BR102018067503A2 - USE OF SYNTHETIC HYDROXYLATED COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND PHARMACEUTICAL COMPOSITIONS - Google Patents
USE OF SYNTHETIC HYDROXYLATED COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND PHARMACEUTICAL COMPOSITIONS Download PDFInfo
- Publication number
- BR102018067503A2 BR102018067503A2 BR102018067503-6A BR102018067503A BR102018067503A2 BR 102018067503 A2 BR102018067503 A2 BR 102018067503A2 BR 102018067503 A BR102018067503 A BR 102018067503A BR 102018067503 A2 BR102018067503 A2 BR 102018067503A2
- Authority
- BR
- Brazil
- Prior art keywords
- compounds
- dione
- indan
- drug
- compound
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 148
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 7
- 239000003443 antiviral agent Substances 0.000 title abstract description 6
- 229940121357 antivirals Drugs 0.000 title abstract description 5
- UHKAJLSKXBADFT-UHFFFAOYSA-N 1,3-indandione Chemical compound C1=CC=C2C(=O)CC(=O)C2=C1 UHKAJLSKXBADFT-UHFFFAOYSA-N 0.000 claims abstract description 88
- 241000700605 Viruses Species 0.000 claims abstract description 17
- 208000001490 Dengue Diseases 0.000 claims abstract description 12
- 206010012310 Dengue fever Diseases 0.000 claims abstract description 12
- 208000025729 dengue disease Diseases 0.000 claims abstract description 12
- 241000710886 West Nile virus Species 0.000 claims description 34
- 241000907316 Zika virus Species 0.000 claims description 24
- 230000000840 anti-viral effect Effects 0.000 claims description 18
- HNKTYJVAICSKHB-UHFFFAOYSA-N 2-[(3,4-dihydroxyphenyl)methylidene]indene-1,3-dione Chemical compound C1=C(O)C(O)=CC=C1C=C1C(=O)C2=CC=CC=C2C1=O HNKTYJVAICSKHB-UHFFFAOYSA-N 0.000 claims description 11
- GEHLQFUBQVMQCB-UHFFFAOYSA-N 2-[(4-hydroxyphenyl)methylidene]indene-1,3-dione Chemical compound C1=CC(O)=CC=C1C=C1C(=O)C2=CC=CC=C2C1=O GEHLQFUBQVMQCB-UHFFFAOYSA-N 0.000 claims description 5
- 241000710831 Flavivirus Species 0.000 claims description 4
- 150000004677 hydrates Chemical class 0.000 claims description 4
- 239000000651 prodrug Substances 0.000 claims description 4
- 229940002612 prodrug Drugs 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000012453 solvate Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 3
- 241000710829 Dengue virus group Species 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 1
- 208000020329 Zika virus infectious disease Diseases 0.000 abstract description 4
- 208000015181 infectious disease Diseases 0.000 abstract description 4
- 230000003612 virological effect Effects 0.000 description 24
- 239000002609 medium Substances 0.000 description 22
- 229940079593 drug Drugs 0.000 description 21
- 239000003814 drug Substances 0.000 description 21
- 108091005804 Peptidases Proteins 0.000 description 20
- 239000004365 Protease Substances 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 20
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000005764 inhibitory process Effects 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 210000003501 vero cell Anatomy 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 238000007876 drug discovery Methods 0.000 description 8
- 230000002255 enzymatic effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- -1 cinnamoyl compounds Chemical class 0.000 description 7
- 238000004770 highest occupied molecular orbital Methods 0.000 description 7
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229940000406 drug candidate Drugs 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000003253 viricidal effect Effects 0.000 description 5
- OVHSLRSKIAKFOH-UHFFFAOYSA-N 2-[(3,4-dimethoxyphenyl)methylidene]indene-1,3-dione Chemical compound C1=C(OC)C(OC)=CC=C1C=C1C(=O)C2=CC=CC=C2C1=O OVHSLRSKIAKFOH-UHFFFAOYSA-N 0.000 description 4
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 4
- 241000725619 Dengue virus Species 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 241000711549 Hepacivirus C Species 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000009509 drug development Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000012382 advanced drug delivery Methods 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000007398 colorimetric assay Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000017858 demethylation Effects 0.000 description 3
- 238000010520 demethylation reaction Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000000126 in silico method Methods 0.000 description 3
- 230000031891 intestinal absorption Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 241000701806 Human papillomavirus Species 0.000 description 2
- 238000006000 Knoevenagel condensation reaction Methods 0.000 description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 2
- CABAPJGWBVFEQH-UHFFFAOYSA-N Phomarin Chemical compound C1=C(O)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1 CABAPJGWBVFEQH-UHFFFAOYSA-N 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 238000002832 anti-viral assay Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000013553 cell monolayer Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 229940125532 enzyme inhibitor Drugs 0.000 description 2
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000622 irritating effect Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000006959 non-competitive inhibition Effects 0.000 description 2
- 230000036963 noncompetitive effect Effects 0.000 description 2
- 102000006255 nuclear receptors Human genes 0.000 description 2
- 108020004017 nuclear receptors Proteins 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 2
- 229960000237 vorinostat Drugs 0.000 description 2
- 108010013043 Acetylesterase Proteins 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 241000282551 Cercopithecus Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 101000761811 Chlamydia pneumoniae 4-hydroxybenzoate decarboxylase subunit C Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 102000003964 Histone deacetylase Human genes 0.000 description 1
- 108090000353 Histone deacetylase Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 108700020129 Human immunodeficiency virus 1 p31 integrase Proteins 0.000 description 1
- 241000701828 Human papillomavirus type 11 Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710125507 Integrase/recombinase Proteins 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 206010028400 Mutagenic effect Diseases 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 240000008154 Piper betle Species 0.000 description 1
- 235000008180 Piper betle Nutrition 0.000 description 1
- KBGNBPGXVKPRQI-UHFFFAOYSA-N Piperolactam A Chemical compound C1=CC=C2C3=C(O)C(OC)=CC(C(=O)N4)=C3C4=CC2=C1 KBGNBPGXVKPRQI-UHFFFAOYSA-N 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000588767 Proteus vulgaris Species 0.000 description 1
- 238000004617 QSAR study Methods 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 101800001838 Serine protease/helicase NS3 Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 244000000054 animal parasite Species 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000958 aryl methylene group Chemical group 0.000 description 1
- 150000004646 arylidenes Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- FDSGHYHRLSWSLQ-UHFFFAOYSA-N dichloromethane;propan-2-one Chemical compound ClCCl.CC(C)=O FDSGHYHRLSWSLQ-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 208000004141 microcephaly Diseases 0.000 description 1
- 238000007144 microwave assisted synthesis reaction Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 230000002352 nonmutagenic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- FUBACIUATZGHAC-UHFFFAOYSA-N oxozirconium;octahydrate;dihydrochloride Chemical compound O.O.O.O.O.O.O.O.Cl.Cl.[Zr]=O FUBACIUATZGHAC-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- KOHJULKXWHILSZ-UHFFFAOYSA-N piperolactam A Natural products COc1cc2C(=O)Nc3cc4ccc(O)cc4c(c1)c23 KOHJULKXWHILSZ-UHFFFAOYSA-N 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000013636 protein dimer Substances 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 229940007042 proteus vulgaris Drugs 0.000 description 1
- 238000003077 quantum chemistry computational method Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000003128 rodenticide Substances 0.000 description 1
- 238000004835 semi-empirical calculation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229930009674 sesquiterpene lactone Natural products 0.000 description 1
- 150000002107 sesquiterpene lactone derivatives Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000723 toxicological property Toxicity 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
uso de compostos sintéticos hidroxilados derivados da indan-1,3-diona como antivirais e composições farmacêuticas a presente invenção refere-se ao uso de dois derivados sintéticos hidroxilados da indan-1,3-diona e de composições farmacêuticas contendo tais compostos para o tratamento de infecções causadas pelos vírus west nile (wnv), dengue (denv) e zika (zikv) e abrange o campo da química medicinal.use of hydroxylated synthetic compounds derived from indan-1,3-dione as antivirals and pharmaceutical compositions the present invention relates to the use of two synthetic hydroxylated derivatives of indan-1,3-dione and pharmaceutical compositions containing such compounds for the treatment of infections caused by the West Nile (WNV), Dengue (Denv) and Zika (ZikV) viruses and covers the field of medicinal chemistry.
Description
Relatório descritivo USO DE COMPOSTOS SINTÉTICOS HIDROXILADOS DERIVADOS DA INDAN-1,3-DIONA COMO ANTIVIRAIS E COMPOSIÇÕESDescriptive report USE OF SYNTHETIC COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND COMPOSITIONS
FARMACÊUTICASPHARMACEUTICAL
CAMPO DA INVENÇÃO 01. A presente invenção abrange o campo da química medicinal e refere-se ao uso de dois compostos sintéticos hidroxilados derivados da indan-1,3-diona e de composições farmacêuticas contendo tais compostos para o tratamento de infecções causadas pelos vírus West Nile (WNV), Dengue (DENV) e Zika (ZIKV).FIELD OF THE INVENTION 01. The present invention covers the field of medicinal chemistry and relates to the use of two synthetic hydroxylated compounds derived from indan-1,3-dione and pharmaceutical compositions containing such compounds for the treatment of infections caused by West viruses Nile (WNV), Dengue (DENV) and Zika (ZIKV).
ESTADO DA TÉCNICA 02. A dengue é uma arbovirose causada por um vírus pertencente à família Flaviridade, do gênero Flavivirus. Existem quatro sorotipos do vírus dengue, DENV-1, DENV-2, DENV-3 e DENV-4, em adição a um quinto sorotipo emergente, sendo todos eles transmitidos pelo Aedes aegypti e mais raramente pelo mosquito Aedes albopictus (Schuller, A., et al., Tripeptide inhibitors of dengue and West nile virus NS2B-NS3 protease. Antiviral Res, 2011. 92: p. 96-101; Behnam, M. A. M., et al., Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenyl glycine residue. J Med Chem, 2015. 58: p. 9354-9370). 03. O vírus West Nile (WNV, inglês), desde o seu isolamento inicial em Uganda em 1937, tornou-se uma importante causa de doenças humanas e animais em todo o mundo. WNV, também do gênero Flavivirus, tem aumentado sua distribuição geográfica, atingindo a África, Oriente Médio, sul da Europa, Rússia ocidental, sul da Ásia ocidental, Austrália e América do Norte. Este vírus pode causar doença neurológica grave resultando em sequelas a longo prazo ou a morte (Chancey, C., et al., The global ecology and epidemiology of West Nile virus. Biomed Res Int, 2015. 2015: p. 376230). Recentemente, o primeiro caso humano de WNV foi relatado no Brasil, com desenvolvimento de encefalite, no estado do Piauí. É possível que casos esporádicos ou pequenos grupos da doença WNV já tenham ocorrido em diferentes regiões do país e permaneceram não diagnosticados (Vieira, M.A., et al., West Nile Virus Encephalitis: The First Human Case Recorded in Brazil. Am J Trop Med Hyg, 2015. 93: p. 377-9). Entretanto, a circulação do vírus já havia sido confirmada no Brasil em uma investigação que estudou equinos e aves no período de 2008-2010 (Ometto, T., et al., West Nile virus surveillance, Brazil, 2008-2010. Trans R Soc Trop Med Hyg, 2013. 107: p. 723-30). WNV é agora a causa mais comum de doença neurológica causada por um arbovírus no mundo (Gould, L.H. and E. Fikrig, West Nile virus: a growing concern? J Clin Invest, 2004. 113: p. 1102-7). 04. O vírus Zika, desde que surgiu no Brasil em maio de 2015, tem gerado preocupação global devido à sua associação com um aumento significativo do número de crianças nascidas com microcefalia e distúrbios neurológicos, como a síndrome de Guillain-Barré (Abushouk, A.I., A. Negida, and H. Ahmed, An updated review of Zika virus. J Clin Virol, 2016. 84: p. 53-58). Mais de 440 mil para 1,3 milhão de indivíduos foram estimados como infectados por ZIKV em 2015, e sua distribuição global já ultrapassou 50 países (Musso, D., Zika Virus Transmission from French Polynesia to Brazil. Emerg Infect Dis, 2015. 21(10): p. 1887). 05. Apesar de alguns flavivirus já apresentarem vacinas disponíveis, DENV, WNV e ZIKV ainda não apresentam vacinação eficiente e global. Diante dos desafios para o desenvolvimento de uma vacina, pesquisas para terapias antivirais tem se tornado relevantes, principalmente para casos graves das três doenças. O desenvolvimento de terapias antiflavivirais continua a ser uma alta prioridade para a Organização Mundial da Saúde (Noble, C.G., et al., Strategies for development of Dengue virus inhibitors. Antiviral Res, 2010. 85: p. 450-62). 06. No presente pedido de proteção patentária, são descritos dois compostos hidroxilados derivados da indan-1,3-diona (compostos (2) e (4), Figuras 2 e 3) que apresentam relevante atividade antiviral contra os vírus DENV, WNV e ZIKV. 07. Indan-1,3-diona (Figura 1) é um membro importante da classe de compostos 1,3-dicarbonilados e que apresentam uma vasta gama de moléculas de interesse químico e farmacêutico. A química diversificada da indan-1,3-diona atrai constante interesse, uma vez que ela é um valioso precursor sintético e seus derivados têm sido utilizados como corantes; como semicondutores; em química forense, para detecção de impressões digitais; e também usados na síntese de fármacos e agroquímicos. 08. Considerando a atividade antiviral, vários trabalhos indicam a ação de derivados da indan-1,3-diona contra o papilomavírus humano (HPV). Goudreau e colaboradores sintetizaram um derivado da indan-1,3-diona capaz de inibir a interação das proteínas E1 e E2 do HPV11 com IC50 de 11 pmol L-1 (Goudreau, N., et al., Optimization and determination of the absolute configuration of a series of potent inhibitors of human papiloma virus type-11 E1-E2 protein-protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. Bioorg Med Chem, 2007. 15: p. 2690-700). Em outra investigação, foi observada a inibição do HPV11 pelo mesmo mecanismo de ação; contudo o IC50 foi de 610 nmol L-1 (Davidson, W., et al., Characterization of the binding site for inhibitors of the HPV11 E1-E2 protein interaction on the E2 transactivation domain by photoaffinity labeling and mass spectrometry. Anal Chem, 2004. 76: p. 2095-102). Yokim e colaboradores também obtiveram resultado semelhante, com mesmo mecanismo de ação, e valor de IC50 de 11 pmol L-1 (Yoakim, C., et al., Discovery of the first series of inhibitors of human papiloma virus type 11: inhibition of the assembly of the E1-E2-Origin DNA complex. Bioorg Med Chem Lett, 2003. 13: p. 2539-41). 09. Destaca-se a atividade de inibição enzimática viral para derivados da indan-1,3-diona, como foi demonstrado no estudo de Artico e colaboradores, no qual derivados inibiram a enzima integrase do vírus HIV 1, com IC50 de 3 ± 0,5 umol L-1 (Artico, M., et al., Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling. J Med Chem, 1998. 41: p. 3948-60). Na investigação conduzida por Liu e colaboradores, derivados da indan-1,3-diona foram avaliados contra o vírus da hepatite C (HCV), que também pertence à família Flaviridae como WNV, DENV e ZIKV. Foram encontrados quatro compostos capazes de inibir a protease do vírus HCV com valores de IC50 de 12; 3,6; 3,1 e 1,7 umol L-1 (Liu, Y., et al., Investigating the origin of the slow-binding inhibition of HCV NS3 serine protease by a novel substrate based inhibitor. Biochemistry, 2003. 42: p. 8862-9). 10. Em busca realizada nos bancos de patentes nacional e internacionais foram encontrados alguns documentos que apresentam tecnologias envolvendo indan-1,3-dionas para uso biológico, porém distintas da apresentada no atual pedido de patente. A título de exemplificação e diferenciação, algumas delas são apresentadas a seguir. 11. A patente CN20141505723 descreve a síntese de derivados da indan-1,3-diona com propriedades farmacológicas, apresentando atividade no tratamento da hepatitie B e também com atividade anti-inflamatória. 12. A patente CN20151813066 descreve a síntese de derivados da indan-1,3-diona com propriedades farmacológicas, apresentando atividade antitumoral. 13. As patentes US19780936396, US19550517095 descrevem a síntese de derivados da indan-1,3-diona como método de eliminação de parasitas animais. 14. As patentes US19750576347, US19530336440, US19720260512, HU1977RE00608, WO2004GB05369, GBD1350900, GB19680053666, GB19680053650, GB19760046858, GB19650043477, GB19620038681, GB19750006533, CN1992100650, CN20051136810, DE20051055528, GB19640002548, descrevem a síntese de derivados da indan-1,3-diona para uso como rodenticida. 15. A patente JP19930031963 descreve a síntese de derivados da indan-1,3-diona com propriedades herbicidas. 16. As patentes GB19580010410, CAD614511, DE19702045466 descrevem a síntese de derivados de indan-1,3-diona com propriedade anticoagulante. 17. Apesar de serem relatados diversos compostos pertencentes à classe das indan-1,3-dionas, não se localizou no banco de patentes registros relacionados à aplicação antiviral dos compostos (2) e (4) bem como atividade antiviral destes compostos contra os vírus WNV, DENV e ZIKV semelhante às descritas na presente invenção, objeto de pedido de patente. Especificamente com respeito à aplicação dos compostos (2) e (4) no campo da química medicinal, encontrou-se apenas que o composto (2) apresentou, in vitro, atividade antibacteriana moderada contra Proteus vulgaris. Para avaliação da atividade bacteriana, foi utilizado o ensaio o teste de disco de difusão em ágar. O composto (2) apresentou um halo de inibição de 16 mm, enquanto que o composto amicacina (controle positivo) apresentou um halo de inibição de 28 mm. Este mesmo composto (2) apresentou, in vitro, atividade antifúngica considerável contra Candida albicans (halo de inibição igual a 25 mm); o controle positivo griseofulvina apresentou um halo de inibição de 25 mm (MEENA, S., et al., Synthesis of 2-(aryl methylene)-(1H)-indane-1,3-(2H)-diones as potential fungicidal and bactericidal agents. Indian J Chem, 2006. 45B: p. 1572-1575). 18. Dessa forma, o objeto deste pedido de patente trata-se do uso de compostos sintéticos hidroxilados derivados da indan-1,3-diona, bem como composições contendo tais compostos, como drogas antivirais contra os vírus West Nile, Dengue-1, Dengue-2, Dengue-3, Dengue-4 e Zika.STATE OF THE TECHNIQUE 02. Dengue is an arbovirus caused by a virus belonging to the Flavirity family, of the genus Flavivirus. There are four serotypes of the dengue virus, DENV-1, DENV-2, DENV-3 and DENV-4, in addition to a fifth emerging serotype, all of which are transmitted by Aedes aegypti and more rarely by the Aedes albopictus mosquito (Schuller, A. , et al., Tripeptide inhibitors of dengue and West nile virus NS2B-NS3 protease. Antiviral Res, 2011. 92: p. 96-101; Behnam, MAM, et al., Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenyl glycine residue (J Med Chem, 2015. 58: p. 9354-9370). 03. The West Nile virus (WNV, English), since its initial isolation in Uganda in 1937, has become an important cause of human and animal diseases worldwide. WNV, also of the genus Flavivirus, has increased its geographic distribution, reaching Africa, the Middle East, southern Europe, western Russia, southern western Asia, Australia and North America. This virus can cause severe neurological disease resulting in long-term sequelae or death (Chancey, C., et al., The global ecology and epidemiology of West Nile virus. Biomed Res Int, 2015. 2015: p. 376230). Recently, the first human case of WNV was reported in Brazil, with the development of encephalitis, in the state of Piauí. It is possible that sporadic cases or small groups of WNV disease have already occurred in different regions of the country and have remained undiagnosed (Vieira, MA, et al., West Nile Virus Encephalitis: The First Human Case Recorded in Brazil. Am J Trop Med Hyg , 2015. 93: p. 377-9). However, the circulation of the virus had already been confirmed in Brazil in an investigation that studied horses and birds in the period 2008-2010 (Ometto, T., et al., West Nile virus surveillance, Brazil, 2008-2010. Trans R Soc Trop Med Hyg, 2013. 107: p. 723-30). WNV is now the most common cause of neurological disease caused by an arbovirus in the world (Gould, L.H. and E. Fikrig, West Nile virus: a growing concern? J Clin Invest, 2004. 113: p. 1102-7). 04. Since the emergence of the Zika virus in Brazil in May 2015, it has generated global concern due to its association with a significant increase in the number of children born with microcephaly and neurological disorders, such as Guillain-Barré syndrome (Abushouk, AI , A. Negida, and H. Ahmed, An updated review of Zika virus. J Clin Virol, 2016. 84: p. 53-58). More than 440,000 to 1.3 million individuals were estimated to be infected with ZIKV in 2015, and their global distribution has already exceeded 50 countries (Musso, D., Zika Virus Transmission from French Polynesia to Brazil. Emerg Infect Dis, 2015. 21 (10): p. 1887). 05. Although some flaviviruses already have available vaccines, DENV, WNV and ZIKV do not yet have an efficient and global vaccination. In view of the challenges for the development of a vaccine, research for antiviral therapies has become relevant, especially for severe cases of the three diseases. The development of antiflaviviral therapies remains a high priority for the World Health Organization (Noble, C.G., et al., Strategies for development of Dengue virus inhibitors. Antiviral Res, 2010. 85: p. 450-62). 06. In the present application for patent protection, two hydroxylated compounds derived from indan-1,3-dione (compounds (2) and (4), Figures 2 and 3) that have relevant antiviral activity against DENV, WNV and ZIKV. 07. Indan-1,3-dione (Figure 1) is an important member of the class of 1,3-dicarbonylated compounds that have a wide range of molecules of chemical and pharmaceutical interest. The diverse chemistry of indan-1,3-dione attracts constant interest, since it is a valuable synthetic precursor and its derivatives have been used as dyes; as semiconductors; in forensic chemistry, for fingerprint detection; and also used in the synthesis of drugs and agrochemicals. 08. Considering the antiviral activity, several studies indicate the action of indan-1,3-dione derivatives against human papillomavirus (HPV). Goudreau and colleagues synthesized a derivative of indan-1,3-dione capable of inhibiting the interaction of HPV11 E1 and E2 proteins with an IC50 of 11 pmol L-1 (Goudreau, N., et al., Optimization and determination of the absolute configuration of a series of potent inhibitors of human papilloma virus type-11 E1-E2 protein-protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. Bioorg Med Chem, 2007. 15: p. 2690-700). In another investigation, HPV11 inhibition was observed by the same mechanism of action; however, the IC50 was 610 nmol L-1 (Davidson, W., et al., Characterization of the binding site for inhibitors of the HPV11 E1-E2 protein interaction on the E2 transactivation domain by photoaffinity labeling and mass spectrometry. Anal Chem, 2004. 76: p. 2095-102). Yokim and collaborators also obtained a similar result, with the same mechanism of action, and an IC50 value of 11 pmol L-1 (Yoakim, C., et al., Discovery of the first series of inhibitors of human papiloma virus type 11: inhibition of the assembly of the E1-E2-Origin DNA complex (Bioorg Med Chem Lett, 2003. 13: p. 2539-41). 09. The viral enzymatic inhibition activity for indan-1,3-dione derivatives stands out, as demonstrated in the study by Artico et al., In which derivatives inhibited the HIV 1 virus integrase enzyme, with an IC50 of 3 ± 0 , 5 umol L-1 (Artico, M., et al., Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling. J Med Chem, 1998. 41: p. 3948 -60). In the research conducted by Liu and colleagues, derivatives of indan-1,3-dione were evaluated against the hepatitis C virus (HCV), which also belongs to the family Flaviridae such as WNV, DENV and ZIKV. Four compounds were found capable of inhibiting HCV virus protease with IC 50 values of 12; 3.6; 3.1 and 1.7 umol L-1 (Liu, Y., et al., Investigating the origin of the slow-binding inhibition of HCV NS3 serine protease by a novel substrate based inhibitor. Biochemistry, 2003. 42: p. 8862-9). 10. In a search carried out in the national and international patent banks, some documents were found that present technologies involving indan-1,3-diones for biological use, but different from the one presented in the current patent application. As an example and differentiation, some of them are presented below. 11. The patent CN20141505723 describes the synthesis of indan-1,3-dione derivatives with pharmacological properties, showing activity in the treatment of hepatitis B and also with anti-inflammatory activity. 12. The patent CN20151813066 describes the synthesis of indan-1,3-dione derivatives with pharmacological properties, showing antitumor activity. 13. Patents US19780936396, US19550517095 describe the synthesis of indan-1,3-dione derivatives as a method of eliminating animal parasites. 14. The patents US19750576347, US19530336440, US19720260512, HU1977RE00608, WO2004GB05369, GBD1350900, GB19680053666, GB19680053650, GB19760046858, GB19650043477, GB196505020033, 2008, 2009, 2006 use as rodenticide. 15. JP19930031963 describes the synthesis of indan-1,3-dione derivatives with herbicidal properties. 16. Patents GB19580010410, CAD614511, DE19702045466 describe the synthesis of indan-1,3-dione derivatives with anticoagulant property. 17. Although several compounds belonging to the class of indan-1,3-diones have been reported, no records related to the antiviral application of compounds (2) and (4) or antiviral activity of these compounds against viruses have been found in the patent database. WNV, DENV and ZIKV similar to those described in the present invention, object of patent application. Specifically with respect to the application of compounds (2) and (4) in the field of medicinal chemistry, it was found only that compound (2) showed, in vitro, moderate antibacterial activity against Proteus vulgaris. For the evaluation of bacterial activity, the assay using the agar diffusion disc test was used. Compound (2) showed an inhibition halo of 16 mm, while the amikacin compound (positive control) showed an inhibition halo of 28 mm. This same compound (2) showed, in vitro, considerable antifungal activity against Candida albicans (inhibition halo equal to 25 mm); the positive control griseofulvin showed a 25 mm inhibition zone (MEENA, S., et al., Synthesis of 2- (aryl methylene) - (1H) -indane-1,3- (2H) -diones as potential fungicidal and bactericidal agents, Indian J Chem, 2006. 45B: p. 1572-1575). 18. Thus, the object of this patent application is the use of hydroxylated synthetic compounds derived from indan-1,3-dione, as well as compositions containing such compounds, such as antiviral drugs against West Nile, Dengue-1 viruses, Dengue-2, Dengue-3, Dengue-4 and Zika.
DESCRIÇÃO DAS FIGURAS 19. Figura 1: Estrutura básica da indan-1,3-diona. 20. Figura 2: Síntese do composto (2). 21. Figura 3: Síntese do composto (4). 22. Figura 4: Triagem antiviral para a protease do WNV. Os compostos (2) e (4) da indan-1,3-diona foram analisados na concentração única de 16,6 μmol L-1 contra a protease do WNV. Foi utilizado teste estatístico de comparações múltiplas one-way ANOVA, com valor de p<0,05. 23. Figura 5: Inibição enzimática da protease do WNV na presença de variadas concentrações dos compostos (2) e (4). A inibição enzimática foi analisada na presença de sete concentrações (concentração final de 33 μmol L-1 a 0,5 μmol L-1) dos compostos (2) e (4), em A e B, respectivamente. O cálculo da regressão teve como base o coeficiente de Hill. Os valores de IC50 são 11,27 μmol L-1 e 3,19 μmol L-1 para os compostos (2) e (4), respectivamente. [ ] corresponde à concentração em dos compostos em μmol L-1. 24. Figura 6: Cinética enzimática da protease do WNV na presença dos compostos (2) e (4). Em C e E estão representados os gráficos de Michaelis-Menten para os compostos (2) e (4), respectivamente. Em D e F estão os gráficos de Lineweaver-Burk para os compostos (2) e (4), respectivamente. 25. Figura 7: Ensaio de avaliação de citotoxicidade dos compostos (2) e (4) contra células Vero. Em G está a viabilidade celular para o composto (2) e em H está a viabilidade celular para o composto (4). O cálculo da regressão teve como base o coeficiente de Hill. Os valores de CC50 para os compostos (2) e (4) são, respectivamente, 89,72 pmol L-1 e 267,60 pmol L-1. 26. Figura 8: Ensaio antiviral de pré-tratamento para os compostos (2) e (4) na concentração de 100 pmol L-1 em células Vero para os vírus DENV-2 e ZIKV. 27. Figura 9: Ensaio antiviral de pós-tratamento para os compostos (2) e (4) na concentração de 100 pmol L-1em células Vero para os vírus DENV-2 e ZIKV.DESCRIPTION OF THE FIGURES 19. Figure 1: Basic structure of indan-1,3-dione. 20. Figure 2: Synthesis of the compound (2). 21. Figure 3: Synthesis of the compound (4). 22. Figure 4: Antiviral screening for WNV protease. Compounds (2) and (4) of indan-1,3-dione were analyzed at a unique concentration of 16.6 μmol L-1 against WNV protease. One-way ANOVA multiple comparisons statistical test was used, with a p-value <0.05. 23. Figure 5: Enzymatic inhibition of WNV protease in the presence of varying concentrations of compounds (2) and (4). The enzymatic inhibition was analyzed in the presence of seven concentrations (final concentration of 33 μmol L-1 to 0.5 μmol L-1) of compounds (2) and (4), in A and B, respectively. The regression calculation was based on Hill's coefficient. The IC50 values are 11.27 μmol L-1 and 3.19 μmol L-1 for compounds (2) and (4), respectively. [] corresponds to the concentration of the compounds in μmol L-1. 24. Figure 6: Enzymatic kinetics of the WNV protease in the presence of compounds (2) and (4). Michaelis-Menten plots for compounds (2) and (4) are represented in C and E, respectively. In D and F are the Lineweaver-Burk plots for compounds (2) and (4), respectively. 25. Figure 7: Assay for cytotoxicity assessment of compounds (2) and (4) against Vero cells. In G is cell viability for compound (2) and in H is cell viability for compound (4). The regression calculation was based on Hill's coefficient. The CC50 values for compounds (2) and (4) are, respectively, 89.72 pmol L-1 and 267.60 pmol L-1, respectively. 26. Figure 8: Pre-treatment antiviral assay for compounds (2) and (4) at a concentration of 100 pmol L-1 in Vero cells for the DENV-2 and ZIKV viruses. 27. Figure 9: Post-treatment antiviral assay for compounds (2) and (4) at a concentration of 100 pmol L-1 in Vero cells for the DENV-2 and ZIKV viruses.
DESCRIÇÃO DETALHADA DA INVENÇÃO 28. A presente invenção refere-se ao uso dos compostos 2-(4-hidroxibenzilideno)-1H-indeno-1,3(2H)-diona (composto 2) e 2-(3,4-diidroxibenzilideno)-1H-indeno-1,3(2H)-diona (composto 4) (Figuras 2 e 3, respectivamente), seus sais, solvatos, hidratos ou pró-fármacos farmaceuticamente aceitáveis e a composições contendo esses compostos, como antivirais. 29. Os compostos (2) e (4) apresentam atividade contra a protease do WNV e podem ser aplicados como antivirais para o tratamento das infecções causadas pelos flavivirus WNV, Zika e Dengue. 30. Os compostos 2-(4-hidroxibenzilideno)-1H-indeno-1,3(2H)-diona (composto 2) e 2-(3,4-diidroxibenzilideno)-1H-indeno-1,3(2H)-diona (composto 4) poderão também ser utilizados na produção de composições farmacêuticas. Tais composições compreendem agentes carreadores, diluentes e excipientes, como por exemplo, comprimidos, lactose, magnésio, estearato, agentes gelificantes, dentre outros.DETAILED DESCRIPTION OF THE INVENTION 28. The present invention relates to the use of compounds 2- (4-hydroxybenzylidene) -1H-indene-1,3 (2H) -dione (compound 2) and 2- (3,4-dihydroxybenzylidene) -1H-indene-1,3 (2H) -dione (compound 4) (Figures 2 and 3, respectively), their pharmaceutically acceptable salts, solvates, hydrates or prodrugs and compositions containing these compounds, such as antivirals. 29. Compounds (2) and (4) have activity against WNV protease and can be applied as antivirals to treat infections caused by flaviviruses WNV, Zika and Dengue. 30. Compounds 2- (4-hydroxybenzylidene) -1H-indene-1,3 (2H) -dione (compound 2) and 2- (3,4-dihydroxybenzylidene) -1H-indene-1,3 (2H) - dione (compound 4) may also be used in the production of pharmaceutical compositions. Such compositions comprise carrier agents, diluents and excipients, such as tablets, lactose, magnesium, stearate, gelling agents, among others.
SÍNTESE DOS COMPOSTOS 31. O composto de estrutura (2), apresentado na Figura 2, foi preparado por meio da condensação de Knoevenagel, utilizando-se como material de partida a indan-1,3-diona (1) e o 4-hidroxibenzaldeído, empregando-se as condições descritas no Exemplo 1, a seguir. 32. A síntese do composto (4) foi realizada, como apresentado na Figura 3, por meio da desmetilação 2-(3,4-dimetoxibenzilideno)-1H-indeno-1,3(2H)-diona (3) empregando-se procedimento padrão descrito na literatura, isto é, desmetilação com tribrometo de boro (BBr3), e também descrito no Exemplo 2, a seguir. 33. Os compostos foram caracterizados por espectroscopia no infravermelho (IV) e de ressonância magnética nuclear (RMN) de 1H e de 13C. Os procedimentos empregados nas sínteses dos compostos (2) e (4) e os dados relativos à caracterização estrutural destes são apresentados a seguir. 34. Exemplo 1: Síntese da 2-(4-hidroxibenzilideno)-7H-indeno-1,3(2H)-diona (composto 2). 35. A indan-1,3-diona (1) (1,00 mmol), o 4-hidroxibenzaldeído (1,00 mmol), cloreto de zirconila octaidratado ZrOCb8H2O (0,04 mmol) e água destilada foram adicionados a um balão de fundo redondo (10 mL). A mistura de reação foi aquecida a temperaturas que variaram de 25 a 90°C e mantida sob agitação magnética durante alguns minutos. A reação foi monitorada por cromatografia em camada delgada (CCD). Após o término da reação, a mistura foi filtrada a vácuo e o resíduo foi lavado com etanol gelado. O composto (2) foi obtido com 76% de rendimento (0,759 mmol) após recristalização com acetona-diclorometano (1:1 v/v). 36. Característica: sólido amarelo. 37. CCD: Rf= 0,38 (hexano-acetato de etila 2:1 v/v). 38. Tf = 235,8-236,0 °C. 39. IV (ATR)v max: 3361-3043 (banda larga), 3059, 1715, 1655, 1547, 1505, 1204, 737. 40. RMN de 1H (300 MHz, DMSO-cfe) δ: 6,92 (d, 2H,J = 8,7 Hz); 7,72 (s, 1H); 7,86-7,92(m, 4H); 8,50 (d, 2H, J = 8,7 Hz); 10,86 (s, 1H, OH). 41. RMN de 13C (75 MHz, DMSO-cfe) δ: 116,4; 123,1; 123,2; 125,0; 125,6; 135,8; 135,9; 138,0; 139,6; 142,0; 146,7; 163,7; 189,4; 190,4. 42. Exemplo 2: 2-(3,4-diidroxibenzilideno)-1H-indeno-1,3(2H)-diona (composto 4). 43. A um balão bitubulado (150 mL), sob atmosfera de nitrogênio (N2), adicionaram-se o 2-(3,4-dimetoxibenzilideno)-1H-indeno-1,3(2H)-diona (3) (0,679 mmol) juntamente com 5,0 mL de diclorometano anidro. A mistura resultante foi mantida sob agitação magnética e resfriada em banho de gelo por alguns minutos. Em seguida foram adicionados, gota a gota, 2,7 mL de solução 1,00 mol L-1 de BBr3 em diclorometano. Após a adição, a mistura de reação foi mantida sob agitação por 24 horas à temperatura ambiente. Posteriormente, foram adicionados 10,0 mL de água destilada e observou-se a formação de um precipitado marrom. A mistura resultante foi transferida para um funil de separação e a fase aquosa foi extraída com acetato de etila (3 x 30,0 mL). Os extratos orgânicos foram reunidos, e a fase orgânica resultante foi seca com sulfato de sódio anidro, filtrada e concentrada sob pressão reduzida. O composto (4) foi obtido como um sólido, após lavagem com diclorometano e acetona, com 58% de rendimento (0,394 mmol). 44. Característica: sólido amarelo. 45. CCD: Rf= 0,05 (hexano-acetato de etila 2:1 v/v). 46. Tf= 238,0-239,4 °C. 47. IV (ATR) v max: 3492-3109, 3093, 3039, 1720, 1666, 1555, 1384, 1182, 730. 48. RMN de 1H (300 MHz, DMSO-cfe) δ: 6,89 (d, 1H,J = 8,1 Hz); 7,64 (s, 1H); 7,83 (dd, 1H, Ji = 8,1 Hz, J2 = 1,8 Hz); 7,86-7,94 (m, 4H); 8,32 (d, 1H, J = 1,8 Hz). 49. RMN de 13C (75 MHz, DMSO-cfe) δ: 116,2; 121,0; 123,1; 125,2; 125,5; 130,7; 135,7; 135,9; 139,6; 142,1; 145,7; 147,3; 153,0; 189,4; 190,5.SUMMARY OF COMPOUNDS 31. The compound of structure (2), shown in Figure 2, was prepared by Knoevenagel condensation, using indan-1,3-dione (1) and 4-hydroxybenzaldehyde as starting material. , using the conditions described in Example 1, below. 32. The synthesis of compound (4) was performed, as shown in Figure 3, by means of demethylation 2- (3,4-dimethoxybenzylidene) -1H-indene-1,3 (2H) -dione (3) using standard procedure described in the literature, that is, demethylation with boron tribromide (BBr3), and also described in Example 2, below. 33. The compounds were characterized by infrared (IR) and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The procedures used in the synthesis of compounds (2) and (4) and the data related to their structural characterization are presented below. 34. Example 1: Synthesis of 2- (4-hydroxybenzylidene) -7H-indene-1,3 (2H) -dione (compound 2). 35. Indan-1,3-dione (1) (1.00 mmol), 4-hydroxybenzaldehyde (1.00 mmol), zirconyl chloride octahydrate ZrOCb8H2O (0.04 mmol) and distilled water were added to a flask round bottom (10 mL). The reaction mixture was heated to temperatures ranging from 25 to 90 ° C and kept under magnetic stirring for a few minutes. The reaction was monitored by thin layer chromatography (CCD). After the end of the reaction, the mixture was vacuum filtered and the residue was washed with ice-cold ethanol. Compound (2) was obtained in 76% yield (0.759 mmol) after recrystallization from acetone-dichloromethane (1: 1 v / v). 36. Characteristic: yellow solid. 37. CCD: Rf = 0.38 (hexane-ethyl acetate 2: 1 v / v). 38. Tf = 235.8-236.0 ° C. 39. IV (ATR) v max: 3361-3043 (broadband), 3059, 1715, 1655, 1547, 1505, 1204, 737. 40. 1H NMR (300 MHz, DMSO-cfe) δ: 6.92 ( d, 2H, J = 8.7 Hz); 7.72 (s, 1H); 7.86-7.92 (m, 4H); 8.50 (d, 2H, J = 8.7 Hz); 10.86 (s, 1H, OH). 41. 13C NMR (75 MHz, DMSO-cfe) δ: 116.4; 123.1; 123.2; 125.0; 125.6; 135.8; 135.9; 138.0; 139.6; 142.0; 146.7; 163.7; 189.4; 190.4. 42. Example 2: 2- (3,4-dihydroxybenzylidene) -1H-indene-1,3 (2H) -dione (compound 4). 43. 2- (3,4-dimethoxybenzylidene) -1H-indene-1,3 (2H) -dione (3) (0.679) was added to a bitubulated flask (150 mL) under a nitrogen atmosphere (N2). mmol) together with 5.0 mL of anhydrous dichloromethane. The resulting mixture was kept under magnetic stirring and cooled in an ice bath for a few minutes. Then, 2.7 ml of 1.00 mol L-1 solution of BBr3 in dichloromethane was added dropwise. After the addition, the reaction mixture was kept under stirring for 24 hours at room temperature. Subsequently, 10.0 mL of distilled water was added and the formation of a brown precipitate was observed. The resulting mixture was transferred to a separatory funnel and the aqueous phase was extracted with ethyl acetate (3 x 30.0 ml). The organic extracts were combined, and the resulting organic phase was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Compound (4) was obtained as a solid, after washing with dichloromethane and acetone, in 58% yield (0.394 mmol). 44. Characteristic: yellow solid. 45. CCD: Rf = 0.05 (hexane-ethyl acetate 2: 1 v / v). 46. Tf = 238.0-239.4 ° C. 47. IV (ATR) v max: 3492-3109, 3093, 3039, 1720, 1666, 1555, 1384, 1182, 730. 48. 1H NMR (300 MHz, DMSO-cfe) δ: 6.89 (d, 1H, J = 8.1 Hz); 7.64 (s, 1H); 7.83 (dd, 1H, Ji = 8.1 Hz, J2 = 1.8 Hz); 7.86-7.94 (m, 4H); 8.32 (d, 1H, J = 1.8 Hz). 49. 13C NMR (75 MHz, DMSO-cfe) δ: 116.2; 121.0; 123.1; 125.2; 125.5; 130.7; 135.7; 135.9; 139.6; 142.1; 145.7; 147.3; 153.0; 189.4; 190.5.
EXPERIMENTOS DE DEMONSTRAÇÃODEMONSTRATION EXPERIMENTS
Avaliação da atividade antiviral dos compostos (2) e (4) Condições experimentais para avaliação da atividade dos compostos (2) e (4) contra a protease NS2B-NS3 do vírus WNV 50. Foi utilizada a protease do vírus WNV purificada e ativada fornecida pela R&D Systems (Minneapolis, MN, EUA), Recombinant Viral WNV NS3 Protease (número de catálogo 2907-SE). Como substrato fluorescente foi utilizado o pERTKR-AMC (R & D Systems, Minneapolis, MN, EUA, número de catálogo ES013). A fim de investigar se os compostos (2) e (4) (Figuras 2 e 3) são capazes de inibir a protease NS2B-NS3 do vírus WNV, um total de 50 pL da protease purificada (concentração final de 1ng juL-1) diluída em solução tampão (50 mmol L-1 Tris, 30% (v/v) Glicerol, pH 9,5) foi incubada com 50 pL do composto (concentração final de 16,6 pmol L-1) em uma placa preta de 96 poços durante 30 min a 21-22 °C antes do início da reação por adição de 50 pL do substrato na concentração de 40 μmol L-1. Um controle positivo sem o composto foi testado na mesma placa, com 50 pL de tampão, além de um controle negativo com 1% de DMSO. O branco continha 50 pL de tampão e 100 pL do substrato. A intensidade de fluorescência foi registrada continuamente em um comprimento de onda de excitação de 360 nm e um comprimento de onda de emissão de 460 nm usando leitor SpectraMax® M5 (Molecular Devices) de fluorescência. Os ensaios para cálculo do IC50 foram realizados com um total de 50 pL da NS2B-NS3- protease purificada (concentração final de 1ng pL-1) incubada com 50 pL do composto sendo avaliado; oito concentrações distintas (66, 33, 16, 8, 4, 2, 1 e 0,5 pmol L-1) foram utilizadas. Para o ensaio de cinética, 50 pL da protease NS2B-NS3 purificada (concentração final de 1ng pL-1) foi incubada com 50 pL do composto sendo avaliado, na concentração final de 2, 4 e 8 pmol L-1, em uma placa preta de 96 poços durante 30 min à temperatura de 21-22 °C, antes do início da reação por adição de 50 pL do substrato em diferentes concentrações (8, 16, 24, 32 e 40 pmol L-1). A análise dos resultados foi conduzida por meio do programa GraphpadPrism 6 utilizando o teste de comparações múltiplas one-way ANOVA.Evaluation of the antiviral activity of compounds (2) and (4) Experimental conditions for evaluation of the activity of compounds (2) and (4) against the NS2B-NS3 protease of the WNV 50 virus. The purified and activated WNV virus protease provided was used by R&D Systems (Minneapolis, MN, USA), Recombinant Viral WNV NS3 Protease (catalog number 2907-SE). As a fluorescent substrate, pERTKR-AMC (R & D Systems, Minneapolis, MN, USA, catalog number ES013) was used. In order to investigate whether compounds (2) and (4) (Figures 2 and 3) are capable of inhibiting the NS2B-NS3 protease of the WNV virus, a total of 50 pL of the purified protease (final concentration of 1ng juL-1) diluted in buffer solution (50 mmol L-1 Tris, 30% (v / v) Glycerol, pH 9.5) was incubated with 50 pL of the compound (final concentration of 16.6 pmol L-1) in a black 96 wells for 30 min at 21-22 ° C before the start of the reaction by adding 50 pL of the substrate at a concentration of 40 μmol L-1. A positive control without the compound was tested on the same plate, with 50 pL of buffer, in addition to a negative control with 1% DMSO. The blank contained 50 pL of buffer and 100 pL of substrate. The fluorescence intensity was recorded continuously at an excitation wavelength of 360 nm and an emission wavelength of 460 nm using the SpectraMax® M5 (Molecular Devices) fluorescence reader. The assays for calculating the IC50 were performed with a total of 50 pL of purified NS2B-NS3-protease (final concentration of 1ng pL-1) incubated with 50 pL of the compound being evaluated; eight different concentrations (66, 33, 16, 8, 4, 2, 1 and 0.5 pmol L-1) were used. For the kinetics assay, 50 pL of purified NS2B-NS3 protease (final concentration of 1ng pL-1) was incubated with 50 pL of the compound being evaluated, at the final concentration of 2, 4 and 8 pmol L-1, in a plate 96-well black for 30 min at a temperature of 21-22 ° C, before starting the reaction by adding 50 pL of the substrate in different concentrations (8, 16, 24, 32 and 40 pmol L-1). The analysis of the results was conducted using the GraphpadPrism 6 program using the one-way multiple comparison test ANOVA.
Condições experimentais para avaliação da atividade antiviral em célula 51. Para a realização dos experimentos foram utilizadas células Vero, que são culturas contínuas de rim de macaco verde africano (Cercopithecus aethips). O meio utilizado para o crescimento e manutenção das células foi o meio DMEM. Este meio foi suplementado com soro fetal bovino (SFB) na proporção de 10% para promoção do crescimento e 2% para manutenção da linhagem celular. Para prevenir a contaminação das culturas de células por bactérias e fungos, foi adicionado ao meio 1% de PSA (10.000 U de Penicilina, 10.000 pg de Estreptomicina e 25 pg de Anfotericina B). Para a obtenção de subculturas celulares, manutenção das células e realização dos experimentos com células Vero, foi utilizado como agente dissociante a tripsina (tripsina de pâncreas de porco preparada em solução de EDTA 1:250), que é uma enzima proteolítica que catalisa reações de quebra de cadeia polipeptídica em determinadas sequências de aminoácidos. 52. A avaliação da citotoxicidade dos compostos (2) e (4) foi realizada contra células Vero. Foi utilizado o ensaio colorimétrico do MTT. Uma suspensão de células Vero, contendo aproximadamente 1x104 células/mL, obtida por tripsinização de um frasco de cultura celular, foi distribuída em uma placa de 96 cavidades por poço (100 juL/cavidade). A placa foi incubada por 24 h, a 37 °C. Após 24 h, com a monocamada celular confluente, o meio DMEM foi substituído por 100 pL das diversas concentrações dos compostos diluídos em meio DMEM incompleto (400, 200, 100, 50, 25, 12 e 6 pmol L-1). A placa foi incubada por 72 h a 37 °C. O meio foi então removido e foram adicionados 50 pL de MTT (1 mg mL-1), e a placa foi novamente incubada por 4 h. O meio com MTT foi removido e substituído por 100 pL de DMSO/cavidade; a placa foi agitada por 10 minutos e foi realizada a leitura em espectrofotômetro a 540 nm. A absorbância obtida foi diretamente proporcional à viabilidade celular, a qual foi calculada utilizando-se as absorbâncias das monocamadas tratadas com material-teste, comparados ao controle celular. Os valores de CC50, ou seja, a concentração de cada composto avaliado que reduziu em 50% a viabilidade celular, foi obtida por análise de regressão dos percentuais referentes às diferentes concentrações dos compostos. Os resultados foram tratados no GraphpadPrism 6 e os valores de CC50 representaram a média de três experimentos independentes. 53. A avaliação da atividade virucida dos compostos (2) e (4) foi realizado sobre células Vero, as quais foram cultivadas em placas de 24 cavidades no total de 8x105 células por placa com meio 10% por 24 h. Um volume de 100 pL de suspensão viral (50-100 UFP) foi incubado com 100 pL de variadas concentrações dos compostos (2) e (4) sob avaliação (3, 6, 12, 25, 50 e 100 pmol L-1) e incubados a 37 °C por 1 h. O meio foi retirado por aspiração das placas e foram adicionados 100 pL da mistura de vírus (DENV-1,2,3,4 ou ZIKV) e do composto sob avaliação à monocamada celular. As placas foram incubadas por 1 hora, sob agitação para uma melhor distribuição viral. Após esse tempo, a suspensão viral misturada às variadas concentrações do composto sob avaliação foi aspirada e foram adicionados a cada cavidade 1500 pL de uma solução CMC 3% em meio DMEM (duas vezes concentrado) acrescido de 2% de SFB e 1% de PSA. As placas foram incubadas por 5-6 dias. Após este período, o meio foi retirado e as células fixadas e coradas. Neste ensaio foi possível calcular o valor do EC50 por meio de regressão dos percentuais de inibição referentes às diferentes concentrações dos compostos teste com o GraphpadPrism 6. 54. Para o ensaio de pré-tratamento, células Vero foram cultivadas em placas de 96 cavidades (2,0 x 105 células/mL, 100 juL/cavidade) até confluência (24 h) usando meio MEM suplementado com 5% de SFB e incubados a 37 °C com 5% de CO2. Após 24 h, o meio foi retirado por aspiração e foram adicionados 100 pL das diferentes concentrações dos compostos (2) e (4) (100, 50, 25, 12, 6 e 3 pmol L-1), que ficaram em contato com o tapete celular por 3 h a 37 °C com 5% de CO2. Decorrido este período, os compostos foram cuidadosamente aspirados e foram adicionados 200 pL da suspensão viral (MOI=2). Na mesma placa, foram realizados controle celular (100 pL meio/cavidade) e controle viral (200 pL suspensão viral/cavidade, MOI=2). As placas foram incubadas por 4 h nas mesmas condições citadas anteriormente para adsorção viral. Posteriormente, o sobrenadante foi removido e foram adicionados 200 pL de meio incompleto. As placas foram incubadas por 96 h nas mesmas condições citadas anteriormente. Decorrido esse período, o meio foi aspirado e foram adicionados 50 pL de MTT (1 mg/mL), e a placa foi incubada por mais 4h. O meio com MTT foi removido e substituído por 100 pL de DMSO 0,1 mol L-1/cavidade, a placa foi agitada por 10 minutos e foi realizada a leitura em espectrofotômetro a 540 nm. 55. Os valores de absorbância medidos para cada concentração de cada material teste foram transformados em porcentagem (x%) em relação aos controles celular e viral, empregando-se a seguinte equação: 56. Para o ensaio de pós-tratamento, células Vero foram cultivadas em placas de 96 cavidades (2,0 x 105 células/mL, 100 juL/cavidade) até confluência (24 h) usando meio MEM suplementado com 5% de SFB e incubados a 37 °C com 5 % de CO2. Após 24 h, o meio foi retirado por aspiração e foram adicionados 100 pL da suspensão viral (MOI=2). Na mesma placa, foram realizados controle celular (100 pL meio/cavidade) e controle viral (200 pL suspensão viral/cavidade, MOI=2). As placas foram incubadas por 4 horas nas mesmas condições citadas anteriormente para adsorção viral. Posteriormente, o sobrenadante foi removido e foram adicionados 200 pL das diferentes concentrações dos compostos (2) e (4) (100, 50, 25, 12, 6 e 3 pmol L-1). As placasforam incubadas por 96 h nas mesmas condições citadas anteriormente. Decorrido esse período, os compostos foram aspirados e foram adicionados 50 pL de MTT (1 mg mL-1) e as placas foram incubadas novamente por 4 h. O meio com MTT foi removido e substituído por 100 pL de DMSO 0,1 mol L-1/cavidade, as placas foram agitadas por 10 minutos e foi realizada a leitura em espectrofotômetro a 540 nm. Os cálculos foram realizados de acordo com o que foi descrito para o pré-tratamento.Experimental conditions for evaluating antiviral activity in cell 51. Vero cells were used to carry out the experiments, which are continuous cultures of African green monkey kidney (Cercopithecus aethips). The medium used for the growth and maintenance of the cells was the DMEM medium. This medium was supplemented with fetal bovine serum (SFB) in the proportion of 10% for growth promotion and 2% for maintenance of the cell line. To prevent contamination of cell cultures by bacteria and fungi, 1% PSA (10,000 U of Penicillin, 10,000 pg of Streptomycin and 25 pg of Amphotericin B) was added to the medium. To obtain cell subcultures, maintain cells and perform experiments with Vero cells, trypsin (trypsin from pig pancreas prepared in EDTA solution 1: 250) was used as a dissociating agent, which is a proteolytic enzyme that catalyzes reactions of polypeptide chain break in certain amino acid sequences. 52. The cytotoxicity assessment of compounds (2) and (4) was performed against Vero cells. The MTT colorimetric assay was used. A suspension of Vero cells, containing approximately 1x104 cells / mL, obtained by trypsinization of a cell culture flask, was distributed in a 96 well plate per well (100 µl / well). The plate was incubated for 24 h at 37 ° C. After 24 h, with the confluent cell monolayer, the DMEM medium was replaced by 100 pL of the various concentrations of the compounds diluted in incomplete DMEM medium (400, 200, 100, 50, 25, 12 and 6 pmol L-1). The plate was incubated for 72 h at 37 ° C. The medium was then removed and 50 µl MTT (1 mg mL-1) was added, and the plate was incubated again for 4 h. The MTT medium was removed and replaced with 100 µL of DMSO / well; the plate was shaken for 10 minutes and a spectrophotometer reading at 540 nm was performed. The absorbance obtained was directly proportional to cell viability, which was calculated using the absorbances of monolayers treated with test material, compared to cell control. The CC50 values, that is, the concentration of each evaluated compound that reduced cell viability by 50%, was obtained by regression analysis of the percentages referring to the different concentrations of the compounds. The results were treated in GraphpadPrism 6 and the CC50 values represented the average of three independent experiments. 53. The evaluation of the virucidal activity of compounds (2) and (4) was performed on Vero cells, which were cultured in 24-well plates for a total of 8x105 cells per plate with 10% medium for 24 h. A volume of 100 pL of viral suspension (50-100 UFP) was incubated with 100 pL of varying concentrations of compounds (2) and (4) under evaluation (3, 6, 12, 25, 50 and 100 pmol L-1) and incubated at 37 ° C for 1 h. The medium was removed by aspirating the plates and 100 µl of the virus mixture (DENV-1,2,3,4 or ZIKV) and the compound under evaluation were added to the cell monolayer. The plates were incubated for 1 hour, with shaking for better viral distribution. After that time, the viral suspension mixed with the different concentrations of the compound under evaluation was aspirated and 1500 pL of a 3% CMC solution in DMEM medium (twice concentrated) plus 2% SFB and 1% PSA were added to each well. . The plates were incubated for 5-6 days. After this period, the medium was removed and the cells fixed and stained. In this assay it was possible to calculate the EC50 value by regressing the inhibition percentages for the different concentrations of the test compounds with GraphpadPrism 6. 54. For the pretreatment assay, Vero cells were cultured in 96-well plates (2 , 0 x 105 cells / mL, 100 μl / well) until confluence (24 h) using MEM medium supplemented with 5% SFB and incubated at 37 ° C with 5% CO2. After 24 h, the medium was removed by aspiration and 100 pL of the different concentrations of compounds (2) and (4) (100, 50, 25, 12, 6 and 3 pmol L-1) were added, which were in contact with the cellular mat for 3 h at 37 ° C with 5% CO2. After this period, the compounds were carefully aspirated and 200 µl of the viral suspension (MOI = 2) was added. Cell control (100 pL medium / well) and viral control (200 pL viral suspension / well, MOI = 2) were performed on the same plate. The plates were incubated for 4 h in the same conditions mentioned above for viral adsorption. Subsequently, the supernatant was removed and 200 µl of incomplete medium was added. The plates were incubated for 96 h in the same conditions mentioned above. After this period, the medium was aspirated and 50 pL of MTT (1 mg / mL) were added, and the plate was incubated for another 4 hours. The MTT medium was removed and replaced with 100 pL of 0.1 mol L-1 DMSO / well, the plate was shaken for 10 minutes and a spectrophotometer reading at 540 nm was performed. 55. The absorbance values measured for each concentration of each test material were transformed into a percentage (x%) in relation to the cellular and viral controls, using the following equation: 56. For the post-treatment test, Vero cells were cultured in 96 well plates (2.0 x 105 cells / mL, 100 μl / well) until confluence (24 h) using MEM medium supplemented with 5% SFB and incubated at 37 ° C with 5% CO2. After 24 h, the medium was removed by aspiration and 100 pL of the viral suspension was added (MOI = 2). Cell control (100 pL medium / well) and viral control (200 pL viral suspension / well, MOI = 2) were performed on the same plate. The plates were incubated for 4 hours in the same conditions mentioned above for viral adsorption. Subsequently, the supernatant was removed and 200 pL of the different concentrations of compounds (2) and (4) (100, 50, 25, 12, 6 and 3 pmol L-1) were added. The plates were incubated for 96 h in the same conditions mentioned above. After this period, the compounds were aspirated and 50 pL of MTT (1 mg mL-1) was added and the plates were incubated again for 4 h. The MTT medium was removed and replaced with 100 pL of 0.1 mol L-1 DMSO / well, the plates were shaken for 10 minutes and a spectrophotometer reading at 540 nm was performed. The calculations were performed according to what has been described for the pre-treatment.
Avaliação da Atividade Antiviral 57. Os compostos (2) e (4) foram biologicamente avaliados contra a protease viral do WNV e contra os vírus DENV-1,2, 3, 4 e ZIKV. 58. Para avaliar a ação antiviral dos dois compostos, foi inicialmente realizado um ensaio para avaliar o efeito deles sobre a protease do WNV. A protease foi incubada por 30 minutos com os compostos sob avaliação. Posteriormente, a reação foi iniciada com a adição do substrato fluorescente pERTKRAMC e foi realizada a leitura em Unidades Relativas de Fluorescência (RFU) em leitor de microplacas. Os compostos (2) e (4) apresentaram comportamento inibitório, com redução, respectivamente, de cerca de 41% e 100% da ação enzimática, na concentração única de 16,6 pmol L-1 dos compostos sob investigação (Figura 4). 59. A inibição enzimática da protease do WNV foi avaliada nas concentrações de 66, 33, 16, 8, 4, 2, 1 e 0,5 pmol L-1 dos compostos (2) e (4). Os dois compostos apresentaram inibição dose-resposta com valores de IC50 de 11,27 e 3,19 μmol L-1, respectivamente (Figura 5). 60. O ensaio de cinética enzimática foi conduzido empregando-se variadas concentrações de substrato. Foi utilizado a equação de Michaelis-Menten para que o valor de velocidade máxima e KM fossem encontrados. Posteriormente o gráfico de Lineweaver-Burk foi construído. Os compostos (2) e (4) promoveram a diminuição significativa da velocidade máxima enzimática sem alterações dos valores de KM como pode ser visto na Figura 6. O gráfico de Lineweaver-Burk apresentou retas que se interceptam no eixo x. Os valores de Ki foram, respectivamente, de 12,31 e 1,25 μmol L-1 para os compostos (2) e (4). Esse perfil de inibição sugere uma inibição não competitiva, onde o inibidor e o substrato podem se ligar simultaneamente a uma molécula de enzima. Um inibidor não competitivo age diminuindo o número de renovação, em vez de diminuir a proporção de moléculas de enzima que estão ligadas ao substrato. A inibição não competitiva não pode ser anulada pelo aumento da concentração do substrato. O substrato ainda pode se ligar ao complexo enzima-inibidor. Contudo, o complexo enzima-inibidor-substrato não prossegue para formar produto; logo o valor de Vmax é diminuído para um novo valor, enquanto o valor de KM não é afetado (Berg JM, T., JL, Stryer, L, Bioquímica, ed. 6. 2008, Rio de Janeiro: Guanabara Koogan). 61. O ensaio de citotoxicidade foi conduzido empregando-se sete concentrações diferentes dos compostos (2) e (4). A avaliação da citotoxicidade destes compostos foi realizada sobre células Vero, utilizando ensaio colorimétrico do MTT. Os valores da concentrações dos compostos que reduziram 50% da viabilidade celular (CC50) foram determinados por regressão não-linear e corresponderam a 89,72 pmol L-1 e 267,60 μmol L-1, respectivamente, para (2) e (4) (Figura 7). 62. O ensaio virucida foi conduzido com diferentes concentrações (3, 6, 12, 25, 50 e 100 μmol L-1) contra os vírus DENV-1-4 e ZIKV, por meio do ensaio de placas de lise sobre células Vero e os resultados estão apresentados na Tabela 1. O valor da concentração dos compostos avaliados que inibiu 50% da infecção viral (EC50) foi obtido por regressão não-linear, levando ao cálculo do Índice de Seletividade (IS). 63. Os sensaios de avalição de citotoxicidade indicaram valores de CC50 de 89,72 e 267,60 μmol L-1 para (2) e (4), respectivamente. Esses valores quando associados aos de EC50 obtido para DENV e ZIKV, levaram a elevados valores de IS para o composto (4), o que não foi observado para (2). Esse resultado indica o potencial inibitório de (4) não só para a protease do WNV, como também para os vírus DENV e ZIKV, para os quais obteve-se bons valores de IS, com destaque para o vírus DENV-3, com IS de 147 (Tabela 1). 64. Tabela 1 - Valores de CCso, ECso e IS dos compostos (2) e (4) na presença dos vírus DENV1-4 e ZIKV. 65. A proteção encontrada no ensaio virucida sugere dois mecanismos de ação: a) o composto atua diretamente sobre a partícula viral; ou b) o composto atua sobre os receptores celulares impedindo a entrada do vírus na célula. Para elucidar quais dos dois mecanismos, foi realizado ensaio de pré-tratamento, onde as células são previamente tratadas com o composto. Um resultado de proteção nesse ensaio indica que o composto atua diretamente sobre a superfície celular e não sobre a partícula viral. 66. O ensaio de pré-tratamento foi conduzido com concentrações diferentes dos compostos (2) e (4) (3, 6, 12, 25, 50 e 100 μmol L-1) contra os vírus DENV-2 e ZIKV, via ensaio colorimétrico do MTT sobre células Vero. Os resultados não indicaram diferença significativa na infecção viral celular na presença ou ausência dos compostos (2) e (4) como pode ser observado na Figura 8. 67. Compostos antivirais podem atuar nas fases de replicação viral. Nesse caso, a partícula viral é adsorvida e internalizada, mas quando o seu ciclo replicativo é iniciado, o inibidor impede que ele ocorra, geralmente por ação sobre as proteínas do capsídeo ou sobre as enzimas virais. Para verificar se o composto atua nas fases de replicação, é realizado o ensaio de pós-tratamento. Neste ensaio o composto é adicionado somente após a partícula viral adsorver e internalizar nas células. Um resultado de proteção nesse ensaio indica que o composto atua nas fases de replicação. 68. O ensaio de pós-tratamento foi conduzido com concentrações diferentes dos compostos (2) e (4) (3, 6, 12, 25, 50 e 100 μmol L-1) contra os vírus DENV-2 e ZIKV, através de ensaio colorimétrico do MTT sobre células Vero e está apresentado na Figura 9. Os resultados não indicaram diferença significativa na replicação viral na presença ou ausência dos compostos (2) e (4). 69. A proteção identificada no ensaio virucida somada à ausência de proteção nos ensaios de pré e pós-tratamento com DENV e ZIKV indicaram que os compostos (2) e (4) provavelmente atuam diretamente sobre o vírus. Quando a partícula viral se encontra madura e, portanto, capaz de infectar a célula, sua superfície é revestida por dímeros da proteína e que estão associados com a entrada do vírus na célula e sua fusão à membrana do endossomo. Logo, uma molécula que atue diretamente sobre a partícula viral, provavelmente está atuando sobre os dímeros da proteína, o que acaba por impedir a adsorção viral ou a fusão das membranas virais e do hospedeiro.Evaluation of Antiviral Activity 57. Compounds (2) and (4) were biologically evaluated against WNV viral protease and against DENV-1,2, 3, 4 and ZIKV viruses. 58. To assess the antiviral action of the two compounds, an assay was initially carried out to assess their effect on the WNV protease. The protease was incubated for 30 minutes with the compounds under evaluation. Subsequently, the reaction was initiated with the addition of the fluorescent substrate pERTKRAMC and the reading was performed in Relative Fluorescence Units (RFU) in a microplate reader. The compounds (2) and (4) showed an inhibitory behavior, with a reduction, respectively, of approximately 41% and 100% of the enzymatic action, in the single concentration of 16.6 pmol L-1 of the compounds under investigation (Figure 4). 59. The enzymatic inhibition of WNV protease was evaluated at concentrations of 66, 33, 16, 8, 4, 2, 1 and 0.5 pmol L-1 of compounds (2) and (4). The two compounds showed dose-response inhibition with IC 50 values of 11.27 and 3.19 μmol L-1, respectively (Figure 5). 60. The enzymatic kinetics assay was conducted using varying concentrations of substrate. The Michaelis-Menten equation was used to find the maximum speed and KM values. Subsequently, the Lineweaver-Burk chart was constructed. The compounds (2) and (4) promoted a significant decrease in the maximum enzymatic speed without changes in the KM values, as can be seen in Figure 6. The Lineweaver-Burk graph showed lines that intersect on the x axis. The Ki values were, respectively, 12.31 and 1.25 μmol L-1 for compounds (2) and (4). This inhibition profile suggests a non-competitive inhibition, where the inhibitor and the substrate can simultaneously bind to an enzyme molecule. A non-competitive inhibitor works by decreasing the number of renewals, instead of decreasing the proportion of enzyme molecules that are bound to the substrate. Non-competitive inhibition cannot be canceled out by increasing the concentration of the substrate. The substrate can still bind to the enzyme-inhibitor complex. However, the enzyme-inhibitor-substrate complex does not proceed to form a product; therefore the value of Vmax is decreased to a new value, while the value of KM is not affected (Berg JM, T., JL, Stryer, L, Biochemistry, ed. 6. 2008, Rio de Janeiro: Guanabara Koogan). 61. The cytotoxicity assay was conducted using seven different concentrations of compounds (2) and (4). The evaluation of the cytotoxicity of these compounds was performed on Vero cells, using MTT colorimetric assay. The values of the concentrations of the compounds that reduced 50% of the cell viability (CC50) were determined by non-linear regression and corresponded to 89.72 pmol L-1 and 267.60 μmol L-1, respectively, for (2) and ( 4) (Figure 7). 62. The virucidal assay was conducted at different concentrations (3, 6, 12, 25, 50 and 100 μmol L-1) against the DENV-1-4 and ZIKV viruses, using the lysis plate assay on Vero cells and the results are shown in Table 1. The concentration value of the evaluated compounds that inhibited 50% of the viral infection (EC50) was obtained by non-linear regression, leading to the calculation of the Selectivity Index (IS). 63. Cytotoxicity assessment sensations indicated CC50 values of 89.72 and 267.60 μmol L-1 for (2) and (4), respectively. These values when associated with those of EC50 obtained for DENV and ZIKV, led to high IS values for the compound (4), which was not observed for (2). This result indicates the inhibitory potential of (4) not only for the WNV protease, but also for the DENV and ZIKV viruses, for which good IS values were obtained, with emphasis on the DENV-3 virus, with IS of 147 (Table 1). 64. Table 1 - CCso, ECso and IS values of compounds (2) and (4) in the presence of the DENV1-4 and ZIKV viruses. 65. The protection found in the virucidal assay suggests two mechanisms of action: a) the compound acts directly on the viral particle; or b) the compound acts on cell receptors preventing the virus from entering the cell. To elucidate which of the two mechanisms, a pre-treatment test was performed, where the cells are previously treated with the compound. A protective result in this test indicates that the compound acts directly on the cell surface and not on the viral particle. 66. The pretreatment assay was conducted with different concentrations of compounds (2) and (4) (3, 6, 12, 25, 50 and 100 μmol L-1) against the DENV-2 and ZIKV viruses, via assay colorimetric analysis of MTT on Vero cells. The results did not indicate a significant difference in cellular viral infection in the presence or absence of compounds (2) and (4) as can be seen in Figure 8. 67. Antiviral compounds can act in the phases of viral replication. In this case, the viral particle is adsorbed and internalized, but when its replicative cycle is started, the inhibitor prevents it from occurring, usually by acting on capsid proteins or viral enzymes. To check whether the compound acts in the replication phases, the post-treatment test is performed. In this test the compound is added only after the viral particle has adsorbed and internalized in the cells. A protective result in this test indicates that the compound acts in the replication phases. 68. The post-treatment test was conducted with different concentrations of compounds (2) and (4) (3, 6, 12, 25, 50 and 100 μmol L-1) against the DENV-2 and ZIKV viruses, using colorimetric assay of MTT on Vero cells and is shown in Figure 9. The results did not indicate significant difference in viral replication in the presence or absence of compounds (2) and (4). 69. The protection identified in the virucidal assay plus the lack of protection in the pre- and post-treatment trials with DENV and ZIKV indicated that compounds (2) and (4) are likely to act directly on the virus. When the viral particle is mature and therefore capable of infecting the cell, its surface is coated with protein dimers that are associated with the virus entering the cell and fusing it to the endosome membrane. Therefore, a molecule that acts directly on the viral particle, is probably acting on the protein's dimers, which ends up preventing viral adsorption or the fusion of the viral and host membranes.
Relação estrutura-atividade e cálculos in silico de propriedades físico-químicas dos compostos (2) e (4) 70. Considerando-se o potencial terapêutico dos compostos, um estudo computacional foi realizado para prever as propriedades físico-químicas dos compostos (2) e (4). Esses parâmetros influenciam as propriedades farmacocinéticas, tais como absorção, distribuição, metabolismo e excreção (ADME). A triagem foi realizada para avaliar se os compostos podem apresentar as características de candidatos a fármacos com base na regra dos cinco de Lipinski (Lipinski, C.A.,et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review, 1997. 23: p.3-25) e outros critérios relacionados acrescentados por Veber e colaboradores (Veber, D.F. et al., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623). Estas características, teoricamente, determinam se um composto apresenta boa absorção na membrana e permeabilidade através da mesma, propriedades que, provavelmente, o tornam um medicamento ativo por via oral em seres humanos. 71. Os parâmetros moleculares analisados foram coeficiente de partição octanol/água (LogP < 5), a quantidade de doadores de ligação de hidrogênio (HBD < 5), a quantidade de receptores de ligação de hidrogênio (HBA < 10), a massa molecular dos fármacos (MW < 500), número de ligações capazes de sofrer rotação (nRotb <10) e área de superfície polar (PSA <140 A2). Os valores entre parênteses representam os valores ideais de acordo com Lipinski (Lipinski, C.A.,et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Structure-activity relationship and in silico calculations of the physical-chemical properties of the compounds (2) and (4) 70. Considering the therapeutic potential of the compounds, a computational study was carried out to predict the physical-chemical properties of the compounds (2) and (4). These parameters influence pharmacokinetic properties, such as absorption, distribution, metabolism and excretion (ADME). Screening was carried out to assess whether the compounds may have the characteristics of drug candidates based on Lipinski's rule of five (Lipinski, CA, et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review, 1997. 23: p.3-25) and other related criteria added by Veber et al. (Veber, DF et al., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623). These characteristics, theoretically, determine whether a compound has good absorption in the membrane and permeability through it, properties that probably make it an active drug orally in humans. 71. The molecular parameters analyzed were the octanol / water partition coefficient (LogP <5), the amount of hydrogen bonding donors (HBD <5), the amount of hydrogen bonding receptors (HBA <10), the molecular mass of drugs (MW <500), number of connections capable of rotating (nRotb <10) and polar surface area (PSA <140 A2). The values in parentheses represent the ideal values according to Lipinski (Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.
Advanced Drug Delivery Review, 1997. 23: p.3-25) e Veber (Veber, D.F. et al., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623). Os parâmetros físico-químicos foram calculados usando os softwares Osiris Property Explorer (Tetko, I.V, Computing chemistry on the web. Drug Discovery Today, 2005. 10: p. 1497-1500) e Molinspiration (http://www.molinspiration.com/cgi-bin/properties), ferramentas computacionais de uso livre que ajudam a prever as propriedades farmacocinéticas de candidatos a drogas utilizadas por diversos grupos de pesquisa (Abrigachi, F., et al., Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds. Medicinal Chemistry Research, 2017. 26: p. 1784-1795; Amin, S. A., et al., Pharmacoinformatics study of Piperolactam A from Piper betle root as new lead for non steroidal anti fertility drug development. Computational Biology and Chemistry, 2017. 67: p.213-224; Al-Maqtari, H. M., et al., Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylatedpyrazole.Research on Chemical Intermediates, 2017. 43: p.1893-1907; Klen, E. E., et al., 3-Substituted Thietane-1,1-Dioxides: Synthesis, Antidepressant Activity, and in Silico Prediction of Their Pharmacokinetic and Toxicological Properties, Pharmaceutical Chemistry Journal, 2017. 50: p.642-648; Gabr, M. T., Isatin-b-thiocarbohydrazones: Microwave-assisted synthesis, antitumor activity and structure-activity relationship, European Journal of Medicinal Chemistry, 2017. 128: p.36-44). 72. O parâmetros químicos e físico-químicos que influenciam as propriedades farmacocinéticas de uma droga foram avaliados usando-se o software OsirisProperty Explorer. O software permite o cálculo da lipofilicidade, inferida a partir do valor de LogP, solubilidade em água, expresso como LogS, massa molecular, índices de drug-likeness e drug-scores. Baixa hidrofilicidade e, portanto, valores elevados de LogP, podem causar má absorção ou penetração. Além disso, o software Osiris calcula vários parâmetros dos compostos, como os riscos de toxicidade (mutagênico, irritante, carcinogênico e efeitos reprodutivos), drug-likeness e drug-scores (Lipinski, C.A.,Lead- and drug-like compounds: the rule-of-five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot, R.,Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012.12: p. 1647-1650). Cálculos de LogP e massa molecular, bem como a área de superfície total polar (TPSA), número de ligações capazes de sofrer rotação (nRotB), número de doadores de ligação de hidrogênio (HBD), número de ligações aceptores de ligação de hidrogênio (HBA) e pontuações de bioatividade (Jarrahpour, A., et al., Petra, Osirisandmolinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo schiff bases. Medicinal Chemistry Research, 2012. 21: p. 1984-1990) foram determinadas pelo software Molinspiration. As Tabelas 2 e 3 mostram os resultados dos cálculos baseados nestes pacotes computacionais. 73. Tabela 2 - Propriedades drug-likeness previstas e riscos de toxicidade dos compostos (2) e (4) calculados pelo software Osiris.Advanced Drug Delivery Review, 1997. 23: p.3-25) and Veber (Veber, DF et al., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623 ). The physical-chemical parameters were calculated using the software Osiris Property Explorer (Tetko, IV, Computing chemistry on the web. Drug Discovery Today, 2005. 10: p. 1497-1500) and Molinspiration (http://www.molinspiration.com / cgi-bin / properties), computational tools of free use that help to predict the pharmacokinetic properties of drug candidates used by several research groups (Abrigachi, F., et al., Synthesis, biological screening, POM, and 3D- QSAR analyzes of some novel pyrazolic compounds.Medicinal Chemistry Research, 2017. 26: p. 1784-1795; Amin, SA, et al., Pharmacoinformatics study of Piperolactam A from Piper betle root as new lead for non steroidal anti fertility drug development. Computational Biology and Chemistry, 2017. 67: p.213-224; Al-Maqtari, HM, et al., Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylatedpyrazole.Research on Chemical Intermediates, 2017. 43: p.1893-1907; Klen, E. E., et al., 3-Substituted Thietane-1,1-Dioxides: Synthesis, Antidepressant Activity, and in Silico Prediction of Their Pharmacokinetic and Toxicological Properties, Pharmaceutical Chemistry Journal, 2017. 50: p.642-648; Gabr, M. T., Isatin-b-thiocarbohydrazones: Microwave-assisted synthesis, antitumor activity and structure-activity relationship, European Journal of Medicinal Chemistry, 2017. 128: p.36-44). 72. The chemical and physical-chemical parameters that influence the pharmacokinetic properties of a drug were evaluated using the OsirisProperty Explorer software. The software allows the calculation of lipophilicity, inferred from the LogP value, solubility in water, expressed as LogS, molecular mass, drug-likeness and drug-scores. Low hydrophilicity and, therefore, high LogP values, can cause poor absorption or penetration. In addition, Osiris software calculates various parameters of the compounds, such as toxicity risks (mutagenic, irritant, carcinogenic and reproductive effects), drug-likeness and drug-scores (Lipinski, CA, Lead- and drug-like compounds: the rule -of-five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot, R., Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012.12: p 1647-1650). LogP and molecular mass calculations, as well as the total polar surface area (TPSA), number of rotating bonds (nRotB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptor bonds ( HBA) and bioactivity scores (Jarrahpour, A., et al., Petra, Osirisandmolinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo schiff bases. Medicinal Chemistry Research, 2012. 21: 1984-1990) were determined by the Molinspiration software. Tables 2 and 3 show the results of the calculations based on these computational packages. 73. Table 2 - Predicted drug-likeness properties and toxicity risks for compounds (2) and (4) calculated by the Osiris software.
Biodisponibilidade e Drug-Score Riscos de Toxicidade3 Composto _____________________________________________________________________ _________________________________________________ cLogP LogS MM Drug-likeness Drug-Score M T I R 2 2,77 -3,90 250,0 -1,32 030 - - - + 4 2,43 -3,60 266,0 -0,37 0,36 - - - + cLogP, lipofilicidade calculada; LogS, logaritmo da solubilidade aquosa medida em mol L-1; MM, massa molecular; M, efeito mutagênico; T, efeito teratogênico; I, efeito irritante; R, efeito reprodutivo,aClassificados de acordo com: (-), nenhum efeito negativo; (±), efeito negativo médio; (+), efeito negativo 74. Um parâmetro utilizado para determinar uma boa absorção dos compostos é o valor de cLogP. Como indicativo de uma boa absorção, o valor de LogP não deve ser maior que 5,0. Os valores de cLogP das indan-1,3-dionas (2) e (4) estão na faixa de 2,43-2,77. Normalmente, as drogas que interagem com enzima no interior do corpo humano tem valores de LogP entre 2 e 5 (Tambunan, U.S.F., et al., In silico modification of suberoyl anilide hydroxamicacid (SAHA) as potential inhibitor for class II histonede acetylase (HDAC). BMC Bioinformatics, 2011.12: Suppl13, S23). Nesse contexto, os compostos descritos nessa invenção apresentam valores dentro da faixa desejável (Tabela 2). 75. Os dois compostos testados apresentaram massa molecular menor do que 500. Drogas com baixa massa molecular (<500) são transportadas, difundidas e absorvidas sem dificuldade quando comparadas a moléculas apresentando massas moleculares elevadas, sendo um importante aspecto na ação das drogas. 76. Alertas de risco de toxicidade são uma indicação de que a estrutura de um composto pode ser prejudicial. A análise teórica dos riscos de toxicidade para os compostos (2) e (4), usando o software Osiris, revelou os compostos examinados foram não-mutagênicos, não carcinogênicos e não irritante. Os compostos avaliados apresentaram efeito negativo no critério de reprodução de mamíferos (Tabela 2). Entretanto, esta classificação não inviabiliza o potencial terapêutico dos compostos. Os compostos (2) e (4) foram avaliados como potenciais drogas através dos cálculos drug-likeness, apresentando valores negativos iguais a -1,32 (composto 2) e -0,37 (composto 4) (Tabela 2), o que indica que eles não contêm fragmentos que estão frequentemente presentes em medicamentos comerciais (Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot, R.,Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012.12: p. 16471650). Π. A solubilidade em água de um composto afeta significativamente a absorção e as características de distribuição. Em geral, é desejável a obtenção de compostos que sejam solúveis no meio biológico. Um parâmetro para avaliar a solubilidade é LogS. Mais de 80% dos medicamentos no mercado têm valores estimados de LogS superiores a -4 (Alafeefy, A M., et al., Quinazoline-etyrphostin as a new class of antitumoral gents, molecular properties prediction, synthesis and biological testing. European Journal of Medicinal Chemistry, 2012. 53: p. 133-140). Os valores de LogS das indan-1,3-dionas (2) e (4) são respectivamente iguais a -3,90 e -3,60, que corresponde à faixa desejável (Tabela 2). 78. Valores de drug-score podem ser utilizados para avaliar o potencial global do composto que o qualifica como uma potencial droga. Os valores são a combinação de drug-likeness, o risco de toxicidade, e de alguns parâmetros físico-químicos, tais como o cLogP, solubilidade e de massa molecular (Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot, R.,Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012. 12: p. 1647-1650). Estes valores são utilizados para avaliar o potencial de um candidato a fármaco. Como pode ser observado na Tabela 2, os valores de drug-score dos compostos (2) e (4) são iguais, respectivamente, a 0,30 e 0,36. 79. Tabela 3 - Cálculos de drug-likeness dos compostos (2) e (4) usando o software Molinspiration. Cálculos pelo Molinspiration Cálculos da Pontuação de Bioatividade3 Composto ________________________________________________________________ _________________________________________________ cLogP TPSAb HBDC HBA Volume nRotB Violações GPCRL ICM Kl NRL PI El 2 Ζ4Ϊ 54.37 1 3 218.01 Ϊ Õ -0.49 -0.67 -0.05 -0.23 -0.65 -0.12 4 1.92 74.60 2 4 226.03 1 0 -0.44 -0.67 -0.04 -0.21 -0.60 -0.11 aGPCRL: Ligante GPCR; ICM: Canal Modulador lônico; Kl: Inibidor de Quinase; NRL: Ligante de Receptor Nuclear; PI: Inibidor de Protease; El: Inibidor de Enzima,b TPSA: Área de Superfície Polar Total. CHBD: quantidade de doadores de ligação de hidrogênio; dHBA: quantidade de receptores de ligação de hidrogênio. 80. Além de LogP, a área total de superfície polar (TPSA) é um descritor importante para a previsão das propriedades de transporte da droga, incluindo a absorção intestinal, permeabilidade da monocamada Caco-2, e penetração na barreira sangue-cérebro (Clark, D. E., Rapid calculation of polar molecular surface área and its application to the prediction of transport phenomena, 1. Prediction of Intestinal Absorption. Journal of Pharmacy Science, 1999. 88: p. 807-814; Ertl, P., et al., Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry, 2000. 43: p. 37143717). Este parâmetro foi calculado utilizando o software Molinspiration com base na soma das superficies pertencente a átomos polares (geralmente oxigênio, nitrogênio e hidrogênio) (Jarrahpour, A., et al., Petra, Osiris and molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo schiff bases. Medicinal Chemistry Research, 2012. 22: p. 1984-1990). Compostos com TPSA > 140 A2 tendem a apresentar baixa biodisponibilidade oral e substâncias apresentando TPSA < 61 A2 tendem a apresentar uma biodisponibilidade adequada (Clark, D. E., Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena, 1. Prediction of Intestinal Absorption. Journal of Pharmacy Science, 1999. 88: p. 807-814). Considerando os valores de TPSA, espera-se que os compostos (2) e (4) (Tabela 3) apresentem apropriada biodisponibilidade, com base na faixa aceitável (TPSA < 140 A2). 81. O número de aceptores de ligação de hidrogênio (HBA) foi determinado considerando o número de átomos de nitrogênio e de oxigênio nas estruturas químicas. O número de doadores de ligação de hidrogênio (HBD) corresponde a soma dos átomos de hidrogênio ligados aos átomos de oxigênio e nitrogênio (Lipinski, C. A., Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technologies, 2004. 1 : p. 337-341). Os valores destes parâmetros para os compostos (2) e (4) estão dentro do limite estabelecido pelas regras de Lipinski. Esta regra sugere que duas ou mais violações para um composto podem apresentar problemas de disponibilidade biodisponibilidade (Lipinski, C.A., et al., Experimental andcomputational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review, 2001. 46: p. 3-26). Todos os compostos da Tabela 3 apresentam ausência de violação da regra de Lipinski. 82. O número de ligações capazes de sofrer rotação é um parâmetro topológico simples de flexibilidade molecular e tem-se mostrado ser um bom descritor indicativo de biodisponibilidade oral de drogas (Veber, D.F. et al., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623). Os compostos 2 e 4 da Tabela 3 não violam este critério. 83. A bioatividade dos compostos foi analisada sob diferentes receptores do corpo humano, com seis critérios de atividade de drogas sendo observadas: atividade do ligante de GPCR, modulação de canais iônicos, inibição da atividade da quinase, atividade de ligante de receptor nuclear, inibição da atividade de protease, e a atividade de inibição da enzima. Quanto maior o valor da atribuição numérica, melhor a probabilidade de uma molécula ser ativa. Os resultados destes parâmetros são apresentados (Tabela 3). Os compostos investigados apresentaram valores numéricos negativos para os receptores do corpo humano. 84. Os cálculos quanto-químicos foram realizados usando-se os softwares de modelagem molecular Spartan 10 (Spartan’10, Wavefunction) e Gaussian 09 (Frisch, M.J., et al., Gaussian ’09, Revision A.1, 2009, Wallingford CT). A geometria molecular dos compostos foi otimizada com cálculos semi-empíricoscom o pacote de ferramentas do Spartan 10 empregando-se o método PM6. Os outputs obtidos com o software Spartan 10 foram utilizados como inputs para o software Gaussian 09. Os confôrmeros de menor energia foram otimizados em fase gasosa empregando-se o nível de teoria B3LYP/6- 311++G(2d,p) (Becker, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98: p. 5648-5653. As energias dos orbitais de fronteira e o momento de dipolo são propriedades importantes em diversos processos químicos e farmacológicos (Arantes, F. F. P., et al., A quantum chemical and chemometric study of sesquiterpene lactones with cytotoxicity against tumor cells, Journal of Chemometrics. 2011. 25: p. 401407). O orbital molecular de mais alta energia ocupado (do inglês, Highest Occupied Molecular Orbital - HOMO), e o orbital molecular de menor energia desocupado (do inglês, Lowest Unoccupied Molecular Orbital - LUMO) determinam o modo como uma molécula interage com outras espécies. A diferença entre as energias dos orbitais HOMO-LUMO é chamada de GAP e ajuda a caracterizar a reatividade química bem como a estabilidade cinética do composto (Kumar, A., et al., Combined experimental (FT-IR, UV-visiblespectra, NMR) andtheoreticalstudiesonthe molecular structure, vibrationalspectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin. Journalof Molecular Structure, 2015. 1096: p. 94-101). O momento dipolo é um importante descritor molecular que fornece a medida da polaridade da ligação em toda a molécula. Os valores calculados estão listados na Tabela 4. 85. Tabela 4 - Descritores quanto-químicos para os compostos (2) e (4).Bioavailability and Drug-Score Toxicity Risks3 Compound _____________________________________________________________________ _________________________________________________ cLogP LogS MM Drug-likeness Drug-Score MTIR 2 2.77 -3.90 250.0 -1.32 030 - - - + 4 2.43 -3.60 266 , 0 -0.37 0.36 - - - + cLogP, calculated lipophilicity; LogS, logarithm of aqueous solubility measured in mol L-1; MM, molecular weight; M, mutagenic effect; T, teratogenic effect; I, irritating effect; R, reproductive effect, aClassified according to: (-), no negative effect; (±), average negative effect; (+), negative effect 74. A parameter used to determine a good absorption of the compounds is the cLogP value. As an indication of good absorption, the LogP value should not be greater than 5.0. The cLogP values of indan-1,3-diones (2) and (4) are in the range of 2.43-2.77. Normally, drugs that interact with enzyme inside the human body have LogP values between 2 and 5 (Tambunan, USF, et al., In silico modification of suberoyl anilide hydroxamicacid (SAHA) as potential inhibitor for class II histone of acetylase (HDAC ) BMC Bioinformatics, 2011.12: Suppl13, S23). In this context, the compounds described in this invention have values within the desirable range (Table 2). 75. The two compounds tested had molecular mass less than 500. Drugs with low molecular mass (<500) are transported, diffused and absorbed without difficulty when compared to molecules with high molecular masses, being an important aspect in the action of drugs. 76. Toxicity risk alerts are an indication that the structure of a compound can be harmful. Theoretical analysis of toxicity risks for compounds (2) and (4), using the Osiris software, revealed that the compounds examined were non-mutagenic, non-carcinogenic and non-irritating. The evaluated compounds had a negative effect on the mammal reproduction criterion (Table 2). However, this classification does not preclude the therapeutic potential of the compounds. Compounds (2) and (4) were evaluated as potential drugs through drug-likeness calculations, with negative values equal to -1.32 (compound 2) and -0.37 (compound 4) (Table 2), which indicates that they do not contain fragments that are frequently present in commercial drugs (Lipinski, CA, Lead- and drug-like compounds: the rule-of-five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot , R., Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012.12: p. 16471650). Π. The water solubility of a compound significantly affects absorption and distribution characteristics. In general, it is desirable to obtain compounds that are soluble in the biological environment. One parameter to assess solubility is LogS. More than 80% of drugs on the market have estimated LogS values greater than -4 (Alafeefy, A M., et al., Quinazoline-etyrphostin as a new class of antitumoral gents, molecular properties prediction, synthesis and biological testing. European Journal of Medicinal Chemistry, 2012. 53: p. 133-140). The LogS values of indan-1,3-diones (2) and (4) are respectively equal to -3.90 and -3.60, which corresponds to the desirable range (Table 2). 78. Drug-score values can be used to assess the overall potential of the compound that qualifies it as a potential drug. The values are the combination of drug-likeness, the risk of toxicity, and some physical-chemical parameters, such as cLogP, solubility and molecular mass (Lipinski, CA, Lead- and drug-like compounds: the rule-of -five Revolution, Drug Discovery Today Technologies, 2004. 1: p.337-341; Proudfoot, R., Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorganicand Medicinal Chemistry, 2012. 12: p 1647-1650). These values are used to assess the potential of a drug candidate. As can be seen in Table 2, the drug-score values for compounds (2) and (4) are equal, respectively, to 0.30 and 0.36. 79. Table 3 - Drug-likeness calculations for compounds (2) and (4) using the Molinspiration software. Molinspiration Calculations Bioactivity Score Calculations3 Compound ________________________________________________________________ _________________________________________________ cLogP TPSAb HBDC HBA Volume nRotB Violations GPCRL ICM Kl NRL PI El 2 Ζ4Ϊ 54.37 1 3 218.01 Ϊ Õ -0.49 -0.67 -0.05 -0.23 -0.65 -0.12 4 1.92 1 0 -0.44 -0.67 -0.04 -0.21 -0.60 -0.11 aGPCRL: GPCR ligand; ICM: Tonic modulator channel; Kl: Kinase Inhibitor; NRL: Nuclear Receptor Ligand; PI: Protease inhibitor; El: Enzyme Inhibitor, b TPSA: Total Polar Surface Area. CHBD: number of hydrogen bonding donors; dHBA: number of hydrogen bonding receptors. 80. In addition to LogP, the total polar surface area (TPSA) is an important descriptor for predicting drug transport properties, including intestinal absorption, permeability of the Caco-2 monolayer, and penetration into the blood-brain barrier (Clark , DE, Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena, 1. Prediction of Intestinal Absorption.Journal of Pharmacy Science, 1999. 88: p. 807-814; Ertl, P., et al. , Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry, 2000. 43: p. 37143717). This parameter was calculated using the Molinspiration software based on the sum of the surfaces belonging to polar atoms (usually oxygen, nitrogen and hydrogen) (Jarrahpour, A., et al., Petra, Osiris and molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo schiff bases (Medicinal Chemistry Research, 2012. 22: p. 1984-1990). Compounds with TPSA> 140 A2 tend to have low oral bioavailability and substances with TPSA <61 A2 tend to have adequate bioavailability (Clark, DE, Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena, 1. Prediction of Intestinal Absorption, Journal of Pharmacy Science, 1999. 88: pp. 807-814). Considering the TPSA values, it is expected that compounds (2) and (4) (Table 3) present appropriate bioavailability, based on the acceptable range (TPSA <140 A2). 81. The number of hydrogen bond acceptors (HBA) was determined by considering the number of nitrogen and oxygen atoms in chemical structures. The number of hydrogen bonding donors (HBD) corresponds to the sum of the hydrogen atoms attached to the oxygen and nitrogen atoms (Lipinski, CA, Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technologies , 2004. 1: p. 337-341). The values of these parameters for compounds (2) and (4) are within the limit established by Lipinski's rules. This rule suggests that two or more violations for a compound may present problems with availability bioavailability (Lipinski, CA, et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review, 2001. 46: p. 3-26). All compounds in Table 3 show no violation of the Lipinski rule. 82. The number of bonds capable of rotating is a simple topological parameter of molecular flexibility and has been shown to be a good descriptive indicator of oral bioavailability of drugs (Veber, DF et al., Molecular properties that influence the oral bioavailability of drug candidates, Journal of Medicinal Chemistry, 2002. 45: p. 2615-2623). Compounds 2 and 4 in Table 3 do not violate this criterion. 83. The bioactivity of the compounds was analyzed under different receptors in the human body, with six drug activity criteria being observed: GPCR ligand activity, ion channel modulation, inhibition of kinase activity, nuclear receptor ligand activity, inhibition protease activity, and the enzyme inhibiting activity. The higher the value of the numerical assignment, the better the probability of a molecule being active. The results of these parameters are presented (Table 3). The investigated compounds showed negative numerical values for human body receptors. 84. Quantum-chemical calculations were performed using the molecular modeling software Spartan 10 (Spartan'10, Wavefunction) and Gaussian 09 (Frisch, MJ, et al., Gaussian '09, Revision A.1, 2009, Wallingford CT). The molecular geometry of the compounds was optimized with semi-empirical calculations with the Spartan 10 tool package using the PM6 method. The outputs obtained with the Spartan 10 software were used as inputs to the Gaussian 09 software. The lower energy conformers were optimized in the gas phase using the theory level B3LYP / 6- 311 ++ G (2d, p) (Becker , AD Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98: p. 5648-5653. The energies of the boundary orbitals and the dipole moment are important properties in several chemical processes and pharmacological (Arantes, FFP, et al., A quantum chemical and chemometric study of sesquiterpene lactones with cytotoxicity against tumor cells, Journal of Chemometrics. 2011. 25: p. 401407). The highest-occupied molecular orbital , Highest Occupied Molecular Orbital - HOMO), and the lowest unoccupied molecular orbital (of English, Lowest Unoccupied Molecular Orbital - LUMO) determine how a molecule interacts with other species. The difference between the energies of the HOMO-LU orbitals MO is called GAP and helps to characterize the chemical reactivity as well as the kinetic stability of the compound (Kumar, A., et al., Combined experimental (FT-IR, UV-visiblespectra, NMR) andtheoreticalstudiesonthe molecular structure, vibrationalspectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin. Journalof Molecular Structure, 2015. 1096: p. 94-101). The dipole moment is an important molecular descriptor that provides a measure of the polarity of the bond throughout the molecule. The calculated values are listed in Table 4. 85. Table 4 - Quantum-chemical descriptors for compounds (2) and (4).
Momento de Composto HOMO LUMO GAP (HOMO-LUMO) dipolo 2 -6,46 -2,80 3,66 2,2983 4 -6,32 -2,86 3,46 2,6371 86. A diferença de energia entre os orbitais HOMO e LUMO (GAP) foi observada para os compostos (2) (3,66 eV) e (4) (3,46 eV), respectivamente. Haja uma variação entre os valores de momento de dipolo e orbital de fronteira para os compostos sob investigação, não foi possível estabelecer uma correlação clara entre os valores de energia de HOMO, LUMO, GAP e momento de dipolo com os dados da atividade biológica.Compound Moment HOMO LUMO GAP (HOMO-LUMO) dipole 2 -6.46 -2.80 3.66 2.2983 4 -6.32 -2.86 3.46 2.67371 86. The energy difference between the HOMO and LUMO (GAP) orbitals were observed for compounds (2) (3.66 eV) and (4) (3.46 eV), respectively. There is a variation between the dipole moment and boundary orbital values for the compounds under investigation, it was not possible to establish a clear correlation between the energy values of HOMO, LUMO, GAP and dipole moment with the biological activity data.
CONCLUSÃO 87. Utilizando-se reações de condensação de Knoevenagel e desmetilação, dois compostos sintéticos hidroxilados derivados da indan-1,3-diona, foram sintetizados. Esses compostos foram avaliados com respeito às suas atividades antivirais para os vírus WNV, DENV e ZIKV. Os compostos (2) e (4) avaliados apresentaram importante atividade antiviral com reduzidos valores de IC50 e de Ki para a protease de WNV. O mecanismo de inibição identificado foi não competitivo. Os ensaios conduzidos diretamente sob os vírus DENV-1-4 e ZIKV demonstraram que os compostos também apresentaram atividade virucida sob os mesmos. Considerando a significativa atividade antiviral apresentada pelos compostos, bem como os favoráveis valores de Índice de Seletividade, pode-se dizer que elas podem ser utilizadas como quimioterápicos para tratamento de infecções causadas pelos vírus dengue e Zika. Este aspecto é de relevância considerando que o tratamento antiviral para os vírus aqui avaliados ainda se baseia na sintomatologia do paciente. Destaca-se aqui o fato de que a presença de um grupo hidroxila no anel aromático da porção arilideno das indan-1,3-dionas parece potencializar a atividade biológica.CONCLUSION 87. Using Knoevenagel condensation reactions and demethylation, two synthetic hydroxylated compounds derived from indan-1,3-dione were synthesized. These compounds were evaluated with respect to their antiviral activities for the WNV, DENV and ZIKV viruses. The compounds (2) and (4) evaluated showed important antiviral activity with reduced IC 50 and Ki values for the WNV protease. The inhibition mechanism identified was non-competitive. The tests conducted directly on the DENV-1-4 and ZIKV viruses demonstrated that the compounds also showed virucidal activity under them. Considering the significant antiviral activity presented by the compounds, as well as the favorable values of the Selectivity Index, it can be said that they can be used as chemotherapeutics to treat infections caused by the dengue and Zika viruses. This aspect is relevant considering that the antiviral treatment for the viruses evaluated here is still based on the patient's symptoms. The fact that the presence of a hydroxyl group in the aromatic ring of the arylidene portion of indan-1,3-diones seems to enhance biological activity is highlighted here.
ReivindicaçõesClaims
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR102018067503-6A BR102018067503A2 (en) | 2018-09-03 | 2018-09-03 | USE OF SYNTHETIC HYDROXYLATED COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND PHARMACEUTICAL COMPOSITIONS |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR102018067503-6A BR102018067503A2 (en) | 2018-09-03 | 2018-09-03 | USE OF SYNTHETIC HYDROXYLATED COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND PHARMACEUTICAL COMPOSITIONS |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| BR102018067503A2 true BR102018067503A2 (en) | 2020-03-10 |
Family
ID=69896950
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| BR102018067503-6A BR102018067503A2 (en) | 2018-09-03 | 2018-09-03 | USE OF SYNTHETIC HYDROXYLATED COMPOUNDS DERIVED FROM INDAN-1,3-DIONA AS ANTI-VIRALS AND PHARMACEUTICAL COMPOSITIONS |
Country Status (1)
| Country | Link |
|---|---|
| BR (1) | BR102018067503A2 (en) |
-
2018
- 2018-09-03 BR BR102018067503-6A patent/BR102018067503A2/en active Search and Examination
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Spilovska et al. | Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease | |
| Guzior et al. | Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease | |
| Dao et al. | Synthesis and cytotoxicity of gossypol related compounds | |
| Tian et al. | Synthesis and antiviral activities of novel acylhydrazone derivatives targeting HIV-1 capsid protein | |
| Sokolova et al. | Discovery of a new class of inhibitors of vaccinia virus based on (−)‐Borneol from Abies sibirica and (+)‐Camphor | |
| WO2017035077A1 (en) | Deuterated compounds and uses thereof | |
| CN113620929B (en) | Aldehyde compound, preparation method, pharmaceutical composition and application thereof | |
| Makarov et al. | Pyrazolopyrimidines: potent inhibitors targeting the capsid of rhino‐and enteroviruses | |
| Yurttaş et al. | Synthesis and biological evaluation of some 1, 2‐disubstituted benzimidazole derivatives as new potential anticancer agents | |
| Winkler et al. | Uncovering new structural insights for antimalarial activity from cost-effective aculeatin-like derivatives | |
| CN115466225B (en) | An amide compound and its preparation method, pharmaceutical composition and use | |
| Apaydın et al. | Synthesis and anti‐coronavirus activity of a series of 1‐thia‐4‐azaspiro [4.5] decan‐3‐one derivatives | |
| Anastassova et al. | Evaluation of the combined activity of benzimidazole arylhydrazones as new anti-Parkinsonian agents: monoamine oxidase-B inhibition, neuroprotection and oxidative stress modulation | |
| Samanta et al. | Synthesis and in vitro evaluation of west nile virus protease inhibitors based on the 2‐{6‐[2‐(5‐phenyl‐4H‐{1, 2, 4] triazol‐3‐ylsulfanyl) acetylamino] benzothiazol‐2‐ylsulfanyl} acetamide Scaffold | |
| WO2019009355A1 (en) | Therapeutic drug for lipid-peroxidation-induced diseases and screening method for therapeutic drugs for lipid-peroxidation-induced diseases | |
| Hussain et al. | Exploitation of the multitarget role of new ferulic and gallic acid derivatives in oxidative stress-related Alzheimer's disease therapies: design, synthesis and bioevaluation | |
| Ashraf-Uz-Zaman et al. | Quinazolinone compounds have potent antiviral activity against Zika and dengue virus | |
| Hamdani et al. | Densely substituted piperidines as a new class of elastase inhibitors: Synthesis and molecular modeling studies | |
| Rando et al. | Vanillin-related N-acylhydrazones: Synthesis, antischistosomal properties and target fishing studies | |
| Basagni et al. | Inhibition of β-amyloid aggregation in Alzheimer’s disease: the key role of (pro) electrophilic warheads | |
| Duque et al. | Theoretical Insight into mechanism of antioxidant capacity of atorvastatin and its o-hydroxy and p-hydroxy metabolites, using DFT methods | |
| Cirne-Santos et al. | In vitro study of the inhibitory potential of hydroxy-1, 2, 3-triazoles on the replication of ZIKA and chikungunya arboviruses | |
| Hartman et al. | Novel quinoline derivatives with broad‐spectrum antiprotozoal activities | |
| Beula et al. | A review an Isatin, Isatin derivatives and their pharmacological activity | |
| CN106831574A (en) | N (1,2,3,4 tetrahydro isoquinolyl) asafoetide acid amides O alkyl amines compound and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] | ||
| B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
| B07D | Technical examination (opinion) related to article 229 of industrial property law [chapter 7.4 patent gazette] |
Free format text: DE ACORDO COM O ARTIGO 229-C DA LEI N? 10196/2001, QUE MODIFICOU A LEI N? 9279/96, A CONCESS?O DA PATENTE EST? CONDICIONADA ? ANU?NCIA PR?VIA DA ANVISA. CONSIDERANDO A APROVA??O DOS TERMOS DO PARECER N? 337/PGF/EA/2010, BEM COMO A PORTARIA INTERMINISTERIAL N? 1065 DE 24/05/2012, ENCAMINHA-SE O PRESENTE PEDIDO PARA AS PROVID?NCIAS CAB?VEIS. |
|
| B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
| B06I | Publication of requirement cancelled [chapter 6.9 patent gazette] |
Free format text: ANULADA A PUBLICACAO CODIGO 6.6.1 NA RPI NO 2631 DE 08/06/2021 POR TER SIDO INDEVIDA. |
|
| B07G | Grant request does not fulfill article 229-c lpi (prior consent of anvisa) [chapter 7.7 patent gazette] |
Free format text: NOTIFICACAO DE DEVOLUCAO DO PEDIDO EM FUNCAO DA REVOGACAO DO ART. 229-C DA LEI NO 9.279, DE 1996, POR FORCA DA LEI NO 14.195, DE 2021 |