmid; the plasmid is introduced into a cell line. The levels of CAT enzyme are measured. The level of enzymatic activity is proportional to the amount of CAT RNA transcribed by the cell line. This CAT assay therefore allows a comparison to be made of the relative strength of different promoters or enhancers in a given cell line. When a promoter is said to express 25 at "high" or "low" levels in a cell line this refers to the level of activity relative to another promoter which is used as a reference or standard of promoter activity. The presence of "splicing signals" on an expression vector often results in higher levels of expression of the recombinant transcript. Splicing signals mediate the removal of introns from the primary RNA transcript and consist of a splice donor and acceptor site (See e.g., 30 Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor - 28 - WO 00/30437 PCT/US99/26848 Laboratory Press, New York [1989], pp. 16.7-16.8). A commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40. Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting 5 transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length. The term "poly A site" or "poly A sequence" as used herein denotes a DNA sequence which directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable as transcripts lacking a poly A tail are unstable and are 10 rapidly degraded. The poly A signal utilized in an expression vector may be "heterologous" or "endogenous." An endogenous poly A signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome. A heterologous poly A signal is one which is one which is isolated from one gene and placed 3' of another gene. A commonly used heterologous poly A signal is the SV40 poly A signal. The SV40 poly A signal is contained 15 on a 237 bp Bam HIIBcl I restriction fragment and directs both termination and polyadenylation (Sambrook, J., supra, at 16.6-16.7). Eukaryotic expression vectors may also contain "viral replicons "or "viral origins of replication." Viral replicons are viral DNA sequences which allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate replication factors. Vectors 20 which contain either the SV40 or polyoma virus origin of replication replicate to high copy number (up to 104 copies/cell) in cells that express the appropriate viral antigen. Vectors which contain the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at low copy number (-100 copies/cell). The term "stable transfection" or "stably transfected" refers to the introduction and 25 integration of foreign DNA into the genome of the transfected cell. The term "stable transfectant" refers to a cell which has stably integrated foreign DNA into the genomic DNA. As used herein, the term "stably maintained" refers to characteristics of recombinant (i.e., transgenic) animals that maintain at least one of their recombinant elements (i.e., the element that is desired) through multiple generations. For example, it is intended that the 30 term encompass the characteristics of transgenic animals that are capable of passing the - 29 - WO 00/30437 PCTIUS99/26848 transgene to their offspring, such that the offspring are capable of maintaining the expression and/or transcription of the transgene. It is not intended that the term be limited to any particular organism or any specific recombinant element. The term "transient transfection" or "transiently transfected" refers to the introduction 5 of foreign DNA into a cell where the foreign DNA fails to integrate into the genome of the transfected cell. The foreign DNA persists in the nucleus of the transfected cell for several days. During this time the foreign DNA is subject to the regulatory controls that govern the expression of endogenous genes in the chromosomes. The term "transient transfectant" refers to cells which have taken up foreign DNA but have failed to integrate this DNA. 10 As used herein, the term "gene of interest" refers to the gene inserted into the polylinker of an expression vector. When the gene of interest encodes a gene which provides a therapeutic function, the gene of interest may be alternatively called a remedial gene. As used herein, the terms "nucleic acid molecule encoding," "DNA sequence encoding," and "DNA encoding" refer to the order or sequence of deoxyribonucleotides along 15 a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence. As used herein, the term "adoptive transfer" is used in reference to the transfer of one function to another cell or organism. For example, in "adoptive immunity," transfer of an 20 immune function is made from one organism to another through the transfer of immunologically competent cells. DESCRIPTION OF THE INVENTION The present invention provides improved methods for the production of transgenic 25 animals. The methods of the present invention provide, for the first time, the production of transgenic animals by the introduction of exogenous DNA into pre-maturation oocytes and mature, unfertilized oocytes (i.e., pre-fertilization oocytes) using retroviral vectors which transduce dividing cells (e.g., vectors derived from murine leukemia virus [MLV]). In addition, the present invention provides methods and compositions for cytomegalovirus - 30 - WO 00/30437 PCT/US99/26848 promoter-driven, as well as mouse mammary tumor LTR expression of various recombinant proteins. For example, the human cytomegalovirus (CMV) promoter has been developed for use in retroviral vectors for driving the expression of various recombinant proteins, and cell lines 5 have been infected with these vectors, with resultant recombinant protein expression. In addition, the mouse mammary tumor virus (MMTV) LTR has been previously shown to control expression of a recombinant protein in transgenic mice (Yom et al., Animal Biotech., 4:89-107 [1993]). In these mouse lines, expression was predominately observed in the mammary gland and milk, but low expression was also observed in the salivary gland, spleen, 10 lung and kidney. The transgenic mice used in this experiment were produced using typical microinjection techniques. In contrast, the present invention provides methods and compositions for the use of MMTV LTR-driven expression which avoids the need for microinjection techniques. For example, the MMTV LTR has been developed for use in retroviral vectors for driving the expression of various recombinant proteins, and cell lines 15 have been infected with these vectors, with resultant recombinant protein expression. The following Description of the Invention is divided into the following sections: I. Retroviruses and Retroviral Vectors; II. Integration of Retroviral DNA; III. Introduction of Retroviral Vectors Into Gametes Before the Last Meiotic Division; IV. Detection of the Retrovirus Following Injection Into Oocytes or Embryos; and V. Expression of Foreign 20 Proteins in Transgenic Animals. I. Retroviruses and Retroviral Vectors Retroviruses (family Retroviridae) are divided into three groups: the spumaviruses (e.g., human foamy virus); the lentiviruses (e.g., human immunodeficiency virus and sheep 25 visna virus) and the oncoviruses (e.g., MLV, Rous sarcoma virus). Retroviruses are enveloped (i.e., surrounded by a host cell-derived lipid bilayer membrane) single-stranded RNA viruses which infect animal cells. When a retrovirus infects a cell, its RNA genome is converted into a double-stranded linear DNA form (i.e., it is reverse transcribed). The DNA form of the virus is then integrated into the host cell genome - 31 - WO 00/30437 PCT/US99/26848 as a provirus. The provirus serves as a template for the production of additional viral genomes and viral mRNAs. Mature viral particles containing two copies of genomic RNA bud from the surface of the infected cell. The viral particle comprises the genomic RNA, reverse transcriptase and other pol gene products inside the viral capsid (which contains the 5 viral gag gene products) which is surrounded by a lipid bilayer membrane derived from the host cell containing the viral envelope glycoproteins (also referred to as membrane-associated proteins). The organization of the genomes of numerous retroviruses is well known in the art and this has allowed the adaptation of the retroviral genome to produce retroviral vectors. The 10 production of a recombinant retroviral vector carrying a gene of interest is typically achieved in two stages. First, the gene of interest is inserted into a retroviral vector which contains the sequences necessary for the efficient expression of the gene of interest (including promoter and/or enhancer elements which may be provided by the viral long terminal repeats [LTRs] or by an internal promoter/enhancer and relevant splicing signals), sequences required for the 15 efficient packaging of the viral RNA into infectious virions (e.g., the packaging signal [Psi], the tRNA primer binding site [-PBS], the 3' regulatory sequences required for reverse transcription [+PBS] and the viral LTRs). The LTRs contain sequences required for the association of viral genomic RNA, reverse transcriptase and integrase functions, and sequences involved in directing the expression of the genomic RNA to be packaged in viral particles. 20 For safety reasons, many recombinant retroviral vectors lack functional copies of the genes which are essential for viral replication (these essential genes are either deleted or disabled); the resulting virus is said to be replication defective. Second, following the construction of the recombinant vector, the vector DNA is introduced into a packaging cell line. Packaging cell lines provide viral, proteins required in 25 trans for the packaging of the viral genomic RNA into viral particles having the desired host range (i.e., the viral-encoded gag, pol and env proteins). The host range is controlled, in part, by the type of envelope gene product expressed on the surface of the viral particle. Packaging cell lines may express ecotrophic, amphotropic or xenotropic envelope gene products. Alternatively, the packaging cell line may lack sequences encoding a viral envelope - 32 - WO 00/30437 PCT/US99/26848 (env) protein. In this case the packaging cell line will package the viral genome into particles which lack a membrane-associated protein (e.g., an env protein). In order to produce viral particles containing a membrane associated protein which will permit entry of the virus into a cell, the packaging cell line containing the retroviral sequences is transfected with sequences 5 encoding a membrane-associated protein (e.g., the G protein of vesicular stomatitis virus [VSV]). The transfected packaging cell will then produce viral particles which contain the membrane-associated protein expressed by the transfected packaging cell line; these viral particles which contain viral genomic RNA derived from one virus encapsidated by the envelope proteins of another virus are said to be pseudotyped virus particles. 10 Viral vectors, including recombinant retroviral vectors, provide a more efficient means of transferring genes into cells as compared to other techniques such as calcium phosphate DNA co-precipitation or DEAE-dextran-mediated transfection, electroporation or microinjection of nucleic acids. It is believed that the efficiency of viral transfer is due in part to the fact that the transfer of nucleic acid is a receptor-mediated process (i.e., the virus 15 binds to a specific receptor protein on the surface of the cell to be infected). In addition, the virally transferred nucleic acid once inside a cell integrates in controlled manner in contrast to the integration of nucleic acids which are not virally transferred; nucleic acids transferred by other means such as calcium phosphate-DNA co-precipitation are subject to rearrangement and degradation. 20 The most commonly used recombinant retroviral vectors are derived from the amphotropic Moloney murine leukemia virus (MoMLV) (Miller and Baltimore, Mol. Cell. Biol., 6:2895 [1986]). The MoMLV system has several advantages: 1) this specific retrovirus can infect many different cell types, 2) established packaging cell lines are available for the production of recombinant MoMLV viral particles and 3) the transferred genes are 25 permanently integrated into the target cell chromosome. The established MoMLV vector systems comprise a DNA vector containing a small portion of the retroviral sequence (the viral long terminal repeat or "LTR" and the packaging or "psi" signal) and a packaging cell line. The gene to be transferred is inserted into the DNA vector. The viral sequences present on the DNA vector provide the signals necessary for the insertion or packaging of the vector 30 RNA into the viral particle and for the expression of the inserted gene. The packaging cell - 33 - WO 00/30437 PCT/US99/26848 line provides the viral proteins required for particle assembly (Markowitz et al., J. Virol., 62:1120 [1988]). Despite these advantages, existing retroviral vectors based upon MoMLV are limited by several intrinsic problems: 1) they do not infect non-dividing cells (Miller et al., Mol. 5 Cell. Biol., 10:4239 [1992]), 2) they produce low titers of the recombinant virus (Miller and Rosman, BioTechn., 7: 980 [1989]; and Miller, Nature 357: 455 [1992]) and 3) they infect certain cell types (e.g., human lymphocytes) with low efficiency (Adams et al., Proc. Natl. Acad. Sci. USA 89:8981 [1992]). The low titers associated with MoMLV-based vectors has been attributed, at least in part, to the instability of the virus-encoded envelope protein. 10 Concentration of retrovirus stocks by physical means (e.g., ultracentrifugation and ultrafiltration) leads to a severe loss of infectious virus. The low titer and inefficient infection of certain cell types by MoMLV-based vectors has been overcome by the use of pseudotyped retroviral vectors which contain the G protein of VSV as the membrane associated protein. Unlike retroviral envelope proteins which bind 15 to a specific cell surface protein receptor to gain entry into a cell, the VSV G protein interacts with a phospholipid component of the plasma membrane (Mastromarino et al., J. Gen. Virol., 68:2359 [1977]). Because entry of VSV into a cell is not dependent upon the presence of specific protein receptors, VSV has an extremely broad host range. Pseudotyped retroviral vectors bearing the VSV G protein have an altered host range characteristic of VSV (i.e., they 20 can infect almost all species of vertebrate, invertebrate and insect cells). Importantly, VSV G pseudotyped retroviral vectors can be concentrated 2000-fold or more by ultracentrifugation without significant loss of infectivity (Bums et al., Proc. Natl. Acad. Sci. USA 90:8033 [1993]). The VSV G protein has also been used to pseudotype retroviral vectors based upon the 25 human immunodeficiency virus (HIV) (Naldini et al., Science 272:263 [1996)). Thus, the - 34 - WO 00/30437 PCTIUS99/26848 VSV G protein may be used to generate a variety of pseudotyped retroviral vectors and is not limited to vectors based on MoMLV. The present invention is not limited to the use of the VSV G protein when a viral G protein is employed as the heterologous membrane-associated protein within a viral particle. 5 The G proteins of viruses in the Vesiculovirus genera other than VSV, such as the Piry and Chandipura viruses, that are highly homologous to the VSV G protein and, like the VSV G protein, contain covalently linked palmitic acid (Brun et al., Intervirol., 38:274 [1995]; and Masters et al., Virol., 171:285 [1990)). Thus, the G protein of the Piry and Chandipura viruses can be used in place of the VSV G protein for the pseudotyping of viral particles. In 10 addition, the VSV G proteins of viruses within the Lyssa virus genera such as Rabies and Mokola viruses show a high degree of conservation (amino acid sequence as well as functional conservation) with the VSV G proteins. For example, the Mokola virus G protein has been shown to function in a manner similar to the VSV G protein (i.e., to mediate membrane fusion) and therefore may be used in place of the VSV G protein for the -15 pseudotyping of viral particles (Mebatsion et al., J. Virol., 69:1444 [1995]). The nucleotide sequence encoding the Piry G protein is provided in SEQ ID NO:5 and the amino acid sequence of the Piry G protein is provided in SEQ ID NO:6. The nucleotide sequence encoding the Chandipura G protein is provided in SEQ ID NO:7 and the amino acid sequence of the Chandipura G protein is provided in SEQ ID NO:8. The nucleotide sequence encoding 20 the Mokola G protein is provided in SEQ ID NO:9 and the amino acid sequence of the Mokola G protein is provided in SEQ ID NO:10. Viral particles may be pseudotyped using either the Piry, Chandipura or Mokola G protein as described in Example 2 with the exception that a plasmid containing sequences encoding either the Piry, Chandipura or Mokola G protein under the transcriptional control of a suitable promoter element (e.g., the CMV intermediate 25 early promoter; numerous expression vectors containing the CMV IE promoter are available, such as the pcDNA3.1 vectors [Invitrogen]) is used in place of pHCMV-G. Sequences encoding other G proteins derived from other members of the Rhabdoviridae family may be used; sequences encoding numerous rhabdoviral G proteins are available from the GenBank database. - 35 - WO 00/30437 PCT/US99/26848 II. Integration of Retroviral DNA The majority of retroviruses can transfer or integrate a double-stranded linear form of the virus (the provirus) into the genome of the recipient cell only if the recipient cell is cycling (i.e., dividing) at the time of infection. Retroviruses which have been shown to infect 5 dividing cells exclusively, or more efficiently, include MLV, spleen necrosis virus, Rous sarcoma virus and human immunodeficiency virus (HIV; while HIV infects dividing cells more efficiently, HIV can infect non-dividing cells). It has been shown that the integration of MLV virus DNA depends upon the host cell's progression through mitosis and it has been postulated that the dependence upon mitosis 10 reflects a requirement for the breakdown of the nuclear envelope in order for the viral integration complex to gain entry into the nucleus (Roe et al., EMBO J., 12:2099 [1993]). However, as integration does not occur in cells arrested in metaphase, the breakdown of the nuclear envelope alone may not be sufficient to permit viral integration; there may be additional requirements such as the state of condensation of the genomic DNA (Roe et al., 15 supra). III. Introduction of Retroviral Vectors Into Gametes Before the Last Meiotic Division The nuclear envelope of a cell breaks down during meiosis as well as during mitosis. 20 Meiosis occurs only during the final stages of gametogenesis. The methods of the present invention exploit the breakdown of the nuclear envelope during meiosis to permit the integration of recombinant retroviral DNA and permit for the first time the use of unfertilized oocytes (i.e., pre-fertilization and pre-maturation oocytes) as the recipient cell for retroviral gene transfer for the production of transgenic animals. Because infection of unfertilized 25 oocytes permits the integration of the recombinant provirus prior to the division of the one cell embryo, all cells in the embryo will contain the proviral sequences. Oocytes which have not undergone the final stages of gametogenesis are infected with the retroviral vector. The injected oocytes are then permitted to complete maturation with the accompanying meiotic divisions. The breakdown of the nuclear envelope during meiosis - 36 - WO 00/30437 PCT/US99/26848 permits the integration of the proviral form of the retrovirus vector into the genome of the oocyte. When pre-maturation oocytes are used, the injected oocytes are then cultured in vitro under conditions which permit maturation of the oocyte prior to fertilization in vitro. Conditions for the maturation of oocytes from a number of mammalian species (e.g., bovine, 5 ovine, porcine, murine, caprine) are well known to the art. In general, the base medium used herein for the in vitro maturation of bovine oocytes, TC-M199 medium, may be used for the in vitro maturation of other mammalian oocytes. TC-M199 medium is supplemented with hormones (e.g., luteinizing hormone and estradiol) from the appropriate mammalian species. The amount of time a pre-maturation oocyte must be exposed to maturation medium to permit 10 maturation varies between mammalian species as is known to the art. For example, an exposure of about 24 hours is sufficient to permit maturation of bovine oocytes while porcine oocytes require about 44-48 hours. Oocytes may be matured in vivo and employed in place of oocytes matured in vitro in the practice of the present invention. For example, when porcine oocytes are to be employed 15 in the methods of the present invention, matured pre-fertilization oocytes may be harvested directly from pigs that are induced to superovulate as is known to the art. Briefly, on day 15 or 16 of estrus the female pig(s) is injected with about 1000 units of pregnant mare's serum (PMS; available from Sigma and Calbiochem). Approximately 48 hours later, the pig(s) is injected with about 1000 units of human chorionic gonadotropin) (hCG; Sigma) and 24-48 20 hours later matured oocytes are collected from oviduct. These in vivo matured pre fertilization oocytes are then injected with the desired retroviral preparation as described herein. Methods for the superovulation and collection of in vivo matured (i.e., oocytes at the metaphase 2 stage) oocytes are known for a variety of mammals (e.g., for superovulation of mice, see Hogan et al., supra at pp. 130-133 [1994); for superovulation of pigs and in vitro 25 fertilization of pig oocytes see Cheng, Doctoral Dissertation, Cambridge University, Cambridge, United Kingdom [1995]). Retroviral vectors capable of infecting the desired species of non-human animal which can be grown and concentrated to very high titers (e.g., > I x 10' cfu/ml) are preferentially employed. The use of high titer virus stocks allows the introduction of a defined number of - 37 - WO 00/30437 PCT/US99/26848 viral particles into the perivitelline space of each injected oocyte. The perivitelline space of most mammalian oocytes can accommodate about 10 picoliters of injected fluid (those in the art know that the volume that can be injected into the perivitelline space of a mammalian oocyte or zygote varies somewhat between species as the volume of an oocyte is smaller than 5 that of a zygote and thus, oocytes can accommodate somewhat less than can zygotes). The vector used may contain one or more genes encoding a protein of interest; alternatively, the vector may contain sequences which produce anti-sense RNA sequences or ribozymes. The infectious virus is microinjected into the perivitelline space of oocytes (including pre-maturation oocytes) or one cell stage zygotes. Microinjection into the 10 perivitelline space is much less invasive than the microinjection of nucleic acid into the pronucleus of an embryo. Pronuclear injection requires the mechanical puncture of the plasma membrane of the embryo and results in lower embryo viability. In addition, a higher level of operator skill is required to perform pronuclear injection as compared to perivitelline injection. Visualization of the pronucleus is not required when the virus is injected into the 15 perivitelline space (in contrast to injection into the pronucleus); therefore injection into the perivitelline space obviates the difficulties associated with visualization of pronuclei in species such as cattle, sheep and pigs. The virus stock may be titered and diluted prior to microinjection into the perivitelline space so that the number of proviruses integrated in the resulting transgenic animal is 20 controlled. The use of a viral stock (or dilution thereof) having a titer of I x 10' cfu/ml allows the delivery of a single viral particle per oocyte. The use of pre-maturation oocytes or mature fertilized oocytes as tlie recipient of the virus minimizes the production of animals which are mosaic for the provirus as the virus integrates into the genome of the oocyte prior to the occurrence of cell cleavage. 25 In order to deliver, on average, a single infectious particle per oocyte, the micropipets used for the injection are calibrated as follows. Small volumes (e.g., about 5-10 pl) of the undiluted high titer viral stock (e.g., a titer of about I x 10' cfulml) are delivered to the wells of a microtiter plate by pulsing the micromanipulator. The titer of virus delivered per a given number of pulses is determined by diluting the viral stock in each well and determining the 30 titer using a suitable cell line (e.g., the 208F cell line) as described in Ex. 2. The number of - 38 - WO 00/30437 PCT/US99/26848 pulses which deliver, on average, a volume of virus stock containing one infectious viral particle (i.e., gives a MOI of 1 when titered on 208F cells) are used for injection of the viral stock into the oocytes. Prior to microinjection of the titered and diluted (if required) virus stock, the cumulus 5 cell layer is opened to provide access to the perivitelline space. The cumulus cell layer need not be completely removed from the oocyte and indeed for certain species of animals (e.g., cows, sheep, pigs, mice) a portion of the cumulus cell layer must remain in contact with the oocyte to permit proper development and fertilization post-injection. Injection of viral particles into the perivitelline space allows the vector RNA (i.e., the viral genome) to enter 10 the cell through the plasma membrane thereby allowing proper reverse transcription of the viral RNA. IV. Detection of the Retrovirus Following Injection Into Oocytes or Embryos The presence of the retroviral genome in cells (e.g., oocytes or embryos) infected with 15 pseudotyped retrovirus may be detected using a variety of means. The expression of the gene product(s) encoded by the retrovirus may be detected by detection of mRNA corresponding to the vector-encoded gene products using techniques well known to the art (e.g., Northern blot, dot blot, in situ hybridization and RT-PCR analysis). Direct detection of the vector-encoded gene product(s) is employed when the gene product is a protein which either has an enzymatic 20 activity (e.g., p-galactosidase) or when an antibody capable of reacting with the vector encoded protein is available. Alternatively, the presence of the integrated viral genome may be detected using Southern blot or PCR analysis. For example, the presence of the LZRNL or LSRNL genomes may be detected following infection of oocytes or embryos using PCR as follows. Genomic 25 DNA is extracted from the infected oocytes or embryos (the DNA may be extracted from the whole embryo or alternatively various tissues of the embryo may be examined) using techniques well known to the art. The LZRNL and LSRNL viruses contain the neo gene and the following primer pair can be used to amplify a 349-bp segment of the neo gene: upstream primer: 5'-GCATTGCATCAGCCATGATG-3' (SEQ ID NO:1) and downstream primer: 5' - 39 - WO 00/30437 PCT/US99/26848 GATGGATTGCACGCAGGTTC-3' (SEQ ID NO:2). The PCR is carried out using well known techniques (e.g., using a GeneAmp kit according to the manufacturer's instructions [Perkin-Elmer]). The DNA present in the reaction is denatured by incubation at 94*C for 3 min followed by 40 cycles of 94*C for 1 min, 60 0 C for 40 sec and 72*C for 40 sec followed 5 by a final extension at 72*C for 5 min. The PCR products may be analyzed by electrophoresis of 10 to 20% of the total reaction on a 2% agarose gel; the 349-bp product may be visualized by staining of the gel with ethidium bromide and exposure of the stained gel to UV light. If the expected PCR product cannot be detected visually, the DNA can be transferred to a solid support (e.g., a nylon membrane) and hybridized with a 2 P-labeled neo 10 probe. Southern blot analysis of genomic DNA extracted from infected oocytes and/or the resulting embryos, offspring and tissues derived therefrom is employed when information concerning the integration of the viral DNA into the host genome is desired. To examine the number of integration sites present in the host genome, the extracted genomic DNA is 15 typically digested with a restriction enzyme which cuts. at least once within the vector sequences. If the enzyme chosen cuts twice within the vector sequences, a band of known (ie.,.predictable) size is generated in addition to two fragments of novel length which can be detected using appropriate probes. 20 V. Detection of Foreign Protein Expression in Transgenic Animals The present invention also provides transgenic animals that are capable of expressing foreign proteins in their milk, urine and blood. As indicated in Examples 8-10, the transgene is stable, as it is shown to be passed from a transgenic bull to his offspring (See, Example 8). In addition, as shown in Examples 9 and 10, transgenic animals produced according to the 25 present invention express foreign proteins in their body fluids (e.g., milk, blood, and urine). Thus, these data further demonstrate the utility of using the MoMLV LTR as a promoter for driving the constitutive production of foreign proteins in transgenic cattle. It is also contemplated that such a promoter could be used to control expression of proteins that would prevent disease and/or infection in the transgenic animals and their offspring, or be of use in - 40 - WO 00/30437 PCT/US99/26848 the production of a consistent level of protein expression in a number of different tissues and body fluids. For example, it is contemplated that the MoMLV LTR of the present invention will find use in driving expression of antibody to pathogenic organisms, thereby preventing 5 infection and/or disease in'transgenic animals created using the methods of the present invention. For example, it is contemplated that antibodies directed against organisms such as E. coli, Salmonella ssp., Streptococcus ssp., Staphylococcus spp., Mycobacterium spp., produced by transgenic animals will find use preventing mastitis, scours, and other diseases that are common problems in young animals. It is also contemplated that proteins expressed 10 by transgenic animals produced according to the present invention will find use as bacteriostatic, bactericidal, fungistatic, fungicidal, viricidal, and/or anti-parasitic compositions. Thus, it is contemplated that transgenic animals produced according to the present invention will be resistant to various pathogenic organisms. Furthermore, the milk produced by female transgenic animals would contain substantial antibody levels. It is contemplated that these 15 antibodies will find use in the protection of other animals (e.g., through passive immunization methods). EXPERIMENTAL 20 The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof. In the experimental disclosure which follows, the following abbreviations apply: M (molar); mM (millimolar); pM (micromolar); nM (nanomolar); mol (moles); mmol (millimoles); .imol (micromoles); nmol (nanomoles); gm (grams); mg (milligrams); ptg 25 (micrograms);pg (picograms); L (liters); ml (milliliters); pl (microliters); cm. (centimeters); mm (millimeters); pm (micrometers); nm (nanometers); *C (degrees Centigrade); AMP (adenosine 5'-monophosphate); BSA (bovine serum albumin); cDNA (copy or complimentary DNA); CS (calf serum); DNA (deoxyribonucleic acid); ssDNA (single stranded DNA); dsDNA (double stranded DNA); dNTP (deoxyribonucleotide triphosphate); LH (luteinizing 30 hormone); NIH (National Institutes of Health, Besthesda, MD); RNA (ribonucleic acid); PBS - 41 - WO 00/30437 PCTIUS99/26848 (phosphate buffered saline); g (gravity); OD (optical density); HEPES (N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]); HBS (HEPES buffered saline); PBS (phosphate buffered saline); SDS (sodium dodecyl sulfate); Tris-HCI (tris[Hydroxymethyl]aminomethane-hydrochloride); Klenow (DNA polymerase I large 5 (Klenow) fragment); rpm (revolutions per minute); EGTA (ethylene glycol-bis(B-aminoethyl ether) N, N, N', N'-tetraacetic acid); EDTA (ethylenediaminetetracetic acid); bla (B-lactamase or ampicillin-resistance gene); ORI (plasmid origin of replication); lacI (lac repressor); X-gal (5-bromo-4-chloro-3-indolyl-p-D-galactoside); ATCC (American Type Culture Collection, Rockville, MD); GIBCO/BRL (GIBCO/BRL, Grand Island, NY); Perkin-Elmer (Perkin-Elmer, 10 Norwalk, CT); Abbott (Abbott Laboratories, Diagnostics Division, Abbott Park, IL 60064); and Sigma (Sigma Chemical Company, St. Louis, MO). EXAMPLE 1 15 Generation of Cell Lines Stably Expressing the MoMLV Gag and Pol Proteins The expression of the fusogenic VSV G protein on the surface of cells results in syncytium formation and cell death. Therefore, in order to produce retroviral particles containing the VSV G protein as the membrane-associated protein a three step approach was 20 taken. First, stable cell lines expressing the Gag and Pol proteins from MoMLV at high levels were generated (e.g., 293GP cells; Example 1). These stable cell lines were then infected using the desired retroviral vector which is derived from an amphotrophic packaging cell (e.g., PA317 cells transfected with the desired retroviral vector; Example 2a). The infected stable cell line which expresses the Gag and Pol proteins produces noninfectious viral 25 particles lacking a membrane-associated protein (e.g., a envelope protein). Third, these infected cell lines are then transiently transfected with a plasmid capable of directing the high level expression of the VSV G protein (Example 2b). The transiently transfected cells produce VSV G-pseudotyped retroviral vectors which can be collected from the cells over a period of 3 to 4 days before the producing cells die as a result of syncytium formation. -42 - WO 00/30437 PCTIUS99/26848 The first step in the production of VSV G-pseudotyped retroviral vectors, the generation of stable cell lines expressing the MoMLV Gag and Pol proteins is described below. The human adenovirus 5-transformed embryonal kidney cell line 293 (ATCC CRL 5 1573) was cotransfected with the pCMVgag-pol and pFR400 plasmids using a ratio of 10:1 (pCMVgag-pol and pFR400). pCMV gag-pol contains the MoMLV gag and pol genes under the control of the CMV promoter (pCMV gag-pol is available from the ATCC). pFR400 encodes a mutant dihydrofolate reductase which has a reduced affinity for methotrexate (Simonsen et al., Proc. Natl. Acad. Sci. 80:2495 [1983]). 10 The plasmid DNA was introduced into the 293 cells using calcium phosphate co precipitation (Graham and Van der Eb, Virol., 52:456 [1973]). Approximately 5 x 10' 293 cells were plated into a 100 mm tissue culture plate the day before the DNA co-precipitate was added. A total of 20 ptg of plasmid DNA (18 pg pCMV gag-pol and 2 ptg pFR400) was added as a calcium-DNA co-precipitate to each 100 mm plate. Stable transformants were 15 selected by growth in DMEM-high glucose medium containing 10% FCS, 0.5 pzM methotrexate and 5 pM dipyridimole (i.e., selective medium). Colonies which grew in the selective medium were screened for extracellular reverse transcriptase activity (Goff et al., J. Virol., 38:239 [1981]) and intracellular p30m expression. p3OM expression was determined by Western blotting using a goat-anti p30 antibody (NCI antiserum 778000087). A clone 20 which exhibited stable expression of the retroviral genes in the absence of continued methotrexate selection was selected. This clone was named 293GP (293 gag-pol). The 293GP cell line, a derivative of the human Ad-5-transformed embryonal kidney cell line 293, was grown in DMEM-high glucose medium containing 10% FCS. The 293GP cell line is commercially available from Viagen, Inc., San Diego, CA. 25 - 43 - WO 00/30437 PCTIUS99/26848 EXAMPLE 2 Preparation of Pseudotyped Retroviral Vectors Bearing the G Glycoprotein of VSV In order to produce VSV G protein pseudotyped retrovirus the following steps were 5 taken. First, the 293GP cell line was infected with virus derived from the amphotrophic packaging cell line PA317. The infected cells packaged the retroviral RNA into viral particles which lack a membrane-associated protein (because the 293GP cell line lacks an env gene or other gene encoding a membrane-associated protein). The infected 293GP cells were then transiently transfected with a plasmid encoding the VSV G protein to produce pseudotyped 10 viral particles bearing the VSV G protein. a) Cell Lines and Plasmids The amphotropic packaging cell line, PA317 (ATCC CRL 9078) was grown in DMEM-high glucose medium containing 10% FCS. The 293GP cell line was grown in 15 DMEM-high glucose medium containing 10% FCS. The titer of the pseudo-typed virus may be determined using either 208F cells (Quade, Virol., 98:461 [1979]), or NIH/3T3 cells (ATCC CRL 1658); 208F and NIH/3T3 cells are grown in DMEM-high glucose medium containing 10% CS. The plasmid pLZRNL (Xu et al., Virol., 171:331 [1989]) contains the gene encoding 20 E. coli p-galactosidase (LacZ) under the transcriptional control of the LTR of the Moloney murine sarcoma virus (MSV) followed by the gene encoding neomycin phosphotransferase (Neo) under the transcriptional control of the Rous sarcoma virus (RSV) promoter. The plasmid pLSRNL contains the gene encoding the hepatitis B surface antigen gene (HBsAg) under the transcriptional control of the MSV LTR followed by the Neo gene under the control 25 of the RSV promoter (U.S. Patent No. 5,512,421, the disclosure of which is herein incorporated by reference). The plasmid pHCMV-G contains the VSV G gene under the transcriptional control of the human cytomegalovirus intermediate-early promoter (Yee et al. Meth. Cell Biol., 43:99 [1994]). - 44 - WO 00/30437 PCT/US99/26848 b) Production and Titering of Pseudotyped LZRNL Virus pLZRNL DNA was transfected into the amphotropic packaging line PA317 to produced LZRNL virus. The resulting LZRNL virus was then used to infect 293GP cells to produce pseudotyped LZRNL virus bearing the VSV G protein (following transient 5 transfection of the infected 293GP cells with a plasmid encoding the VSV G protein). The procedure for producing pseudotyped LZRNL virus was carried out as described (Yee et al. Meth. Cell Biol., 43:99 [1994]). Briefly, on day 1, approximately 5 x 10' PA317 cells were placed in a 100 mm tissue culture plate. On the following day (day 2), the PA317 cells were transfected with 20 pIg of 10 pLZRNL plasmid DNA (plasmid DNA was purified using CsCl gradients) using the standard calcium phosphate co-precipitation procedure (Graham and Van der Eb, Virol., 52:456 [1973]). A range of 10 to 40 pg of plasmid DNA may be used. Because 293GP cells may take more than 24 hours to attach firmly to tissue culture plates, the 293GP cells may be placed in 100 mm plates 48 hours prior to transfection. The transfected PA317 cells provide 15 amphotropic LZRNL virus. On day 3, approximately 1 x 10' 293GP cells were placed in a 100 mm tissue culture plate 24 hours prior to the harvest of the amphotropic virus from the transfected PA317 cells. On day 4, culture medium was harvested from the transfected PA317 cells 48 hours after the application of the pLZRNL DNA. The culture medium was filtered through a 0.45 pm filter 20 and polybrene was added to a final concentration of 8 ptg/ml. A stock solution of polybrene was prepared by dissolving 0.4 gm hexadimethrine bromide (polybrene; Sigma) in 100 ml sterile water; the stock solution was stored at 4*C. The culture medium containing LZRNL virus (containing polybrene) was used to infect the 293GP cells as follows. The culture medium was removed from the 293GP cells and was replaced with the LZNRL virus 25 containing culture medium. The virus containing medium was allowed to remain on the 293GP cells for 16 hours. Following the 16 hour infection period (on day 5), the medium was removed from the 293GP cells and was replaced with fresh medium containing 400 g/ml G418 (GIBCO/BRL). The medium was changed every 3 days until G418-resistant colonies appeared two weeks later. Care was taken not to disturb the G418-resistant colonies 30 when the medium was changed as 293GP cells attach rather loosely to tissue culture plates. - 45 - WO 00/30437 PCT/US99/26848 The G418-resistant 293 colonies were picked using an automatic pipettor and transferred directly into 24-well plates (i.e., the colonies were not removed from the plates using trypsin). The G418-resistant 293 colonies (as termed "293GP/LZRNL" cells) were screened for the expression of the LacZ gene in order to identify clones which produce high 5 titers of pseudotyped LZRNL virus. Clones in 24-well plates were transferred to 100 mm tissue culture plates and allowed to grow to confluency. Protein extracts are prepared from the confluent plates by washing the cells once with 10 ml PBS (137 mM NaCl, 2.6 mM KCI, 8.1 mM Na 2
HPO
4 , 1.5 mM K.H 2
PO
4 ). Two ml of 250 mM Tris-HCl, pH 7.8 was added and the cells were scrapped off the plate using a rubber policeman. The cells were then collected .0 by centrifugation at room temperature and resuspended in 100 1 250 mM Tris-HCL, pH 7.8. The cells were subjected to four rapid freeze/thaw cycles followed by centrifugation at room temperature to remove cell debris. The p-galactosidase activity present in the resulting protein extracts was determined as follows. Five microliters of protein extract was mixed with 500 pl p -gal buffer (50 mM Tris-HC1, pH 7.5, 100 mM NaCl, 10 mM MgCl 2 ) 15 containing 0.75 ONPG (Sigma). The mixtures were incubated at 37*C until a yellow color appeared. The reactions were stopped by the addition of 500 ptl 10 mM EDTA and the optical density of the reactions was determined at 420 nm. The 293GP/LZRNL clone which generated the highest amount of p-galactosidase activity was then expanded and used subsequently for the production of pseudotyped LZNRL 20 virus as follows. Approximately 1 x 106 293GP/LZRNL cells were placed into a 100 mm tissue culture plate. Twenty-four hours later, the cells were transfected with 20 Ig of pHCMV-G plasmid DNA using calcium phosphate co-precipitation. Six to eight hours after the calcium-DNA precipitate was applied to the cells, the DNA solution was replaced with fresh culture medium (lacking G418). Longer transfection times (overnight) have been found 25 to result in the detachment of the majority of the 293GPILZRNL cells from the plate and are therefore avoided. The transfected 293GPILZRNL cells produce pseudotyped LZRNL virus. The pseudotyped LZRNL virus generated from the transfected 293GP/LZRNL cells can be collected at least once a day between 24 and 96 hr after transfection. The highest virus titer was generated approximately 48 to 72 hr after initial pHCMV-G transfection. 30 While syncytium formation became visible about 48 hr after transfection in the majority of - 46 - WO 00/30437 PCTIUS99/26848 the transfected cells, the cells continued to generate pseudotyped virus for at least an additional 48 hr as long as the cells remained attached to the tissue culture plate. The collected culture medium containing the VSV G-pseudotyped LZRNL virus was pooled, filtered through a 0.45 ptm filter and stored at -70*C. 5 The titer of the VSV G-pseudotyped LZRNL virus was then determined as follows. 5 x 10' rat 208F fibroblasts or NIH 3T3 cells were plated in a 100 mm culture plate. Twenty fours hours after plating, the cells were infected with serial dilutions of the LZRNL virus containing culture medium in the presence of 8 ptg/ml polybrene. Sixteen hours after infection with virus, the medium was replaced with fresh medium containing 400 ptg/ml G418 10 and selection was continued for 14 days until G418-resistant colonies became visible. Viral titers were typically about 0.5 to 5.0 x 10' colony forming units (cfu)/ml. The titer of the virus stock could be concentrated to a titer of greater than 10' cfu/ml as described below. 15 EXAMPLE 3 Concentration of Pseudotyped Retroviral Vectors The VSV G-pseudotyped LZRNL virus was concentrated to a high titer by two cycles of ultracentrifugation. The frozen culture medium collected as described in Example 2 which 20 contained pseudotyped LZRNL virus was thawed in a 37*C water bath and was then transferred to ultraclear centrifuge tubes (14 x 89 mm; Beckman, Palo Alto, CA) which had been previously sterilized by exposing the tubes to UV light in a laminar flow hood overnight. The virus was sedimented in a SW41 rotor (Beckman) at 50,000 x g (25,000 rpm) at 4*C for 90 min. The culture medium was then removed from the tubes in a laminar flow hood and 25 the tubes were well drained. The virus pellet was resuspended to 0.5 to 1% of the original volume of culture medium in either TNE (50 mM Tris-HCI, pH 7.8; 130 mM NaCl; 1 mM EDTA) or 0.IX Hank's balanced salt solution (IX Hank's balanced salt solution contains 1.3 mM CaCl 2 , 5 mM KCI, 0.3 mM KH 2
PO
4 , 0.5 mM MgC12-6H 2 ), 0.4 mM MgSO 4 -7H 2 0, 138 mM NaCl, 4 mM NaHCO 3 , 0.3 mM NaH 2
PO
4
H
2 0; 0.IX Hank's is made by mixing 1 parts 30 IX Hank's with 9 parts PBS]. The resuspended virus pellet was incubated overnight at 4"C - 47 - WO 00/30437 PCT/US99/26848 without swirling. The virus pellet could be dispersed with gentle pipetting after the overnight incubation without significant loss of infectious virus. The titer of the virus stock was routinely increase 100- to 300-fold after one round of ultracentrifugation. The efficiency of recovery of infectious virus varied between 30 and 100%. 5 The virus stock was then subjected to low speed centrifugation in a microfuge for 5 min at 4*C to remove any visible cell debris or aggregated virions that were not resuspended under the above conditions (if the virus stock is not to be used for injection into oocytes or embryos, this centrifugation step may be omitted). The virus stock was then subjected to another round of ultracentrifugation to 10 concentrate the virus stock further. The resuspended virus from the first round of centrifugation was pooled and pelleted by a second round of ultracentrifugation which was performed as described above. Viral titers were increased approximately 2000-fold after the second round of ultracentrifugation (titers of the pseudotyped LZRNL virus were typically greater than or equal to 1 x 10' cfu/ml after the second round of ultracentrifugation). 15 The titers of the pre- and post-centrifugation fluids were determined by infection of 208F (NIH 3T3 or Mac-T cells can also be employed) followed by selection of G418-resistant colonies as described above in Example 2. The concentrated viral stock was stable. (i.e., did not lose infectivity) when stored at 4*C for several weeks. 20 EXAMPLE 4 Preparation of Pseudotyped Retrovirus For Infection of Oocytes and Embryos The concentrated pseudotyped retrovirus were resuspended in 0.1X HBS (2.5 mM 25 HEPES, pH 7.12, 14 mM NaCl, 75 pM Na 2
HPO
4
H
2 0) and 18 pl aliquots were placed in 0.5 ml vials (Eppendorf) and stored at -80"C until used. The titer of the concentrated vector was determined by diluting 1lj of the concentrated virus 104- or 10 8 -fold with 0.1X HBS. The diluted virus solution was then used to infect 208F and Mac-T cells and viral titers were determined as described in Example 2. - 48 - WO 00/30437 PCTIUS99/26848 Prior to infection of oocytes or embryos (by microinjection), I pl of polybrene (25 ng/pl; the working solution of polybrene was generated by diluting a stock solution having a concentration of I mg/ml [in sterile H 2 0), in 0.1 HBS, pH 7.12) was mixed with 4 p of concentrated virus to yield a solution containing 10'-10' cfu/pl and 8 pg/ml polybrene. This 5 solution was loaded into the injection needle (tip having an internal diameter of approximately 2-4 pm) for injection into the perivitelline space of gametes (pre-maturation oocytes, matured oocytes) or one cell stage zygotes (early stage embryo). An Eppendorf Transjector 5246 was used for all microinjections. 10 EXAMPLE 5 Preparation and Microinjection of Gametes and Zygotes Gametes (pre-maturation and pre-fertilization oocytes) and zygotes (fertilized oocytes) 15 were prepared and microinjected with retroviral stocks as described below. a) Solutions Tyrodes-Lactate with HEPES (TL-HEPES): 114 mM NaCl, 3.2 mM KCI, 2.0 mM NaHCO 3 , 0.4 mM Na 2
H
2
PO
4
-H
2 0, 10 mM Na-lactate, 2 mM CaCl 2 -2H 2 0, 0.5 mM 20 MgCl 2 -6H 2 0, 10 mM HEPES, 100 IU/mI penicillin, 50 pg/ml phenol red, 1 mg/ml BSA fraction V, 0.2 mM pyruvate and 25 pg/ml gentamycin. Maturation Medium: TC-199 medium (GIBCO) containing 10% FCS, 0.2 mM pyruvate, 5 pg/ml NIH o-LH (NIH), 25 pg/ml gentamycin and 1pg/ml estradiol-17P. Sperm-Tyrodes-Lactate (Sperm-TL): 100 mM NaCl, 3.2 mM KCl, 25 mM NaHCO 3 , 25 0.29 mM Na 2
H
2
PO
4
-H
2 O, 21.6 mM Na-lactate, 2.1 mM CaCl2-2H 2 0, 0.4 mM MgC12-6H 2 0, 10 mM HEPES, 50 pg/ml phenol red, 6 mg/ml BSA fraction V, 1.0 mM pyruvate and 25 pg/ml gentamycin. Fertilization Medium: 114 mM NaCl, 3.2 mM KCI, 25 mM NaHCO 3 , 0.4 mM Na 2
H
2
PO
4
-H
2 0, 10 mM Na-lactate, 2 mM CaCl2-2H 2 0, 0.5 mM MgCl2-6H 2 0, 100 IU/ml - 49 - WO 00/30437 PCT/US99/26848 penicillin, 50 pLg/ml phenol red, 6 mg/ml BSA fatty acid free, 0.2 mM pyruvate and 25 pig/ml gentamycin. PHE: 1 mM hypotaurine, 2 mM penicillamine and 250 p.M epinephrine. Embryo Incubation + Amino Acids (EIAA): 114 p.M NaCl, 3.2 ptM KCl, 25 p.M 5 NaHCO,, 1.6 pg/ml L(+)-lactate, 10.7 ptg/mi L-glutamine, 300 ptg/ml BSA fatty acid free, 0.275 pg/ ml pyruvate, 25 ig/ml gentamycin, 10 d of 1OOX MEM amino acids stock (M7145, Sigma) per ml and 20 pl of 50X BME amino acids stock (B6766, Sigma) per ml. 0.IX HBS: 2.5 mM HEPES (pH 7.12), 14 mM NaCi and 75 p.M Na 2 HPOg 4
H
2 0. 10 b) Preparation, Injection, Maturation and Fertilization of Pre-Maturation Oocytes Oocytes were aspirated from small antral follicles on ovaries from dairy cattle obtained from a slaughterhouse. Freshly aspirated oocytes at the germinal vesicle (GV) stage, meiosis arrested, with the cumulus mass attached were selected (i.e., pre-maturation oocytes). The 15 oocytes were then washed twice in freshly prepared TL-HEPES and transferred into a 100 il drop of TL-HEPES for microinjection. Concentrated retroviral particles (prepared as described in Example 3) were resuspended in 0.1X HBS, mixed with polybrene and loaded into the injection needle as described in Example 4. Approximately 10 pl of the virus solution was then injected into the 20 perivitelline space of pre-maturation oocytes. Following injection, the pre-maturation oocytes were washed twice in fresh TL-HEPES and transferred into maturation medium (10 oocytes in 50 p1). The pre-maturation oocytes were then incubated in Maturation Medium for 24 hours at 37*C which permits the oocytes to mature to the metaphase II stage. The matured oocytes were then washed twice in Sperm-TL 25 and 10 oocytes were then transferred into 44 p of Fertilization Medium. The mature oocytes (10 oocytes/ 4 4 pl Fertilization Medium) were then fertilized by the addition of 2 pil of sperm at a concentration of 2.5 x 10 7 /ml, 2 pl of PHE and 2 p of heparin (fertilization mixture). Sperm was prepared by discontinuous percoll gradient separation of frozen-thawed semen as described (Kim et al., Mol. Reprod. Develop., 35:105 [19931). Briefly, percoll gradients 30 were formed by placing 2 ml of each of 90% and 45% percoll in a 15 ml conical tube. - 50 - WO 00/30437 PCT/US99/26848 Frozen-thawed semen was layered on top of the gradient and the tubes were centrifuged for 10 minutes at 700xg. Motile sperm were collected from the bottom of the tube. The oocytes were incubated for 16 to 24 hours at 37"C in the fertilization mixture. Following fertilization, the cumulus cells were removed by vortexing the cells (one cell stage 5 zygotes, Pronucleus Stage) for 3 minutes to produce "nude" oocytes. The nude oocytes were then washed twice in embryo culture medium (EIAA) and 20 to 25 zygotes were then cultured in 50 ld drop of ElAA (without serum until Day 4 at which time the zygotes were placed in EIAA containing 10% serum) until the desired developmental stage was reached: approximately 48 hours or Day 2 (Day 0 is the day when the matured oocytes are co-cultured 10 with sperm) for morula stage (8 cell stage) or Day 6-7 for blastocyst stage. Embryos at the morula stage were analyzed for expression of p-galactosidase as described in Example 6. Embryos derived from injected pre-maturation oocytes were also analyzed for p-galactosidase expression at the 2 cell, 4 cell, and blastocyst stage and all developmental stages examined were positive. 15 c) Preparation, Injection and Fertilization of Pre-Fertilization Oocytes Pre-maturation oocytes were harvested, washed twice with TL-HEPES as described above. The oocytes were then cultured in Maturation Medium (10 oocytes per 50 pl 20 medium) for 16 to 20 hours to produce pre-fertilization oocytes (Metaphase II Stage). The pre-fertilization or matured oocytes were then vortexed for 3 minutes to remove the cumulus cells to produce nude oocytes. The nude oocytes were washed twice in TL-HEPES and then transferred into a 100 1 d drop of TL-HEPES for microinjection. Microinjection was conducted as described above. 25 Following microinjection, the pre-fertilization oocytes were washed twice with TL HEPES and then placed in Maturation Medium until fertilization. Fertilization was conducted as described above. Following fertilization, the zygotes were then washed twice in EIAA and 20 to 25 zygotes were then cultured per 50 pl drop of EIAA until the desired developmental stage was reached. The embryos were then examined for p-galactosidase expression (Ex. 6) 30 or transferred to recipient cows (Ex. 7). -51 - WO 00/30437 PCTIUS99/26848 d) Preparation and Injection of One-Cell Stage Zygotes Matured oocytes (Metaphase 11 stage) were generated as described above. The matured oocytes were then co-cultured in the presence of sperm for 16 to 20 hours as described above to generate zygotes at the pronucleus stage. Zygotes at the pronucleus stage 5 were vortexed for 3 minutes to remove the cumulus cell layer prior to microinjection. Microinjection of retrovirus was conducted as described above. Following microinjection, the zygotes were washed four times in EIAA and then placed in an EIAA culture drop (25 zygotes per 50 pLI drop of EIAA). The zygotes were cultured in EIAA (20 to 25 zygote per 50 pd drop of EIAA) until the desired developmental stage was reached. The embryos were 10 then examined for p-galactosidase expression (Ex. 6) or transferred to recipient cows (Ex. 7). EXAMPLE 6 Injection of Pseudotyped Retrovirus Into the Perivitelline Space of Maturing Bovine Oocytes 15 Results in the Efficient Transfer of Vector Sequences Oocytes and one-cell zygotes which had been microinjected with pseudotyped LZRNL virus and cultured in vitro were examined for expression of vector sequences by staining for p-galactosidase activity when the embryos had reached the morula stage. p-galactosidase 20 activity was examined as follows. Embryos were washed twice in PBS then fixed in 0.5% glutaraldehyde in PBS containing 2mM MgCl 2 for 40 min. at 4*C . The fixed embryos were then washed three times with PBS containing 2mM MgCl 2 and then incubated at 37 0 C overnight in X-gal solution (20mM K 3 Fe(CN) 6 , 20mM K 4 Fe(CN)6-H 2 0, 2 mM MgCl 2 and 1 mg/ml X-gal). The presence of a blue precipitate indicates expression of p-galactosidase 25 activity. The results are shown in Table I below. - 52 - WO 00/30437 PCTIUS99/26848 TABLE 1 Stage at Analys % Positive For Stageat Ijecton p-galactosidase Expresslion Pre-Fertilization Oocyte Morula 47 (80/172)" (injected 20-24 hrs after 5 exposure to Maturation Medium) Pronuclei Stage (injected Morula 25 (20/80) 18-20 hrs after exposure to sperm) 10 One-Cell Zygote Morula 25 (20/80) *Number positive/number injected. From the results shown in Table 1, it is clear that infection of pre-fertilization oocytes 15 and zygotes using the methods of the present invention results in the transfer and expression of retrovirally encoded nucleic acid. While not limiting the present invention to any particular theory, it is currently believed that only half of the daughter cells from an initial founder cell infected with a retrovirus will contain the provirus because the retroviral provirus integrates into post-replication host DNA (Hajihosseini et al., EMBO J., 12:4969 [1993]). 20 Therefore, the finding that 47% of the injected pre-fertilization oocytes are positive for p galactosidase expression suggests that 100% of these injected oocytes were infected with the recombinant retrovirus. Therefore, the methods of the present invention provide an efficiency of generating transgenic embryos which is superior to existing methods. 25 - 53 - WO 00/30437 PCTIUS99/26848 EXAMPLE 7 Generation of Transgenic Cows Containing Integrated Retroviral Nucleic Acid Sequences 5 Embryos derived from infected pre-fertilization oocytes and early zygotes were transferred into recipient cows which were allowed to progress to term as described below. a) Treatment of Embryos Derived From Infected Oocytes and Zygotes Pre-fertilization oocytes (infected about 17 hours after exposure to Maturation 10 Medium) and early stage zygotes (s 8 cell stage) were prepared and infected as described in Example 5 with the exceptions that 1) the VSV-G-pseudotyped virus used was the LSRNL virus which was prepared as described for the LZRNL virus in Ex. 2, and 2) at day 4 post fertilization, embryos derived from injected pre-fertilization oocytes and zygotes were placed in freshly prepared EIAA medium containing 10% FCS and allowed to develop in vitro until 15 transfer into recipient cows. Embryos at Day 7 were transferred into recipient females which were prepared as described below. b) Preparation of Recipient Cows and Embryo Transfer Recipient cows were synchronized by injecting 100 ptg of gonadotropin-releasing 20 hormone (GnRH; Sanofi Winthrop Pharmaceutical Inc., New York, NY) (Day 0). Seven days later, the recipients were injected with 25 mg of PGF2c (Upjohn Co., Kalamazoo, MI). Thirty to 48 hours after injection of PGF2c, a second injection of 100 ig of GnRH was given. Ovulation occurs about 24-32 hours post injection. Seven days after ovulation occurred, embryos derived from infected oocytes and zygotes (Day 7 embryos) were then 25 transferred nonsurgically to the uteri the recipient cows. Two embryos were transferred into each recipient (it is expected that only one calf will be born from the transfer of two embryos into a single recipient). A total of 20 embryos were transferred into recipients on three separate days. In the first transfer 8 embryos derived from infected pre-fertilization oocytes were transferred into 4 30 recipients; four calves were born to these recipients and all four were found to be positive for -54 - WO 00/30437 PCT/US99/26848 the presence of vector proviral DNA (i.e., 100% were transgenic). In the second transfer, 8 embryos derived from post-fertilization zygotes were transferred into 4 recipients; 2 calves were born to these recipients and one of these animals was found to be transgenic (in the second transfer, one pregnancy was lost in the first month and another pregnancy comprising 5 twins was lost in the eighth month; neither embryo from the 8 month pregnancy was transgenic). In the third transfer 4 embryos derived from infected zygotes (infected at the 4-8 cell stage) were transferred into 2 recipients; 3 calves were born to these recipients and none were transgemc. The nine calves appeared healthy at birth and continue to appear healthy at the age of 10 6 months. Following the birth of offspring derived from the injected oocytes and zygotes, the offspring were examined by Southern blot and PCR analyses to determine whether they contained the retroviral transgenes and whether they exhibited somatic cell mosaicism. Skin tissue and white blood cells (buffy coat) was collected from the calves. Genomic DNA was extracted using standard techniques. Briefly, the tissue samples were digested with 50 ptg/ml 15 proteinase K (GIBCO) at 55*C. The samples were then extracted sequentially twice with an equal volume of phenol, once with phenol:chloroform (1:1) and once with chloroform. The DNA present in the. aqueous layer was then precipitated by the addition of 2 volumes of isopropanol. The DNA was collected by centrifugation and the DNA pellet was resuspended in TE buffer (10mM Tris-Cl, 1 mM EDTA, pH 8.0) and the concentration was determined 20 spectrophotometrically. The DNA was then analyzed by Southern blotting and PCR analysis. The results are shown in Figures 2 and 3. Figure 2 shows an autoradiography of a Southern blot of genomic DNA isolated from the skin (Fig. 2A) and blood (Fig. 2B) of the six calves derived from either pre-fertilization oocytes infected with VSV G-pseudotyped LSRNL virus at about 17 hours after exposure to 25 Maturation Medium (calves numbered 17, 18, 20 and 21) or one cell zygotes infected at about 12 hrs post-fertilization (calves numbered 15 and 16). The calf DNA was digested with HindIII which cuts the pLSRNL vector twice to generate a 1.6 kb fragment (Fig. 2C). HindIII-digested DNA from the blood (lane labelled * 12 derived from a random, nontransgenic calf), ovary and semen of nontransgenic cows (derived random adult females 30 and males) were also included. Lanes labeled "3989 M and F" represent DNA derived from - 55 - WO 00/30437 PCT/US99/26848 two late term embryos that were born one month prematurely (these calves were generated from injected fertilized eggs and both are nontransgenic). Lanes labelled "LSRNL pDNA" contain HindIII-digested pLSRNL plasmid DNA and provide controls for the quantitation of the copy number of the integrated proviruses in the offspring (DNA equivalent to 5, 10 or 25 5 copies of LSRNL were applied in these lanes). Approximately 10 ig of the HindIll-digested DNAs were electrophoresed on 0.8% agarose gels, and blotted onto a nylon membrane. The membrane was hybridized with a 3p labelled probe which hybridizes to the HBsAg gene present in the pLZRNL vector (Fig. 2C). The HBsAG probe was generated by PCR amplification of pLSRNL plasmid DNA using the 10 upstream primer S-1 (5'-GGCTATCGCTGGATGTGTCT-3'; [SEQ ID NO:3]) and the downstream primer S-3 (5'-ACTGAACAAATGGCACTAGT-3'; [SEQ ID NO:4]). The PCR generated probe (334 bp) was labeled using a Rediprime kit (Amersham, Arlington Heights, IL) according to the manufacturer's instructions. The autoradiographs shown in Fig. 2 were generated by exposure of the blots to X-ray film for 3 weeks at -80 0 C. 15 The results shown in Figure 2 demonstrates that calves 16, 17, 18, 20 and 21 contained retroviral vector DNA in both the skin (Fig. 2A) and blood (Fig. 2B). As blood cells (buffy coat) are derived from the mesoderm and skin cells are derived from the ectoderm, these results show that the transgenic animals do not display somatic cell mosaicism. Southern blotting analysis has shown that the majority (i.e., 7/9) of the 20 transgenic calves contain a single copy of the proviral sequence; a few (i.e., 2/9) animals appear to contain two copies of the integrated proviral sequence. These results further demonstrate that retroviral infection of both pre-fertilization oocytes and early stage zygotes was successful in integrating the viral sequences into the genome of the resulting transgenic animals. 25 In order to confirm the presence of integrated retroviral sequences in the genome of the transgenic animals' somatic cells, PCR analysis (Fig. 3) was performed using genomic DNA isolated from the five transgenic calves which were determined by Southern blot analysis to be transgenic for the retroviral sequences. Figure 3 shows the results of the PCR analysis following amplification of two different regions (i.e., the neo gene and the HBsAg - 56 - WO 00/30437 PCT/US99/26848 gene) of the LZRNL retroviral genome which was injected into the oocytes. Genomic DNA from the skin and blood of each of the five transgenic calves was amplified using the upstream and downstream primers (SEQ ID NOS:l and 2 and NOS:3 and 4; described supra) for the neo (Fig. 3A) and HBsAg (Fig. 3B) genes, respectively. The PCRs were conducted 5 using the following thermocycling conditions: 94*C ( 4 min); (94*C [2 min]; 50*C [2 min]; 72*C [2 min]) 3 ey; 72*C (10 min). Amplification yielded the expected size of amplified sequence with the neo (349 bp) and HBsAg (334 bp) primers in both the blood and skin of each of the five transgenic calves. Genomic DNA isolated from the blood of non-transgenic calves as well as from semen and ovary of non-transgenic cattle were used as negative 10 controls in the PCRs. pLSRNL DNA was used as the positive control. These data demonstrate that the infection of pre-fertilization oocytes results in the efficient transfer of retroviral vector DNA (100% or 4 transgenic calves/4 calves born from embryos derived from infected pre-fertilization oocytes). In addition to providing a means for efficiently generating transgenic animals. The methods of the present invention provide a 15 means for generating transgenic animals which do not display somatic cell mosaicism. Further, these methods permit the production of transgenic animals which contain a single copy of the transgene. In order to confirm germ line transmission of the integrated viral sequences, the transgenic offspring are bred with non-transgenic cattle and the presence of the viral 20 sequences (i.e., the transgene) determined using Southern blot analysis or PCR amplification as described above. Animals which are heterozygous or homozygous for the transgene are produced using methods well known to the art (e.g., interbreeding of animals heterozygous for the transgene). 25 - 57 - WO 00/30437 PCT/US99/26848 EXAMPLE 8 Detection of the HBsAg Transgene in the Sperm of Transgenic Bulls Semen was collected from two transgenic bulls, #16 and #21. DNA was isolated from 5 the semen samples using methods known in the art. PCR was then conducted on the sample DNA, using the primers Si and S3, as described below. The PCR results indicated that both bulls had the transgene in their sperm. These results demonstrated that transgenic bulls produced either by perivitelline space injection of an unfertilized oocyte (#21) or by perivitelline space injection of a fertilized 10 zygote (#16) have the transgene present in their sperm, and are thus capable of passing the transgene on to their offspring. Indeed, as described in Example 9 below, bull #16 has produced two live transgenic offspring. 15 EXAMPLE 9 Confirmation of Transgene Stability To confirm the transgene stability of a transgenic bull produced as described in the previous Examples, and to determine whether the gene was behaving in a normal Mendelian 20 fashion, a transgenic bull (designated as #16) produced through one-cell zygotic injection, was naturally mated with a non-transgenic cow. This mating resulted in the production of twin calves, one female (designated as #42) and one male (designated as #43). Blood and skin samples were taken from each of the calves, and their DNA was isolated using methods known in the art (See e.g., Hogan et al.,, Manipulating the Mouse Embryo: A Laboratory 25 Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY [1986]). PCR was performed on these DNA samples, using the methods described in Example 7, above. Two sets of primers were used to analyze both the blood and skin samples. One set of primers ("Neol" and "Neo2") was used to detect the neomycin resistance gene in the LSRNL vector. The location and description of these primers is shown in Figure 3A. The second set of 30 primers (Sl and S3) were used to detect a portion of the Hepatitis B surface antigen (HBsAg) - 58 - WO 00/30437 PCT/US99/26848 gene in the LSRNL vector. The location and description of these primers is shown in Figure 3B. Both the skin and blood samples from these calves were positive for the LSRNL transgene, indicating that the gene can be transmitted from an original transgenic bull created by one-cell zygotic injection, to his offspring. Figure 4 shows the results of PCR screening of 5 skin samples from these calves. In this gel, the control animal is indicated as #12, while the offspring are indicated as #42 and #43, as described above. Lane one contains DNA size standards, and lanes 2-4 contain the DNA samples analyzed using the neo PCR primers, while lanes 5-7 contain the same DNA samples analyzed using the HBsAg PCR primers. The correct size for the neo band is 349 base pairs, while the correct size for the HBsAg band is 10 slightly smaller, at 334 base pairs. These data demonstrate that transgenic animals can be successfully created by perivitelline space injection of a one-cell zygote with a pseudotyped replication-defective retrovirus. In addition, these data also demonstrate that the incorporated transgene is passed on the offspring of the transgenic animal. 15 EXAMPLE 10 Production of HBsAg in Milk of Transgenic Cows 20 In this experiment, female founder transgenic heifers (designated as #17 and #18), were artificially induced to lactate at 22 months of age, using a protocol described by Dommer (Dommer, "Artificial Induction of Lactation in Nulligravida Heifers," MS Thesis, University of Wisconsin, Madison, 1996; and Dommer and Bremel, J. Dairy Sci., 79 (Suppl. 1):146 [1996]). After induction of lactation and the subsequent secretion of milk, the milk 25 was assayed for the presence of HBsAg. Milk samples were collected from #17 and #18, and five control heifers that had also been artificially induced to lactate using the same protocol and at the same time as #17 and #18. Whole milk samples were analyzed using the AUSZYME® Monoclonal Antibody Assay (Abbott), for the detection of HBsAg. - 59 - WO 00/30437 PCT/US99/26848 The milk samples collected from #17 and #18 tested positive for HBsAg. The milk samples from the five control heifers were all negative for the antigen. The estimated level of HBsAg production, based on the AUSZYME@ kit and its positive control, as well as a dilution series of the milk samples, was found to be 200 ng HBsAg/ml milk, for #17, and 700 5 ng HBsAg/ml milk, for #18. These data clearly demonstrate that transgenic animals produced by perivitelline space injection of an unfertilized oocyte are capable of producing substantial levels of foreign proteins in their milk. In addition, these experiments also demonstrate the utility of using the MoMLV LTR as a promoter for driving the production of foreign proteins in the milk of 10 transgenic cattle, as this promoter was shown to be capable of causing the production of HBsAg in the milk of these transgenic animals. In addition, the expression of an exonless construct (i.e., with the LTR of the present invention) indicates that the LTR is also functioning as an enhancer. Furthermore, these data clearly show that the expression system of the present invention is capable of preferential mammary expression, even though the 15 MoMLY LTR is not a "mammary-specific" promoter. EXAMPLE 11 Presence HBsAg in the Serum and Urine 20 of Transgenic Cattle In addition to milk samples, blood and urine samples were also collected from the two female founder transgenic heifers #17 and #18. The serum was separated from the whole blood using methods known in the art (i.e., centrifugation). The urine and serum samples 25 were assayed for the presence of HBsAg using the AUSZYME@ system, as per the kit manufacturer's instructions. The urine and serum of #17 and #18 all tested positive for the presence of HBsAg, while the urine and serum samples from the control animals all tested negative. Based on this test system, the estimated level of HBsAg production for #17 was 2.58 ng HBsAg/ml of serum, and 0.64 ng HBsAg/ml of urine. For #18, the values were 0.64 30 ng HBsAg/ml of 'serum, and 0.97 ng HBsAg/ml of urine. - 60 - WO 00/30437 PCT/US99/26848 These data demonstrate that transgenic animals produced by perivitelline space injection of an unfertilized oocyte are capable of producing substantial levels of foreign proteins in their serum and urine. These data further demonstrate the utility of using the MoMLV LTR as a promoter for driving the constitutive production of foreign proteins in 5 transgenic cattle, as this promoter was shown in these experiments to cause the production of HBsAg in milk, serum, and urine of transgenic cattle. As used herein, the term "constitutive" refers to a relatively low level of expression throughout the animal's body. In contrast, the term "preferentially expressed" indicates that a relatively high level of expression is achieved in certain tissues or body fluids, as compared to other tissues and fluids. For example, in 10 preferred embodiments of the present invention, foreign proteins of interest are preferentially expressed in such fluids as milk. It is contemplated that such a promoter could be used to control expression of proteins that would prevent disease and/or infection in the transgenic animals and their offspring,- or be of use in the production of a consistent level of protein expression in a number of different 15 tissues and body fluids. From the above it is clear that the invention provides improved methods and compositions for the production of transgenic non-human animals. The methods of the present invention provide for the production of transgenic non-human animals with improved 20 efficiency and a reduced incidence of generating animals which are mosaic for the presence of the transgene. All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the 25 scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology, transgenic animals, or related fields are intended to be within the scope of 30 the following claims. - 61 - WO 00/30437 PCT/US99/26848 SEQUENCE LISTING (1) GENERAL INFORMATION: (i) APPLICANT: Bremel, Robert D. Chan, Anthony W.S. Burns, Jane C. Bleck, Gregory T. (ii) TITLE OF INVENTION: Methods For Creating Transgenic Animals (iii) NUMBER OF SEQUENCES: 10 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Medlen & Carroll, LLP (B) STREET: 220 Montgomery Street, Suite 2200 (C) CITY: San Francisco (D) STATE: California (E) COUNTRY: United States of America (F) ZIP: 94104 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US (B) FILING DATE: (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Ingolia, Diane E. (B) REGISTRATION NUMBER: 40,027 (C) REFERENCE/DOCKET NUMBER: WARF-02184 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (415) 705-8410 (B) TELEFAX: (415) 397-8338 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: GCATTGCATC AGCCATGATG 20 - 62 - WO 00/30437 PCT/US99/26848 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: GATGGATTGC ACGCAGGTTC 20 (2) INFORMATION .FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: GGCTATCGCT GGATGTGTCT 20 (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: ACTGAACAAA TGGCACTAGT 20 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1590 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" - 63 - WO 00/30437 PCT/US99/26848 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1. .1587 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: ATG GAT CTC TTT CCC ATT TTG GTC GTG GTG CTC ATG ACA GAT ACT GTC 48 Met Asp Leu Phe Pro Ile Leu Val Val Val Leu Met Thr Asp Thr Val 11 1 5 10 1 TTA GGG AAG TTT CAA ATT GTC TTC CCG GAT CAG AAT GAA CTG GAG TGG 96 Leu Gly Lys Phe Gin Ile Val Phe Pro Asp Gln Asn Glu Leu Glu Trp 20 25 30 AGA CCA GTT GTG GGT GAC TCT CGG CAT TGC CCA CAG TCA TCA GAA ATG 144 Arg Pro Val Val Gly Asp Ser Arg His Cys Pro Gln Ser Ser Glu Met 35 40 45 CAA TTC GAT GGA AGC AGA TCC CAG ACC ATA CTG ACT GGG AAA GCT CCC 192 Gin Phe Asp Giy Ser Arg Ser Gln Thr Ile Leu Thr Gly Lys Ala Pro 50 55 60 GTG GGG ATC ACG CCC TCT AAA TCA GAT GGA TTT ATC TGC CAT GCC GCA 240 Val Giy Ile Thr Pro Ser Lys Ser Asp Gly Phe Ile Cys His Ala Ala 65 70 75 80 AAA TGG GTG ACA ACA TGT GAT TTC AGG TGG TAT GGG CCG AAA TAC ATC 288 LYS Trp Vai Thr Thr Cys Asp Phe Arg Trp Tyr Gly Pro Lys Tyr le 85 90 95 ACT CAT TCA ATA CAT CAT CTG AGA CCG ACA ACA TCA GAC TGT GAG ACA 336 Thr His Ser le His His Leu Arg Pro Tbx Thr Ser Asp Cys Gl u Thr 100 105 110 GCT CTC CAA AGG0TAT AAA GAT GGG AGC TTA ATC AAT CTT GGA TTC CCC 384 Ala.Leu Gin Arg Tyr Lys Asp Gly Ser Leu Ile Asn Leu Gly Phe Pro 115 120 125 CCA GAA TCC TGC GGT TAT GCA ACA GTC ACA GAT TCT GAG GCA ATG TTG 432 Pro G u Ser Cys Gly Tyr Ala Tr Val Thr Asp Ser Giu Ala Met Leu 130 135 140 GTC CAA GTG ACT CCC CAC CAC GTT GGG GTG GAT GAT TAT AGA GGT CAC 480 Val Gin Val Thr Pro His His Vai Gly Val Asp Asp Tyr Arg Gly His 145 150 155 160 TGG ATC GAC CCA CTA TTT CCA GGA GGA GAA TGC TCC ACC AAT TTT TGT 528 Trp le Asp Pro Leu Phe Pro Gly Gly Giu Cys Ser Thr Asn Phe Cys i6 5 170 175 GAT ACA GTC CAC AAT TCA TCG GTG TGG ATC CCC AAG AGT CAA AAG ACT 576 Asp Thr Val His Asn Ser Ser Vai Trp Ile Pro Lys Ser Gin Lys Thr 180 185 190 GAC ATC TGT GCC CAG TCT TTC AAA AAT ATC AAG ATG ACC GCA TCT TAC 624 Asp Ile Cys Ala Gin Ser Phe Lys Asn Ile Lys Met Thr Ala Ser Tyr 195 200 205 CCC TCA GAA GGA GCA TTG GTG AGT GAC AGA TTT GCC TTC CAC AGT GCA 672 Pro Ser Giu Gly Ala Leu Val Ser Asp Arg Phe Ala Phe His Ser Ala 210 215 220 - 64 - WO 00/30437 PCT/US99/26848 TAT CAT CCA AAT ATG CCG GGG TCA ACT GTT TGC ATA ATG GAC TTT TGC 720 Tyr His Pro Asn Met Pro Gly Ser Thr Val Cys Ile Met Asp Phe Cys 225 230 235 240 GAA CAA AAG GGG TTG AGA TTC ACA AAT GGA GAG TGG ATG GGT CTC AAT 768 Glu Gln Lys Gly Leu Arg Phe Thr Asn Giy Glu Trp Met Gly Leu Asn 245 250 255 GTG GAG CAA TCC ATC CGA GAG AAG AAG ATA AGT GCC ATC TTC CCA AAT 816 Val Glu Gln Ser Ile Arg Glu Lys Lys Ile Ser Ala Ile Phe Pro Asn 260 265 270 TGT GTT GCA GGG ACT GAA ATC CGA GCC ACA CTA GAA TCA GAA GGG GCA 864 Cys Vai Ala Giy Thr Gi' Ile Arg Ala Thr Let' Giu Ser Git' Gly Ala 275 280 285 AGA ACT TTG ACG TGG GAG ACT CAA AGA ATG CTA GAT TAC TCT TTG TGT 912 Arg Thr Leu Thr Trp Glu Thr Gln Arg Met Leu Asp Tyr Ser Leu Cys 290 295 300 CAG AAC ACC TGG GAC AAA GTT TCC AGG AAA GAA CCT CTC AGT CCG CTT 960 Gln Asn Thr Trp Asp Lys Val Ser Arg Lys Glu Pro Leu Ser Pro Leu 305 310 315 320 GAC TTG AGC TAT CTG TCA CCA AGG GCT CCA GGG AAA GGC ATG GCC TAT 1008 Asp Leu Ser Tyr Leu Ser Pro Arg Ala Pro Gly Lys Gly Met Ala Tyr 325 330 335 ACC GTC ATA AAC GGA ACC CTG CAT TCG GCT CAT GCT AAA TAC ATT AGA 1056 Thr Val Ile Asn Gly Thr Leu His Ser Ala His Ala Lys Tyr Ile Arg 340 345 350 ACC TGG ATT GAT TAT GGA GAA ATG AAG GAA ATT AAA GGT GGA CGT GGA 1104 Thr Trp Ile Asp Tyr Gly Glu Met Lys Glu Ile Lys Gly Gly Arg Gly 355 360 365 GAA TAT TCC AAG GCT CCT GAG CTC CTC TGG TCC CAG TGG TTC GAT TTT 1152 Glu Tyr Ser Lys Ala Pro Git Leu Leu Trp Ser Gin Trp Phe Asp Phe 370 375 380 GGA CCG TTC AAA ATT GGA CCG AAT GGA CTC CTG CAC ACA GGG AAA ACC 1200 Gly Pro Phe Lys Ile Gly Pro Asn Gly Leu Leu His Thr Gly Lys Thr 385 390 395 400 TTT AAA TTC CCT CTT TAT TTG ATC GGA GCA GGC ATA ATT GAC GAA GAT 1248 Phe -Lys Phe Pro Let Tyr Leu Ile Gly Ala Gly Ile Ile Asp Glu Asp 405 410 415 CTG CAT GAA CTA GAT GAG GCT GCT CCC ATT GAT CAC CCA CAA ATG CCT 1296 Leu His Glu Leu Asp Glu Ala Ala Pro Ile Asp His Pro Gin Met Pro 420 425 430 GAC GCG AAA AGC GTT CTT CCA GAA GAT GAA GAG ATA TTC TTC GGA GAC 1344 Asp Ala Lys Ser Val Leu Pro Glu Asp Glu Glu Ile Phe Phe Gly Asp 435 440 445 ACA GGT GTA TCC AAA AAC CCT ATC GAG TTG ATT CAA GGA TGG TTC TCA 1392 Thr Gly Val Ser Lys Asn Pro Ile Glu Leu Ile Gin Gly Trp Phe Ser 450 455 460 - 65 - WO 00/30437 PCTIUS99/26848 AAT TGG AGA GAG AGT GTA ATG GCA ATA GTC GGA ATT GTT CTA CTC ATC 1440 Asn Trp Arg Glu Ser Val Met Ala Ile Val Gly Ile Val Leu Leu Ile 465 470 475. 480 GTT GTG ACA TTT CTG GCG ATC AAG ACG GTC CGG GTG CTT AAT TGT CTC 1488 Val Val Thr Phe Leu Ala Ile Lys Thr Val Arg Val Leu Asn Cys Leu 485 490 495 TGG AGA CCC AGA AAG AAA AGA ATC GTC AGA CAA GAA GTA GAT GTT GAA 1536 Trp Arg Pro Arg Lys Lys Arg Ile Val Arg Gln Glu Val Asp Val Glu 500 505 510 TCC CGA CTA AAC CAT TTT GAG ATG AGA GGC TTT CCT GAA TAT GTT AAG 1584 Ser Arg Leu Asn His Phe Glu Met Arg Gly Phe Pro Glu Tyr Val Lys 515 520 525 AGA TAA 1590 Arg (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 529 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Met Asp Leu Phe Pro Ile Leu Val Val Val Leu Met Thr Asp Thr Val 1 5 10. 15 Leu Gly Lys Phe Gln Ile Val Phe Pro Asp Gln Asn Glu Leu Glu Trp 20 25 30 Arg Pro Val Val -Gly Asp Ser Arg His Cys Pro Gln Ser Ser Glu Met 35 40 45 Gln Phe Asp Gly Ser Arg Ser Gln Thr Ile Leu Thr Gly Lys Ala Pro 50 55 60 Val Gly Ile Thr Pro Ser Lys Ser Asp Gly Phe Ile Cys His Ala Ala 65 70 , 75 80 Lys Trp Val Thr Thr Cys Asp.Phe Arg Trp Tyr Gly Pro Lys Tyr Ile 85 90 95 Thr His Ser Ile His His Leu Arg Pro Thr Thr Ser Asp Cys Glu Thr 100 105 110 Ala Leu Gln Arg Tyr Lys Asp Gly Ser Leu Ile Asn Leu Gly Phe Pro 115 120 125 Pro Glu Ser Cys Gly Tyr Ala Thr Val Thr Asp Ser Glu Ala Met Leu 130 135 140 Val Gln Val Thr Pro His His Val Gly Val Asp Asp Tyr Arg Gly His 145 150 155 160 Trp Ile Asp Pro Leu Phe Pro Gly Gly Glu Cys Ser Thr Asn Phe Cys 165 170 175 - 66 - WO 00/30437 PCTIUS99/26848 Asp Thr Val His Asn Ser Ser Val Trp Ile Pro Lys Ser Gln Lys Thr 180 185 190 Asp Ile Cys Ala Gln Ser Phe Lys Asn Ile Lys Met Thr Ala Ser Tyr 195 200 205 Pro Ser Glu Gly Ala Leu Val Ser Asp Arg Phe Ala Phe His Ser Ala 210 215 220 Tyr His Pro Asn Met Pro Gly Ser Thr Val Cys Ile Met Asp Phe Cys 225 230 235 240 Glu Gln Lys Gly Leu Arg Phe Thr Asn Gly Glu Trp Met Gly Leu Asn 245 250 255 Val Glu Gln Ser Ile Arg Glu. Lys Lys Ile Ser Ala Ile Phe Pro Asn 260 265 270 Cys Val Ala Gly Thr Glu Ile Arg Ala Thr Leu Glu Ser Glu Gly Ala 275 280 285 Arg Thr Leu Thr Trp Glu Thr Gln Arg Met Leu Asp Tyr Ser Leu Cys 290 295 300 Gln Asn Thr Trp Asp Lys Val Ser Arg Lys Glu Pro Leu Ser Pro Leu 305 310 315 320 Asp Leu Ser Tyr Leu Ser Pro Arg Ala Pro Gly Lys Gly Met Ala Tyr 325 330 335 Thr Val Ile Asn Gly Thr Leu His Ser Ala His Ala Lys Tyr Ile Arg 340 345 350 Thr Trp le Asp .Tyr Gly Glu Met Lys Glu Ile Lys Gly Gly Arg Gly 355 360 365 Glu Tyr Ser Lys Ala Pro Giu Leu Leu Trp Ser Gin Trp Phe Asp Phe 370 375 380 Gly Pro Phe Lys Ile Gly Pro Asn Gly Leu Leu His Thr Gly Lys Thr 385 390 395 400 Phe Lys Phe Pro Leu Tyr Leu Ile Gly Ala Gly Ile Ile Asp Glu Asp 405 - 410 415 Leu His Glu Leu Asp Glu Ala Ala Pro Ile Asp His Pro Gln Met Pro 420 425 430 Asp Ala Lys Ser Val Leu Pro Glu Asp Glu Glu Ile Phe Phe Gly Asp 435 440 445 Thr Gly Val Ser Lys Asn Pro Ile Glu Leu Ile Gln Gly Trp Phe Ser 450 455 460 Asn Trp Arg Glu Ser Val Met Ala Ile Val Giy Ile Val Leu Leu le 465 470 475 480 Val Val Thr Phe Leu Ala Ile Lys Thr Val Arg Val Leu Asn Cys Leu 485 490 495 Trp Arg Pro Arg Lys Lys Arg Ile Val Arg Gln Glu Val Asp Val Glu - 67 - WO 00/30437 PCT/US99/26848 500 505 510 Ser Arg Leu Asn His Phe Glu Met Arg Gly Phe Pro Glu Tyr Val Lys 515 520 525 Arg (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1590 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1. .1587 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: ATG GAT CTC TTT CCC ATT TTG GTC GTG GTG CTC ATG ACA GAT ACT GTC 48 Met Asp Leu Phe Pro Ile Leu, Val Val Val Leu Met Thr Asp Thx Val 1 .5 10 15 TTA GGG AAG TTT CAA ATT GTC TTC CCG GAT CAG AAT GAA CTG GAG TGG 96 Leu Gly Lys Phe Gln Ile Val Phe Pro Asp Gln Asn Glu Leu Glu Trp 20 25 30 AGA CCA GTT GTG GGT GAC TCT CGG CAT TGC CCA CAG TCA TCA GAA ATG 144 Arg Pro Val Val Gly Asp Ser Axg His Cys Pro Gln Ser Ser Glu Met 35 40 45 CAA TTC GAT GGA AGC AGA TCC CAG ACC ATA CTG ACT GGG AAA GCT CCC 192 Gin Phe Asp Gly Ser Arg Ser Gin Thr Ile Leu Tbr Gly Lys Ala Pro 50 55 60 GTG GGG ATC ACG CCC TCT AAA TCA GAT GGA TTT ATC TGC CAT GCC GCA 240 Val Gly Ile Thr Pro Ser Lys Ser Asp Gly Phe le Cys His Ala Ala 65 70 75 80 AAA TGG GTG ACA ACA TGT GAT TTC AGG TGG TAT GGG CCG AAA TAC ATC 288 Lys Trp Val Thr Thr Cys Asp Phe Arg Trp Tyr Gly Pro Lys Tyr Ile 85 90 95 ACT CAT TCA ATA CAT CAT CTG AGA CCG ACA ACA TCA GAC TGT GAG ACA 336 Thr His Ser Ile His His Leu Arg Pro Thr Thr Ser Asp Cys Glu Thr 100 105 110 GCT CTC CAA AGG TAT AAA GAT GGG AGC TTA ATC AAT CTT GGA TTC CCC 384 Ala Leu Gin Arg Tyr Lys Asp Gly Ser Leu Ile Asn Leu Gly Phe Pro 115 120 125 CCA GAA TCC TGC GGT TAT GCA ACA GTC ACA GAT TCT GAG GCA ATG TTG 432 Pro Glu Ser Cys Gly Tyr Ala Thr Val Thr Asp Ser Glu Ala Met Leu 130 135 140 GTC CAA GTG ACT CCC CAC CAC GTT GGG GTG GAT GAT TAT AGA GGT CAC 480 Val Gln Val Thr Pro His His Val Gly Val Asp Asp Tyr Arg Gly His - 68 - WO 00/30437 PCT/US99/26848 145 150 155 160 TGG ATC GAC CCA CTA TTT CCA GGA GGA GAA TGC TCC ACC AAT TTT TGT 528 Trp Ile Asp Pro Leu Phe Pro Gly Gly Giu Cys Ser Thr Asn Phe Cys 165 170 175 GAT ACA GTC CAC AAT TCA TCG GTG TGG ATC CCC AAG AGT CAA AAG ACT 576 Asp Thr Val His Asn Ser Ser Val Trp Ile Pro Lys Ser Gln Lys Thr 180 185 190 GAC ATC TGT GCC CAG TCT TTC AAA AAT ATC AAG ATG ACC GCA TCT TAC 624 Asp Ile Cys Ala Gln Ser Phe Lys Asn Ile Lys Met Thr Ala Ser Tyr 195 200 205 CCC TCA GAA GGA GCA TTG GTG AGT GAC AGA TTT GCC TTC CAC AGT GCA 672 Pro Ser Glu Gly Ala Leu Val Ser Asp Arg Phe Ala Phe His Ser Ala 210 215 220 TAT CAT CCA AAT ATG CCG GGG TCA ACT GTT TGC ATA ATG GAC TTT TGC 720 Tyr His Pro Asn Met Pro Gly Ser Thr Val Cys Ile Met Asp Phe Cys 225 230 235 240 GAA CAA AAG GGG TTG AGA TTC ACA AAT GGA GAG TGG ATG GGT CTC AAT 768 Glu Gln Lys Gly Leu Arg Phe Thr Asn Gly Glu Trp Met Gly Leu Asn 245 250 255 GTG GAG CAA TCC ATC CGA GAG AAG AAG ATA AGT GCC ATC TTC CCA AAT 816 Val Glu Gln Ser Ile Arg Glu Lys Lys Ile Ser Ala Ile Phe Pro Asn 260 265 270 TGT GTT GCA GGG ACT GAA ATC CGA GCC ACA CTA GAA TCA GAA GGG GCA 864 Cys Val Ala Gly Thr Glu Ile Arg Ala Thr Leu Glu Ser Glu Gly Ala 275 .280 285 AGA ACT TTG ACG TGG GAG ACT CAA AGA ATG CTA GAT TAC TCT TTG TGT 912 Arg Thr Leu Thr Trp Glu Thr Gln Arg Met Leu Asp Tyr Ser Leu Cys 290 295 300 CAG AAC ACC TGG GAC AAA GTT TCC AGG AAA GAA CCT CTC AGT CCG CTT 960 Gln Asn Thr Trp Asp Lys Val Ser Arg Lys Glu Pro Leu Ser Pro Leu 305 310 315 320 GAC TTG AGC TAT CTG TCA CCA AGG GCT CCA GGG AAA GGC ATG GCC TAT 1008 Asp Leu Ser Tyr Leu Ser Pro Arg Ala Pro Gly Lys Gly Met Ala Tyr 325 330 335 ACC GTC ATA AAC GGA ACC CTG CAT TCG GCT CAT GCT AAA TAC ATT AGA 1056 Thr Val Ile Asn Gly Thr Leu His Ser Ala His Ala Lys Tyr Ile Arg 340 345 350 ACC TGG ATT GAT TAT GGA GAA ATG AAG GAA ATT AAA GGT GGA CGT GGA 1104 Thr Trp Ile Asp Tyr Gly Glu Met Lys Glu Ile Lys Gly Gly Arg Gly 355 360 365 GAA TAT TCC AAG GCT CCT GAG CTC CTC TGG TCC CAG TGG TTC GAT TTT 1152 -Gli Tyr Ser Lys Ala Pro Glu Leu Leu Trp Ser Gln Trp Phe Asp Phe 370 375 380 - 69 - WO 00/30437 PCTIUS99/26848 GGA CCG TTC AAA ATT GGA CCG AAT GGA CTC CTG CAC ACA GGG AAA ACC 1200 Gly Pro Phe Lys Ile Gly Pro Asn Gly Leu Leu His Thr Gly Lys Thr 385 390 395 400 TTT AAA TTC CCT CTT TAT TTG ATC GGA GCA GGC ATA ATT GAC GAA GAT 1248 Phe Lys Phe Pro Leu Tyr Leu le Giy Ala Gly Ile le Asp GLu Asp 405 410 415 CTG CAT GAA CTA GAT GAG GCT GCT CCC ATT GAT CAC CCA CAA ATG CCT 1296 Leu His Giu Leu Asp Gu Ala Ala Pro le Asp His Pro Gin Met Pro 420 425 430 GAC GCG AAA AGC GTT CTT CCA GAA GAT GAA GAG ATA TTC TTC GGA GAC 1344 Asp Ala Lys Ser Val Leu Pro Giu Asp Giu Giu Ile Phe Phe Gly Asp 435 44045 ACA GGT GTA TCC AAA AAC CCT ATC GAG TTG ATT CAA GGA TGG TTC TCA 1392 Thr Gly Val Ser Lys Asn Pro le Gu Leu le Gin Gly Trp Phe Ser 450 455 460 AAT TGG AGA GAG AGT GTA ATG GCA ATA GTC GGA ATT GTT CTA CTC ATC 1440 Asn Trp Arg Giu Ser Val Met Ala Ile Val Giy Ile Val Leu Leu Ile 465 470 475 480 GTT GTG ACA TTT CTG GCG ATC AAG ACG, GTC CGG GTG CTT AAT TGT CTC 1488 Val Val Thr Phe Leu Ala Ile Lys Thr Val Arg Val Leu Asn Cys Leu 485 490 495 TGG AGA CCC AGA AAG AAA AGA ATC GTC-AGA CAA GAA GTA GAT GTT GAA 1536 Trp Arg Pro Arg Lys Lys Arg Ile Val Arg Gin Giu Val Asp Val Glu 500 505 510 TCC CGA CTA AAC CAT TTT GAG ATG AGA GGC TTT CCT GAA TAT GTT AAG 1584 Ser Arg Leu Asn His Pile Glu Met Arg Giy Phe Pro Glu Tyr Val Lys 515 520 525. AGA TAA 1590 Arg (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 529 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Met Asp Leu Phe Pro Ile Leu Val Val Val Leu Met Thr Asp Thr Val 1 5 10 15 Leu Gly Lys Phe Gln Ile Val Phe Pro Asp Gln Asn Glu Leu Glu Trp 20 25 30 Arg Pro Val Val Gly Asp Ser Arg His Cys Pro Gln Ser Ser Glu Met 35 40 45 Gln Phe Asp Gly Ser Arg Ser Gln Thr Ile Leu Thr Gly Lys Ala Pro - 70 - WO 00/30437 PCT/US99/26848 50 55 60 Val Gly Ile Thr Pro Ser Lys Ser Asp Gly Phe Ile Cys His Ala Ala 65 70 75 80 Lys Trp Val Thr Thr Cys Asp Phe Arg Trp Tyr Gly Pro Lys Tyr Ile 85 90 95 Thr His Ser Ile His His Leu Arg Pro Thr Thr Ser Asp Cys Glu Thr 100 105 110 Ala Leu Gln Arg Tyr Lys Asp Gly Ser Leu Ile Asn Leu Gly Phe Pro 115 120 125 Pro Glu Ser Cys Gly Tyr Ala Thr Val Thr Asp Ser Glu Ala Met Leu 130 135 140 Val Gln Val Thr Pro His His Val Gly Val Asp Asp Tyr Arg Gly His 145 150 155 160 Trp Ile Asp Pro Leu Phe Pro Gly Gly Giu Cys Ser Thr Asn Phe Cys 165 170 175 Asp Thr Val His Asn Ser Ser Val Trp Ile Pro Lys Ser Gln Lys Thr 180 185 190 Asp Ile Cys Ala Gln Ser Phe Lys Asn Ile Lys Met Thr Ala Ser Tyr 195 200 205 Pro Ser Glu Gly Ala Leu Val Ser Asp Arg Phe Ala Phe His Ser Ala 210 215 220 Tyr His Pro Asn Met Pro Gly Ser Thr Val Cys Ile Met Asp Phe Cys 225 230 2 15 240 Glu Gln Lys Gly Leu Arg Phe Thr Asn Gly Glu Trp Met Gly Leu Asn 245 250 255 Val Glu Gln Ser Ile Arg Glu Lys Lys Ile Ser Ala Ile Phe Pro Asn 260 265 270 Cys Val Ala Gly Thr Glu Ile Arg Ala Thr Leu Glu Ser Glu Gly Ala 275 280 285 Arg Thr Leu Thr Trp Glu Thr Gln Arg Met Leu Asp Tyr Ser Leu Cys 290 295 300 Gln Asn Thr Trp Asp Lys Val Ser Arg Lys Glu Pro Leu Ser Pro Leu 305 310 315 320 Asp Leu Ser Tyr Leu Ser Pro Arg Ala Pro Gly Lys Gly Met Ala Tyr 325 330 335 Thr Val Ile Asn Gly Thr Leu His Ser Ala His Ala Lys Tyr Ile Arg 340 345 350 Thr Trp Ile Asp Tyr Gly Glu Met Lys Glu Ile Lys Gly Gly Arg Gly 355 360 365 Glu Tyr Ser Lys Ala Pro Glu Leu Leu Trp Ser Gln Trp Phe Asp Phe 370 375 380 - 71 - WO 00/30437 PCT/US99/26848 Gly Pro Phe Lys Ile Gly Pro Asn Gly Leu Leu His Thr Gly Lys Thr 385 390 395 400 Phe Lys Phe Pro Leu Tyr Leu Ile Gly Ala Gly Ile Ile Asp Glu Asp 405 410 415 Leu His Glu Leu Asp Glu Ala Ala Pro Ile Asp His Pro Gln Met Pro 420 425 430 Asp Ala Lys Ser Val Leu Pro Glu Asp Glu Glu Ile Phe Phe Gly Asp 435 440 445 Thr Gly Val Ser Lys Asn Pro Ile Glu Leu Ile Gln Gly Trp Phe Ser 450 455 460 Asn Trp Arg Glu Ser Val Met Ala Ile Val Gly Ile Val Leu Leu Ile 465 470 475 480 Val Val Thr Phe Leu Ala Ile Lys Thr Val Arg Val Leu Asn Cys Leu 485 490 495 Trp Arg Pro Arg Lys Lys Arg Ile Val Arg Gln Glu Val Asp Val Glu 500 505 510 Ser Arg Leu Asn His Phe Glu Met Arg Gly Phe Pro Glu Tyr Val Lys 515 520 525 Arg (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH:- 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA" (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1. .1566 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: ATG AAT ATA CCT TGC TTT GCT GTG ATC CTC AGC TTA GCT ACT ACA CAT 48 Met Asn Ile Pro Cys Phe Ala Val Ile Leu Ser Leu Ala Thr Thr His 1 5 10 15 TCT CTG GGA GAA TTC CCC TTG TAT ACG ATT CCC GAG AAA ATA GAG AAA 96 Ser Leu Gly Glu Phe Pro Leu Tyr Thr Ile Pro Glu Lys Ile Glu Lys 20 25 30 TGG ACC CCC ATA GAC ATG ATC CAT CTT AGT TGC CCT AAT AAC ATG CTG 144 Trp Thr Pro Ile Asp Met Ile His Leu Ser Cys Pro Asn Asn Met Leu 35 40 45 TCT GAG GAA GAA GGT TGC AAT ACA GAG TCT CCT TTC ACC TAC TTC GAG 192 Ser Glu Glu Glu Gly Cys Asn Thr Glu Ser Pro Phe Thr Tyr Phe Glu 50 55 60 - 72 - WO 00/30437 PCT/US99/26848 CTC AAG AGT GGT TAC CTA GCC CAT CAG AAG GTC CCA GGA TTT ACA TGC 240 Leu Lys Ser Gly Tyr Leu Ala His Gln Lys Val Pro Gly Phe Thr Cys 65 70 75 80 ACT GGG GTT GTG AAT GAG GCA GAG ACA TAC ACA AAC TTT GTC GGA TAT 288 Thr Gly Val Val Asn GlU Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr 85 90 95 GTC ACC ACC ACC TTC AAA AGG AAG CAC TTT AAA CCT ACA GTG GCT GCT 336 Val Thr Thr Thr Phe Lys Arg Lys His Phe Lys Pro Thr Val Ala Ala 100 105 110 TGT CGT GAT GCC TAC AAC TGG AAA GTA TCA GGG GAC CCC CGA TAT GAA 384 Cys Arg Asp Ala Tyr Asn Trp Lys Val Ser Gly Asp Pro Arg Tyr Glu 115 120 125 GAA TCT CTA CAC ACC CCG TAT CCC GAC AGC AGC TGG TTA AGO ACT GTG 432 Glu Ser Leu His Thr Pro Tyr Pro Asp Ser Ser Trp Leu Arg Thr Val 130 135 140 ACC ACA ACC AAA GAA GCC CTT CTT ATA ATA TCG CCA AGC ATT GTA GAG 480 Thr Thr Thr Lys Glu Ala Leu Leu Gle lle Ser Pro Ser le Val riu 145 150 155 160 ATG GAC ATA TAT GGC AOG ACC CTT CAC TCT CCC ATG TTC CCT TCG GGA 528 Met Asp le Tyr Gly Arg ThrLeu His Ser Pro Met Phe Pro Ser Gly 165 170 175 AAA TAT TCC AAG CTC TAT CCT TCT GTC CCC TCT TOT ACA ACC AAC CAT 576 Lys Cys Ser Lys Leu Tyr Pro Ser Val Pro Ser Cys Thr Thr Asn His 180 185 190 GAT TAC ACA TTA TOG TTG CCA GAA OAT TCT AGT CTG AGT TTG ATT TGC 624 AspTyr Thr Leu TVp Leu Pro Glu Asp Ser Ser Leu Ser Leu le Cys 195 200 205 GAC ATC TTC ACT TCC AGC AGT GA CAG AAG GCC ATG AAT 0GT TCT CGC 672 Asp ule Phe Thr Ser Ser Ser Gly GLn Lys Ala Met Asn Gly Ser Arg 210 215 220 ATC TGC GGA TTC AAG GAT GAA AGO OGA TTT TAC AGA TCC TTG AAG OGA 720 Ile Cys Gly Phe Lys Asp Olu Arg Oly Phe Tyr Arg Ser Leu Lys Oly 225 230 235 240 TCC TGT AAO CTG ACA TTO TGC 000 AAA CCT GA ATT AGO CTA TTC GAC 768 Ser Cys Lys Leu Thr Leu Cys Sey Lys Pro Vly le Arg Leu Phe Asp 245 250 255 OGA ACT TOO OTC TCT TTT ACA AAG, CCO GAC OTT CAT GTG TOG TOC ACT 816 Oiy Thr Trp, Val Ser Phe Thr Lys Pro Asp Val His Val Trp Cys Thr 26'0 265 270 CCC AAC CAG TTA GTC AAT ATA CAT AAC GAC AGA CTA OAT GAG OTT OAA 864 Pro Asn Gin Leu Vai Asn Ile His Asn Asp Arg Leu Asp Glu Val Olu 275 280 285 CAT CTO ATC OTO GAC OAT ATC ATC AAO AAG, AGA GAG GAG TOT TTA GAC 912 His Leu Ile Val Asp Asp Ile Ile Lys Lys Arg Giu Olu Cys Leu Asp 290 295 300 ACO CTO GAA ACT ATA CTT ATO TCT CAA TCA OTT AOT TTT AGA COG TTG 960 Thr Leu Glu Thr Ile Leu Met Ser Gin Ser Val Ser Phe Arg Arg Leu - 73 - WO 00/30437 PCTIUS99/26848 305 310 315 320 AGC CAT TTC AGA AAG TTA GTT CCA GGA TAT GGA AAA GCT TAC ACT ATT 1008 Ser His Phe Arg Lys Leu Val Pro Gly Tyr Gly Lys Ala Tyr Thr Ile 325 330 335 TTG AAC GGC AGC TTA ATG GAA ACA AAT GTC TAC TAC AAA AGA GTT GAC 1056 Leu Asn Gly Ser Leu Met Glu Thr Asn Val Tyr Tyr Lys Arg Val Asp 340 345 350 AGG TGG GCG GAC ATT TTG CCT TCT AGG GGA TGT CTG AAA GTC GGA CAA 1104 Arg Trp Ala Asp Ile Leu Pro Ser Arg Gly Cys Leu Lys Vai Gly Gin 355 360 365 CAG TGC ATG GAC CCT GTC AAA GGG GTC CTC TTC AAC GGA ATT ATC AAG 1152 Gin Cys Met Asp Pro Val Lys Gly Val Leu Phe Asn Gly Ile Ile Lys 370 375 380 GGT CCG GAT GGA CAA ATA TTG ATT CCA GAG ATG CAG TCA GAG CAG CTC 1200 Gly Pro Asp Gly Gin Ile Leu Ile Pro Giu Met Gin Ser Giu Gin Leu 385 390 395 400 AAA CAG CAT ATG GAT CTG TTG AAA GCA GCT ATG TTT CCT CTC CGT CAT 1248 Lys Gln His Met Asp Leu Leu Lys Ala Ala Met Phe Pro Leu Arg His 405 410 415 CCT TTA ATC AAC AGA GAG GCA GTC TTC AAG AAG GAT GGA AAT GCC GAT 1296 Pro Leu Ile Asn Arg Glu Ala Val Phe Lys Lys Asp Gly Asn Ala Asp 420 425 430 GAT TTT GTT GAT CTC CAT ATG CCT GAT GTT CAA AAA TCT GTG TCG GAT 1344 Asp Phe Val Asp Leu His Met Pro Asp Val Gln Lys Ser Val Ser Asp 435 440 445 GTC GAC CTG GGC CTG. CCT CAT TGG GGG TTC TGG TTG TTA GTC GGG GCA 1392 Val Asp Leu Gly Leu Pro His Trp Gly Phe Trp Leu Leu Val Gly Ala 450 455 460 ACA GTA GTA GCC TTT GTG GTC TTG GCG TGC TTG CTC CGT GTA TGT TGT 1440 Thr Val Val Ala Phe Val Val Leu Ala Cys Leu Leu Arg Val Cys Cys 465 470 475 480 AGG AGA ATG AGA AGG AGA AGG TCA CTG CGT GCC ACT CAG GAT ATC CCC 1488 Arg Arg Met Arg Arg Arg Arg Ser Leu Arg Ala Thr Gln Asp Ile Pro 485 490 495 CTC AGC GTT GCC CCT GCC CCT GTC CCT CGT GCC AAA GTG GTG TCA TCA 1536 Leu.Ser Val Ala Pro Ala Pro Val Pro Arg Ala Lys Val Val Ser Ser 500 505 510 TGG GAG TCT TCT AAA GGG CTC CCA GGT ACT TGA 1569 Trp Glu Ser Ser Lys Gly Leu Pro Gly Thr 515 520 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 522 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear - 74 - WO 00/30437 PCT/US99/26848 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Met Asn Ile Pro Cys Phe Ala Val Ile Leu Ser Leu Ala Thr Thr His 1 5 10 15 Ser Leu Gly Glu Phe Pro Leu Tyr Thr Ile Pro Glu Lys Ie Glu Lys 20 25 30 Trp Thr Pro Ile Asp Met Ile His Leu Ser Cys Pro Asn Asn Met Leu 35 40 45 Ser Glu Glu Glu Gly Cys Asn Thr Glu Ser Pro Phe Thr Tyr Phe Glu 50 55 60 Leu Lys Ser Gly Tyr Leu Ala His Gln Lys Val Pro Gly Phe Thr Cys 65 70 75 80 Thr Gly Val Val Asn Glu Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr 85 90 95 Val Thr Thr Thr Phe Lys Arg Lys His Phe Lys Pro Thr Val Ala Ala 100 105 110 Cys Arg Asp Ala Tyr Asn Trp Lys Val Ser Gly Asp Pro Arg Tyr Glu 115 120 125 -Glu Ser Leu His Thr Pro Tyr Pro Asp Ser Ser Trp Leu Arg Thr Val 130 135 140 Thr Thr Thr Lys Glu Ala Leu Leu Ile Ile Ser Pro Ser Ile Val Glu 145 150 155 160 Met Asp Ile Tyr Gly Arg Thr Leu His Ser Pro Met Phe Pro Ser Gly 165 170 175 Lys Cys Ser Lys Leu Tyr Pro Ser Val Pro Ser Cys Thr Thr Asn His 180 185 190 Asp Tyr Thr Leu Trp Leu Pro Glu Asp Ser Ser Leu Ser Leu Ile Cys 195 200 205 Asp Ile Phe Thr Ser Ser Ser Gly Gln Lys Ala Met Asn Gly Ser Arg 210 215 220 Ile Cys Gly Phe Lys Asp Glu Arg Gly Phe Tyr Arg Ser Leu Lys Gly 225 230 235 240 Ser Cys Lys Leu Thr Leu Cys Gly Lys Pro Gly Ile Arg Leu Phe Asp 245 250 255 Gly Thr Trp Val Ser Phe Thr Lys Pro Asp Val His Val Trp Cys Thr 260 265 270 Pro Asn Gln Leu Val Asn Ile His Asn Asp Arg Leu Asp Glu Val Glu 275 280 285 His Leu Ile Val Asp Asp Ile Ile Lys Lys Arg Glu Glu Cys Leu Asp 290 295 300 - 75 - WO 00/30437 PCT/US99/26848 Thr Leu Glu Thr Ile Leu Met Ser Gin Ser Val Ser Phe Arg Arg Leu 305 310 315 320 Ser His Phe Arg Lys Leu Val Pro Gly Tyr Gly Lys Ala Tyr Thr Ile 325 330 335 Leu Asn Gly Ser Leu Met Glu Thr Asn Val Tyr Tyr Lys Arg Val Asp 340 345 350 Arg Trp Ala Asp Ile Leu Pro Ser Arg Gly Cys Leu Lys Val Gly Gin 355 360 365 Gin Cys Met Asp Pro Val Lys Gly Val Leu Phe Asn Gly Ile Ile Lys 370 375 380 Gly Pro Asp Gly Gin Ile Leu Ile Pro Glu Met Gin Ser Glu Gin Leu 385 390 395 400 Lys Gin His Met Asp Leu Leu Lys Ala Ala Met Phe Pro Leu Arg His 405 410 415 Pro Leu Ile Asl Arg Glu Ala Val Phe Lys Lys Asp Gly Asn Ala Asp 420 425 430 Asp Phe Val Asp Leu His Met Pro Asp Val Gin Lys Ser Val Ser Asp 435 440 445 Val Asp Leu Gly Leu Pro His Trp Gly Phe Trp Leu Leu Val Gly Ala 450 455 460 Thr Val Val Ala Phe Val Vai Leu Ala Cys Leu Leu Arg Val Cys Cys 465 470 475 480 Arg Arg Met Arg Arg Arg Arg Ser Leu Arg Ala Thr Gln Asp Ile Pro 485 490 .495 Leu Ser Val Ala Pro Ala Pro Val Pro Arg Ala Lys Val Val. Ser Ser 500 505 510 Trp Glu Ser Ser Lys Gly Leu Pro Gly Thr 515 520 - 76 -
Claims (53)
1. A composition comprising a stably maintained recombinant mammalian zygote, wherein said zygote comprises a polynucleotide containing the proviral form of 5 a retroviral vector integrated into the genome of said zygote.
2. The composition of Claim 1, wherein said mammalian zygote is a bovine zygote. 10
3. The composition of Claim 1, wherein said proviral form of said retroviral vector encodes a protein of interest.
4. The method of Claim 1, wherein said recombinant retroviral vector comprises Moloney murine leukemia virus long terminal repeat. 15
5. A method for introducing a polynucleotide contained within the genome of a recombinant retrovirus into the genome of a mammalian zygote, comprising: a) providing: i) a mammalian zygote having a plasma membrane and a zona 20 pellucida, said plasma membrane and said zona pellucida defining a perivitelline space; ii) an aqueous solution comprising a polynucleotide contained within the genome of a recombinant retrovirus; and b) introducing said solution comprising said polynucleotide contained 25 within the genome of a recombinant retrovirus into said perivitelline space under conditions which permit the introduction of said polynucleotide contained within the genome of a recombinant retrovirus into the genome of said zygote, such that said polynucleotide is stably maintained. - 77 - WO 00/30437 PCTIUS99/26848
6. The method of Claim 5, wherein the efficiency of said introduction of said polynucleotide contained within the genome of a recombinant retrovirus into the genome of said zygote, such that said polynucleotide is stably maintained is at least twenty percent. 5
7. The method of Claim 5, wherein said polynucleotide contained within the genome of a recombinant retrovirus encodes a protein of interest.
8. The method of Claim 7, further comprising the. step of transferring said 10 zygote into a manmalian female recipient that is hormonally synchronized to simulate early pregnancy, thereby giving a transferred embryo.
9. The method of Claim 8, further comprising the step of allowing said transferred embryo to develop to term. 15
10. The method of Claim 7, further comprising the step of identifying at least one transgenic offspring.
11. A transgenic animal produced according to the method of Claim 10. 20
12. The method of Claim 10, wherein said recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat.
13. The method of Claim 12, wherein said protein of interest is expressed 25 by said transgenic offspring.
14. The method of Claim 13, wherein said protein of interest is expressed in at least one body fluid of said transgenic offspring. - 78 - WO 00/30437 PCT/US99/26848
15. The method of Claim 13, wherein said expression of said protein of interest is preferentially mammary-specific expression.
16. The method of Claim 5, wherein said recombinant retrovirus comprises 5 a heterologous membrane-associated protein.
17. The method of Claim 16, wherein said heterologous membrane associated protein is a G glycoprotein selected from a virus within the family Rhabdoviridae. 10
18. The method of Claim 17, wherein said G glycoprotein is selected from the group comprising the G glycoprotein of vesicular stomatitis virus, Piry virus, Chandipura virus, Spring viremia of carp virus, Rabies virus, and Mokola virus. 15
19. A method for producing a transgenic non-human animal, wherein the genome of said transgenic non-human animal comprises a polynucleotide encoding a recombinant retrovirus and at least one protein of interest, comprising the steps of: a) providing: i) a non-human mammalian zygote having a plasma membrane and 20 a zona pellucida, said plasma membrane and said zona pellucida defining a perivitelline space; ii) an aqueous solution comprising a polynucleotide contained within the genome of a recombinant retrovirus; b) introducing said solution comprising said polynucleotide contained 25 within the genome of a recombinant retrovirus into said perivitelline space under conditions which permit the introduction of said polynucleotide contained within the genome of a recombinant retrovirus into the genome of said zygote, such that said polynucleotide is stably maintained in a recombinant zygote; - 79 - WO 00/30437 PCT/US99/26848 c) transferring said recombinant zygote into a non-human female mammalian recipient that is hormonally synchronized to simulate early pregnancy, thereby giving a transferred embryo; d) allowing said transferred embryo to develop to term to produce a 5 transgenic animal.
20. The method of Claim 19, wherein the said at least one protein of interest is expressed by said transgenic animal. 10
21. The method of Claim 19, wherein said recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat.
22. The method of Claim 21, wherein the efficiency of said introduction of said polynucleotide contained within the genome of a recombinant retrovirus into the 15 genome of said zygote, such that said polynucleotide is stably maintained is at least twenty percent
23. The method of Claim 21, wherein the expression of said polynucleotide is preferentially mammary-specific expressed. 20
24. The method of Claim 20, comprising the further step of mating said transgenic animal to a non-transgenic animal under conditions such that transgenic offspring are produced. 25
25. The method of Claim 24, wherein said transgenic offspring express said polynucleotide.
26. The method of Claim 25, wherein said expression of said polynucleotide is mammary-specific expression. 30 - 80 - WO 00/30437 PCTIUS99/26848
27. A method for expressing a protein of wherein said protein of interest is encoded by a polynucleotide contained within the genome of a recombinant retrovirus, comprising the steps of: a) providing: 5 i) a non-human mammalian zygote having a plasma membrane and a zona pellucida, said plasma membrane and said zona pellucida defining a perivitelline space; ii) an aqueous solution comprising a polynucleotide encoding a protein of interest contained within the genome of a recombinant 10 retrovirus; and b) introducing said solution comprising said polynucleotide encoding a protein of interest contained within the genome of a recombinant retrovirus into said perivitelline space under conditions which permit the introduction of said polynucleotide contained within the genome of a recombinant retrovirus into 15 the genome of said zygote, such that said polynucleotide is stably maintained; c) allowing said zygote to develop into viable non-human animal, under conditions such that said protein of interest is expressed by said non-human animal. 20
28. The method of Claim 27, wherein said recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat.
29. The method of Claim 27, wherein said introduction of said polynucleotide contained within the genome of a recombinant retrovirus into the 25 genome of said zygote, such that said polynucleotide is stably maintained is at least twenty percent.
30. The method of Claim 27, wherein said polynucleotide contained within the genome of a recombinant retrovirus encodes a viral protein. 30 - 81 - WO 00/30437 PCTIUS99/26848
31. The method of Claim 30, wherein said viral protein is hepatitis B surface antigen.
32. The protein of interest expressed according to the method of Claim 27. 5
33. The method of Claim 27, further comprising the step of d) harvesting said expressed protein of interest.
34. The. method of Claim 27, wherein said expressed protein is expressed in 10 the body fluids of said non-human animal.
35. The method of Claim 34, wherein said body fluids are selected from the group consisting of blood, milk, semen, and urine. 15
36. A method for expressing a protein of interest wherein said protein of interest is encoded by a polynucleotide contained within the genome of a recombinant retrovirus, and said polynucleotide is integrated into the genome of a mammalian unfertilized oocyte, comprising the steps of: a) providing: 20 i) an unfertilized mammalian egg comprising an oocyte having a plasma membrane and a zona pellucida, said plasma membrane and said zona pellucida defining a perivitelline space; ii) an aqueous solution containing recombinant retrovirus, wherein said recombinant retrovirus comprises a polynucleotide encoding a protein of 25 interest; b) introducing said solution containing recombinant retrovirus into said perivitelline space under conditions which permit the infection of said oocyte to provide an infected oocyte; c) contacting said infected oocyte with sperm under conditions which 30 permit the fertilization of said infected oocyte to produce an embryo; - 82 - WO 00/30437 PCT/US99/26848 d) transferring said embryo~ into a hormonally synchronized mammalian recipient animal; e) allowing said embryo to develop into at least one viable transgenic mammalian animal, under conditions such that said protein of interest is 5 expressed by said transgenic mammalian animal.
37. The method of Claim 36, wherein said unfertilized oocyte is a pre maturation oocyte. 10
38. The method of Claim 37, further comprising following the introduction of said solution containing infectious retrovirus into said pre-maturation oocyte, the further step of culturing said infected pre-maturation oocyte under conditions which permit the maturation of said pre-maturation oocyte. 15
39. The method of Claim 36, wherein said unfertilized oocyte is a pre fertilization oocyte.
40. The method of Claim 36, further comprising identifying at least one transgenic offspring. 20
41. The method.of Claim 36, wherein said mammal is a bovine.
42. The method of Claim 36, wherein said recombinant retrovirus comprises Moloney murine leukemia virus long terminal repeat. 25
43. The method of Claim 42, wherein said expression of said protein of interest is preferentially mammary specific expression.
44. The method of Claim 43, wherein said introduction of said 30 polynucleotide contained within the genome of a recombinant retrovirus into the - 83 - WO 00/30437 PCT/US99/26848 genome of said infected oocyte, such that said polynucleotide is stably maintained is greater than twenty percent.
45. The method of Claim 36, wherein said polynucleotide contained within 5 the genome of a recombinant retrovirus encodes a viral protein.
46. The method of Claim 45, wherein said viral protein is hepatitis B surface antigen. 10
47. The protein of interest expressed according to the method of Claim 36.
48. The method of Claim 36, further comprising the step of f) harvesting said expressed protein of interest. 15
49. The method of Claim 36, wherein said expressed protein is expressed in the body fluids of said mammalian animal.
50. The method of Claim 49, wherein said body fluids are selected from the group consisting of blood, milk, semen, and urine. 20
51. The method of Claim 36, wherein said recombinant retrovirus comprises a heterologous membrane-associated protein.
52. The method of Claim 51, wherein said heterologous membrane 25 associated protein is a G glycoprotein selected from a virus within the family Rhabdoviridae.
53. The method of Claim 52, wherein said G glycoprotein is selected from the group comprising the G glycoprotein of vesicular stomatitis virus, Piry virus, 30 Chandipura virus, Spring viremia of carp virus and Mokola virus. - 84 -
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19667098A | 1998-11-19 | 1998-11-19 | |
| US09/196670 | 1998-11-19 | ||
| PCT/US1999/026848 WO2000030437A1 (en) | 1998-11-19 | 1999-11-17 | Transgenic animals |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU1721000A true AU1721000A (en) | 2000-06-13 |
| AU772439B2 AU772439B2 (en) | 2004-04-29 |
Family
ID=22726354
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU17210/00A Ceased AU772439B2 (en) | 1998-11-19 | 1999-11-17 | Transgenic animals |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1130960A4 (en) |
| AU (1) | AU772439B2 (en) |
| CA (1) | CA2351553C (en) |
| NZ (1) | NZ511808A (en) |
| WO (1) | WO2000030437A1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7527966B2 (en) | 2002-06-26 | 2009-05-05 | Transgenrx, Inc. | Gene regulation in transgenic animals using a transposon-based vector |
| US9157097B2 (en) | 2008-09-25 | 2015-10-13 | Proteovec Holding, L.L.C. | Vectors for production of growth hormone |
| US9150880B2 (en) | 2008-09-25 | 2015-10-06 | Proteovec Holding, L.L.C. | Vectors for production of antibodies |
| WO2010118360A1 (en) | 2009-04-09 | 2010-10-14 | The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Production of proteins using transposon-based vectors |
| US9248179B2 (en) * | 2010-06-24 | 2016-02-02 | The United States of America, as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention | Pan-lyssavirus vaccines against rabies |
| CN108070617A (en) * | 2016-11-16 | 2018-05-25 | 中国科学院海洋研究所 | A kind of exopalaemon carinicauda embryo micro-injection method and Application way structure mRNA are overexpressed model |
| CN112342238A (en) * | 2020-10-21 | 2021-02-09 | 复旦大学 | Ovum function restoring preparation for inducing ovum maturation disorder by TRIP13 gene mutation and using method thereof |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8901778D0 (en) * | 1989-01-27 | 1989-03-15 | Univ Court Of The University O | Manipulatory technique |
| US5453366A (en) * | 1990-07-26 | 1995-09-26 | Sims; Michele M. | Method of cloning bovine embryos |
| US5550034A (en) * | 1992-12-04 | 1996-08-27 | Arch Development Corp. | Apolipoprotein B mRNA editing protein compositions and methods |
| AU6254494A (en) * | 1993-02-16 | 1994-09-14 | Virginia Tech Intellectual Properties, Inc. | Polyelectrolyte dna conjugation and genetic transformation of an animal |
| US6080912A (en) * | 1997-03-20 | 2000-06-27 | Wisconsin Alumni Research Foundation | Methods for creating transgenic animals |
-
1999
- 1999-11-12 EP EP99960310A patent/EP1130960A4/en not_active Withdrawn
- 1999-11-17 AU AU17210/00A patent/AU772439B2/en not_active Ceased
- 1999-11-17 CA CA002351553A patent/CA2351553C/en not_active Expired - Fee Related
- 1999-11-17 NZ NZ511808A patent/NZ511808A/en unknown
- 1999-11-17 WO PCT/US1999/026848 patent/WO2000030437A1/en active IP Right Grant
Also Published As
| Publication number | Publication date |
|---|---|
| CA2351553C (en) | 2007-01-30 |
| EP1130960A4 (en) | 2003-07-30 |
| NZ511808A (en) | 2004-01-30 |
| WO2000030437A8 (en) | 2001-04-19 |
| CA2351553A1 (en) | 2000-06-02 |
| AU772439B2 (en) | 2004-04-29 |
| EP1130960A1 (en) | 2001-09-12 |
| WO2000030437A9 (en) | 2001-05-17 |
| WO2000030437A1 (en) | 2000-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6291740B1 (en) | Transgenic animals | |
| EP0702084B1 (en) | Recombinant retroviruses | |
| AU2002336517B2 (en) | Method for producing transgenic animals | |
| AU2002336517A1 (en) | Method for producing transgenic animals | |
| CA2157931A1 (en) | Improved vectors for gene therapy | |
| Krebs et al. | Rapid and efficient retrovirus-mediated gene transfer into B cell lines | |
| AU772439B2 (en) | Transgenic animals | |
| AU654713B2 (en) | Transgenic non-human animal carrying a non-infectious HIV genome | |
| US20040019920A1 (en) | Transgenic animals | |
| AU8158298A (en) | Transgenic rabbits expressing cd4 and chemokine receptor | |
| AU2002300443B2 (en) | Methods for Creating Transgenic animals | |
| Bonnerot et al. | Capture of a cellular transcriptional unit by a retrovirus: mode of provirus activation in embryonal carcinoma cells | |
| MXPA98009700A (en) | Methods for creating transgenic animals | |
| US6268211B1 (en) | Non-infectious HIV transgene | |
| Chan | Alternative methods to produce transgenic animals | |
| WO2002014492A2 (en) | Fatty liver disease resistant bovines | |
| US20030229903A1 (en) | Novel system for the evaluation of the activity and/or specificity of a viral component | |
| CA2042625A1 (en) | Transgenic non-human animal carrying a non-infectious hiv genome |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS: AMEND APPLICANT'S NAME TO READ: GALA DESIGN, INC. |
|
| FGA | Letters patent sealed or granted (standard patent) |