BR112018011237B1 - Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico - Google Patents
Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico Download PDFInfo
- Publication number
- BR112018011237B1 BR112018011237B1 BR112018011237-2A BR112018011237A BR112018011237B1 BR 112018011237 B1 BR112018011237 B1 BR 112018011237B1 BR 112018011237 A BR112018011237 A BR 112018011237A BR 112018011237 B1 BR112018011237 B1 BR 112018011237B1
- Authority
- BR
- Brazil
- Prior art keywords
- color
- polymeric material
- weight
- additive
- dye
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 167
- 230000008859 change Effects 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000000977 initiatory effect Effects 0.000 title claims abstract description 7
- 239000000654 additive Substances 0.000 claims abstract description 110
- 230000000996 additive effect Effects 0.000 claims abstract description 93
- 229920000642 polymer Polymers 0.000 claims abstract description 90
- 239000000203 mixture Substances 0.000 claims abstract description 77
- 239000011159 matrix material Substances 0.000 claims abstract description 57
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 48
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 47
- 239000007787 solid Substances 0.000 claims abstract description 6
- 239000011148 porous material Substances 0.000 claims description 29
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 24
- 229920000728 polyester Polymers 0.000 claims description 24
- 229920000647 polyepoxide Polymers 0.000 claims description 22
- 229920000098 polyolefin Polymers 0.000 claims description 22
- 239000004626 polylactic acid Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 239000003607 modifier Substances 0.000 claims description 18
- 239000006229 carbon black Substances 0.000 claims description 11
- 239000000049 pigment Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 230000016507 interphase Effects 0.000 claims description 9
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 239000002657 fibrous material Substances 0.000 claims description 4
- 230000003116 impacting effect Effects 0.000 claims description 3
- 239000001023 inorganic pigment Substances 0.000 claims description 3
- 239000012860 organic pigment Substances 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- -1 polyethylene carbonate Polymers 0.000 description 48
- 239000000178 monomer Substances 0.000 description 38
- 239000000975 dye Substances 0.000 description 34
- 230000035882 stress Effects 0.000 description 34
- 239000000306 component Substances 0.000 description 27
- 239000000155 melt Substances 0.000 description 21
- 230000000007 visual effect Effects 0.000 description 21
- 229920001577 copolymer Polymers 0.000 description 18
- 230000009477 glass transition Effects 0.000 description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 239000000835 fiber Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 239000004711 α-olefin Substances 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000004593 Epoxy Substances 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 9
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 8
- 239000002250 absorbent Substances 0.000 description 8
- 230000002745 absorbent Effects 0.000 description 8
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 7
- 238000010128 melt processing Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004927 clay Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000004310 lactic acid Substances 0.000 description 6
- 235000014655 lactic acid Nutrition 0.000 description 6
- 239000012802 nanoclay Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- 238000011067 equilibration Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical group CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical group CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229930182843 D-Lactic acid Natural products 0.000 description 4
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229940022769 d- lactic acid Drugs 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- 239000004604 Blowing Agent Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- 229920002266 Pluriol® Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 229910052622 kaolinite Inorganic materials 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012968 metallocene catalyst Substances 0.000 description 3
- 229910052901 montmorillonite Inorganic materials 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 229920001748 polybutylene Polymers 0.000 description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 230000002087 whitening effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 2
- PKXHXOTZMFCXSH-UHFFFAOYSA-N 3,3-dimethylbut-1-ene Chemical compound CC(C)(C)C=C PKXHXOTZMFCXSH-UHFFFAOYSA-N 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000012967 coordination catalyst Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 2
- 229910001649 dickite Inorganic materials 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229910052621 halloysite Inorganic materials 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- LBHPSYROQDMVBS-UHFFFAOYSA-N (1-methylcyclohexyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1(C)CCCCC1 LBHPSYROQDMVBS-UHFFFAOYSA-N 0.000 description 1
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- JJTUDXZGHPGLLC-ZXZARUISSA-N (3r,6s)-3,6-dimethyl-1,4-dioxane-2,5-dione Chemical compound C[C@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-ZXZARUISSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- FQXGHZNSUOHCLO-UHFFFAOYSA-N 2,2,4,4-tetramethyl-1,3-cyclobutanediol Chemical compound CC1(C)C(O)C(C)(C)C1O FQXGHZNSUOHCLO-UHFFFAOYSA-N 0.000 description 1
- GZZLQUBMUXEOBE-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diol Chemical compound OCCC(C)CC(C)(C)CO GZZLQUBMUXEOBE-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical compound C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 1
- CHNGPLVDGWOPMD-UHFFFAOYSA-N 2-ethylbutyl 2-methylprop-2-enoate Chemical compound CCC(CC)COC(=O)C(C)=C CHNGPLVDGWOPMD-UHFFFAOYSA-N 0.000 description 1
- JGRXEBOFWPLEAV-UHFFFAOYSA-N 2-ethylbutyl prop-2-enoate Chemical compound CCC(CC)COC(=O)C=C JGRXEBOFWPLEAV-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- OCSXKMIYKAIBCF-UHFFFAOYSA-N 2-undecyl-4,5-dihydro-1,3-oxazole Chemical compound CCCCCCCCCCCC1=NCCO1 OCSXKMIYKAIBCF-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- AGULWIQIYWWFBJ-UHFFFAOYSA-N 3,4-dichlorofuran-2,5-dione Chemical compound ClC1=C(Cl)C(=O)OC1=O AGULWIQIYWWFBJ-UHFFFAOYSA-N 0.000 description 1
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 1
- UZAAWTQDNCMMEX-UHFFFAOYSA-N 4,4-dimethyl-2-prop-1-en-2-yl-5h-1,3-oxazole Chemical compound CC(=C)C1=NC(C)(C)CO1 UZAAWTQDNCMMEX-UHFFFAOYSA-N 0.000 description 1
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 1
- RSPAIISXQHXRKX-UHFFFAOYSA-L 5-butylcyclopenta-1,3-diene;zirconium(4+);dichloride Chemical compound Cl[Zr+2]Cl.CCCCC1=CC=C[CH-]1.CCCCC1=CC=C[CH-]1 RSPAIISXQHXRKX-UHFFFAOYSA-L 0.000 description 1
- NSBZPLSMZORBHY-UHFFFAOYSA-L 5-methylcyclopenta-1,3-diene;titanium(4+);dichloride Chemical compound [Cl-].[Cl-].[Ti+4].C[C-]1C=CC=C1.C[C-]1C=CC=C1 NSBZPLSMZORBHY-UHFFFAOYSA-L 0.000 description 1
- NUXLDNTZFXDNBA-UHFFFAOYSA-N 6-bromo-2-methyl-4h-1,4-benzoxazin-3-one Chemical compound C1=C(Br)C=C2NC(=O)C(C)OC2=C1 NUXLDNTZFXDNBA-UHFFFAOYSA-N 0.000 description 1
- RUZXDTHZHJTTRO-UHFFFAOYSA-N 7-amino-4h-1,4-benzoxazin-3-one Chemical compound N1C(=O)COC2=CC(N)=CC=C21 RUZXDTHZHJTTRO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920013665 Ampacet Polymers 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BGZIPDABODPYKI-UHFFFAOYSA-M Cl[Sc](C1C=CC=C1)C1C=CC=C1 Chemical compound Cl[Sc](C1C=CC=C1)C1C=CC=C1 BGZIPDABODPYKI-UHFFFAOYSA-M 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 229920003314 Elvaloy® Polymers 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- KGWDUNBJIMUFAP-KVVVOXFISA-N Ethanolamine Oleate Chemical compound NCCO.CCCCCCCC\C=C/CCCCCCCC(O)=O KGWDUNBJIMUFAP-KVVVOXFISA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229920003317 Fusabond® Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- BGRDGMRNKXEXQD-UHFFFAOYSA-N Maleic hydrazide Chemical compound OC1=CC=C(O)N=N1 BGRDGMRNKXEXQD-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 1
- WDVSHHCDHLJJJR-UHFFFAOYSA-N Proflavine Chemical compound C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21 WDVSHHCDHLJJJR-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- OXOPJTLVRHRSDJ-SNAWJCMRSA-N [(e)-but-2-enyl] 2-methylprop-2-enoate Chemical compound C\C=C\COC(=O)C(C)=C OXOPJTLVRHRSDJ-SNAWJCMRSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- WJGAPUXHSQQWQF-UHFFFAOYSA-N acetic acid;hydrochloride Chemical compound Cl.CC(O)=O WJGAPUXHSQQWQF-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000999 acridine dye Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- VXTQKJXIZHSXBY-UHFFFAOYSA-N butan-2-yl 2-methylprop-2-enoate Chemical compound CCC(C)OC(=O)C(C)=C VXTQKJXIZHSXBY-UHFFFAOYSA-N 0.000 description 1
- RNOOHTVUSNIPCJ-UHFFFAOYSA-N butan-2-yl prop-2-enoate Chemical compound CCC(C)OC(=O)C=C RNOOHTVUSNIPCJ-UHFFFAOYSA-N 0.000 description 1
- CZQIDPLTQBOKMO-UHFFFAOYSA-L butylcyclopentane;dichlorotitanium Chemical compound Cl[Ti]Cl.CCCC[C]1[CH][CH][CH][CH]1.CCCC[C]1[CH][CH][CH][CH]1 CZQIDPLTQBOKMO-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- DGQLVPJVXFOQEV-NGOCYOHBSA-N carminic acid Chemical compound OC1=C2C(=O)C=3C(C)=C(C(O)=O)C(O)=CC=3C(=O)C2=C(O)C(O)=C1[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DGQLVPJVXFOQEV-NGOCYOHBSA-N 0.000 description 1
- 239000004106 carminic acid Substances 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 229940114118 carminic acid Drugs 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- ILZSSCVGGYJLOG-UHFFFAOYSA-N cobaltocene Chemical compound [Co+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 ILZSSCVGGYJLOG-UHFFFAOYSA-N 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- VYZZYIJFEPWENJ-UHFFFAOYSA-N cyclopenta-1,3-diene niobium(2+) Chemical compound [Nb++].c1cc[cH-]c1.c1cc[cH-]c1 VYZZYIJFEPWENJ-UHFFFAOYSA-N 0.000 description 1
- MKNXBRLZBFVUPV-UHFFFAOYSA-L cyclopenta-1,3-diene;dichlorotitanium Chemical compound Cl[Ti]Cl.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 MKNXBRLZBFVUPV-UHFFFAOYSA-L 0.000 description 1
- CSEGCHWAMVIXSA-UHFFFAOYSA-L cyclopenta-1,3-diene;hafnium(4+);dichloride Chemical compound [Cl-].[Cl-].[Hf+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 CSEGCHWAMVIXSA-UHFFFAOYSA-L 0.000 description 1
- KZPXREABEBSAQM-UHFFFAOYSA-N cyclopenta-1,3-diene;nickel(2+) Chemical compound [Ni+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KZPXREABEBSAQM-UHFFFAOYSA-N 0.000 description 1
- QOXHZZQZTIGPEV-UHFFFAOYSA-K cyclopenta-1,3-diene;titanium(4+);trichloride Chemical compound Cl[Ti+](Cl)Cl.C=1C=C[CH-]C=1 QOXHZZQZTIGPEV-UHFFFAOYSA-K 0.000 description 1
- IDASTKMEQGPVRR-UHFFFAOYSA-N cyclopenta-1,3-diene;zirconium(2+) Chemical compound [Zr+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IDASTKMEQGPVRR-UHFFFAOYSA-N 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- WRAABIJFUKKEJQ-UHFFFAOYSA-N cyclopentyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCC1 WRAABIJFUKKEJQ-UHFFFAOYSA-N 0.000 description 1
- BTQLDZMOTPTCGG-UHFFFAOYSA-N cyclopentyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCC1 BTQLDZMOTPTCGG-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- IVTQDRJBWSBJQM-UHFFFAOYSA-L dichlorozirconium;indene Chemical compound C1=CC2=CC=CC=C2C1[Zr](Cl)(Cl)C1C2=CC=CC=C2C=C1 IVTQDRJBWSBJQM-UHFFFAOYSA-L 0.000 description 1
- LOKCKYUBKHNUCV-UHFFFAOYSA-L dichlorozirconium;methylcyclopentane Chemical compound Cl[Zr]Cl.C[C]1[CH][CH][CH][CH]1.C[C]1[CH][CH][CH][CH]1 LOKCKYUBKHNUCV-UHFFFAOYSA-L 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical class C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229920001112 grafted polyolefin Polymers 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 239000012803 melt mixture Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- RSVIRMFSJVHWJV-UHFFFAOYSA-N n,n-dimethyloctan-1-amine oxide Chemical compound CCCCCCCC[N+](C)(C)[O-] RSVIRMFSJVHWJV-UHFFFAOYSA-N 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 238000007344 nucleophilic reaction Methods 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000004629 polybutylene adipate terephthalate Substances 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005638 polyethylene monopolymer Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960000286 proflavine Drugs 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical compound [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical group CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- 239000001016 thiazine dye Substances 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 125000005039 triarylmethyl group Chemical group 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 1
- QMBQEXOLIRBNPN-UHFFFAOYSA-L zirconocene dichloride Chemical compound [Cl-].[Cl-].[Zr+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 QMBQEXOLIRBNPN-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/56—After-treatment of articles, e.g. for altering the shape
- B29C44/5627—After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D55/00—Accessories for container closures not otherwise provided for
- B65D55/02—Locking devices; Means for discouraging or indicating unauthorised opening or removal of closure
- B65D55/06—Deformable or tearable wires, strings or strips; Use of seals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
Abstract
MATERIAL POLIMÉRICO DE MUDANÇA DE COR, E, MÉTODO PARA INICIAR UMA MUDANÇA DE COR EM UM MATERIAL POLIMÉRICO. Um material polimérico de mudança de cor é fornecido. O material é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um polímero de matriz, corante, aditivo de microinclusão e aditivo de nanoinclusão, em que o aditivo de microinclusão e o aditivo de nanoinclusão são dispersos na fase contínua na forma de domínios discretos. Uma rede porosa é formada no material polimérico quando submetida a uma deformação deformada em estado sólido. O material polimérico exibe uma primeira cor antes de ser submetido à tensão deformacional e uma segunda cor depois de ser submetido à tensão deformacional, sendo a primeira cor diferente da segunda cor.
Description
[001] O presente pedido reivindica prioridade para o pedido provisório dos EUA n° de série 62/268.528, depositado em 17 de dezembro de 2015, que está incorporado neste documento em sua totalidade por referência.
[002] Materiais poliméricos que mudam de cor são frequentemente usados para ajudar a fornecer uma indicação visual para um usuário de uma condição de um produto. Selos à prova de adulterações, por exemplo, algumas vezes empregam materiais que mudam de cor ao absorver produtos químicos liberados pela pressão aplicada ao recipiente, ou às condições da atmosfera ambiente expostas ao material durante a abertura. Exemplos típicos destes vedantes invioláveis são descritos nas Patentes dos EUA N° 4.424.911; 4,511,052; e 4.986.429. O mecanismo de mudança de cor empregado por esses tipos de vedantes à prova de violação geralmente depende de uma reação química com certas substâncias. Infelizmente, no entanto, o uso de tais substâncias químicas pode aumentar o custo de fabricação do produto e também vazar do material para o ambiente. Como tal, existe atualmente a necessidade de materiais poliméricos de mudança de cor melhorados para utilização numa grande variedade de tipos diferentes de produtos.
[003] De acordo com uma modalidade da presente invenção, é divulgado um material polimérico de mudança de cor que é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um aditivo de polímero de matriz, corante, aditivo de microinclusão e nanoinclusão. O aditivo de microinclusão e o aditivo de nanoinclusão são dispersos dentro da fase contínua na forma de domínios discretos. Uma rede porosa é formada no material polimérico quando submetida a uma deformação deformada em estado sólido. O material polimérico exibe uma primeira cor antes de ser submetido à tensão deformacional e uma segunda cor após ser submetido à tensão deformacional.
[004] De acordo com outra modalidade da presente invenção, é divulgado um método para iniciar uma mudança de cor num material polimérico. O material polimérico é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um aditivo de nanoinclusão, polímero de matriz, corante, aditivo de microinclusão, em que o aditivo de microinclusão e o aditivo de nanoinclusão são dispersos na fase contínua na forma de domínios discretos. O material polimérico inicialmente exibe uma primeira cor. O método compreende sujeitar o material polimérico a uma tensão deformacional a uma temperatura de cerca de 0°C a cerca de 60°C para formar uma rede porosa no material polimérico. O material polimérico exibe uma segunda cor depois de ser submetido à tensão deformacional que é diferente da primeira cor.
[005] De acordo com outra modalidade da presente invenção, é divulgado um método para iniciar uma mudança de cor num material polimérico. O material polimérico é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um aditivo de nanoinclusão, polímero de matriz, corante, aditivo de microinclusão, em que o aditivo de microinclusão e o aditivo de nanoinclusão são dispersos na fase contínua na forma de domínios discretos. Uma rede porosa é definida dentro do material polimérico que contém uma pluralidade de poros, e o material polimérico exibe uma cor inicial. O método compreende o tratamento do material para reduzir o tamanho de um ou mais dos poros, em que o material polimérico tratado exibe uma cor depois de ter sido submetido à tensão deformacional que é diferente da cor inicial.
[006] Outras propriedades e aspectos da presente invenção serão discutidos com mais detalhes abaixo.
[007] Uma divulgação completa e esclarecedora da presente invenção, incluindo o seu melhor modo, direcionada às pessoas versadas na técnica, é estabelecida mais particularmente no restante do relatório descritivo, que faz referência às figuras anexas, nas quais:
[008] As Figs. 1-2 são microfotografias SEM de uma película do Exemplo 1 antes de ser submetida a uma tensão deformacional (por exemplo, tração), em que uma película foi cortada perpendicularmente à direção da máquina na Fig. 1 e paralela à direção da máquina na Fig. 2; e
[009] As Figs. 3-4 são microfotografias SEM da película do Exemplo 1 depois de ser submetida a uma tensão deformacional (estirada), em que a película foi cortada paralela à orientação na direção da máquina.
[0010] O uso repetido de caracteres de referência no presente relatório descritivo e nas figuras tem como objetivo representar características ou elementos iguais ou análogos da invenção.
[0011] Serão feitas referências detalhadas a diversas modalidades da invenção, com um ou mais exemplos descritos a seguir. Cada exemplo é fornecido a título de explicação da invenção, sem limitação da invenção. De fato, estará evidente aos versados na técnica que várias modificações e variações podem ser feitas na presente invenção sem se afastar do escopo ou do espírito da invenção. Por exemplo, características ilustradas ou descritas como parte de uma modalidade, podem ser usadas em outra modalidade para produzir ainda uma outra modalidade. Assim, pretende-se que a presente invenção abranja tais modificações e variações que estejam dentro do escopo das reivindicações anexas e seus equivalentes.
[0012] Em geral, a presente invenção é direcionada a um material polimérico que é capaz de sofrer uma mudança de cor durante o uso para fornecer uma sugestão visual a um usuário de um certo atributo do material. Esta característica única pode ser conseguida para um material polimérico único e monolítico através de controle seletivo sobre a maneira pela qual o material é formado. Isto é, o material polimérico é formado a partir de uma composição termoplástica que contém um polímero de matriz, aditivo de microinclusão, aditivo de nanoinclusão e corante (por exemplo, pigmento). Os aditivos de microinclusão e nanoinclusão são selecionados de modo que tenham um módulo elástico diferente do polímero da matriz. Desta forma, os aditivos de microinclusão e nanoinclusão podem ser tornar dispersos dentro da fase contínua como domínios de fase em microescala e nanoescala discretos, respectivamente.
[0013] Assim, no seu estado inicial, sem restrições, o material polimérico terá geralmente uma primeira cor que corresponde à cor do corante. Por exemplo, quando são empregues partículas de negro de fumo, o material polimérico pode inicialmente ter uma cor preta. Os presentes inventores descobriram, no entanto, que submeter o material polimérico a tensão deformacional sob certas condições pode alterar a sua cor. Mais particularmente, o estiramento pode resultar na formação de regiões de cisalhamento localizadas intensivas e/ou regiões de intensidade de tensão (por exemplo, tensões normais) próximas aos domínios de fase discreta em microescala, como resultado das concentrações de tensão que surgem da incompatibilidade dos materiais. Essas zonas de intensidade de cisalhamento e/ou de tensão podem causar um descolamento inicial na matriz do polímero adjacente aos domínios em microescala. Notavelmente, no entanto, regiões de cisalhamento localizado e/ou de intensidade de tensão também podem ser criadas próximas aos domínios de fase discreta em nanoescala que se sobrepõem com as regiões em microescala. Tais zonas de intensidade de cisalhamento e/ou de tensão sobrepostas fazem ainda com que o descolamento ocorra na matriz do polímero, criando, desse modo, um número substancial de poros adjacentes aos domínios em nanoescala e/ou aos domínios em microescala.
[0014] Como resultado deste descolamento, uma rede porosa pode assim ser formada dentro do material polimérico. A formação da rede porosa pode causar a dispersão da luz e resultar em um “efeito branqueador” da cor do material polimérico. Consequentemente, pelo menos uma porção do material polimérico tensionado, se não todo o material, terá geralmente uma segunda cor substancialmente diferente da primeira cor - isto é, a cor do material no seu estado pré-tensionado. O grau relativo de contraste entre a primeira e segunda cor pode ser caracterizado por um valor de diferença de nível de cinza, que pode ser determinado usando qualquer sistema de análise de imagem conhecido, tal como um Sistema de Análise de Imagem Quantimet Q600 (Leica Microsystems). Um nível de branco de controle ou “em branco” pode ser definido usando filme fotográfico Polaroid não revelado. Uma escala de nível de cinza de 8 bits pode então ser usada (0-255) e o programa permitiu que o nível de luz fosse definido usando o filme fotográfico como padrão. Uma região contendo a outra cor (por exemplo, fundo ou primeiro plano) pode então ser medida pelo seu valor de nível de cinza, seguido pela mesma medição da tinta de ativação de carbono. A rotina pode ser programada para calcular automaticamente o valor do nível de cinza do material polimérico. A diferença no valor do nível de cinza entre a primeira cor (pré-tensionada) e a segunda cor (tensionada) do material polimérico pode ser cerca de 50 ou superior e, em algumas modalidades, cerca de 100 ou mais, conforme determinado numa escala de 0-255, onde 0 representa “preto” e 255 representa “branco”. Por exemplo, a primeira cor pode ser preta e a segunda cor pode ser branca ou cinza.
[0015] A natureza da tensão deformacional necessária para transmitir a mudança de cor da primeira cor para a segunda cor pode variar conforme desejado. Por exemplo, o material polimérico pode ser extraído, manipulado fisicamente (por exemplo, torcido, dobrado, rasgado, impactado, etc.) e assim por diante. Independentemente disso, o material é geralmente tensionado em estado sólido, no sentido de que é mantido a uma temperatura (“temperatura de esforço”) abaixo da temperatura de fusão do polímero da matriz. Por exemplo, a tensão pode ocorrer à temperatura ambiente. Dentre outras coisas, isto ajuda a garantir que as cadeias poliméricas não sejam alteradas em tal grau que a rede porosa se torne instável. Por exemplo, o material pode ser deformado numa temperatura de cerca de 0°C a cerca de 60°C, em algumas modalidades, de cerca de 1°C a cerca de 50°C e, em algumas modalidades, de cerca de 5°C a cerca de 40°C. A temperatura de deformação também pode estar abaixo da temperatura de transição vítrea do componente com a temperatura de transição vítrea mais alta (por exemplo, polímero matriz, aditivo de microinclusão, aditivo de nanoinclusão, etc.). Por exemplo, a temperatura de deformação pode ser, pelo menos, de cerca de 10°C, em algumas modalidades de pelo menos cerca de 20°C e, em algumas modalidades de pelo menos cerca de 30°C abaixo da temperatura de transição vítrea do polímero de matriz, aditivo de nanoinclusão e/ou aditivo de microinclusão.
[0016] Como a mudança de cor pode ocorrer a temperaturas relativamente baixas, esse recurso pode ser usado para fornecer uma indicação visual a uma pessoa durante o uso do material polimérico. Numa modalidade, por exemplo, o material polimérico pode ser empregue numa vedação inviolável. Nestas modalidades, o material pode inicialmente possuir a cor do corante (por exemplo, preto) antes de ser submetido a tensão deformacional. No entanto, quando um usuário manipula fisicamente o selo (por exemplo, torção, rasgo, etc.), a deformação resultante provoca a formação de poros no material polimérico, o que altera a cor do material e fornece uma indicação visual para o usuário que o selo foi quebrado.
[0017] Evidentemente, deve entender-se que a presente invenção não se limita à utilização de um material polimérico “pós-esvaziado” para proporcionar a sugestão visual desejada. Em certas modalidades, por exemplo, o material polimérico pode ser submetido a tensões deformacionais (por exemplo, tração) antes da utilização. Deste modo, pelo menos uma porção do material polimérico terá inicialmente a segunda cor, devido à presença de poros. Durante o uso do material, no entanto, o tamanho de alguns ou todos esses poros pode ser reduzido usando uma variedade de tratamentos diferentes, como por tratamento térmico, manipulação física (por exemplo, torção, ruptura, dobramento, impacto, pressão, etc.) e assim por diante. Quando os poros são reduzidos em tamanho ou destruídos desta maneira, o “efeito branqueador” acima mencionado é diminuído, de modo que pelo menos uma porção do material polimérico exibe uma terceira cor que é substancialmente similar ou mesmo idêntica à primeira cor inicial do material. A diferença no valor do nível de cinza entre a primeira cor (pré-tensionada) e a terceira cor (após tratamento) do material polimérico pode, por exemplo, ser inferior a cerca de 50 e, em algumas modalidades, inferior a cerca de 40. Por exemplo, a primeira e terceira cores podem ser pretas. Do mesmo modo, a diferença no valor do nível de cinza entre a terceira cor (após tratamento) e a segunda cor (tensionada) do material polimérico pode ser cerca de 50 ou superior e, em algumas modalidades, cerca de 100 ou mais. A mudança de cor exibida por esses materiais poliméricos “pré-esvaziados” pode fornecer uma indicação visual para um usuário em uma ampla variedade de diferentes aplicações. Numa modalidade, por exemplo, o material polimérico pode ser utilizado num sensor térmico. Nessas modalidades, o material esvaziado pode possuir uma cor branca ou cinza, devido ao efeito de branqueamento da rede porosa. Depois de ser submetido ao calor, no entanto, o tamanho de alguns ou todos os poros é reduzido, de modo que a cor do material polimérico é alterada (por exemplo, preto), o que fornece uma indicação visual para o usuário de um aumento de temperatura.
[0018] Serão descritas agora diversas modalidades da presente invenção com mais detalhes.
[0019] Tal como indicado acima, a composição termoplástica contém uma fase contínua dentro da qual os aditivos de microinclusão e nanoinclusão encontram-se dispersos. A fase contínua contém um ou mais polímeros matriciais, os quais constituem, tipicamente, cerca de 60% em peso a cerca de 99% em peso, em algumas modalidades, de cerca de 75% em peso a cerca de 98% em peso, e, em algumas modalidades, de cerca de 80 % em peso a cerca de 95% em peso da composição termoplástica. A natureza do(s) polímero(s) de matriz utilizado(s) para formar a fase contínua não é crucial e qualquer polímero adequado pode ser geralmente utilizado, tais como poliésteres, poliolefinas (por exemplo, homopolímero de propileno, copolímero de etileno ou propileno com α-olefina, copolímeros de etileno-propileno, etc.), polímeros estirênicos, poliamidas, etc. Em certas modalidades, por exemplo, os poliésteres podem ser usados na composição para formar a matriz do polímero. Qualquer um de uma variedade de poliésteres pode ser empregado, de forma geral, tal como poliésteres alifáticos, tais como policaprolactona, poliesteramidas, ácido polilático (PLA) e seus copolímeros, ácido poliglicólico, carbonatos de polialquileno (por exemplo, carbonato de polietileno), copolímeros de poli-3-hidroxibutirato (PHB), poli-3- hidroxivalerato (PHV), poli-3-hidroxibutirato-co-4-hidroxibutirato, poli-3- hidroxibutirato-co-3-hidroxivalerato (PHBV), poli-3-hidroxibutirato-co-3- hidroxihexanoato, poli-3-hidroxibutirato-co-3-hidroxioctanoato, poli-3- hidroxibutirato-co-3-hidroxidecanoato, poli-3-hidroxibutirato-co-3- hidroxioctadecanoato, e polímeros alifáticos à base de succinato (por exemplo, succinato de polibutileno, succinato adipato de polibutileno, succinato de polietileno, etc.); copoliésteres alifáticos-aromáticos (por exemplo, tereftalato adipato de polibutileno, tereftalato adipato de polietileno, adipato isoftalato de polietileno, adipato isoftalato de polibutileno, etc.); poliésteres aromáticos (por exemplo, tereftalato de polietileno, tereftalato de polibutileno, etc.); e assim por diante.
[0020] Em certos casos, a composição termoplástica pode conter pelo menos um poliéster que é rígido por natureza e, assim, ter uma temperatura de transição vítrea relativamente alta. Por exemplo, a temperatura de transição vítrea (“Tg”) pode ser de cerca de 0°C ou mais, em algumas modalidades, cerca de 5°C a 100°C, em algumas modalidades, de cerca de 30°C a cerca de 80°C, e, em algumas modalidades, de cerca de 50°C a cerca de 75°C. O poliéster também pode ter uma temperatura de fusão de cerca de 140°C até cerca de 300°C, em algumas modalidades, de cerca de 150°C até cerca de 250°C, e, em algumas modalidades, de cerca de 160°C até cerca de 220°C. A temperatura de fusão pode ser determinada por meio de calorimetria exploratória diferencial (differential scanning calorimetry - “DSC”) de acordo com ASTM D-3417. A temperatura de transição vítrea pode ser determinada pela análise mecânica dinâmica em conformidade com a ASTM E1640-09.
[0021] Um poliéster rígido particularmente adequado é o ácido polilático, que pode ser derivado geralmente de unidades monoméricas de qualquer isômero de ácido lático, tal como ácido lático levógiro (“ácido L- lático”), ácido lático dextrógiro (“ácido D-lático”), ácido meso-lático ou combinações dos mesmos. As unidades monoméricas também podem ser formadas por anidridos de qualquer isômero do ácido lático, incluindo L- lactídeo, D-lactídeo, meso-lactídeo ou combinações dos mesmos. Dímeros cíclicos desses ácidos láticos e/ou lactídeos também podem ser empregados. Qualquer método de polimerização conhecido, tal como a policondensação ou polimerização por abertura de anel, pode ser usado para polimerizar o ácido lático. Uma pequena quantidade de um agente de extensão de cadeia (por exemplo, um composto di-isocianato, um composto epóxi ou anidrido ácido) também pode ser empregada. O ácido polilático pode ser um homopolímero ou um copolímero, tal como um que contenha unidades monoméricas derivadas do ácido L-lático e unidades monoméricas derivadas do ácido D- lático. Embora não seja necessária, a taxa do conteúdo de uma das unidades monoméricas derivadas do ácido L-lático e da unidade monomérica derivada do ácido D-lático é preferencialmente de cerca de 85% em mol ou mais, em algumas modalidades, de cerca de 90% em mol ou mais e, em outras modalidades, de cerca de 95% em mol ou mais. Vários ácidos poliláticos, cada um com uma razão diferente entre a unidade monomérica derivada do ácido L-lático e da unidade monomérica derivada do ácido D-lático, podem ser misturados em qualquer porcentagem aleatória. Claro, o ácido polilático pode ser misturado com outros tipos de polímeros (por exemplo, poliolefinas, poliésteres, etc.).
[0023] Um exemplo específico de um polímero de ácido polilático adequado que pode ser usado na presente invenção está comercialmente disponível pela Biomer, Inc. de Krailling, Alemanha, sob o nome BIOMER™ L9000. Outros polímeros de ácido polilático adequados estão comercialmente disponíveis pela Natureworks LLC de Minnetonka, Minnesota (NATUREWORKS®) ou Mitsui Chemical (LACEA™). Ainda outros ácidos poliláticos adequados podem estar descritos na Patente dos EUA n° 4.797.468; 5.470.944; 5.770.682; 5.821.327; 5.880.254; e 6.326.458.
[0024] O ácido polilático normalmente tem um número de peso molecular médio (“Mn”) que varia de cerca de 40.000 a cerca de 180.000 gramas por mol, em algumas modalidades, de cerca de 50.000 a cerca de 160.000 gramas por mol e, em algumas modalidades, de cerca de 80.000 a cerca de 120.000 gramas por mol. Da mesma forma, o polímero normalmente também tem um peso molecular ponderal médio (“Mw”) que varia de cerca de 80.000 a cerca de 250.000 gramas por mol, em algumas modalidades, de cerca de 100.000 a cerca de 200.000 gramas por mol e, em algumas modalidades, de cerca de 110.000 a cerca de 160.000 gramas por mol. A razão entre o peso molecular ponderal médio e o número do peso molecular médio (“Mw/Mn”), isto é, o “índice de polidispersividade”, também é relativamente baixa. Por exemplo, o índice de polidispersividade varia normalmente de cerca de 1,0 a cerca de 3,0, em algumas modalidades, de cerca de 1,1 a cerca de 2,0, e, em modalidades, de cerca de 1,2 a cerca de 1,8. Os números dos pesos moleculares médio e ponderal médio podem ser determinados por métodos conhecidos aos versados na técnica.
[0025] O ácido polilático pode ter também uma viscosidade aparente de cerca de 50 a cerca de 600 Pascal-segundos (Pa-s), em algumas modalidades, de cerca de 100 a cerca de 500 P;rs e, em algumas modalidades, de cerca de 200 a cerca de 400 P;rs. conforme determinado numa temperatura de 190°C e uma taxa de cisalhamento de 1000 seg-1. A taxa de fluxo à fusão do ácido polilático (numa base seca) também pode variar de cerca de 0,1 a cerca de 40 gramas por 10 minutos, em algumas modalidades, de cerca de 0,5 a cerca de 20 gramas por 10 minutos, e, em algumas modalidades, de cerca de 5 a cerca de 15 gramas por 10 minutos, determinada numa carga de 2160 gramas e a 190°C.
[0026] Alguns tipos de poliéster puro (por exemplo, ácido polilático) podem absorver água do ambiente, tal que tenha um teor de umidade de cerca de 500 a 600 partes por milhão (“ppm”) ou ainda maior, com base no peso seco do ácido polilático inicial. O teor de umidade pode ser determinado de várias maneiras, conforme é conhecido na técnica, tal como de acordo com ASTM D 7191-05, como descrito abaixo. Uma vez que a presença da água durante o processamento por fusão pode degradar hidroliticamente o poliéster e reduzir seu peso molecular, às vezes é desejado secar o poliéster antes de misturá-lo. Na maioria das modalidades, por exemplo, é desejado que o poliéster tenha um teor de umidade de cerca de 300 partes por milhão (“ppm”) ou menos, em algumas modalidades, de cerca de 200 ppm ou menos, em algumas modalidades, de cerca de 1 a cerca de 100 ppm, antes da mistura com os aditivos de microinclusão e nanoinclusão. A secagem do poliéster pode ocorrer, por exemplo, numa temperatura de cerca de 50°C a cerca de 100°C e, em algumas modalidades, de cerca de 70°C a cerca de 80°C.
[0027] Tal como utilizado neste documento, o termo “aditivo de microinclusão” refere-se, geralmente, a qualquer material amorfo, cristalino ou semicristalino capaz de ser dispersado no interior da matriz do polímero na forma de domínios discreto de tamanho em microescala. Por exemplo, antes da deformação, os domínios podem ter uma dimensão transversal média de cerca de 0,05 μm a cerca de 30 μm, em algumas modalidades, de cerca de 0,1 μm a cerca de 25 μm, em algumas modalidades, de cerca de 0,5 μm a cerca de 20 μm, e, em algumas modalidades, de cerca de 1 μm a cerca de 10 μm. O termo “dimensão transversal” refere-se geralmente a uma dimensão característica (por exemplo, largura ou diâmetro) de um domínio, que é substancialmente ortogonal a seu eixo principal (por exemplo, comprimento) e também normalmente substancialmente ortogonal ao sentido da tensão aplicada durante a deformação. Embora formados normalmente a partir do aditivo de microinclusão, deve ser entendido que os domínios em microescala também podem ser formados a partir de uma combinação dos aditivos de microinclusão e nanoinclusão e/ou outros componentes da composição.
[0028] O aditivo de microinclusão é geralmente polimérico por natureza e possui um peso molecular relativamente alto para ajudar a melhorar a resistência à fusão e estabilidade da composição termoplástica. Normalmente, o polímero de microinclusão pode ser geralmente imiscível com o polímero da matriz. Dessa forma, o aditivo pode ser melhor espalhado como domínios de fase discreta dentro de uma fase contínua do polímero de matriz. Os domínios discretos são capazes de absorver energia decorrente de uma força externa, o que aumenta a rigidez e a resistência geral do material resultante. Os domínios podem ter vários formatos diferentes, tais como elípticos, esféricos, cilíndricos, em forma de placa, tubulares, etc. Em uma modalidade, por exemplo, os domínios têm uma forma bastante elíptica. A dimensão física de um domínio individual é, tipicamente, pequena o suficiente para minimizar a propagação de rachaduras através do material polimérico quando da aplicação de tensão externo, mas grande o suficiente para iniciar deformação plástica microscópica e permitir cisalhamento e/ou zonas de intensidade de tensão em e à volta de inclusões de partículas.
[0029] Embora os polímeros possam ser imiscíveis, o aditivo de microinclusão pode, no entanto, ser selecionado por ter um parâmetro de solubilidade que seja relativamente semelhante ao do polímero da matriz. Isso pode melhorar a compatibilidade interfacial e a interação física dos limites das fases discreta e contínua e, assim, reduzir a probabilidade de ruptura do composto. Nesse aspecto, a razão entre o parâmetro de solubilidade para o polímero da matriz e o do aditivo é normalmente de cerca de 0,5 a cerca de 1,5 e, em algumas modalidades, de cerca de 0,8 a cerca de 1,2. Por exemplo, o aditivo de microinclusão polimérico pode ter um parâmetro de solubilidade de cerca de 15 a cerca de 30 MJoules1/2/m3/2 e, em algumas modalidades, de cerca de 18 a cerca de 22 MJoules1/2/m3/2, enquanto o ácido polilático pode ter um parâmetro de solubilidade de cerca de 20,5 MJoules1/2/m3/2. O termo “parâmetro de solubilidade”, como usado neste documento, refere-se ao “Parâmetro de Solubilidade de Hildebrand”, que é a raiz quadrada da densidade da energia coesiva e é calculada de acordo com a seguinte equação: onde: Δ Hv = calor de vaporização R = Constante ideal dos gases T = Temperatura Vm = Volume Molecular
[0030] Os parâmetros de solubilidade de Hildebrand para diversos polímeros também estão disponíveis pela Solubility Handbook of Plastics, de Wyeych (2004), que está incorporado neste documento por referência.
[0031] O aditivo de microinclusão também pode ter uma determinada taxa de fluxo à fusão (ou viscosidade) para garantir que os domínios discretos e os poros resultantes possam ser mantidos adequadamente. Por exemplo, se a taxa de fluxo à fusão do aditivo for muito alta, ele tende a fluir e a se dispersar de forma incontrolável pela fase contínua. Isto resulta em domínios lamelares ou semelhantes a placa ou em estruturas de fase co-contínua que são difíceis de manter e também prováveis de rachar prematuramente. Por outro lado, se a taxa de fluxo à fusão do aditivo for muito baixa, ele tenderá a se aglutinar e formar domínios elípticos muito grandes, que são difíceis de dispersar durante a mistura. Isto poderá provocar uma distribuição irregular do aditivo por toda a fase contínua. Nesse aspecto, os presentes inventores descobriram que a razão entre a taxa de fluxo à fusão do aditivo de microinclusão e a taxa de fluxo à fusão do polímero da matriz é normalmente de cerca de 0,2 a cerca de 8, em algumas modalidades, de cerca de 0,5 a cerca de 6 e, em algumas modalidades, de cerca de 1 a cerca de 5. O aditivo de microinclusão pode, por exemplo, ter uma taxa de fluxo à fusão de cerca de 0,1 a cerca de 250 gramas por 10 minutos, em algumas modalidades, de cerca de 0,5 a cerca de 200 gramas por 10 minutos e, em algumas modalidades, de cerca de 5 a cerca de 150 gramas por 10 minutos, determinada numa carga de 2160 gramas e a 190°C.
[0032] Além das propriedades observadas acima, as características mecânicas do aditivo de microinclusão podem também ser selecionadas para alcançar a rede porosa desejada. Por exemplo, quando uma mistura do polímero da matriz e do aditivo de microinclusão é aplicada com uma força externa, as concentrações de tensão (por exemplo, incluindo tensão normal ou de cisalhamento) e as zonas de produção de cisalhamento e/ou de plástico podem ser iniciadas ao redor e nos domínios de fase discreta como um resultado das concentrações de tensão que surgem de uma diferença no módulo elástico do aditivo e do polímero da matriz. Concentrações maiores de tensão promovem um fluxo plástico localizado mais intenso nos domínios, o que permite que eles se tornem significativamente alongados quando tensões são aplicadas. Esses domínios alongados permitem que a composição apresente um comportamento mais flexível e macio do que o polímero da matriz, tal como quando esta é uma resina de poliéster rígida. Para melhorar as concentrações de tensão, o aditivo de microinclusão pode ser selecionado para ter um módulo de elasticidade de Young relativamente baixo, em comparação ao polímero da matriz. Por exemplo, a razão entre o módulo de elasticidade do polímero da matriz e o do aditivo é normalmente de cerca de 1 a cerca de 250, em algumas modalidades, de cerca de 2 a cerca de 100 e, em algumas modalidades, de cerca de 2 a cerca de 50. O módulo de elasticidade do aditivo de microinclusão pode, por exemplo, variar de cerca de 2 a cerca de 1000 megapascais (MPa), em algumas modalidades, de cerca de 5 a cerca de 500 MPa e, em algumas modalidades, de cerca de 10 a cerca de 200 MPa. Por outro lado, o módulo de elasticidade do ácido polilático, por exemplo, é normalmente de cerca de 800 MPa a cerca de 3000 MPa.
[0033] Embora uma grande variedade de aditivos de microinclusão possa ser empregada, exemplos especialmente adequados desses aditivos podem incluir polímeros sintéticos, como poliolefinas (por exemplo, polietileno, polipropileno, polibutileno, etc.); copolímeros estirênicos (por exemplo, estireno-butadieno-estireno, estireno-isopreno-estireno, estireno- etileno-propileno-estireno, estireno-etileno-butadieno-estireno, etc.); politetrafluoretilenos; poliésteres (por exemplo, poliéster reciclado, tereftalato de polietileno, etc.); acetatos de polivinil (por exemplo, poli(etileno vinil acetato), acetato de cloreto de polivinil, etc.); álcoois polivinílicos (por exemplo, álcool polivinílico, poli(etileno vinil álcool), etc.); polivinil butiral; resinas acrílicas (por exemplo, poliacrilato, polimetilacrilato, polimetilmetacrilato, etc.); poliamidas (por exemplo, nylon); cloretos de polivinil; cloretos de polivinilideno; poliestirenos; poliuretanos, etc. As poliolefinas adequadas podem, por exemplo, incluir polímeros de etileno (por exemplo, polietileno de baixa densidade (“LDPE”), polietileno de alta densidade (“HDPE”), polietileno linear de baixa densidade (“LLDPE”), etc.), homopolímeros de propileno (por exemplo, sindiotáticos, atáticos, isotáticos, etc.), copolímeros de propileno e assim por diante.
[0034] Em uma determinada modalidade, o polímero é um polímero de propileno, tal como o homopolipropileno ou um copolímero de propileno. O polímero de propileno pode, por exemplo, ser formado por um homopolímero de polipropileno substancialmente isotático ou por um copolímero contendo quantidade igual ou menor que cerca de 10% do outro monômero, isto é, pelo menos cerca de 90% em peso do propileno. Tais homopolímeros podem ter um ponto de fusão de cerca de 160°C a cerca de 170°C.
[0035] Ainda em outra modalidade, a poliolefina pode ser um copolímero de etileno ou propileno com outra α-olefina, como uma α-olefina C3-C20 ou uma α-olefina C3-C12. Exemplos específicos de α-olefinas adequadas incluem 1-buteno; 3-metil-1-buteno; 3,3-dimetil-1-buteno; 1- penteno; 1-penteno com um ou mais substituintes de metil, etil ou propil; 1- hexeno com um ou mais substituintes de metil, etil ou propil; 1-hepteno com um ou mais substituintes de metil, etil ou propil; 1-octeno com um ou mais substituintes de metil, etil ou propil; 1-noneno com um ou mais substituintes de metil, etil ou propil; 1-deceno substituído por etil, metil ou dimetil; 1- dodeceno; e estireno. Os comonômeros de α-olefina particularmente desejados são 1-buteno, 1-hexeno e 1-octeno. O teor de etileno ou propileno de tais copolímeros pode variar de cerca de 60% em mol a cerca de 99% em mol, em algumas modalidades, de cerca de 80% em mol a cerca de 98,5% em mol, e, em algumas modalidades, de cerca de 87% em mol a cerca de 97,5% em mol. O teor de α-olefina pode variar de cerca de 1% em mol a cerca de 40% em mol, em algumas modalidades, de cerca de 1,5% em mol a cerca de 15% em mol, e, em algumas modalidades, de cerca de 2,5% em mol a cerca de 13% em mol.
[0036] Exemplos de copolímeros de olefina para uso na presente invenção incluem copolímeros à base de etileno disponíveis sob a designação de EXACT™, da ExxonMobil Chemical Company de Houston, Texas. Outros copolímeros de etileno adequados estão disponíveis sob a designação de ENGAGE™, AFFINITY™, DOWLEX™ (LLDPE) e ATTANE™ (ULDPE) da Dow Chemical Company de Midland, Michigan. Outros polímeros de etileno adequados são descritos nas Patentes dos EUA n° 4.937.299 para Ewen et al.; 5.218.071 para Tsutsui et al.; 5.272.236 para Lai, et al.; e 5.278.272 para Lai, et al. Copolímeros de propileno adequados também estão comercialmente disponíveis sob as designações de VISTAMAXX™ da ExxonMobil Chemical Co. de Houston, Texas; FINA™ (por exemplo, 8573) da Atofina Chemicals de Feluy, Bélgica; TAFMER™ disponível pela Mitsui Petrochemical Industries; e VERSIFY™, disponível pela Dow Chemical Co. de Midland, Michigan. Homopolímeros de polipropileno adequados podem incluir polipropileno da Exxon Mobil 3155, resinas da Exxon Mobil Achieve™, e resina da Total M3661 PP. Outros exemplos de polímeros de propileno adequados são descritos nas Patentes dos EUA Nos. 6.500.563 para Datta et al.; 5.539.056 para Yang et al.; e 5.596.052 para Resconi et al.
[0037] Uma grande variedade de técnicas conhecidas pode ser empregada, de forma geral, para formar os copolímeros de olefina. Por exemplo, os polímeros de olefina podem ser formados usando um radical livre ou um catalisador de coordenação (por exemplo, Ziegler-Natta). Preferencialmente, o polímero de olefina é formado por um catalisador de coordenação de sítio único, tal como um catalisador metalocênico. Tal sistema de catalisador produz copolímeros de etileno, nos quais o comonômero é distribuído aleatoriamente dentro de uma cadeia molecular e distribuído uniformemente entre as diferentes frações de peso molecular. Poliolefinas catalisadas por metaloceno são descritas, por exemplo, na Patente dos EUA N° 5.571.619 para McAlpin et al.; 5.322.728 para Davis et al.; 5.472.775 para Obijeski et al.; 5.272.236 para Lai et al.; e 6.090.325 para Wheat, et al. Exemplos de catalisadores metalocênicos incluem dicloreto de bis(n-butilciclopentadienil)titânio, dicloreto de bis(n-butilciclopentadienil) zircônio, cloreto de bis(ciclopentadienil)escândio, dicloreto de bis(indenil)zircônio, dicloreto de bis(metilciclopentadienil)titânio, dicloreto de bis(metilciclopentadienil)zircônio, cobaltoceno, tricloreto de ciclopentadieniltitânio, ferroceno, dicloreto de hafnoceno, dicloreto de isopropil(ciclopentadienil,-1-fluorenil)zircônio, dicloreto de molibdoceno, niqueloceno, dicloreto de nioboceno, rutenoceno, dicloreto de titanoceno, cloreto de zirconoceno hidratado, dicloreto de zirconoceno, e assim por diante. Os polímeros feitos usando catalisadores metalocênicos normalmente têm uma faixa estreita de peso molecular. Por exemplo, polímeros catalisados por metaloceno podem ter números de polidispersividade (Mw/Mn) abaixo de 4, distribuição controlada de ramificação de cadeia curta e isotaticidade controlada.
[0038] Independentemente dos materiais empregados, a porcentagem relativa do aditivo de microinclusão na composição termoplástica é selecionada para atingir as propriedades desejadas sem afetar significativamente as propriedades básicas da composição. Por exemplo, o aditivo de microinclusão é normalmente empregado numa quantidade de cerca de 1% em peso a cerca de 30% em peso, em algumas modalidades, de cerca de 2% em peso a cerca de 25% em peso e, em algumas modalidades, de cerca de 5% em peso a cerca de 20% em peso da composição termoplástica, com base no peso da fase contínua (polímero(s) da matriz). A concentração do aditivo de microinclusão em toda a composição termoplástica pode constituir cerca de 0,1% em peso a cerca de 30% em peso, em algumas modalidades, de cerca de 0,5% em peso a cerca de 25% em peso e, em algumas modalidades, de cerca de 1% em peso a cerca de 20% em peso.
[0039] Como usado neste documento, o termo “aditivo de nanoinclusão” refere-se geralmente a qualquer material amorfo, cristalino ou semicristalino que seja capaz de ser disperso dentro da matriz de polímero na forma de domínios discretos de um tamanho em nanoescala. Por exemplo, antes da deformação, os domínios podem ter uma dimensão transversal média de cerca de 1 a cerca de 1000 nanômetros, em algumas modalidades, de cerca de 5 a cerca de 800 nanômetros, em algumas modalidades, de cerca de 10 a cerca de 500 nanômetros, e, em algumas modalidades, de cerca de 20 a cerca de 200 nanômetros. Deve ser igualmente compreendido que os domínios em nanoescala podem também ser formados a partir de uma combinação de aditivos de microinclusão e nanoinclusão e/ou outros componentes da composição. Por exemplo, o aditivo de nanoinclusão é normalmente empregado numa quantidade de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 10% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da fase contínua (polímero(s) da matriz). A concentração do aditivo de nanoinclusão em toda a composição termoplástica pode ser de cerca de 0,01% em peso a cerca de 15% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 10% em peso e, em algumas modalidades, de cerca de 0,3% em peso a cerca de 6% em peso da composição termoplástica.
[0040] O aditivo de nanoinclusão pode ser polimérico por natureza e possuir um peso molecular relativamente alto para ajudar a melhorar a resistência à fusão e estabilidade da composição termoplástica. Para aumentar sua capacidade de se tornar disperso nos domínios em nanoescala, o aditivo de nanoinclusão também pode ser selecionado a partir de materiais que são geralmente compatíveis com o polímero da matriz e com o aditivo de microinclusão. Isto pode ser particularmente útil quando o polímero da matriz ou o aditivo de microinclusão possui uma fração polar, tal como um poliéster. Um exemplo de tal aditivo de nanoinclusão é uma poliolefina funcionalizada. O composto polar pode, por exemplo, ser fornecido por um ou mais grupos funcionais, e o componente apolar pode ser fornecido por uma olefina. O composto de olefina do aditivo de nanoinclusão pode geralmente ser formado por qualquer monômero de α-olefina ramificado ou linear, oligômero ou polímero (incluindo copolímeros) derivados de um monômero de olefina, tal como descrito acima.
[0041] O grupo funcional do aditivo de nanoinclusão pode ser qualquer grupo, segmento e/ou bloco molecular que forneça um componente polar para a molécula e não seja compatível com o polímero da matriz. Exemplos de segmento e/ou blocos moleculares não compatíveis com poliolefina podem incluir acrilatos, estirenos, poliésteres, poliamidas, etc. O grupo funcional pode ter uma natureza iônica e compreender íons metálicos carregados. Grupos funcionais especialmente adequados são anidrido maleico, ácido maleico, ácido fumárico, maleimida, hidrazida do ácido maleico, um produto da reação do anidrido maleico e da diamina, anidrido metilnádico, anidrido dicloromaleico, amida do ácido maleico, etc. As poliolefinas modificadas por anidrido maleico são especialmente adequadas para uso na presente invenção. Essas poliolefinas modificadas são normalmente formadas pelo enxerto de anidrido maleico em um material da estrutura principal polimérica. Essas poliolefinas maleatadas estão disponíveis pela E. I. du Pont de Nemours and Company sob a designação de Fusabond®, tal como a série P (polipropileno modificado quimicamente), série E (polietileno modificado quimicamente), série C (acetato de etileno vinil modificado quimicamente), série A (copolímeros ou terpolímeros de acrilato de etileno modificados quimicamente) ou série N (etileno-propileno, monômero de dieno de etileno-propileno (“EPDM”) ou etileno-octeno modificados quimicamente). Alternativamente, as poliolefinas maleatadas também estão disponíveis pela Chemtura Corp. sob a designação de Polybond® e Eastman Chemical Company sob a designação de Eastman série G.
[0042] Em certas modalidades, o aditivo de nanoinclusão também pode ser reativo. Um exemplo desse aditivo de nanoinclusão reativo é um poliepóxido que contém, em média, pelo menos dois anéis de oxirano por molécula. Sem a intenção de se limitar pela teoria, acredita-se que essas moléculas de poliepóxido podem induzir uma reação do polímero da matriz (por exemplo, poliéster) sob determinadas condições, melhorando, desse modo, sua resistência à fusão sem reduzir significativamente a temperatura de transição vítrea. A reação pode envolver a extensão da cadeia, a ramificação de cadeia lateral, enxerto, formação de copolímero, etc. A extensão da cadeia, por exemplo, pode ocorrer por meio de uma variedade de vias reativas diferentes. Por exemplo, o modificador pode permitir uma reação nucleofílica para abertura de anel através de um grupo carboxil terminal de um poliéster (esterificação) ou através de um grupo hidroxila (eterificação). As reações laterais da oxazolina podem ocorrer para formar frações de esteramida. Através dessas reações, o peso molecular do polímero da matriz pode ser aumentado para agir contra a degradação frequentemente durante o processo de fusão. Embora seja desejável induzir uma reação com o polímero da matriz conforme descrito acima, os presentes inventores descobriram que muita reação pode provocar a reticulação entre as estruturas principais do polímero. Se essa reticulação foi permitida prosseguir até uma extensão significativa, a mistura do polímero resultante poderá se tornar frágil e difícil de processar em um material com as propriedades desejadas de resistência e alongamento.
[0043] Nesse aspecto, os presentes inventores descobriram que poliepóxidos com uma funcionalidade de epóxi relativamente baixa são particularmente eficazes, o que pode ser quantificado por se “peso equivalente em epóxi”. O peso equivalente em epóxi reflete a quantidade de resina que contém uma molécula de um grupo epóxi, e pode ser calculado dividindo o peso molecular médio em número do modificador pelo número de grupos epóxi na molécula. O poliepóxido da presente invenção normalmente tem um peso molecular médio em número de cerca de 7.500 a cerca 250.000 gramas por mol, em algumas modalidades, de cerca de 15.000 a cerca de 150.000 gramas por mol e, em algumas modalidades, de cerca de 20.000 a cerca de 100.000 gramas por mol, com um índice de polidispersividade que varia de 2,5 a 7. O poliepóxido pode conter menos de 50, em algumas modalidades, de 5 a 45 e, em algumas modalidades, de 15 a 40 grupos epóxi. Por sua vez, o peso equivalente em epóxi pode ser menor que cerca de 15.000 gramas por mol, em algumas modalidades, de cerca de 200 a cerca de 10.000 gramas por mol e, em algumas modalidades, de cerca de 500 a cerca de 7.000 gramas por mol.
[0044] O poliepóxido pode ser linear ou ramificado, homopolímero ou copolímero (por exemplo, aleatório, enxerto, bloco, etc.) contendo grupos epóxi terminal, unidades oxirano esqueléticas e/ou grupos epóxi pendentes. Os monômeros empregados para formar esses poliepóxidos podem variar. Em uma modalidade específica, por exemplo, o poliepóxido contém pelo menos um componente monomérico (met)acrílico epóxi-funcional. Conforme usado neste documento, o termo “(met)acrílico” inclui monômeros acrílicos e metacrílicos, bem como seus sais ou ésteres, tais como monômeros de acrilato e metacrilato. Por exemplo, os monômeros (met)acrílicos epóxi-funcionais adequados podem incluir, mas não estão limitados a, aqueles contendo grupos 1,2-epóxi, tais como acrilato de glicidil e metacrilato de glicidil. Outros monômeros epóxi-funcionais adequados incluem o alil glicidil éter, etacrilato de glicidil e itoconato de glicidil.
[0045] O poliepóxido normalmente tem um peso molecular relativamente alto, como indicado acima, para que possa não apenas resultar na extensão de cadeia, mas também a atingir a morfologia desejada da mistura. A taxa de fluxo à fusão resultante do polímero está, assim, normalmente dentro de uma faixa de cerca de 10 a cerca de 200 gramas por 10 minutos, em algumas modalidades, de cerca de 40 a cerca de 150 gramas por 10 minutos e, em algumas modalidades, de cerca de 60 a cerca de 120 gramas por 10 minutos, determinada numa carga de 2160 gramas e a uma temperatura de 190°C.
[0046] Se desejado, monômeros adicionais também podem ser empregados no poliepóxido para ajudar a atingir o peso molecular desejado. Esses monômeros podem variar e incluir, por exemplo, monômeros de éster, monômeros (meta)acrílicos, monômeros de olefina, monômeros de amida, etc. Em uma determinada modalidade, por exemplo, o poliepóxido inclui pelo menos um monômero α-olefina linear ou ramificado, como aqueles com 2 a 20 átomos de carbono e preferencialmente com 2 a 8 átomos de carbono. Exemplos específicos incluem etileno, propileno, 1-buteno; 3-metil-1-buteno; 3,3-dimetil-1-buteno; 1-penteno; 1-penteno com um ou mais substituintes de metil, etil ou propil; 1-hexeno com um ou mais substituintes de metil, etil ou propil; 1-hepteno com um ou mais substituintes de metil, etil ou propil; 1- octeno com um ou mais substituintes de metil, etil ou propil; 1-noneno com um ou mais substituintes de metil, etil ou propil; 1-deceno substituído por etil, metil ou dimetil; 1-dodeceno; e estireno. Os comonômeros de α-olefina particularmente desejados são etileno e propileno.
[0047] Outro monômero adequado pode incluir um monômero (met)acrílico que não seja epóxi-funcional. Exemplos desses monômeros (met)acrílicos podem incluir acrilato de metil, acrilato de etil, acrilato de n- propil, acrilato de i-propil, acrilato de n-butil, acrilato de s-butil, acrilato de i- butil, acrilato de t-butil, acrilato de n-amil, acrilato de i-amil, acrilato de isobornil, acrilato de n-hexil, acrilato de 2-etilbutil, acrilato de 2-etilhexil, acrilato de n-octil, acrilato de n-decil, acrilato de metilciclohexil, acrilato de ciclopentil, acrilato de ciclohexil, metacrilato de metil, metacrilato de etil, metacrilato de 2-hidroxietil, metacrilato de n-propil, metacrilato de n-butil, metacrilato de i-propil, metacrilato de i-butil, metacrilato de n-amil, metacrilato de n-hexil, metacrilato de i-amil, metacrilato de s-butil, metacrilato de t-butil, metacrilato de 2-etilbutil, metacrilato de metilciclohexil, metacrilato de cinamil, metacrilato de crotil, metacrilato de ciclohexil, metacrilato de ciclopentil, metacrilato de 2-etoxietil, metacrilato de isobornil, etc., bom como combinações dos mesmos.
[0048] Em uma modalidade particularmente desejável da presente invenção, o poliepóxido é um terpolímero formado por um componente monomérico (met)acrílico epóxi-funcional, um componente monomérico de α-olefina, e um componente monomérico (met)acrílico não epóxi-funcional. Por exemplo, o poliepóxido pode ser metacrilato de poli(etileno-co- metilacrilato-co-glicidil), que tem a seguinte estrutura: em que x, y e z são 1 ou maiores.
[0049] O monômero epóxi-funcional pode ser transformado em um polímero usando uma variedade de técnicas conhecidas. Por exemplo, um monômero contendo grupos funcionais polares pode ser enxertado na estrutura principal de um polímero para formar um copolímero de enxerto. Tais técnicas de enxertamento são bem conhecidas na técnica e descritas, por exemplo, na Patente dos EUA n° 5.179.164. Em outras modalidades, um monômero contendo grupos epóxi-funcionais pode ser copolimerizado com um monômero para formar um bloco ou copolímero aleatório usando técnicas conhecidas de polimerização de radical livre, tais como reações de alta pressão, sistemas de reação com catalisador Ziegler-Natta, sistemas de reação com catalisador de sítio único (por exemplo, metaloceno), etc.
[0050] A parte relativa do(s) componente(s) monomérico(s) pode ser selecionada para atingir um equilíbrio entre a reatividade de epóxi e a taxa de fluxo à fusão. Mais especificamente, um alto teor de monômero de epóxi pode resultar em uma boa reatividade com o polímero da matriz, mas um teor muito alto pode reduzir a taxa de fluxo à fusão de tal forma que o poliepóxido afete negativamente a resistência à fusão da mistura de polímero. Assim, na maioria das modalidades, o(s) monômero(s) (met)acrílico(s) epóxi-funcionais constitui(em) cerca de 1% em peso a cerca de 25% em peso, em algumas modalidades, de cerca de 2% em peso a cerca de 20% em peso e, em algumas modalidades, de cerca de 4% em peso a cerca de 15% em peso do copolímero. O(s) monômero(s) de α-olefina também pode(m) constituir de cerca de 55% em peso a cerca de 95% em peso, em algumas modalidades, de cerca de 60% em peso a cerca de 90% em peso e, em algumas modalidades, de cerca de 65% em peso a cerca de 85% em peso do copolímero. Quando empregados, outros componentes monoméricos (por exemplo, monômeros (met)acrílicos não epóxi-funcionais) podem constituir de cerca de 5% em peso a cerca de 35% em peso, em algumas modalidades, de cerca de 8% em peso a cerca de 30% em peso e, em algumas modalidades, de cerca de 10% em peso a cerca de 25% em peso do copolímero. Um exemplo específico de um poliepóxido adequado que pode ser usado na presente invenção está comercialmente disponível pela Arkema sob o nome de LOTADER® AX8950 ou AX8900. O LOTADER® AX8950, por exemplo, tem uma taxa de fluxo à fusão de 70 a 100 g/10 min e tem um teor de monômero de metacrilato de glicidil de 7% em peso a 11% em peso, um teor de monômero de acrilato de metil de 13% em peso a 17% em peso, e um teor de monômero de etileno de 72% em peso a 80% em peso. Outro poliepóxido adequado está comercialmente disponível pela DuPont sob o nome de ELVALOY® PTW, que é um terpolímero de etileno, acrilato de butil, e metacrilato de glicidil e tem uma taxa de fluxo à fusão de 12 g/10 min.
[0051] Além de controlar o tipo e o teor relativo dos monômeros usados para formar o poliepóxido, a porcentagem em peso geral também pode ser controlada para atingir os benefícios desejados. Por exemplo, se o nível de modificação for muito baixo, o aumento desejado na resistência à fusão e nas propriedades mecânicas pode não ser obtido. Os presentes inventores também descobriram, no entanto, que se o nível de modificação for muito alto, o processamento poderá ficar restrita devido às fortes interações moleculares (por exemplo, reticulação) e formação de rede física pelos grupos epóxi- funcionais. Assim, o poliepóxido é normalmente empregado em uma quantidade de cerca de 0,05% em peso a cerca 10% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 8% em peso, em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso e, em algumas modalidades, de cerca de 1% em peso a cerca de 3% em peso, com base no peso do polímero da matriz empregado na composição. O poliepóxido também pode constituir cerca de 0,05% em peso a cerca de 10% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 8% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 5% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 3% em peso, com base no peso total da composição.
[0052] Outros aditivos de nanoinclusão de reação também podem ser empregados na presente invenção, como polímeros funcionalizados com oxazolina, polímeros funcionalizados com cianeto, etc. Quando empregados, esses aditivos de nanoinclusão reativos podem ser empregados dentro das concentrações indicadas acima para o poliepóxido. Em uma modalidade específica, uma poliolefina enxertada com oxazolina pode ser empregada ou seja, uma poliolefina enxertada com um monômero contendo um anel de oxazolina. A oxazolina pode incluir uma 2-oxazolina, tal como 2-vinil-2- oxazolina (por exemplo, 2-isopropenil-2-oxazolina), 2-graxo-alquil-2- oxazolina (por exemplo, obteníveis pela etanolamina de ácido oleico, ácido linoleico, ácido palmitoleico, ácido gadoleico, ácido erúcico e/ou ácido araquidônico) e combinações dos mesmos. Em outra modalidade, a oxazolina pode ser selecionada dentre maleinato de ricinoloxazolina, undecil-2- oxazolina, soja-2-oxazolina, rícino-2-oxazolina e combinações dos mesmos, por exemplo. Ainda em outra modalidade, a oxazolina é selecionada dentre 2- isopropenil-2-oxazolina, 2-isopropenil-4,4-dimetil-2-oxazolina e combinações dos mesmos.
[0053] Nanocargas também podem ser usadas, tais como negro de carbono, nanotubos de carbono, nanofibras de carbono, nanoargilas, nanopartículas metálicas, nanossílica, nanoalumina, etc. Nanoargilas são especialmente adequadas. O termo “nanoargila” refere-se geralmente a nanopartículas de um material de argila (um mineral de ocorrência natural, um mineral organicamente modificado ou um nanomaterial sintético), que normalmente têm uma estrutura de plaquetas. Exemplos de nanoargilas incluem, por exemplo, montmorillonita (estrutura de argila esmectite em camadas 2:1), bentonita (filossilicato de alumínio formado principalmente por montmorillonita), caulinita (aluminossilicato 1:1 tendo uma estrutura lamelar e da fórmula empírica Al2Si2O5(OH)4), Haloisite (aluminossilicato 1:1 tendo uma estrutura tubular e de fórmula empírica Al2Si2O5(OH)4), etc. Um exemplo de uma nanoargila adequada é Cloisite®, que é uma nanoargila de montmorillonita e está comercialmente disponível junto à Southern Clay Products, Inc. Outros exemplos de nanoargilas sintéticas incluem, mas não estão limitados a uma nanoargila hidróxido misto de metal, nanoargila de hidróxido em camada dupla (por exemplo, sepiocita), laponita, hectorita, saponita, indonita, etc.
[0054] Se desejado, a nanoargila pode conter um tratamento de superfície para ajudar a melhorar a compatibilidade com o polímero da matriz (por exemplo, poliéster). O tratamento de superfície pode ser orgânico ou inorgânico. Em uma modalidade, é empregado um tratamento de superfície orgânico que é obtido pela reação de um cátion orgânico com a argila. Cátions orgânicos adequados podem incluir, por exemplo, compostos de amônio organoquaternário que são capazes de trocar cátions com a argila, tais como cloreto de dimetil-bis[sebo hidrogenado] amônio (2M2HT), cloreto de benzil metil bis[sebo hidrogenado] amônio (MB2HT), cloreto de metil tris[alquil de sebo hidrogenado] (M3HT), etc. Exemplos de nanoargilas orgânicas disponíveis comercialmente podem incluir, por exemplo, Dellite® 43B (Laviosa Chimica de Livorno, Itália), que é uma argila de montmorillonita modificada com sal de dimetil sebo benzil hidrogenado amônio. Outros exemplos incluem Cloisite® 25A e Cloisite® 30B (Southern Clay Products) e Nanofil 919 (Süd Chemie). Se desejado, a nanocarga pode ser misturada com uma resina transportadora para formar um lote principal (masterbatch) que aumenta a compatibilidade do aditivo com os outros polímeros na composição. Resinas transportadoras particularmente adequadas incluem, por exemplo, poliésteres (por exemplo, ácido polilático, tereftalato de polietileno, etc.); poliolefinas (por exemplo, polímeros de etileno, polímeros de propileno, etc.); e assim por diante, conforme descrito em mais detalhes acima.
[0055] Em determinadas modalidades da presente invenção, vários aditivos de nanoinclusão podem ser empregados em combinação. Por exemplo, um primeiro aditivo de nanoinclusão (por exemplo, poliepóxido) pode ser disperso na forma de domínios com uma dimensão transversal média de cerca de 50 a cerca de 500 nanômetros, em algumas modalidades, de cerca de 60 a cerca de 400 nanômetros, e, em algumas modalidades, de cerca de 80 a cerca de 300 nanômetros. Um segundo aditivo de nanoinclusão (por exemplo, nanocarga) também pode ser disperso na forma de domínios que são menores que o primeiro aditivo nanoinclusivo, tal como aqueles com uma dimensão transversal média de cerca de 1 a cerca de 50 nanômetros, em algumas modalidades, de cerca de 2 a cerca de 45 nanômetros, e, em algumas modalidades, de cerca de 5 a cerca de 40 nanômetros. Quando empregados, o primeiro e/ou segundo aditivos de nanoinclusão normalmente constituem de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 10% em peso, e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da fase contínua (polímero(s) da matriz). A concentração do primeiro e/ou segundo aditivos de nanoinclusão na composição termoplástica inteira pode de cerca de 0,01% em peso a cerca de 15% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 10% em peso, e, em algumas modalidades, de cerca de 0,1% em peso a cerca de 8% em peso da composição termoplástica.
[0056] Um corante também é empregado na composição termoplástica, tipicamente em uma quantidade de cerca de 0,05% em peso a cerca de 8% em peso, em algumas modalidades de cerca de 0,1% em peso a cerca de 4% em peso e, em algumas modalidades, de cerca de 0,2% em peso a cerca de 2% em peso da composição. O corante pode incluir um ou mais pigmentos e/ou um ou mais pigmentos para conferir a cor desejada ao material polimérico, tal como preto, amarelo, ciano, magenta, vermelho, verde, azul, etc. Pigmentos adequados podem incluir, por exemplo, pigmentos inorgânicos (por exemplo, dióxido de titânio, azul ultramarino, azul de cobalto, etc.), pigmentos orgânicos, pigmentos de carbono (por exemplo, negro de fumo, carvão ativado, etc.) e assim por diante. Exemplos de corantes orgânicos incluem corantes triarilmetil, corantes monoazo, corantes tiazina, corantes oxazina, corantes naftalimida, corantes azina, corantes cianina, corantes índigo, corantes cumarina, corantes benzimidazole, corantes paraquinoides, corantes fluoresceína, corantes sal diazônicos, corantes azoicos diazo, corantes fenilenodiamina, corantes diazo, corantes antraquinona, corantes trisazo, corantes xanteno, corantes proflavina, corantes sulfonaftaloína, corantes ftalocianina, corantes carotenóides, corantes ácido carmínico, corantes azurados, corantes de acridina e assim por diante. Numa modalidade particular, o corante pode incluir um pigmento preto, tal como partículas de negro de fumo. O tamanho médio (por exemplo, diâmetro) das partículas pode, por exemplo, variar de cerca de 1 a cerca de 200 nanômetros, em algumas modalidades de cerca de 5 a cerca de 150 nanômetros e, em algumas modalidades, de cerca de 10 a cerca de 100 nanômetros.
[0057] Se desejado, também pode ser utilizada uma resina carreadora para encapsular o corante. Embora qualquer resina carreadora conhecida possa ser utilizada para este fim, em modalidades particulares, a resina carreadora pode ser um polímero de olefina, tal como descrito acima. Se desejado, a resina carreadora pode ser pré-misturada com o corante para formar um lote principal, o qual pode ser posteriormente combinado com outros componentes da composição termoplástica. Quando empregada, a resina carreadora tipicamente constitui de cerca de 50% em peso a cerca de 95% em peso, em algumas modalidades de cerca de 60% em peso a cerca de 90% em peso e, em algumas modalidades, de cerca de 70% em peso a cerca de 85% em peso da mistura base e o corante constitui tipicamente entre cerca de 5% em peso e cerca de 50% em peso, em algumas modalidades de cerca de 10% em peso a cerca de 40% em peso e em algumas modalidades de cerca de 15% % a cerca de 30% em peso do lote principal. Naturalmente, outros componentes também podem ser incorporados ao lote principal.
[0058] Uma ampla variedade de ingredientes pode ser usada na composição por diversos motivos diferentes. Por exemplo, em uma modalidade específica, um modificador interfásico também pode ser empregado na composição termoplástica para ajudar a reduzir o grau de atrito e conectividade entre o aditivo de microinclusão e o polímero da matriz e, assim, aumentar o grau e a uniformidade da descolagem. Desse modo, os poros podem ser distribuídos de uma forma mais homogênea por toda a composição. O modificador pode estar na forma líquida ou semissólida em temperatura ambiente (por exemplo, 25°C) para que possua uma viscosidade relativamente baixa, permitindo que seja incorporado mais facilmente na composição termoplástica e migre mais facilmente para as superfícies do polímero. Nesse aspecto, a viscosidade cinemática do modificador interfásico é normalmente de cerca de 0,7 a cerca de 200 centistokes (“cs”), em algumas modalidades, de cerca de 1 a cerca de 100 cs e, em algumas modalidades, de cerca de 1,5 a cerca de 80 cs, determinada a 40°C. Além disso, o modificador interfásico é também normalmente hidrofóbico para que tenha uma afinidade pelo aditivo de microinclusão, resultando, por exemplo, em uma alteração na tensão interfacial entre o polímero da matriz e o aditivo. Ao reduzir as forças físicas nas interfaces entre o polímero da matriz e o aditivo de microinclusão, acredita-se que a natureza hidrofóbica, de baixa viscosidade, do modificador possa ajudar a facilitar a descolagem. Conforme usado neste documento, o termo “hidrofóbico” normalmente se refere a um material que tem um ângulo de contato da água e ar de cerca de 40° ou mais e, em alguns casos, de cerca de 60° ou mais. Em contrapartida, o termo “hidrofílico” normalmente se refere a um material que tem um ângulo de contato da água e ar menor que cerca de 40°. Um teste adequado para medir o ângulo de contato é o ASTM D5725-99 (2008).
[0059] Modificadores interfásicos hidrofóbicos, de baixa viscosidade, adequados podem incluir, por exemplo, silicones, copolímeros de silicone- poliéter, poliésteres alifáticos, poliésteres aromáticos, alquileno glicóis (por exemplo, etileno glicol, dietileno glicol, trietileno glicol, tetraetileno glicol, propileno glicol, polietileno glicol, polipropileno glicol, polibutileno glicol, etc.), alcano dióis (por exemplo, 1,3-propanodiol, 2,2-dimetil-1,3- propanodiol, 1,3-butanodiol, 1,4-butanodiol, 1,5-pentanodiol, 1,6-hexanodiol, 2,2,4-trimetil-1,6 hexanodiol, 1,3-ciclohexanodimetanol, 1,4- ciclohexanodimetanol, 2,2,4,4-tetrametil-1,3-ciclobutanodiol, etc.), óxidos de amina (por exemplo, óxido de octildimetilamina), ésteres de ácido graxo, amidas de ácido graxo (por exemplo, oleamida, erucamida, estearamida, etileno bis(estearamida), etc.), óleos minerais e vegetais, e assim por diante. Um líquido ou semissólido particularmente adequado é o poliéter poliol, tal como o comercialmente disponível sob o nome Pluriol® WI da BASF Corp. Outro modificador adequado é um éster parcialmente renovável, tal como o comercialmente disponível sob o nome HALLGREEN® IM da Hallstar.
[0060] Quando empregado, o modificador interfásico pode constituir de cerca de 0,1% em peso a cerca de 20% em peso, em algumas modalidades, de cerca de 0,5% em peso a cerca de 15% em peso e, em algumas modalidades, de cerca de 1% em peso a cerca de 10% em peso da composição termoplástica, com base no peso da fase contínua (polímero(s) da matriz). A concentração dos modificadores interfásicos em toda a composição termoplástica pode constituir de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades de cerca de 0,1% em peso a cerca de 15% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 10% em peso.
[0061] Quando empregado nas quantidades observadas acima, o modificador interfásico terá uma característica que permite que ele migre facilmente para a superfície interfacial dos polímeros e facilitem o descolamento sem danificar as propriedades de fusão gerais da composição termoplástica. Por exemplo, o modificador interfásico normalmente não tem um efeito plastificante sobre o polímero pela redução de sua temperatura de transição vítrea. Pelo contrário, os presentes inventores descobriram que a temperatura de transição vítrea da composição termoplástica pode ser substancialmente igual à do polímero da matriz inicial. Nesse aspecto, a razão entre a temperatura vítrea da composição e aquela do polímero da matriz é normalmente de cerca de 0,7 a cerca de 1,3 em algumas modalidades, de cerca de 0,8 a cerca de 1,2, e, em algumas modalidades, de cerca de 0,9 a cerca de 1,1. A composição termoplástica pode, por exemplo, ter uma temperatura de transição vítrea de cerca de 35 °C a cerca de 80 °C, em algumas modalidades, de cerca de 40 °C a cerca de 80 °C, e, em outras modalidades, de cerca de 50 °C a cerca de 65 °C. A taxa de fluxo à fusão da composição termoplástica também pode ser parecida com o do polímero da matriz. Por exemplo, a taxa de fluxo à fusão da composição (numa base seca) pode ser de cerca de 0,1 a cerca de 70 gramas por 10 minutos, em algumas modalidades, de cerca de 0,5 a cerca de 50 gamas por 10 minutos e, em algumas modalidades, de cerca de 5 a cerca de 25 gramas por 10 minutos, determinada numa carga de 2160 gramas e a uma temperatura de 190 °C.
[0062] Compatibilizantes também podem ser empregados para melhorar a aderência interfacial e reduzir a tensão interfacial entre o domínio e a matriz, permitindo, assim, a formação de domínios menores durante a mistura. Exemplos de compatibilizantes adequados podem incluir, por exemplo, copolímeros funcionalizados com epóxi ou frações químicas de anidrido maleico. Um exemplo de um compatibilizante de anidrido maleico é o anidrido maleico enxertado com polipropileno, que está comercialmente disponível pela Arkema sob os nomes Orevac™ 18750 e Orevac™ CA 100. Quando empregados, os compatibilizadores podem constituir de cerca de 0,05% em peso a cerca de 10% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 8% em peso, e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da matriz de fase contínua.
[0063] Outros materiais adequados que também podem ser usados na composição termoplástica, tais como catalisadores, antioxidantes, estabilizantes, surfactantes, ceras, solventes sólidos, preenchedores, agentes de nucleação (por exemplo, carbonato de cálcio, etc.), compostos particulados, e outros materiais adicionados para aumentar a processabilidade e as propriedades mecânicas da composição termoplástica. No entanto, um aspecto benéfico da presente invenção é que boas propriedades podem ser fornecidas sem a necessidade de diversos aditivos convencionais, tais como agentes de expansão (por exemplo, clorofluorocarbonos, hidroclorofluorocarbonos, hidrocarbonetos, dióxido de carbono, dióxido de carbono supercrítico, nitrogênio, etc.) e enchedores iniciadores de poro (por exemplo, carbonato de cálcio). Na verdade, a composição termoplástica pode geralmente ser livre de agentes de expansão e/ou enchimentos iniciadores de poros. Por exemplo, tais agentes de expansão e/ou preenchimentos podem encontrar-se presentes em quantidade não maior que cerca de 1% em peso, em algumas modalidades não maior que cerca de 0,5% em peso, e em algumas modalidades, de cerca de 0,001% em peso a cerca de 0,2% em peso da composição termoplástica. II. Materiais Poliméricos
[0064] O material polimérico da presente invenção pode ter uma variedade de formas diferentes, dependendo da aplicação específica, tal como películas, materiais fibrosos, artigos moldados, perfis, etc., bem como compósitos e laminados dos mesmos. Em uma modalidade, por exemplo, o material polimérico encontra-se em forma de película ou camada de película. Películas de multicamadas podem conter de duas (2) a quinze (15) camadas, e, em algumas modalidades, de três (3) a doze (12) camadas. Tais películas de multicamadas contêm normalmente ao menos uma camada base e ao menos uma camada adicional (por exemplo, camada de revestimento), mas pode conter quantas camadas desejado. Por exemplo, a película de multicamadas pode ser formada a partir de uma camada base e uma ou mais camadas superficiais, em que a camada base e/ou camada ou camadas superficiais são formadas a partir do material polimérico da presente invenção. Deve-se entender, no entanto, que outros materiais poliméricos podem ser igualmente empregados na camada de base e/ou camada ou camadas superficiais, tais como polímeros de poliolefina. A espessura da película pode ser relativamente pequena para aumentar a flexibilidade. Por exemplo, a película pode ter uma espessura de cerca de 1 a cerca de 200 micrômetros, em algumas modalidades de cerca de 2 a cerca de 150 micrômetros, em algumas modalidades, de cerca de 5 a cerca de 100 micrômetros e, em algumas modalidades, de cerca de 10 a cerca de 60 micrômetros.
[0065] Além de uma película, o material polimérico pode ter também a forma de um material fibroso ou uma camada ou componente de um material fibroso, o qual pode incluir fibras descontínuas individuais ou filamentos (fibras contínuas), bem como fios, tecidos, etc., formados a partir de tais fibras. Fios podem incluir, por exemplo, várias fibras descontínuas que são torcidas juntas (“fios fiados”), filamentos colocados juntos sem torcer (“fios sem torção”), filamentos colocados juntos com um grau de torção, cada filamento com ou sem torção (“monofilamento”), etc. O fio pode ou não ser texturizado. Tecidos adequados podem igualmente incluir, por exemplo, tecidos, tecidos de malha, tecidos não tecidos (por exemplo, redes spunbond, redes meltblown, redes cardadas, redes de via úmida, redes de fluxo de ar, redes coforme, redes hidraulicamente emaranhadas etc.) e outros. As fibras formadas pela composição termoplástica podem geralmente ter qualquer configuração desejada, incluindo monocomponente e multicomponente (por exemplo, configuração de revestimento-núcleo, configuração lado-a-lado, configuração de molde segmentada, configuração de ilha-no-mar, e assim por diante). Em algumas modalidades, as fibras podem conter um ou mais polímeros adicionais como um componente (por exemplo, bicomponente) ou constituinte (por exemplo, biconstituinte) para aumentar ainda mais a resistência e outras propriedades mecânicas. Por exemplo, a composição termoplástica pode formar um componente de revestimento de uma fibra bicomponente de revestimento/núcleo, enquanto que um polímero adicional pode formar o componente do núcleo ou vice-versa. O polímero adicional pode ser um polímero termoplástico, tal como poliésteres, por exemplo, ácido polilático, tereftalato de polietileno, tereftalato de polibutileno, e assim por diante; poliolefinas, por exemplo, polietileno, polipropileno, polibutileno, e assim por diante; politetrafluoroetileno; acetato de polivinil; cloreto acetato de polivinil; polivinil butiral; resinas acrílicas, por exemplo, poliacrilato, polimetilacrilato, polimetilmetacrilato, e assim por diante; poliamidas, por exemplo, náilon; cloreto de polivinil; cloreto de polivinilideno; poliestireno; álcool polivinílico; e poliuretanos.
[0066] Independentemente de sua forma específica, o material polimérico da presente invenção é geralmente formado a partir da composição termoplástica, o que pode incluir o polímero da matriz, aditivo de microinclusão, aditivo de nanoinclusão, bem como outros componentes opcionais. Para formar a composição termoplástica inicial, os componentes são normalmente misturados usando qualquer uma dentre uma variedade de técnicas conhecidas. Em uma modalidade, por exemplo, os componentes podem ser fornecidos separadamente ou em combinação. Por exemplo, os componentes podem ser primeiro misturados a seco para formar uma mistura seca essencialmente homogênea, e podem ser fornecidos simultaneamente ou em sequência a um dispositivo de processamento por fusão que mistura dispersivamente os materiais. Podem ser empregadas técnicas de processamento por fusão em descontínuas e/ou contínuas. Por exemplo, um misturador/amassador, misturador Banbury, misturador contínuo Farrel, extrusora de rosca única, extrusora de rosca dupla, laminadores, etc., podem ser usados para misturar e processar os materiais por fusão. Dispositivos de processamento por fusão particularmente adequados podem ser uma extrusora de rosca dupla de co-rotação (por exemplo, extrusora ZSK-30 disponível pela Werner & Pfleiderer Corporation de Ramsey, Nova Jersey ou uma extrusora USALAB 16 Thermo Prism™, disponível pela Thermo Electron Corp., Stone, Inglaterra). Essas extrusoras podem incluir portas de alimentação e de ventilação e proporcionar uma mistura distributiva e dispersiva de alta intensidade. Por exemplo, os componentes podem ser introduzidos nas mesmas portas de alimentação da extrusora de rosca dupla e misturados por fusão para formar uma mistura fundida substancialmente homogênea. Se desejado, outros aditivos também podem ser injetados na fusão do polímero e/ou introduzidos separadamente na extrusora em um ponto diferente ao longo de seu comprimento.
[0067] A composição misturada fundida resultante pode conter domínios em microescalas do aditivo de microinclusão e domínios em nanoescala do aditivo de nanoinclusão, como descrito acima. O corante pode ser incluído dentro da fase de polímero da matriz e/ou um ou mais dos domínios.
[0068] O grau de cisalhamento/pressão e de calor pode ser controlado para garantir a dispersão suficiente, mas não tão alto a ponto de reduzir negativamente o tamanho dos domínios, de modo que eles fiquem incapazes de atingir as propriedades desejadas. Por exemplo, a mistura geralmente ocorre a uma temperatura de cerca de 180°C a cerca de 300°C, em algumas modalidades de cerca de 185°C a cerca de 250°C, e, em algumas modalidades, de cerca de 190°C a cerca de 240°C. Da mesma forma, a taxa de cisalhamento aparente durante o processamento por fusão pode variar de cerca de 10 s-1 a cerca de 3000 s-1, em algumas modalidades, de cerca de 50 s- 1 a cerca de 2000 s-1, e, em algumas modalidades, de cerca de 100 s-1 a cerca de 1200 s-1. A taxa de cisalhamento aparente pode ser igual a 4Q/ R 3, onde Q é a taxa de fluxo volumétrica (“m3/s”) da fusão do polímero e R é o raio (“m”) do capilar (por exemplo, molde da extrusora) através do qual o polímero fundido flui. Obviamente, outras variáveis, tais como o tempo de permanência durante o processamento por fusão, que é inversamente proporcional à taxa de produção, também podem ser controladas para atingir o grau desejado de homogeneidade.
[0069] Para atingir as condições de cisalhamento desejadas (por exemplo, taxa, tempo de permanência, taxa de cisalhamento, temperatura de processamento por fusão, etc.), a velocidade da(s) rosca(s) da extrusora pode ser selecionada com um determinado intervalo. Geralmente, é observado um aumento na temperatura do produto com o aumento da velocidade da rosca devido à entrada adicional de energia mecânica no sistema. Por exemplo, a velocidade da rosca pode variar de cerca de 50 a cerca de 600 revoluções por minuto (“rpm”), em algumas modalidades, de cerca de 70 a cerca de 500 rpm, e, em algumas modalidades, de cerca de 100 a cerca de 300 rpm. Isso pode resultar em uma temperatura que seja suficientemente alta para dispersar o aditivo de microinclusão sem afetar negativamente o tamanho dos domínios resultantes. A taxa de cisalhamento por fusão e, por sua vez, o grau em que os aditivos são dispersos, também podem ser aumentados durante o uso de um ou mais elementos de mistura distributiva e/ou dispersiva dentro da seção de mistura da extrusora. Entre os misturadores distributivos de rosca única estão, por exemplo, os misturadores Saxon, Dulmage, Cavity Transfer, etc. Da mesma maneira, os misturadores dispersivos adequados podem incluir misturadores de anel de bolha, Leroy/Maddock, CRD, etc. Conforme conhecido na área, a mistura pode ser ainda mais aprimorada usando pinos no cilindro que criem uma dobra fazendo a reorientação da fusão do polímero, como aqueles usados nas extrusoras Buss Kneader, nos misturadores Cavity Transfer e nos misturadores Vortex Intermeshing Pin (VIP).
[0070] Como indicado acima, forma-se uma rede porosa submetendo- se o material polimérico a uma tensão deformacional. A tensão pode ser aplicada antes de o material ser usado (“pré-esvaziamento”) e/ou durante o uso (“pós-esvaziamento”).
[0071] Materiais poliméricos pré-vazios são tipicamente tensionados usando uma técnica de tração. Por exemplo, o material pode ser estirado no sentido longitudinal (por exemplo, sentido da máquina), sentido transversal (por exemplo, sentido transversal da máquina), etc., bem como combinações dos mesmos. Para executar a extração desejada, a composição termoplástica pode ser formatada em formato precursor, extraída, e em seguida convertida no material desejado (por exemplo, película, fibra, etc.). Em uma modalidade, a forma precursora pode ser uma película com espessura a partir de cerca de 1 a cerca de 5000 micrômetros, em algumas modalidades a partir de cerca de 2 a cerca de 4000 micrômetros, em algumas modalidades de cerca de 5 a cerca de 2500 micrômetros, e, em algumas modalidades, de cerca de 10 a cerca de 500 micrômetros. Como uma alternativa à formação de uma forma precursora, a composição termoplástica pode também ser extraída in situ à medida que está sendo formatada na forma desejada para o material polimérico. Em uma modalidade, por exemplo, a composição termoplástica pode ser extraída enquanto está sendo formada em uma película ou fibra.
[0072] Várias técnicas de estiramento podem ser empregadas, de forma geral, tais como aspiração (por exemplo, unidades de estiramento de fibra), estiramento de estrutura elástica, estiramento biaxial, estiramento multiaxial, estiramento do perfil, estiramento à vácuo, etc. Em uma modalidade, por exemplo, o composto é estirado com um orientador no sentido da máquina (“OSM”), como os comercializados pela Marshall and Willams, Co. de Providence, Rhode Island. Unidades de OSM têm tipicamente uma pluralidade de cilindros de extração (por exemplo, de 5 a 8) que, progressivamente, empuxam e afinam a película na direção da máquina. A composição pode ser extraída por meio de operações de extração discretas, quer sejam individuais ou múltiplas. Deve-se observar que alguns dos cilindros em um aparelho MDO podem não estar operando a velocidades progressivamente maiores. Para extrair a composição da maneira descrita acima, geralmente é preferível que os cilindros do OSM não estejam aquecidos. No entanto, se desejado, um ou mais cilindros podem ser ligeiramente aquecidos para facilitar o processo de extração, contanto que a temperatura da composição permaneça abaixo dos intervalos acima determinados. O grau de extração depende em parte da natureza do material sendo extraído (por exemplo, fibra ou película), mas é selecionado geralmente para assegurar que a rede porosa desejada seja alcançada. A esse respeito, a composição é tipicamente extraída (por exemplo, na direção de máquina) a uma razão de extração de cerca de cerca de 1,1 a cerca de 3,5, em algumas modalidades a partir de cerca de 1,2 a cerca de 3,0 e, em algumas modalidades, a partir de cerca de 1,3 a cerca de 2,5. A taxa de tração pode ser determinada pela divisão do comprimento do material estirado por seu comprimento antes do estiramento. A taxa de tração também pode variar para ajudar a atingir as propriedades desejadas, tais como dentro do intervalo de cerca de 5% a cerca de 1500% por minuto de deformação, em algumas modalidades, de cerca de 20% a cerca de 1000% por minuto de deformação, e, em algumas modalidades, de cerca de 25% a cerca de 850% por minuto de deformação. Embora a composição seja tipicamente extraída sem a aplicação de calor externo (por exemplo, rolos aquecidos), tal calor pode ser opcionalmente empregado para melhorar a processabilidade, reduzir força de extração, aumentar taxas de tração e melhorar uniformidade da fibra.
[0073] Como mencionado acima, a rede porosa também pode ser formada no material polimérico durante o uso (“pós-esvaziamento”). Materiais poliméricos pós-vazios podem ser tensionados usando uma variedade de técnicas. Numa modalidade, por exemplo, o material pode ser fisicamente manipulado, tal como alongamento, flexão, dobramento, torção, rasgo, impacto, etc. Se desejado, o material polimérico pode ser fisicamente deformado (por exemplo, dobrado, torcido, etc.) numa configuração tridimensional tendo um ou mais deslocamentos angulares. Os deslocamentos angulares podem, por exemplo, variar de cerca de 5° a cerca de 250°, em algumas modalidades, de cerca de 10° a cerca de 200°, em algumas modalidades, de cerca de 20° a cerca de 180°, e, em algumas modalidades, de cerca de 30° a cerca de 120°. Em certas modalidades, a configuração tridimensional pode possuir vários deslocamentos angulares (por exemplo, 2, 3, 4, etc.), que podem estar em planos iguais ou diferentes.
[0074] Forçar o material da maneira descrita acima (por exemplo, extração) pode resultar em uma rede porosa que pode constituir de cerca de 15% a cerca de 80% por cm3, em algumas modalidades, de cerca de 20% a cerca de 70% e, em algumas modalidades, de cerca de 30% a cerca de 60% por centímetro cúbico do material. O material pode ter uma densidade relativamente baixa, tal como cerca de 1,2 gramas por centímetro cúbico (“g/cm3”) ou menos, em algumas modalidades, de cerca de 1,0 g/cm3 ou menos, em algumas modalidades, de cerca de 0,2 g/cm3 a cerca de 0,8 g/cm3 e, em algumas modalidades, de cerca de 0,1 g/cm3 a cerca de 0,5 g/cm3. Notadamente, uma parte substancial desses poros pode ser de um tamanho em “nanoescala” (“nanoporos”), tais como aqueles com uma dimensão transversal média de cerca de 800 nanômetros ou menos, em algumas modalidades, de cerca de 5 a cerca de 250 nanômetros e, em algumas modalidades, de cerca de 10 a cerca de 100 nanômetros. O termo “dimensão transversal” refere-se geralmente a uma dimensão característica (por exemplo, largura ou diâmetro) de um poro, que é substancialmente ortogonal a seu eixo principal (por exemplo, comprimento) e também normalmente substancialmente ortogonal ao sentido da tensão aplicada durante a deformação. Tais nanoporos podem, por exemplo, constituir cerca de 15% em volume ou mais, em algumas modalidades cerca de 20% em volume ou mais, em algumas modalidades cerca de 30% em volume a cerca de 100% em volume, e, em algumas modalidades, de cerca de 40% em volume a cerca de 90% em volume de poro total no material polimérico. Os microporos também podem ser formados ao redor e nos domínios em microescala durante o estiramento para ter uma dimensão transversal média de cerca de 0,5 a cerca de 30 micrômetros, em algumas modalidades, de cerca de 1 a cerca de 20 micrômetros e, em algumas modalidades, de cerca de 2 micrômetros a cerca de 15 micrômetros. Os microporos e/ou nanoporos podem ter qualquer forma regular ou irregular, tal como esférica, alongada, etc. Em certos casos, a dimensão axial dos microporos e/ou nanoporos pode ser maior que a dimensão de corte transversal de modo a proporção de aspecto (a razão da dimensão axial para a dimensão de corte transversal) é de cerca de 1 a cerca de 30, em algumas modalidades de cerca de 1,1 a cerca de 15, e, em algumas modalidades de cerca de 1,2 a cerca de 5. A “dimensão axial” é a dimensão no sentido do eixo principal (por exemplo, comprimento). Os poros (por exemplo, microporos, nanoporos ou ambos) também podem ser distribuídos de uma forma substancialmente homogênea por todo o material. Por exemplo, os poros podem ser distribuídos em colunas que são orientadas em um sentido geralmente perpendicular ao sentido em que a tensão é aplicada. Essas colunas podem ser geralmente paralelas umas às outras por toda a largura do material.
[0075] Devido à natureza única do material e da forma que é formado, os poros podem tornar-se distribuídos dentro de áreas de faixas alternadas, entre as quais arestas da matriz do polímero estão localizadas que se estendem geralmente perpendicular ao sentido da deformação. As arestas podem permanecer relativamente sem cavidades. A combinação dessas características pode resultar em um material que tenha a integridade estrutural devido à presença das arestas rígidas, contudo também capaz de flexionar e de dissipar a energia devido à presença das pontes relativamente flexíveis. Dentre outras coisas, isto aumenta a flexibilidade do material e permite ainda que ele mantenha um grau suficiente de resistência para que ele possa manter a forma desejada durante o uso.
[0076] Além de formar uma rede porosa, a deformação também pode aumentar significativamente a dimensão axial dos domínios em microescala para que eles tenham uma forma geralmente linear, alongada. Por exemplo, os domínios em microescala alongados podem ter uma dimensão axial que é cerca de 10% ou mais, em algumas modalidades de cerca de 20% a cerca de 500% e, em algumas modalidades, de cerca de 50% a cerca de 250% maior que a dimensão axial dos domínios antes do estiramento. A dimensão axial após o estiramento (por exemplo, tração), pode, por exemplo, variar de cerca de 0,5 a cerca de 250 micrômetros, em algumas modalidades, de cerca de 1 a cerca de 100 micrômetros, em algumas modalidades, de cerca de 2 a cerca de 50 micrômetros, e, em algumas modalidades, de cerca de 5 a cerca de 25 micrômetros. Os domínios de microescala também podem ser relativamente finos e, assim, ter uma dimensão transversal pequena, que pode ser a partir de cerca de 0,05 a cerca de 50 micrômetros, em algumas modalidades a partir de cerca de 0,2 a cerca de 10 micrômetros e, em algumas modalidades, a partir de cerca de 0,5 a cerca de 5 micrômetros. Isto pode resultar numa razão de aspecto para os primeiros domínios (a razão entre a dimensão axial e a dimensão transversal) de cerca de 2 a cerca de 150, em algumas modalidades, de cerca de 3 a cerca de 100, e, em algumas modalidades, de cerca de 4 a cerca de 50.
[0077] Os materiais poliméricos pré-esvaziados e pós-esvaziados da presente invenção podem ser empregues numa ampla variedade de diferentes aplicações para proporcionar uma sugestão visual a uma pessoa durante a utilização do material. Numa modalidade, por exemplo, um material polimérico pós-esvaziado pode ser empregue numa vedação inviolável. Nestas modalidades, o material pode inicialmente possuir a cor do corante (por exemplo, preto) antes de ser submetido a tensão deformacional. No entanto, quando um usuário manipula fisicamente o selo (por exemplo, torção, rasgo, etc.), a deformação resultante provoca a formação de poros no material polimérico, o que altera a cor do material e fornece uma indicação visual para o usuário que o selo foi quebrado. Tal selo pode ser usado em qualquer tipo de produto desejado, como recipientes, garrafas, produtos embalados, caixas etc. Além de proporcionar uma sugestão visual de adulteração de um produto, o material polimérico também pode ser usado para fornecer outros tipos de pistas visuais. Por exemplo, o material polimérico pode ser usado para fornecer uma indicação visual de danos a um produto, como em um assento de carro, capacete esportivo, etc. O material polimérico pode também fornecer uma sugestão visual de uma certa quantidade de tensão, tal como na embalagem, invólucro ou num componente elástico. Numa modalidade, por exemplo, o material polimérico pode ser utilizado num componente elástico (por exemplo, aba) de um artigo absorvente que é capaz de absorver água ou outros fluidos. Exemplos de alguns artigos absorventes, entre outros: artigos absorventes para cuidados pessoais, como fraldas, fraldas de treinamento, calcinhas absorventes, produtos para incontinência, produtos de higiene feminina (por exemplo, absorventes higiênicos, etc.), roupas de banho, lenços para bebês, e assim por diante; artigos absorventes médicos, como roupas, materiais para fenestração, resguardos para colchão, forros para cama, curativos, panos cirúrgicos absorventes e lenços médicos; toalhas de papel para limpeza pesada em cozinhas, artigos de vestimenta; bolsas e assim por diante. Materiais e processos adequados para a moldagem de tais produtos são bastante conhecidos por indivíduos versados na técnica. Artigos absorventes, por exemplo, normalmente incluem uma camada substancialmente impermeável a líquidos (por exemplo, cobertura externa), uma camada permeável a líquidos (por exemplo, revestimento em contato com o corpo, camada expansível, etc.) e um núcleo absorvente.
[0078] Naturalmente, como referido acima, a presente invenção não está limitada à utilização de um material polimérico “pós-esvaziado” para proporcionar a sugestão visual desejada. Por exemplo, o material polimérico pode ser submetido a tensões deformacionais (por exemplo, tração) antes da utilização. Deste modo, pelo menos uma porção do material polimérico terá inicialmente a segunda cor, devido à presença de poros. Durante o uso do material, no entanto, o tamanho de alguns ou todos esses poros pode ser reduzido usando uma variedade de tratamentos diferentes, como por tratamento térmico, manipulação física (por exemplo, torção, ruptura, dobramento, pressão, etc.) e assim por diante. Quando os poros são reduzidos em tamanho ou destruídos desta maneira, o “efeito branqueador” acima mencionado é diminuído, de modo que pelo menos uma porção do material polimérico exibe uma terceira cor que é substancialmente similar ou mesmo idêntica à primeira cor inicial do material.
[0079] A mudança de cor exibida por esses materiais poliméricos “pré-esvaziados” pode fornecer uma indicação visual para um usuário em uma ampla variedade de diferentes aplicações. Numa modalidade, por exemplo, o material polimérico pode ser utilizado num sensor térmico. Nessas modalidades, o material esvaziado pode possuir uma cor branca ou cinza, devido ao efeito de branqueamento da rede porosa. Depois de expostos ao calor, no entanto, o tamanho de alguns ou de todos os poros é reduzido, de modo que a cor do material polimérico é alterada (por exemplo, preto), o que fornece uma indicação visual para o usuário de um aumento de temperatura. Embora o grau de calor necessário para conferir a alteração da cor desejada possa variar, é tipicamente desejado que o material polimérico seja exposto a uma temperatura igual ou superior à temperatura de transição vítrea da matriz polimérica, tal como entre cerca de 40° e cerca de 200°C, em algumas modalidades de cerca de 50°C a cerca de 150°C e, em algumas modalidades, de cerca de 70°C a cerca de 120°C. Em tais temperaturas, o polímero começará a fluir e potencialmente cristalizar para causar desestabilização e redução do tamanho dos poros. Sensores térmicos podem fornecer uma variedade de tipos diferentes de dicas visuais para um usuário, como uma sugestão visual de que um produto alimentício cozinhou o suficiente, um substrato sofreu um certo grau de encolhimento por calor (por exemplo, fibras de retração de calor, películas encolhíveis por calor, etc.) e assim por diante. Além do tratamento térmico, a manipulação física (por exemplo, torção, rasgo, flexão, dobra, impacto, pressão, etc.) também pode reduzir o tamanho dos poros em um material “pré-esvaziado” e, portanto, conferir a mudança de cor desejada. Por exemplo, o material polimérico pode ser usado como um material sensível à pressão (por exemplo, película), onde a mudança de cor fornece uma indicação visual de que uma certa pressão foi exercida sobre o material. A sugestão visual também pode ser estética na natureza. Por exemplo, um material “pré-esvaziado” pode ser gravado em relevo para criar um padrão visual multicolorido.
[0080] A presente invenção pode ser melhor compreendida com referência aos seguintes exemplos.
[0081] A taxa de fluxo de fusão (“MFR”) é o peso de um polímero (em gramas) forçado através de um orifício de reômetro de extrusão (diâmetro de 0,0825 polegada), quando submetido a uma carga de 2160 gramas em 10 minutos, tipicamente a 190°C, 210°C, ou 230°C. Salvo especificação em contrário, a taxa de fluxo de fusão é medida de acordo com o método de teste ASTM D1238-13 com um Plastômero de Extrusão Tinius Olsen. Propriedades Térmicas:
[0082] A temperatura de transição vítrea (Tg) pode ser determinada por meio de análise dinâmico-mecânica (DMA), de acordo com ASTM E1640-09. Um instrumento Q800 da TA Instruments pode ser usado. Operações experimentais podem ser executadas em geometria de tensão/tensão, em um modo de varrimento de temperatura na faixa de -120°C a 150°C com uma taxa de aquecimento de 3°C/min. A frequência de amplitude de força pode ser mantida constante (2 Hz) durante o teste. Três (3) amostras independentes podem ser testadas para obter uma temperatura de transição vítrea média, que é definida pelo valor de pico da curva da tangente δ, em que a tangente δ é definida como a razão entre o módulo de perda e o módulo de armazenamento (tangente δ = E”/E’).
[0083] A temperatura de fusão pode ser determinada por meio de calorimetria diferencial de varredura (DSC). O calorímetro diferencial de varredura pode ser um calorímetro diferencial de varredura DSC Q100, que pode ser preparado com um acessório de resfriamento por nitrogênio líquido e com um programa de software de análise UNIVERSAL ANALYSIS 2000 (versão 4.6.6), ambos disponíveis pela T.A. Instruments Inc. de New Castle, Delaware. Para evitar o manuseio direto das amostras, podem ser utilizadas pinças e outras ferramentas. As amostras podem ser colocadas em um prato de alumínio e pesadas com precisão de 0,01 miligrama em uma balança analítica. Pode ser colocada uma tampa sobre a amostra de material no prato. Normalmente, os peletes de resina podem ser colocados diretamente no prato de pesagem.
[0084] O calorímetro diferencial de varredura pode ser calibrado usando um padrão do metal índio e pode ser feita uma correção de base de referência, conforme descrito no manual de operação do calorímetro diferencial de varredura. A amostra do material pode ser colocada na câmara de teste do calorímetro diferencial de varredura para o teste, e um prato vazio pode ser usado como referência. Todos os testes podem ser executados com a purga com nitrogênio de 55 centímetros cúbicos por minuto (grau industrial) na câmara de testes. Para as amostras de grãos de resina, o programa de aquecimento e resfriamento é um teste de 2 ciclos, que começou com o equilíbrio da câmara a -30°C, seguido por um primeiro período de aquecimento até uma taxa de 10 °C por minuto até uma temperatura de 200 °C, seguido por um equilíbrio da amostra a 200 °C por 3 minutos, seguido por um primeiro período de resfriamento de 10 °C por minuto até uma temperatura de -30 °C, seguido pelo equilíbrio da amostra a -30 °C por 3 minutos, e em seguida um segundo período de aquecimento, a uma taxa de 10 °C por minuto até uma temperatura de 200 °C. Para as amostras de grãos de resina, o programa de aquecimento e resfriamento é um teste de 1 ciclo, que começou com o equilíbrio da câmara a -25°C, seguido por um primeiro período de aquecimento até uma taxa de 10 °C por minuto até uma temperatura de 200 °C, seguido por um equilíbrio da amostra a 200 °C por 3 minutos, seguido por um primeiro período de resfriamento de 10 °C por minuto até uma temperatura de -30 °C. Todos os testes podem ser executados com a purga com nitrogênio de 55 centímetros cúbicos por minuto (grau industrial) na câmara de testes.
[0085] Os resultados podem ser avaliados usando o programa de software de análise UNIVERSAL ANALYSIS 2000, que identifica e quantifica a temperatura de transição vítrea (Tg) da inflexão, os picos endotérmicos e exotérmicos, e as áreas sob os picos nos gráficos de DSC. A temperatura de transição vítrea pode ser identificada como a região da linha do gráfico onde ocorreu uma nítida mudança na inclinação, e a temperatura de fusão pode ser determinada usando um cálculo automático de inflexão. Densidade e Volume de Poros Percentual:
[0086] Para determinar a densidade e o volume de poros percentual, a largura (Wi) e a espessura (Ti) da amostra foram inicialmente medidas antes do estiramento. O comprimento (Li) antes do estiramento também pôde ser determinado pela medição da distância entre duas marcas numa superfície da amostra. Consequentemente, a amostra pôde ser estirada para iniciar a formação de espaços vazios. A largura (Wf), espessura (Tf) e comprimento (Lf) da amostra puderam então ser medidos o mais próximo de 0,01 mm usando um Compasso Digimatic (Mitutoyo Corporation). O volume (Vi) antes do estiramento pôde ser calculado por Wi x Ti x Li = Vi. O volume (Vf) após o estiramento pôde ser calculado por Wf x Tf x Lf = Vf. A densidade (Pf) pode ser calculada por: Pf = Pi/Φ, onde Pi é a densidade do material precursor; e o volume de poros percentual (% Vv) pôde ser calculado por: %Vv = (1 - 1/ Φ) x 100.
[0087] Inicialmente, uma composição termoplástica foi formada a partir de 85,3% em peso de ácido polilático (PLA 6201D, Natureworks®), 9,5% em peso de um aditivo de microinclusão, 1,4% em peso de um aditivo de nanoinclusão e 3,8% em peso de um modificador interfacial interno. O aditivo de microinclusão foi o Vistamaxx™ 2120 (ExxonMobil), que é um copolímero/elastômero de polipropileno-polietileno com uma taxa de fluxo à fusão de 29 g/10 min (190°C, 2160 g) e uma densidade de 0,866 g/cm3. O aditivo de nanoinclusão foi o poli(etileno-co-metil acrilato-co-glicidil metacrilato) (Lotader® AX8900, Arkema) com uma taxa de fluxo à fusão de 5-6 g/10 min (190°C/2160 g), um teor de metacrilato de glicidil de 7 a 11% em peso, teor de acrilato de metil a 13 a 17% em peso, e teor de etileno de 72 a 80% em peso. O modificador interfacial interno era o Lubrificante PLURIOL® WI 285 da BASF, que é um fluido funcional de polialquilenoglicol.
[0088] Os polímeros foram introduzidos em uma extrusora de rosca dupla de co-rotação (ZSK-30, diâmetro de 30 mm, comprimento de 1328 milímetros) para produção de compostos que foram fabricados pela Werner and Pfleiderer Corporation, de Ramsey, Nova Jersey. A extrusora possuía 14 zonas, numeradas sequencialmente de 1-14, a partir do funil de alimentação até o molde. A primeira zona de barril n.° 1 recebeu as resinas por meio de alimentadora gravimétrica a uma vazão total de 15 libras por hora. O PLURIOL® WI285 foi adicionado por meio de bomba injetora na zona de barril #2. O molde usado para extrudar a resina tinha 3 aberturas de molde (6 milímetros de diâmetro) que eram separadas por 4 milímetros. Após a formação, a resina extrudada foi resfriada numa correia transportadora resfriada por ventilação e formada em peletes por um peletizador Conair. A velocidade da rosca da extrusora era de 200 rotações por minuto (“rpm”). Os peletes foram então alimentados em massa a uma extrusora de rosca de sinal aquecida até uma temperatura de 212°C onde a mistura fundida saía por uma fenda de 4,5 polegadas de largura e extraída a uma espessura de película variando entre 36 μm a 54 μm. As películas eram extraídas no sentido da máquina até cerca de 100% de modo a iniciar cavitação e formação de vácuo.
[0089] A morfologia das películas foi analisada mediante microscopia de varredura de elétrons (MEV) antes e depois do estiramento. Os resultados são mostrados nas Figs. 1-4. Como mostrado nas Figs. 1-2, o aditivo de microinclusão foi inicialmente disperso em domínios com um tamanho axial (no sentido da máquina) de cerca de 2 a cerca de 30 micrômetros e uma dimensão transversal (no sentido transversal da máquina) de cerca de 1 a cerca de 3 micrômetros, enquanto que o aditivo de nanoinclusão foi inicialmente disperso como domínios esféricos ou esferoidais tendo um tamanho axial de cerca de 100 a cerca de 300 nanômetros. As Figs. 3-4 exibe a película após o estiramento. Como indicado, os poros se formaram em torno dos aditivos de inclusão. Os microporos formados à volta do aditivo de microinclusão geralmente tinham formato alongado em semelhante a uma fenda, com ampla distribuição de tamanho variando entre cerca de 2 e cerca de 20 micrômetros no sentido axial. Os nanoporos associados ao aditivo de nanoinclusão geralmente têm tamanho entre cerca de 50 a cerca de 500 nanômetros.
[0090] A formulação do Exemplo 1 foi misturada por fusão com 2% em peso de um lote principal de negro de fumo num carreador de polietileno (Clariant FDA Black consistindo em 10% de carbono e 90% de polietileno). A mistura da fusão ocorreu numa extrusora de fuso único Davis Standard de 90 mm a uma temperatura de 193°C e a uma velocidade de 100 rpm. A mistura foi extrudida a partir do fuso único diretamente para uma folha com uma espessura de 500 micrômetros e temperada a uma temperatura de 43°C. EXEMPLO 3
[0091] A folha do Exemplo 2 foi esticada utilizando um Quadro de Tração MTS Synergie para variar os alongamentos a uma taxa de 25 milímetros por minuto, incluindo 5%, 10%, 25%, 50%, 75%, 100%, 125% e 400% na direção da máquina e 5%, 10%, 25%, 50%, 75%, 100%, 125% na direção transversal. O nível de mudança de cor em uma determinada tração foi consistente tanto na direção da máquina quanto na direção transversal. Em níveis de alongamento acima de 100% de alongamento, a mudança de cor foi menos perceptível.
[0092] A folha do Exemplo 2 foi esticada através de uma Unidade de Orientação na Direção da Máquina (MDO) até 50% de alongamento a uma taxa de alimentação de 5 metros por minuto e velocidade de 7,5 metros por minuto. Após o alongamento, a cor mudou de um preto brilhante para um cinza opaco. O material da folha cinza foi então submetido ao calor gerado por um laser CO 200W2 a uma taxa de varredura de 760 milímetros por segundo. O ciclo de serviço foi variado de 7% a 49%, o que representou 50% da potência real do laser. À medida que o ciclo de trabalho do laser foi aumentado, a amostra tornou-se um cinza mais escuro e, eventualmente, preto, à medida que o ciclo de trabalho alcançava acima de 30%.
[0093] Formou-se uma folha como descrito no Exemplo 2, com exceção de que o lote principal de negro de fumo foi empregue numa quantidade de 4% em peso. A amostra de folha preta foi então termoformada a uma temperatura de 95°C para produzir uma cobertura rígida de recipiente de tampa. Após a termoformação, não houve mudança perceptível na cor da tampa em comparação com a folha original.
[0094] A folha do Exemplo 5 foi esticada através de uma Unidade de Orientação na Direção da Máquina (MDO) até 50% de alongamento a uma taxa de alimentação de 50 metros por minuto e velocidade de 75 metros por minuto. Após o alongamento, a cor da folha mudou de um preto brilhante para um cinza opaco. O material em folha cinza foi então termoformado a uma temperatura de 95°C para produzir uma cobertura de recipiente de tampa rígida. Após a termoformação, havia uma gama de cores cinzas na cor da tampa em comparação com o original, o que indicava níveis variados de colapso de vazios na tampa termoformada em comparação com a folha original.
[0095] Inicialmente, uma composição termoplástica foi formada a partir de 85,3% em peso de ácido polilático (PLA 4043D, Natureworks®), 9,5% em peso de um aditivo de microinclusão, 1,4% em peso de um aditivo de nanoinclusão e 3,8% em peso de um modificador interfacial interno. O aditivo de microinclusão foi PP3155 (ExxonMobil), que é um homopolímero de polipropileno-polietileno com uma taxa de fluxo de fusão de 35 g/10 min (230°C, 2160 g) e uma densidade de 0,9 g/cm3. O aditivo de nanoinclusão foi o poli(etileno-co-metil acrilato-co-glicidil metacrilato) (Lotader® AX8900, Arkema) com uma taxa de fluxo à fusão de 5-6 g/10 min (190°C/2160 g), um teor de metacrilato de glicidil de 7 a 11% em peso, teor de acrilato de metil a 13 a 17% em peso, e teor de etileno de 72 a 80% em peso. O modificador interfacial interno foi o lubrificante Hallgreen® IM-8830, da Hallstar, que é um fluido à base de éster de baixo peso molecular.
[0096] Os polímeros foram introduzidos em uma extrusora de rosca dupla de co-rotação (ZSK-30, diâmetro de 30 mm, comprimento de 1328 milímetros) para produção de compostos que foram fabricados pela Werner and Pfleiderer Corporation, de Ramsey, Nova Jersey. A extrusora possuía 14 zonas, numeradas sequencialmente de 1-14, a partir do funil de alimentação até o molde. A primeira zona de barril n.° 1 recebeu as resinas por meio de alimentadora gravimétrica a uma vazão total de 15 libras por hora. O Hallgreen® IM-8830 foi adicionado por meio da bomba de injeção dentro da zona #2 do barril. O molde usado para extrudar a resina tinha 3 aberturas de molde (6 milímetros de diâmetro) que eram separadas por 4 milímetros. Após a formação, a resina extrudada foi resfriada numa correia transportadora resfriada por ventilação e formada em peletes por um peletizador Conair. A velocidade da rosca da extrusora era de 200 rotações por minuto (“rpm”).
[0097] Os peletes do Exemplo 7 foram misturados a seco com um lote principal de negro de fumo em um carreador de ácido polilático (lote principal de negro de fumo 25% negro de fumo, 75% PLA 4043D, Ampacet). O lote principal de negro de fumo foi empregado em uma quantidade de 4% em peso. A mistura seca de peletes foi depois alimentada por inundação numa extrusora de fuso único aquecida a uma temperatura de 212°C onde a mistura fundida saía através de uma fenda de 150 milímetros de largura e extraída a uma espessura de película de 125 micrômetros. As películas foram então esticadas através de uma Unidade de Orientação de Direção da Máquina (MDO) para 50% de alongamento a uma taxa de alimentação de 5 metros por minuto e velocidade de 7,5 metros por minuto. A película resultante tinha uma cor mais escura de cinza a preto, o que indica que o fornecimento do pigmento na fase da matriz pode proporcionar uma diferença na aparência da cor em comparação com o pigmento que está na fase dispersa.
[0098] Embora a invenção tenha sido descrita em detalhes em relação às suas modalidades específicas, será contemplado que os versados na técnica, após obter uma compreensão do exposto anteriormente, poderão facilmente conceber alterações, variações e equivalentes dessas modalidades. Nesse sentido, o escopo da presente invenção seve ser avaliado como aquele das reivindicações anexas e quaisquer equivalentes a estas.
Claims (15)
1. Material polimérico de mudança de cor, caracterizado pelo fato de que o material é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um polímero de matriz, corante, aditivo de microinclusão e aditivo de nanoinclusão, em que o corante inclui um pigmento inorgânico, um pigmento orgânico, um pigmento de carbono ou uma combinação destes, em que o aditivo de microinclusão e o aditivo de nanoinclusão são dispersos na fase contínua na forma de domínios discretos, em que uma rede porosa é formada no material polimérico quando submetida a uma tensão deformacional em estado sólido, e em que o material polimérico apresenta uma primeira cor antes de ser submetido à tensão deformacional e uma segunda cor depois de ser submetido à tensão deformacional, sendo a primeira cor diferente da segunda cor.
2. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que a primeira cor corresponde à cor do corante.
3. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que a diferença no valor do nível de cinza entre a primeira cor e a segunda cor é de 50 ou maior, conforme determinado numa escala de 0-255, em que 0 representa preto e 255 representa branco.
4. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que a primeira cor é preta e a segunda cor é branca ou cinza.
5. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que o corante está presente numa quantidade de 0,05% em peso a 8% em peso da composição.
6. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que o corante inclui um pigmento de carbono, tal como partículas de negro de fumo.
7. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que o corante é fornecido num lote principal que contém uma resina carreadora.
8. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que o polímero de matriz inclui um poliéster, tal como ácido poliláctico ou poliolefina e/ou em que o aditivo de microinclusão inclui uma poliolefina e/ou em que o aditivo de nanoinclusão é uma poliolefina funcionalizada, tal como um poliepóxido.
9. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que a composição termoplástica compreende adicionalmente um modificador de interfase.
10. Material polimérico de mudança de cor de acordo com a reivindicação 1, caracterizado pelo fato de que o material é uma película, material fibroso ou artigo moldado.
11. Método para iniciar uma mudança de cor em um material polimérico como definido na reivindicação 1, o método caracterizado pelo fato de que compreende submeter o material polimérico a uma tensão deformacional a uma temperatura de 0°C a 60°C, para formar uma rede porosa no material polimérico, em que o material polimérico exibe uma segunda cor depois de ter sido submetido à tensão deformacional, que é diferente da primeira cor.
12. Método de acordo com a reivindicação 11, caracterizado pelo fato de que a tensão deformacional é proporcionada ao extrair o material e em que o material é preferencialmente extraído por uma razão de tração de 1,1 a 3,5.
13. Método de acordo com a reivindicação 11, caracterizado pelo fato de que a tensão deformacional é provida por flexão, torção, rasgo, impacto ou aplicação de pressão ao material polimérico.
14. Método para iniciar uma mudança de cor em um material polimérico, caracterizado pelo fato de que o material polimérico é formado a partir de uma composição termoplástica contendo uma fase contínua que inclui um polímero de matriz, corante, aditivo de microinclusão e aditivo de nanoinclusão, em que o corante inclui um pigmento inorgânico, um pigmento orgânico, um pigmento de carbono ou uma combinação destes, em que o aditivo de microinclusão e o aditivo de nanoinclusão são dispersos na fase contínua na forma de domínios discretos, em que uma rede porosa é definida dentro do material polimérico que contém uma pluralidade de poros, em que o material polimérico exibe uma cor inicial, o método compreendendo: tratar o material polimérico para reduzir o tamanho de um ou mais dos poros, em que o material polimérico tratado exibe uma cor após ser submetido a uma deformação diferente da cor inicial.
15. Método de acordo com a reivindicação 14, caracterizado pelo fato de que o tratamento do material polimérico inclui expor o material a uma temperatura de 40°C a 200°C ou em que o tratamento inclui flexão, torção, rasgo, impacto ou aplicação de pressão ao material polimérico.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562268528P | 2015-12-17 | 2015-12-17 | |
| US62/268,528 | 2015-12-17 | ||
| PCT/US2016/066526 WO2017106267A1 (en) | 2015-12-17 | 2016-12-14 | Color-changing polymeric material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| BR112018011237A2 BR112018011237A2 (pt) | 2018-12-04 |
| BR112018011237B1 true BR112018011237B1 (pt) | 2022-06-14 |
Family
ID=59057492
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| BR112018011237-2A BR112018011237B1 (pt) | 2015-12-17 | 2016-12-14 | Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US11377525B2 (pt) |
| EP (1) | EP3390515B1 (pt) |
| KR (1) | KR102622189B1 (pt) |
| CN (1) | CN108699280B (pt) |
| AU (1) | AU2016370562B2 (pt) |
| BR (1) | BR112018011237B1 (pt) |
| MX (1) | MX394788B (pt) |
| WO (1) | WO2017106267A1 (pt) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111058098B (zh) * | 2019-12-31 | 2020-11-06 | 张家港市荣昌涤纶毛条有限公司 | 不同灰度的多孔超细涤纶生产工艺 |
| CN117186598A (zh) * | 2023-09-14 | 2023-12-08 | 中船鹏力(南京)塑造科技有限公司 | 一种低温塑型变色高分子发泡材料及其制备方法 |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2820735A (en) * | 1955-07-08 | 1958-01-21 | Du Pont | Sealing of polymeric linear terephthalate ester structures |
| ATE11145T1 (de) * | 1980-07-17 | 1985-01-15 | Imperial Chemical Industries Plc | Polyester und polyolefine enthaltende folien. |
| US4424911A (en) | 1982-12-10 | 1984-01-10 | Kenneth R. Bowers | Container tamper detection device |
| US4511052A (en) | 1983-03-03 | 1985-04-16 | Klein Howard J | Container seal with tamper indicator |
| US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
| EP0275581B1 (en) | 1986-12-19 | 1992-08-12 | Akzo N.V. | Preparation of polylactic acid and copolymers thereof |
| US5218071A (en) | 1988-12-26 | 1993-06-08 | Mitsui Petrochemical Industries, Ltd. | Ethylene random copolymers |
| US4986429A (en) | 1989-06-12 | 1991-01-22 | Singleton Jr Robert | Color indicating tamper-proof seal |
| US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
| US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
| US6326458B1 (en) | 1992-01-24 | 2001-12-04 | Cargill, Inc. | Continuous process for the manufacture of lactide and lactide polymers |
| US5470944A (en) | 1992-02-13 | 1995-11-28 | Arch Development Corporation | Production of high molecular weight polylactic acid |
| US5322728A (en) | 1992-11-24 | 1994-06-21 | Exxon Chemical Patents, Inc. | Fibers of polyolefin polymers |
| IT1256260B (it) | 1992-12-30 | 1995-11-29 | Montecatini Tecnologie Srl | Polipropilene atattico |
| US5472775A (en) | 1993-08-17 | 1995-12-05 | The Dow Chemical Company | Elastic materials and articles therefrom |
| US5571619A (en) | 1994-05-24 | 1996-11-05 | Exxon Chemical Patents, Inc. | Fibers and oriented films of polypropylene higher α-olefin copolymers |
| US5811493A (en) * | 1994-10-21 | 1998-09-22 | Minnesota Mining And Manufacturing Company | Paper-like film |
| US5539056A (en) | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
| EP0755956B1 (en) | 1995-07-25 | 2004-01-14 | Toyota Jidosha Kabushiki Kaisha | Method for producing polylactic acid |
| US5770682A (en) | 1995-07-25 | 1998-06-23 | Shimadzu Corporation | Method for producing polylactic acid |
| JP3588907B2 (ja) | 1996-03-22 | 2004-11-17 | トヨタ自動車株式会社 | ポリ乳酸の製造方法 |
| US6090325A (en) | 1997-09-24 | 2000-07-18 | Fina Technology, Inc. | Biaxially-oriented metallocene-based polypropylene films |
| US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
| US6607744B1 (en) * | 2000-06-23 | 2003-08-19 | Segan Industries | Ingestibles possessing intrinsic color change |
| US20050119359A1 (en) * | 2003-12-02 | 2005-06-02 | Shelby Marcus D. | Void-containing polyester shrink film |
| US20070004813A1 (en) * | 2004-09-16 | 2007-01-04 | Eastman Chemical Company | Compositions for the preparation of void-containing articles |
| EP1813969A1 (en) * | 2004-11-16 | 2007-08-01 | Mitsubishi Plastics Inc. | Aliphatic polyester resin reflective film and reflector plate |
| JP4750405B2 (ja) * | 2004-11-16 | 2011-08-17 | 三菱樹脂株式会社 | 脂肪族ポリエステル系樹脂反射フィルム及び反射板 |
| JP2009227956A (ja) * | 2008-02-25 | 2009-10-08 | Pilot Ink Co Ltd | 感温変色性色彩記憶性インクジェット用インク及びそれを収容したインクカートリッジ、インクジェット記録装置、インクカートリッジセット、インクジェット記録装置セット |
| JP5242484B2 (ja) * | 2009-04-08 | 2013-07-24 | パイロットインキ株式会社 | 変色性成形体の製造方法 |
| US8435924B2 (en) * | 2009-11-04 | 2013-05-07 | The Procter & Gamble Company | Method of producing color change in overlapping layers |
| US20130210621A1 (en) * | 2012-02-10 | 2013-08-15 | Kimberly-Clark Worldwide, Inc. | Breathable Film Formed from a Renewable Polyester |
| AU2014279700B2 (en) * | 2013-06-12 | 2017-09-14 | Kimberly-Clark Worldwide, Inc. | Polymeric material with a multimodal pore size distribution |
| US9289528B2 (en) | 2013-06-26 | 2016-03-22 | Eastman Kodak Company | Methods for using indicator compositions |
| SG11201601706RA (en) * | 2013-08-09 | 2016-04-28 | Kimberly Clark Co | Technique for selectively controlling the porosity of a polymeric material |
| RU2016107419A (ru) * | 2013-08-09 | 2017-09-06 | Кимберли-Кларк Ворлдвайд, Инк. | Анизотропный полимерный материал |
| US10889696B2 (en) * | 2013-08-09 | 2021-01-12 | Kimberly-Clark Worldwide, Inc. | Microparticles having a multimodal pore distribution |
| KR102334602B1 (ko) | 2013-08-09 | 2021-12-06 | 킴벌리-클라크 월드와이드, 인크. | 형상 보유 특성을 구비한 연성 중합체 물질 |
-
2016
- 2016-12-14 MX MX2018006743A patent/MX394788B/es unknown
- 2016-12-14 CN CN201680070298.0A patent/CN108699280B/zh active Active
- 2016-12-14 AU AU2016370562A patent/AU2016370562B2/en active Active
- 2016-12-14 EP EP16876535.2A patent/EP3390515B1/en active Active
- 2016-12-14 BR BR112018011237-2A patent/BR112018011237B1/pt active IP Right Grant
- 2016-12-14 WO PCT/US2016/066526 patent/WO2017106267A1/en active Application Filing
- 2016-12-14 KR KR1020187018654A patent/KR102622189B1/ko active Active
- 2016-12-14 US US15/765,506 patent/US11377525B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| EP3390515A1 (en) | 2018-10-24 |
| MX2018006743A (es) | 2018-08-01 |
| KR20180085792A (ko) | 2018-07-27 |
| US11377525B2 (en) | 2022-07-05 |
| CN108699280A (zh) | 2018-10-23 |
| WO2017106267A1 (en) | 2017-06-22 |
| US20190071547A1 (en) | 2019-03-07 |
| CN108699280B (zh) | 2021-09-28 |
| KR102622189B1 (ko) | 2024-01-09 |
| EP3390515B1 (en) | 2020-04-29 |
| MX394788B (es) | 2025-03-24 |
| BR112018011237A2 (pt) | 2018-12-04 |
| AU2016370562A1 (en) | 2018-08-02 |
| AU2016370562B2 (en) | 2021-05-13 |
| EP3390515A4 (en) | 2019-07-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10919229B2 (en) | Polymeric material for three-dimensional printing | |
| US11028246B2 (en) | Absorbent article containing a porous polyolefin film | |
| BR112014019496B1 (pt) | Película compreendendo uma composição termoplástica, e, artigoabsorvente | |
| BR112015030663B1 (pt) | Vestuário contendo um material polimérico poroso | |
| BR112016025073B1 (pt) | Artigo termoformado, e, método para termoformagem do mesmo | |
| BR112015030879B1 (pt) | Artigo absorvente que contém trama não-tecida formada a partir de fibras de poliolefina porosa | |
| BR112014019432B1 (pt) | filme respirável formado a partir de poliéster renovável | |
| BR112014019495B1 (pt) | fibras de poliéster renováveis com baixa densidade | |
| US11148347B2 (en) | Biaxially stretched porous film | |
| BR112016002218B1 (pt) | Material polimérico anisotrópico | |
| BR112015030318B1 (pt) | material polimérico, isolamento térmico, artigo e método para formar um material polimérico | |
| BR112015030878B1 (pt) | Membro de absorção de energia, e, equipamento de proteção | |
| BR112015029119B1 (pt) | Material polimérico com distribuição de tamanho de poros multimodal | |
| BR112014019493B1 (pt) | composição termoplástica, e, método para formar uma composição termoplástica | |
| BR112015030934B1 (pt) | Isolamento de construção | |
| BR112016002594B1 (pt) | Método para controlar seletivamente o grau de porosidade em um material polimérico, e, material polimérico | |
| BR112015029157B1 (pt) | método para iniciar a formação de poros em um material polimérico | |
| BR112016002589B1 (pt) | Material polimérico flexível moldado, membro tubular, e, método de moldagem de um material polimérico | |
| BR112018010299B1 (pt) | Método para formar fibras porosas | |
| BR112018011237B1 (pt) | Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico | |
| BR112018010467B1 (pt) | Método para formação de fibras porosas, e, manta não tecida | |
| US10954367B2 (en) | Reinforced thermoplastic polyolefin elastomer film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| B06U | Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette] | ||
| B06A | Patent application procedure suspended [chapter 6.1 patent gazette] | ||
| B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
| B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 14/12/2016, OBSERVADAS AS CONDICOES LEGAIS |