CA2572461C - Physiological compatible film - Google Patents
Physiological compatible film Download PDFInfo
- Publication number
- CA2572461C CA2572461C CA002572461A CA2572461A CA2572461C CA 2572461 C CA2572461 C CA 2572461C CA 002572461 A CA002572461 A CA 002572461A CA 2572461 A CA2572461 A CA 2572461A CA 2572461 C CA2572461 C CA 2572461C
- Authority
- CA
- Canada
- Prior art keywords
- film
- pharmaceutical agent
- mixtures
- group
- film according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004373 Pullulan Substances 0.000 claims abstract description 31
- 229920001218 Pullulan Polymers 0.000 claims abstract description 31
- 235000019423 pullulan Nutrition 0.000 claims abstract description 31
- 239000008177 pharmaceutical agent Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims description 70
- -1 H2-antagonists Substances 0.000 claims description 14
- YQSHYGCCYVPRDI-UHFFFAOYSA-N (4-propan-2-ylphenyl)methanamine Chemical compound CC(C)C1=CC=C(CN)C=C1 YQSHYGCCYVPRDI-UHFFFAOYSA-N 0.000 claims description 10
- 229960003782 dextromethorphan hydrobromide Drugs 0.000 claims description 10
- 229920001285 xanthan gum Polymers 0.000 claims description 10
- 229920000161 Locust bean gum Polymers 0.000 claims description 9
- 235000010420 locust bean gum Nutrition 0.000 claims description 9
- 239000000711 locust bean gum Substances 0.000 claims description 9
- 235000010493 xanthan gum Nutrition 0.000 claims description 9
- 239000000230 xanthan gum Substances 0.000 claims description 9
- 229940082509 xanthan gum Drugs 0.000 claims description 9
- 235000010418 carrageenan Nutrition 0.000 claims description 8
- 229920001525 carrageenan Polymers 0.000 claims description 8
- 239000000679 carrageenan Substances 0.000 claims description 8
- 229940113118 carrageenan Drugs 0.000 claims description 8
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 8
- 239000004599 antimicrobial Substances 0.000 claims description 7
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 claims description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 4
- DBAKFASWICGISY-BTJKTKAUSA-N Chlorpheniramine maleate Chemical compound OC(=O)\C=C/C(O)=O.C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 DBAKFASWICGISY-BTJKTKAUSA-N 0.000 claims description 4
- INVGWHRKADIJHF-UHFFFAOYSA-N Sanguinarin Chemical compound C1=C2OCOC2=CC2=C3[N+](C)=CC4=C(OCO5)C5=CC=C4C3=CC=C21 INVGWHRKADIJHF-UHFFFAOYSA-N 0.000 claims description 4
- 229940046978 chlorpheniramine maleate Drugs 0.000 claims description 4
- CIVCELMLGDGMKZ-UHFFFAOYSA-N 2,4-dichloro-6-methylpyridine-3-carboxylic acid Chemical compound CC1=CC(Cl)=C(C(O)=O)C(Cl)=N1 CIVCELMLGDGMKZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000000954 anitussive effect Effects 0.000 claims description 3
- 230000001142 anti-diarrhea Effects 0.000 claims description 3
- 230000001387 anti-histamine Effects 0.000 claims description 3
- 239000000739 antihistaminic agent Substances 0.000 claims description 3
- 229940124584 antitussives Drugs 0.000 claims description 3
- 239000000850 decongestant Substances 0.000 claims description 3
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 claims description 3
- 239000003172 expectorant agent Substances 0.000 claims description 3
- 230000003419 expectorant effect Effects 0.000 claims description 3
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 3
- 229960001596 famotidine Drugs 0.000 claims description 3
- 229960000905 indomethacin Drugs 0.000 claims description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 3
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 3
- 239000000612 proton pump inhibitor Substances 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- PMGQWSIVQFOFOQ-BDUVBVHRSA-N (e)-but-2-enedioic acid;(2r)-2-[2-[1-(4-chlorophenyl)-1-phenylethoxy]ethyl]-1-methylpyrrolidine Chemical compound OC(=O)\C=C\C(O)=O.CN1CCC[C@@H]1CCOC(C)(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 PMGQWSIVQFOFOQ-BDUVBVHRSA-N 0.000 claims description 2
- JXYWFNAQESKDNC-BTJKTKAUSA-N (z)-4-hydroxy-4-oxobut-2-enoate;2-[(4-methoxyphenyl)methyl-pyridin-2-ylamino]ethyl-dimethylazanium Chemical compound OC(=O)\C=C/C(O)=O.C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 JXYWFNAQESKDNC-BTJKTKAUSA-N 0.000 claims description 2
- BANIDACEBXZGNK-UHFFFAOYSA-N 2-(diethylamino)ethyl 1-phenylcyclopentane-1-carboxylate;ethane-1,2-disulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O.C=1C=CC=CC=1C1(C(=O)OCCN(CC)CC)CCCC1.C=1C=CC=CC=1C1(C(=O)OCCN(CC)CC)CCCC1 BANIDACEBXZGNK-UHFFFAOYSA-N 0.000 claims description 2
- WYUYEJNGHIOFOC-VVTVMFAVSA-N 2-[(z)-1-(4-methylphenyl)-3-pyrrolidin-1-ylprop-1-enyl]pyridine;hydrochloride Chemical compound Cl.C1=CC(C)=CC=C1C(\C=1N=CC=CC=1)=C\CN1CCCC1 WYUYEJNGHIOFOC-VVTVMFAVSA-N 0.000 claims description 2
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 claims description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 2
- LXLHBNBFXRIZAS-UHFFFAOYSA-N 5-methylsulfanyl-1,3-diphenylpyrazole Chemical compound CSC1=CC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 LXLHBNBFXRIZAS-UHFFFAOYSA-N 0.000 claims description 2
- RKETZVBQTUSNLM-UHFFFAOYSA-N 6-(3-bromophenyl)-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole Chemical compound BrC1=CC=CC(C2N=C3SCCN3C2)=C1 RKETZVBQTUSNLM-UHFFFAOYSA-N 0.000 claims description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims description 2
- 244000284152 Carapichea ipecacuanha Species 0.000 claims description 2
- XYGSFNHCFFAJPO-UHFFFAOYSA-N Chlophedianol hydrochloride Chemical compound Cl.C=1C=CC=C(Cl)C=1C(O)(CCN(C)C)C1=CC=CC=C1 XYGSFNHCFFAJPO-UHFFFAOYSA-N 0.000 claims description 2
- KBAUFVUYFNWQFM-UHFFFAOYSA-N Doxylamine succinate Chemical compound OC(=O)CCC(O)=O.C=1C=CC=NC=1C(C)(OCCN(C)C)C1=CC=CC=C1 KBAUFVUYFNWQFM-UHFFFAOYSA-N 0.000 claims description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 2
- FCEXWTOTHXCQCQ-UHFFFAOYSA-N Ethoxydihydrosanguinarine Natural products C12=CC=C3OCOC3=C2C(OCC)N(C)C(C2=C3)=C1C=CC2=CC1=C3OCO1 FCEXWTOTHXCQCQ-UHFFFAOYSA-N 0.000 claims description 2
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 claims description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 claims description 2
- 239000009471 Ipecac Substances 0.000 claims description 2
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 claims description 2
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 claims description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 claims description 2
- LFVVNPBBFUSSHL-UHFFFAOYSA-N alexidine Chemical compound CCCCC(CC)CNC(=N)NC(=N)NCCCCCCNC(=N)NC(=N)NCC(CC)CCCC LFVVNPBBFUSSHL-UHFFFAOYSA-N 0.000 claims description 2
- 229950010221 alexidine Drugs 0.000 claims description 2
- 229940035676 analgesics Drugs 0.000 claims description 2
- 239000005557 antagonist Substances 0.000 claims description 2
- 239000000730 antalgic agent Substances 0.000 claims description 2
- 239000003793 antidiarrheal agent Substances 0.000 claims description 2
- 229940125714 antidiarrheal agent Drugs 0.000 claims description 2
- 229940125715 antihistaminic agent Drugs 0.000 claims description 2
- 239000003434 antitussive agent Substances 0.000 claims description 2
- 229960003789 benzonatate Drugs 0.000 claims description 2
- MAFMQEKGGFWBAB-UHFFFAOYSA-N benzonatate Chemical compound CCCCNC1=CC=C(C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOC)C=C1 MAFMQEKGGFWBAB-UHFFFAOYSA-N 0.000 claims description 2
- 229960003108 brompheniramine maleate Drugs 0.000 claims description 2
- SRGKFVAASLQVBO-BTJKTKAUSA-N brompheniramine maleate Chemical compound OC(=O)\C=C/C(O)=O.C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Br)C=C1 SRGKFVAASLQVBO-BTJKTKAUSA-N 0.000 claims description 2
- 229960001071 caramiphen edisylate Drugs 0.000 claims description 2
- 229960000456 carbinoxamine maleate Drugs 0.000 claims description 2
- GVNWHCVWDRNXAZ-BTJKTKAUSA-N carbinoxamine maleate Chemical compound OC(=O)\C=C/C(O)=O.C=1C=CC=NC=1C(OCCN(C)C)C1=CC=C(Cl)C=C1 GVNWHCVWDRNXAZ-BTJKTKAUSA-N 0.000 claims description 2
- 229940020114 chlophedianol hydrochloride Drugs 0.000 claims description 2
- 229960002689 clemastine fumarate Drugs 0.000 claims description 2
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 claims description 2
- 229940124581 decongestants Drugs 0.000 claims description 2
- 229960005372 dexchlorpheniramine maleate Drugs 0.000 claims description 2
- 229960000616 diflunisal Drugs 0.000 claims description 2
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 claims description 2
- 229960001583 diphenhydramine citrate Drugs 0.000 claims description 2
- LPRLDRXGWKXRMQ-UHFFFAOYSA-N diphenylpyraline hydrochloride Chemical compound [Cl-].C1C[NH+](C)CCC1OC(C=1C=CC=CC=1)C1=CC=CC=C1 LPRLDRXGWKXRMQ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002392 diphenylpyraline hydrochloride Drugs 0.000 claims description 2
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 claims description 2
- 229960001859 domiphen bromide Drugs 0.000 claims description 2
- 229960005008 doxylamine succinate Drugs 0.000 claims description 2
- 229940066493 expectorants Drugs 0.000 claims description 2
- 229960005341 fenoprofen calcium Drugs 0.000 claims description 2
- VHUXSAWXWSTUOD-UHFFFAOYSA-L fenoprofen calcium (anhydrous) Chemical compound [Ca+2].[O-]C(=O)C(C)C1=CC=CC(OC=2C=CC=CC=2)=C1.[O-]C(=O)C(C)C1=CC=CC(OC=2C=CC=CC=2)=C1 VHUXSAWXWSTUOD-UHFFFAOYSA-L 0.000 claims description 2
- 229960002146 guaifenesin Drugs 0.000 claims description 2
- MSYBLBLAMDYKKZ-UHFFFAOYSA-N hydron;pyridine-3-carbonyl chloride;chloride Chemical compound Cl.ClC(=O)C1=CC=CN=C1 MSYBLBLAMDYKKZ-UHFFFAOYSA-N 0.000 claims description 2
- 229960001680 ibuprofen Drugs 0.000 claims description 2
- 229940029408 ipecac Drugs 0.000 claims description 2
- 229960003174 lansoprazole Drugs 0.000 claims description 2
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 2
- 229960001571 loperamide Drugs 0.000 claims description 2
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002009 naproxen Drugs 0.000 claims description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 claims description 2
- 229960000381 omeprazole Drugs 0.000 claims description 2
- 229960005489 paracetamol Drugs 0.000 claims description 2
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 claims description 2
- 229960000395 phenylpropanolamine Drugs 0.000 claims description 2
- 229960004839 potassium iodide Drugs 0.000 claims description 2
- 229960002244 promethazine hydrochloride Drugs 0.000 claims description 2
- XXPDBLUZJRXNNZ-UHFFFAOYSA-N promethazine hydrochloride Chemical compound Cl.C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 XXPDBLUZJRXNNZ-UHFFFAOYSA-N 0.000 claims description 2
- 229960003447 pseudoephedrine hydrochloride Drugs 0.000 claims description 2
- BALXUFOVQVENIU-KXNXZCPBSA-N pseudoephedrine hydrochloride Chemical compound [H+].[Cl-].CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 BALXUFOVQVENIU-KXNXZCPBSA-N 0.000 claims description 2
- 229940018203 pyrilamine maleate Drugs 0.000 claims description 2
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 2
- 229960000620 ranitidine Drugs 0.000 claims description 2
- 229940084560 sanguinarine Drugs 0.000 claims description 2
- YZRQUTZNTDAYPJ-UHFFFAOYSA-N sanguinarine pseudobase Natural products C1=C2OCOC2=CC2=C3N(C)C(O)C4=C(OCO5)C5=CC=C4C3=CC=C21 YZRQUTZNTDAYPJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002044 tolmetin sodium Drugs 0.000 claims description 2
- 229960003500 triclosan Drugs 0.000 claims description 2
- 229960002147 tripelennamine citrate Drugs 0.000 claims description 2
- 229960001593 triprolidine hydrochloride Drugs 0.000 claims description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims 2
- OJIYIVCMRYCWSE-UHFFFAOYSA-M Domiphen bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CCOC1=CC=CC=C1 OJIYIVCMRYCWSE-UHFFFAOYSA-M 0.000 claims 1
- 229940122957 Histamine H2 receptor antagonist Drugs 0.000 claims 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical group C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 claims 1
- 239000003576 central nervous system agent Substances 0.000 claims 1
- 229940125693 central nervous system agent Drugs 0.000 claims 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 claims 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 claims 1
- RBNWAMSGVWEHFP-UHFFFAOYSA-N cis-p-Menthan-1,8-diol Natural products CC(C)(O)C1CCC(C)(O)CC1 RBNWAMSGVWEHFP-UHFFFAOYSA-N 0.000 claims 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 claims 1
- 229950010257 terpin Drugs 0.000 claims 1
- RBNWAMSGVWEHFP-WAAGHKOSSA-N terpin Chemical compound CC(C)(O)[C@H]1CC[C@@](C)(O)CC1 RBNWAMSGVWEHFP-WAAGHKOSSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 27
- 238000000034 method Methods 0.000 abstract description 20
- 229920000642 polymer Polymers 0.000 abstract description 10
- 239000010408 film Substances 0.000 description 175
- 239000000341 volatile oil Substances 0.000 description 34
- 239000004615 ingredient Substances 0.000 description 33
- 239000003921 oil Substances 0.000 description 27
- 235000019198 oils Nutrition 0.000 description 27
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 25
- 235000003599 food sweetener Nutrition 0.000 description 23
- 239000003765 sweetening agent Substances 0.000 description 23
- 239000003795 chemical substances by application Substances 0.000 description 22
- 210000000214 mouth Anatomy 0.000 description 19
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 18
- 229940060184 oil ingredients Drugs 0.000 description 18
- 239000000796 flavoring agent Substances 0.000 description 17
- 230000000845 anti-microbial effect Effects 0.000 description 16
- 235000019634 flavors Nutrition 0.000 description 14
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 13
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 13
- 229940041616 menthol Drugs 0.000 description 13
- 239000002324 mouth wash Substances 0.000 description 13
- 229940051866 mouthwash Drugs 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- 239000003814 drug Substances 0.000 description 11
- 239000000499 gel Substances 0.000 description 11
- 239000003086 colorant Substances 0.000 description 10
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 9
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000005844 Thymol Substances 0.000 description 9
- 229960005233 cineole Drugs 0.000 description 9
- 229960001047 methyl salicylate Drugs 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 229960000790 thymol Drugs 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000013543 active substance Substances 0.000 description 8
- 239000002826 coolant Substances 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 229920001817 Agar Polymers 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 239000008272 agar Substances 0.000 description 7
- 229940076522 listerine Drugs 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 206010006326 Breath odour Diseases 0.000 description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 235000009499 Vanilla fragrans Nutrition 0.000 description 6
- 244000263375 Vanilla tahitensis Species 0.000 description 6
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 6
- 239000002269 analeptic agent Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 210000003296 saliva Anatomy 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical compound [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- 235000020971 citrus fruits Nutrition 0.000 description 5
- 229940108925 copper gluconate Drugs 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 235000013399 edible fruits Nutrition 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 229920000591 gum Polymers 0.000 description 5
- 239000003906 humectant Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical class C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- 235000010356 sorbitol Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 235000005979 Citrus limon Nutrition 0.000 description 4
- 244000131522 Citrus pyriformis Species 0.000 description 4
- 239000001888 Peptone Substances 0.000 description 4
- 108010080698 Peptones Proteins 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 235000013355 food flavoring agent Nutrition 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 208000007565 gingivitis Diseases 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 239000004006 olive oil Substances 0.000 description 4
- 235000008390 olive oil Nutrition 0.000 description 4
- 235000019319 peptone Nutrition 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 229940068968 polysorbate 80 Drugs 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 230000001376 precipitating effect Effects 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 4
- 235000010234 sodium benzoate Nutrition 0.000 description 4
- 239000004299 sodium benzoate Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 3
- 244000144725 Amygdalus communis Species 0.000 description 3
- 108010011485 Aspartame Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000167854 Bourreria succulenta Species 0.000 description 3
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 208000002064 Dental Plaque Diseases 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 235000006679 Mentha X verticillata Nutrition 0.000 description 3
- 235000002899 Mentha suaveolens Nutrition 0.000 description 3
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 241000194019 Streptococcus mutans Species 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- YGCFIWIQZPHFLU-UHFFFAOYSA-N acesulfame Chemical compound CC1=CC(=O)NS(=O)(=O)O1 YGCFIWIQZPHFLU-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 230000002421 anti-septic effect Effects 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000000605 aspartame Substances 0.000 description 3
- 235000010357 aspartame Nutrition 0.000 description 3
- 229960003438 aspartame Drugs 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 235000019693 cherries Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 229960002737 fructose Drugs 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 229960002715 nicotine Drugs 0.000 description 3
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 3
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 235000019204 saccharin Nutrition 0.000 description 3
- 229940081974 saccharin Drugs 0.000 description 3
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- XINQFOMFQFGGCQ-UHFFFAOYSA-L (2-dodecoxy-2-oxoethyl)-[6-[(2-dodecoxy-2-oxoethyl)-dimethylazaniumyl]hexyl]-dimethylazanium;dichloride Chemical compound [Cl-].[Cl-].CCCCCCCCCCCCOC(=O)C[N+](C)(C)CCCCCC[N+](C)(C)CC(=O)OCCCCCCCCCCCC XINQFOMFQFGGCQ-UHFFFAOYSA-L 0.000 description 2
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 229920001685 Amylomaize Polymers 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 239000004378 Glycyrrhizin Substances 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 208000032139 Halitosis Diseases 0.000 description 2
- 235000011430 Malus pumila Nutrition 0.000 description 2
- 235000015103 Malus silvestris Nutrition 0.000 description 2
- 235000014435 Mentha Nutrition 0.000 description 2
- 241001072983 Mentha Species 0.000 description 2
- BLILOGGUTRWFNI-UHFFFAOYSA-N Monomenthyl succinate Chemical compound CC(C)C1CCC(C)CC1OC(=O)CCC(O)=O BLILOGGUTRWFNI-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229920002534 Polyethylene Glycol 1450 Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009754 Vitis X bourquina Nutrition 0.000 description 2
- 235000012333 Vitis X labruscana Nutrition 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229960003792 acrivastine Drugs 0.000 description 2
- PWACSDKDOHSSQD-IUTFFREVSA-N acrivastine Chemical compound C1=CC(C)=CC=C1C(\C=1N=C(\C=C\C(O)=O)C=CC=1)=C/CN1CCCC1 PWACSDKDOHSSQD-IUTFFREVSA-N 0.000 description 2
- 235000020224 almond Nutrition 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000008122 artificial sweetener Substances 0.000 description 2
- 235000021311 artificial sweeteners Nutrition 0.000 description 2
- SEBMTIQKRHYNIT-UHFFFAOYSA-N azatadine Chemical compound C1CN(C)CCC1=C1C2=NC=CC=C2CCC2=CC=CC=C21 SEBMTIQKRHYNIT-UHFFFAOYSA-N 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 235000021028 berry Nutrition 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 235000013351 cheese Nutrition 0.000 description 2
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 2
- 229940117916 cinnamic aldehyde Drugs 0.000 description 2
- 235000017803 cinnamon Nutrition 0.000 description 2
- 229940043350 citral Drugs 0.000 description 2
- WTEVQBCEXWBHNA-YFHOEESVSA-N citral B Natural products CC(C)=CCC\C(C)=C/C=O WTEVQBCEXWBHNA-YFHOEESVSA-N 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000007983 food acid Nutrition 0.000 description 2
- 239000008369 fruit flavor Substances 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 2
- 229960004949 glycyrrhizic acid Drugs 0.000 description 2
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 2
- 235000019410 glycyrrhizin Nutrition 0.000 description 2
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229940025294 hemin Drugs 0.000 description 2
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 2
- 230000000887 hydrating effect Effects 0.000 description 2
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229940046892 lead acetate Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960003088 loratadine Drugs 0.000 description 2
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000014569 mints Nutrition 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- CPJSUEIXXCENMM-UHFFFAOYSA-N phenacetin Chemical compound CCOC1=CC=C(NC(C)=O)C=C1 CPJSUEIXXCENMM-UHFFFAOYSA-N 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- WJUFSDZVCOTFON-UHFFFAOYSA-N veratraldehyde Chemical compound COC1=CC=C(C=O)C=C1OC WJUFSDZVCOTFON-UHFFFAOYSA-N 0.000 description 2
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 1
- CAVQBDOACNULDN-NRCOEFLKSA-N (1s,2s)-2-(methylamino)-1-phenylpropan-1-ol;sulfuric acid Chemical compound OS(O)(=O)=O.CN[C@@H](C)[C@@H](O)C1=CC=CC=C1.CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 CAVQBDOACNULDN-NRCOEFLKSA-N 0.000 description 1
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 1
- SDOFMBGMRVAJNF-KVTDHHQDSA-N (2r,3r,4r,5r)-6-aminohexane-1,2,3,4,5-pentol Chemical compound NC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO SDOFMBGMRVAJNF-KVTDHHQDSA-N 0.000 description 1
- LUEWUZLMQUOBSB-FSKGGBMCSA-N (2s,3s,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-[(2r,3s,4r,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5s,6r)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](OC3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-FSKGGBMCSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- DNKVJLHNJMSZEO-WLYNEOFISA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;hydrate Chemical compound O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C DNKVJLHNJMSZEO-WLYNEOFISA-N 0.000 description 1
- WRRSFOZOETZUPG-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;hydrate Chemical compound O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC WRRSFOZOETZUPG-FFHNEAJVSA-N 0.000 description 1
- YGFGZTXGYTUXBA-UHFFFAOYSA-N (±)-2,6-dimethyl-5-heptenal Chemical compound O=CC(C)CCC=C(C)C YGFGZTXGYTUXBA-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 1
- MSIJLVMSKDXAQN-UHFFFAOYSA-N 1-[(4-chlorophenyl)-phenylmethyl]-4-methylpiperazine;hydron;chloride Chemical compound Cl.C1CN(C)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 MSIJLVMSKDXAQN-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- MISZALMBODQYFT-URVXVIKDSA-N 125-69-9 Chemical compound Br.C([C@@H]12)CCC[C@]11CCN(C)[C@H]2CC2=CC=C(OC)C=C21 MISZALMBODQYFT-URVXVIKDSA-N 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- HMKKIXGYKWDQSV-SDNWHVSQSA-N 2-Pentyl-3-phenyl-2-propenal Chemical compound CCCCC\C(C=O)=C/C1=CC=CC=C1 HMKKIXGYKWDQSV-SDNWHVSQSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- UDIPTWFVPPPURJ-UHFFFAOYSA-M Cyclamate Chemical class [Na+].[O-]S(=O)(=O)NC1CCCCC1 UDIPTWFVPPPURJ-UHFFFAOYSA-M 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- TUSIZTVSUSBSQI-UHFFFAOYSA-N Dihydrocarveol acetate Chemical compound CC1CCC(C(C)=C)CC1OC(C)=O TUSIZTVSUSBSQI-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 235000019227 E-number Nutrition 0.000 description 1
- 239000004243 E-number Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- JUTKIGGQRLHTJN-UHFFFAOYSA-N Eugenyl formate Chemical compound COC1=CC(CC=C)=CC=C1OC=O JUTKIGGQRLHTJN-UHFFFAOYSA-N 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 229920002581 Glucomannan Polymers 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 229920002752 Konjac Polymers 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- AJXPJJZHWIXJCJ-UHFFFAOYSA-N Methsuximide Chemical compound O=C1N(C)C(=O)CC1(C)C1=CC=CC=C1 AJXPJJZHWIXJCJ-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 108050004114 Monellin Proteins 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Nalorphine Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 1
- QMGVPVSNSZLJIA-UHFFFAOYSA-N Nux Vomica Natural products C1C2C3C4N(C=5C6=CC=CC=5)C(=O)CC3OCC=C2CN2C1C46CC2 QMGVPVSNSZLJIA-UHFFFAOYSA-N 0.000 description 1
- SAIFVNITEPSVEV-JBLZRFIASA-N OC(=O)C[C@H](N)C(=O)C(C(O)CO)OC1=CC=CC=C1 Chemical compound OC(=O)C[C@H](N)C(=O)C(C(O)CO)OC1=CC=CC=C1 SAIFVNITEPSVEV-JBLZRFIASA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- UQCNKQCJZOAFTQ-ISWURRPUSA-N Oxymorphone Chemical compound O([C@H]1C(CC[C@]23O)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O UQCNKQCJZOAFTQ-ISWURRPUSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- XPFRXWCVYUEORT-UHFFFAOYSA-N Phenacemide Chemical compound NC(=O)NC(=O)CC1=CC=CC=C1 XPFRXWCVYUEORT-UHFFFAOYSA-N 0.000 description 1
- QPFYXYFORQJZEC-FOCLMDBBSA-N Phenazopyridine Chemical compound NC1=NC(N)=CC=C1\N=N\C1=CC=CC=C1 QPFYXYFORQJZEC-FOCLMDBBSA-N 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- AJOQSQHYDOFIOX-UHFFFAOYSA-N Pheneturide Chemical compound NC(=O)NC(=O)C(CC)C1=CC=CC=C1 AJOQSQHYDOFIOX-UHFFFAOYSA-N 0.000 description 1
- WLWFNJKHKGIJNW-UHFFFAOYSA-N Phensuximide Chemical compound O=C1N(C)C(=O)CC1C1=CC=CC=C1 WLWFNJKHKGIJNW-UHFFFAOYSA-N 0.000 description 1
- LHNKBXRFNPMIBR-UHFFFAOYSA-N Picrotoxin Natural products CC(C)(O)C1(O)C2OC(=O)C1C3(O)C4OC4C5C(=O)OC2C35C LHNKBXRFNPMIBR-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000003893 Prunus dulcis var amara Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 240000001987 Pyrus communis Species 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- HMHVCUVYZFYAJI-UHFFFAOYSA-N Sultiame Chemical compound C1=CC(S(=O)(=O)N)=CC=C1N1S(=O)(=O)CCCC1 HMHVCUVYZFYAJI-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010044029 Tooth deposit Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- AXMVYSVVTMKQSL-UHFFFAOYSA-N UNPD142122 Natural products OC1=CC=C(C=CC=O)C=C1O AXMVYSVVTMKQSL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960005164 acesulfame Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940035678 anti-parkinson drug Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 1
- 229960004046 apomorphine Drugs 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 239000007961 artificial flavoring substance Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000383 azatadine Drugs 0.000 description 1
- 229960002617 azatadine maleate Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229940125717 barbiturate Drugs 0.000 description 1
- 239000010620 bay oil Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- YNKMHABLMGIIFX-UHFFFAOYSA-N benzaldehyde;methane Chemical compound C.O=CC1=CC=CC=C1 YNKMHABLMGIIFX-UHFFFAOYSA-N 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- 150000001557 benzodiazepines Chemical class 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229960000725 brompheniramine Drugs 0.000 description 1
- ZDIGNSYAACHWNL-UHFFFAOYSA-N brompheniramine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Br)C=C1 ZDIGNSYAACHWNL-UHFFFAOYSA-N 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- NNOYLBKZPCUCQT-UHFFFAOYSA-L calcium;1,1-dioxo-1,2-benzothiazol-3-olate;heptahydrate Chemical class O.O.O.O.O.O.O.[Ca+2].C1=CC=C2C([O-])=NS(=O)(=O)C2=C1.C1=CC=C2C([O-])=NS(=O)(=O)C2=C1 NNOYLBKZPCUCQT-UHFFFAOYSA-L 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 229960000623 carbamazepine Drugs 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229940119201 cedar leaf oil Drugs 0.000 description 1
- 239000003874 central nervous system depressant Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- WJSDHUCWMSHDCR-VMPITWQZSA-N cinnamyl acetate Natural products CC(=O)OC\C=C\C1=CC=CC=C1 WJSDHUCWMSHDCR-VMPITWQZSA-N 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Natural products C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000007382 columbia agar Substances 0.000 description 1
- 239000006781 columbia blood agar Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000000551 dentifrice Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960002691 dexbrompheniramine Drugs 0.000 description 1
- ZDIGNSYAACHWNL-HNNXBMFYSA-N dexbrompheniramine Chemical compound C1([C@H](CCN(C)C)C=2N=CC=CC=2)=CC=C(Br)C=C1 ZDIGNSYAACHWNL-HNNXBMFYSA-N 0.000 description 1
- 229960001882 dexchlorpheniramine Drugs 0.000 description 1
- SOYKEARSMXGVTM-HNNXBMFYSA-N dexchlorpheniramine Chemical compound C1([C@H](CCN(C)C)C=2N=CC=CC=2)=CC=C(Cl)C=C1 SOYKEARSMXGVTM-HNNXBMFYSA-N 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000010889 donnan-equilibrium Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HAPOVYFOVVWLRS-UHFFFAOYSA-N ethosuximide Chemical compound CCC1(C)CC(=O)NC1=O HAPOVYFOVVWLRS-UHFFFAOYSA-N 0.000 description 1
- 229960002767 ethosuximide Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000005454 flavour additive Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000002864 food coloring agent Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229940046240 glucomannan Drugs 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 1
- 229940005632 indigotindisulfonic acid Drugs 0.000 description 1
- 235000012738 indigotine Nutrition 0.000 description 1
- 239000004179 indigotine Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960004903 invert sugar Drugs 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 239000000252 konjac Substances 0.000 description 1
- 235000019823 konjac gum Nutrition 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- AIHDCSAXVMAMJH-GFBKWZILSA-N levan Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(CO[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 AIHDCSAXVMAMJH-GFBKWZILSA-N 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 229960003406 levorphanol Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229960001078 lithium Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical group OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 239000001683 mentha spicata herb oil Substances 0.000 description 1
- 229960003729 mesuximide Drugs 0.000 description 1
- BHQQXAOBIZQEGI-UHFFFAOYSA-N methyl 2-chlorobutanoate Chemical compound CCC(Cl)C(=O)OC BHQQXAOBIZQEGI-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- NPZXCTIHHUUEEJ-CMKMFDCUSA-N metopon Chemical compound O([C@@]1(C)C(=O)CC[C@@H]23)C4=C5[C@@]13CCN(C)[C@@H]2CC5=CC=C4O NPZXCTIHHUUEEJ-CMKMFDCUSA-N 0.000 description 1
- 229950006080 metopon Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 235000010935 mono and diglycerides of fatty acids Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229960000938 nalorphine Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 1
- 229960003086 naltrexone Drugs 0.000 description 1
- 235000021096 natural sweeteners Nutrition 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- ZHALDANPYXAMJF-UHFFFAOYSA-N octadecanoate;tris(2-hydroxyethyl)azanium Chemical compound OCC[NH+](CCO)CCO.CCCCCCCCCCCCCCCCCC([O-])=O ZHALDANPYXAMJF-UHFFFAOYSA-N 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000008601 oleoresin Substances 0.000 description 1
- 108010087204 oncoimmunin-M Proteins 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229960005118 oxymorphone Drugs 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 229960003396 phenacemide Drugs 0.000 description 1
- 229960003893 phenacetin Drugs 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 229960003877 pheneturide Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 229960004227 phensuximide Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- VJKUPQSHOVKBCO-AHMKVGDJSA-N picrotoxin Chemical compound O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(=C)C)[C@@H]1C(=O)O2.O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(C)(O)C)[C@@H]1C(=O)O2 VJKUPQSHOVKBCO-AHMKVGDJSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229940081310 piperonal Drugs 0.000 description 1
- 230000007406 plaque accumulation Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- DQMZLTXERSFNPB-UHFFFAOYSA-N primidone Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NCNC1=O DQMZLTXERSFNPB-UHFFFAOYSA-N 0.000 description 1
- 229960002393 primidone Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229940021228 pseudoephedrine hydrochloride 30 mg Drugs 0.000 description 1
- 229960004159 pseudoephedrine sulfate Drugs 0.000 description 1
- 230000001003 psychopharmacologic effect Effects 0.000 description 1
- 229940070891 pyridium Drugs 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 229940071440 soy protein isolate Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 235000019721 spearmint oil Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000019202 steviosides Nutrition 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229960002573 sultiame Drugs 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000001789 thuja occidentalis l. leaf oil Substances 0.000 description 1
- 239000010678 thyme oil Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229940029614 triethanolamine stearate Drugs 0.000 description 1
- IRYJRGCIQBGHIV-UHFFFAOYSA-N trimethadione Chemical compound CN1C(=O)OC(C)(C)C1=O IRYJRGCIQBGHIV-UHFFFAOYSA-N 0.000 description 1
- 229960004453 trimethadione Drugs 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- WGIWBXUNRXCYRA-UHFFFAOYSA-H trizinc;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WGIWBXUNRXCYRA-UHFFFAOYSA-H 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011746 zinc citrate Substances 0.000 description 1
- 235000006076 zinc citrate Nutrition 0.000 description 1
- 229940068475 zinc citrate Drugs 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- 239000011670 zinc gluconate Substances 0.000 description 1
- 235000011478 zinc gluconate Nutrition 0.000 description 1
- 229960000306 zinc gluconate Drugs 0.000 description 1
Landscapes
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Edible films, are disclosed. The films include a water soluble film-forming polymer such as pullulan. Edible films are disclosed that include pullulan and a pharmaceutical agent. The edible films are suitable for oral delivery of a number of pharmaceutical agents. Methods for producing the films are also disclosed.
Description
PHYSIOLOGICAL COMPATIBLE FILM
This application is a divisional of Canadian Application No. 2,520,986 which is a division of Canadian Application No. 2,339,353 filed September 23, 1999.
SPECIFICATION
FIELD OF INVENTION
The invention relates to a physiologically compatible film adapted to dissolve in a human mouth. The film is used to deliver pharmaceutical agents.
BACKGROUND OF THE INVENTION
In a more perfect world, people would thoroughly cleanse their mouths after each IO meal as part of their routine oral hygienic practices. Unfortunately, several factors conspire to prevent widespread compliance with this basic requirement of a good oral cleaning regimen.
Oral cleansing can be difficult or inconvenient at times, depending on the nature of the cleansing and the situation in which the cleansing must occur.
Brushing, flossing, cleaning your tongue and gargling using a variety of devices and compositions well-suited for the privacy of one's home are common oral care practices.
However, the devices and compositions used in oral cleansing practices are less convenient to use away from home, where bathroom facilities might be scarce, unavailable or unsanitary.
As brushing, flossing, cleaning your tongue and gargling in public are not considered to be socially acceptable behaviors in many, if not all cultures, a variety of less obtrusive oral cleansing products have been developed. These include breath-freshening gums and lozenges. Although gums and lozenges have been fo~nulated to achieve a variety of beneficial effects, they are not always socially acceptable. For example, gum is expressly banned from certain institutions, such as schools as well as in certain countries, such as Singapore. Gums and mints are used over extended periods of time, and they require an amount of sucking or chewing action on the part of the consumer, which can be distracting, tedious and undesirable.
Another portable oral cleansing product is a mouthspray. Like a mouthwash, a mouthspray can provide the consumer with a quick burst of strong breath-freshening action, which might be overwhelming in an extended-consumption product like gum or lozenges. On the other hand, mouthsprays are obtrusive. Spraying a mouthspray typically generates a noise, which undesirably draws the attention of the public to the consumer. Moreover, mouthsprays are typically packaged in relatively expensive and complex metal canisters, which can clog in use and are not environmentally friendly.
Furthermore, misdirecting the spray not only wastes the product, but can result in irritated eyes, a sticky face andlor stained clothing.
It has been proposed to use an edible film as a vehicle for unobtrusively delivering breath-freshening agents. See JP S-236885. This Japanese patent application does not, however, teach the inclusion of antimicrobial agents in the film, using the film to decrease the amount of undesirable bacteria within the oral cavity, or stimulating saliva. Furthermore, this patent application does not disclose employing its film for purposes other than breath freshening or within cavities other than the mouth.
U.S. Patent No. S.S 18,902 to Ozaki et al. (Hayashibara) discloses high pullulan content products, such as edible films, dentifrices and pharmaceuticals (column 3, S lines 44-S6 and Example B-8). The products can include a variety of ingredients in addition to pullulan, such as other polysaccharides, polyhydric alcohols, antiseptics and flavor-imparting agents (column 4, line S8 to column S, line 1 I). None of the essential oils, such as thymol, eucalyptol, methyl salicylate or menthol, are mentioned as suitable ingredients.
U.S. Patent No. 5,411,945 to Ozaki et al. (Hayashibara) discloses a puliulan binder and products produced therewith, including edible films (Example B-2).
The products can include a variety of ingredients in addition to pullulan, such as other polysaccharides, antibacterial agents, flavor-imparting agents and pharmaceutically active substances (column 4, lines S-15). None of the essential oils are mentioned as suitable ingredients.
U.S. Patent No. 4,851,394 to Kubodera discloses glucomannan/polyhydric alcohol edible films, which can comprise pullulan (column 3, line S9 to column 4, line 21 ). The films are contrasted with existing puilulan-based films, which are said to lack resistance to water (column l, lines 40-44). None of the essential oils are mentioned as suitable ingredients.
U.S. Patent No. 3,784.390 Hijiya et al. discloses pullulan films and their use in coating and packing materials for foods. pharmaceuticals and other oxygen sensitive materials. All of the examples in this patent teach mixing pullulan in hot water.
U.S. Patent No. 4,623,394 Nakamura et al. discloses a gradually disintegrable molded article that can be a film made with pullulan. The articles contain a particular heteromannan, which can be locust bean gum.
U.S. Patent No. 4,562,020 Hijiya et al. discloses a process for producing a self supporting film of a glucan, which can be pullulan.
Japanese Patent Document JPS-I 198 discloses films made of polyvinyl alcohol and at least one of carrageenan. water-soluble cellulose alpha-starch and water-soluble polysaccharides.
WO 99/17753 discloses rapidly dissolving films for delivery of drugs to be adsorbed in the digestive tract.
WO 98/26780 discloses a flat, foil, paper or wafer type presentation for the application and release of active substances in the buccai cavity. The specific active ingredient disclosed in WO 98/26780 is buprenorphine.
WO 98/20862 discloses a film for use in the oral cavity that can contain a cosmetic or pharmaceutical active substance.
WO 98/26763 discloses a flat, foil, paper or wafer like presentation for release of active substances into the buccal cavity. T'he particular active disclosed is apomorphine.
Despite the existence of rapidly dissolving orally consumable films in the prior art, there is still room for improvement in such films, and in processes for making them.
SUMMARY OF THE INVENTION
The invention is directed to a rapidly dissolvable film which acts as a vehicle for administering a pharmaceutically active agent orally, through a mucous membrane or an open wound of a patient.
In particular, the invention comprises a consumable film adapted to dissolve in the mouth of a consumer, wherein said film comprises a single layer including pullulan and at least one pharmaceutical agent.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a photograph of an agar plate spread with Streptococcus mutans, ATCC 25175, and exposed to a film according to the present invention that contains 0.391 mg of essential oils.
Fig. 2 is a photograph of an agar plate spread with Streptococcus mutans, ATCC 25175, and exposed to drops of an essential oil mixture containing 0.391 mg of essential oils per drop.
This application is a divisional of Canadian Application No. 2,520,986 which is a division of Canadian Application No. 2,339,353 filed September 23, 1999.
SPECIFICATION
FIELD OF INVENTION
The invention relates to a physiologically compatible film adapted to dissolve in a human mouth. The film is used to deliver pharmaceutical agents.
BACKGROUND OF THE INVENTION
In a more perfect world, people would thoroughly cleanse their mouths after each IO meal as part of their routine oral hygienic practices. Unfortunately, several factors conspire to prevent widespread compliance with this basic requirement of a good oral cleaning regimen.
Oral cleansing can be difficult or inconvenient at times, depending on the nature of the cleansing and the situation in which the cleansing must occur.
Brushing, flossing, cleaning your tongue and gargling using a variety of devices and compositions well-suited for the privacy of one's home are common oral care practices.
However, the devices and compositions used in oral cleansing practices are less convenient to use away from home, where bathroom facilities might be scarce, unavailable or unsanitary.
As brushing, flossing, cleaning your tongue and gargling in public are not considered to be socially acceptable behaviors in many, if not all cultures, a variety of less obtrusive oral cleansing products have been developed. These include breath-freshening gums and lozenges. Although gums and lozenges have been fo~nulated to achieve a variety of beneficial effects, they are not always socially acceptable. For example, gum is expressly banned from certain institutions, such as schools as well as in certain countries, such as Singapore. Gums and mints are used over extended periods of time, and they require an amount of sucking or chewing action on the part of the consumer, which can be distracting, tedious and undesirable.
Another portable oral cleansing product is a mouthspray. Like a mouthwash, a mouthspray can provide the consumer with a quick burst of strong breath-freshening action, which might be overwhelming in an extended-consumption product like gum or lozenges. On the other hand, mouthsprays are obtrusive. Spraying a mouthspray typically generates a noise, which undesirably draws the attention of the public to the consumer. Moreover, mouthsprays are typically packaged in relatively expensive and complex metal canisters, which can clog in use and are not environmentally friendly.
Furthermore, misdirecting the spray not only wastes the product, but can result in irritated eyes, a sticky face andlor stained clothing.
It has been proposed to use an edible film as a vehicle for unobtrusively delivering breath-freshening agents. See JP S-236885. This Japanese patent application does not, however, teach the inclusion of antimicrobial agents in the film, using the film to decrease the amount of undesirable bacteria within the oral cavity, or stimulating saliva. Furthermore, this patent application does not disclose employing its film for purposes other than breath freshening or within cavities other than the mouth.
U.S. Patent No. S.S 18,902 to Ozaki et al. (Hayashibara) discloses high pullulan content products, such as edible films, dentifrices and pharmaceuticals (column 3, S lines 44-S6 and Example B-8). The products can include a variety of ingredients in addition to pullulan, such as other polysaccharides, polyhydric alcohols, antiseptics and flavor-imparting agents (column 4, line S8 to column S, line 1 I). None of the essential oils, such as thymol, eucalyptol, methyl salicylate or menthol, are mentioned as suitable ingredients.
U.S. Patent No. 5,411,945 to Ozaki et al. (Hayashibara) discloses a puliulan binder and products produced therewith, including edible films (Example B-2).
The products can include a variety of ingredients in addition to pullulan, such as other polysaccharides, antibacterial agents, flavor-imparting agents and pharmaceutically active substances (column 4, lines S-15). None of the essential oils are mentioned as suitable ingredients.
U.S. Patent No. 4,851,394 to Kubodera discloses glucomannan/polyhydric alcohol edible films, which can comprise pullulan (column 3, line S9 to column 4, line 21 ). The films are contrasted with existing puilulan-based films, which are said to lack resistance to water (column l, lines 40-44). None of the essential oils are mentioned as suitable ingredients.
U.S. Patent No. 3,784.390 Hijiya et al. discloses pullulan films and their use in coating and packing materials for foods. pharmaceuticals and other oxygen sensitive materials. All of the examples in this patent teach mixing pullulan in hot water.
U.S. Patent No. 4,623,394 Nakamura et al. discloses a gradually disintegrable molded article that can be a film made with pullulan. The articles contain a particular heteromannan, which can be locust bean gum.
U.S. Patent No. 4,562,020 Hijiya et al. discloses a process for producing a self supporting film of a glucan, which can be pullulan.
Japanese Patent Document JPS-I 198 discloses films made of polyvinyl alcohol and at least one of carrageenan. water-soluble cellulose alpha-starch and water-soluble polysaccharides.
WO 99/17753 discloses rapidly dissolving films for delivery of drugs to be adsorbed in the digestive tract.
WO 98/26780 discloses a flat, foil, paper or wafer type presentation for the application and release of active substances in the buccai cavity. The specific active ingredient disclosed in WO 98/26780 is buprenorphine.
WO 98/20862 discloses a film for use in the oral cavity that can contain a cosmetic or pharmaceutical active substance.
WO 98/26763 discloses a flat, foil, paper or wafer like presentation for release of active substances into the buccal cavity. T'he particular active disclosed is apomorphine.
Despite the existence of rapidly dissolving orally consumable films in the prior art, there is still room for improvement in such films, and in processes for making them.
SUMMARY OF THE INVENTION
The invention is directed to a rapidly dissolvable film which acts as a vehicle for administering a pharmaceutically active agent orally, through a mucous membrane or an open wound of a patient.
In particular, the invention comprises a consumable film adapted to dissolve in the mouth of a consumer, wherein said film comprises a single layer including pullulan and at least one pharmaceutical agent.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a photograph of an agar plate spread with Streptococcus mutans, ATCC 25175, and exposed to a film according to the present invention that contains 0.391 mg of essential oils.
Fig. 2 is a photograph of an agar plate spread with Streptococcus mutans, ATCC 25175, and exposed to drops of an essential oil mixture containing 0.391 mg of essential oils per drop.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Description of Oral Care Film Compositions The invention is directed to a consumable film which dissolves in the mouth of a consumer, wherein the film comprises a single layer comprising pullulan and at least one pharmaceutical agent.
A related embodiment of the invention is a physiologically acceptable film that is particularly well adapted to adhere to and dissolve in a mouth of a consumer to deliver an antimicrobial agent that kills germs that cause halitosis, dental plaque and gingivitis.
Thus, the film can be an effective tool in the prevention and treatment of halitosis, dental plaque accumulation, dental tartar accumulation and gingivitis. This film preferably comprises pullulan, thymol, methyl salicylate, eucalyptol and menthol.
LISTERINE~ brand mouthwash is, perhaps, the most well-known example of an antiseptic oral composition that has proven effective in killing microbes in the oral cavity that are responsible for plaque, gingivitis and bad breath. LISTERINE~
brand mouthwash achieves its antimicrobial effect through a combination of essential oils that penetrate and kill the microorganisms. These essential oils include precisely balanced amounts of thymol, methyl salicylate, menthol and eucalyptol (hereinafter S "the essential oils") in a hydro alcoholic solution. Many bad breath bacteria live in pits or fissure on the surface of the tongue. Listerine~ Antiseptic mouthwash reduces bad breath because of high concentrations of antimicrobial agents in a liquid medium that can easily penetrate into these pits and fissures. This would not be possible with a solid dosage form containing low amounts of these antimicrobial ingredients.
However, the preferred consumable film of the invention captures a significant portion of the hygienic benefits and the consumer appeal of LIST'ERINE~ brand mouthwash, in a more portable and unobtrusively consumed form.
It was a significant challenge to maintain the essential oil interaction and relatively high oil content of LISTERINE~ brand mouthwash in a film. However, the inventors have overcome this challenge in providing the film of the invention.
A further aspect of this invention is that while the amounts of LIST'ERINE~
essential oils are relatively high for incorporation in a film, the film according to the present invention still delivers a lower total amount of essential oils per unit dose when compared to that of LISTERINE~ mouthwash. Yet the f lm suprisingly provides antimicrobial efficacy in the oral cavity. The inventors theorize that the preferred film forming ingredient, pullulan, forms a thin layer on the oral surfaces entrapping the small amount of essential oils which are capable of penetrating into the pits and fissures of the oral cavity to provide sustained antimicrobial efficacy.
Although the inventors are presently unaware of any other breath-freshening consumable film that provides antimicrobial efficacy, they are aware of a consumable film disclosed in JP S-236885, which is said to possess breath-freshening activity, but is not described as possessing any ingredients having significant antimicrobial activity.
Moreover, JP 5-236885 teaches that its film should contain flavor and extract in amounts of 5 to 7 wt %, with the flavor being added as an oil (the essential oils are not disclosed), whereas the film of the invention preferably has an oil content of at least about 10 wt %, more preferably about 15 wt % to about 30 wt %, most preferably about 1 S wt % to about 25 wt %. Except as otherwise noted in the examples, the amounts of oils and other ingredients in the film are wt% after the film formulation has been dried to create the film.
The amounts of the specific essential oils used in the film compositions can vary as long as they are in amounts sufficient to provide antimicrobial efficacy.
Generally the amount of thymol. methyl salicylate and eucalyptol is from about 0.01 to about 4 wt % of the film composition, preferably about 0.50 to about 3.0 wt %
and even more preferably from about 0.70 to about 2.0 wt % of the film. Menthol can be added from about 0.01 to about 1 S wt % of the composition, preferably about 2.0 to about 10 wt % and even more preferably from about 3 to about 9 wt % of the film.
The amounts added can be readily determined to those skilled in the art and can exceed these amounts as long as the total oil content does not create sticking or other processing problems. In certain embodiments, the essential oils are combined in amounts synergistically effective to kill the plaque-producing germs that cause dental plaque, gingivitis and bad breath.
S A major difficulty in formulating a film having such a relatively high oil content is that simply increasing the amount of oil in the film without determining the precise proportions of the many other ingredients typically results in a film that is too moist and therefore difficult to handle or process. The inventors have discovered how to provide a high oil content film that is moist enough so that it is not brittle, but is not so moist that it feels undesirably slimy or significantly adheres to adjacent films.
Thus, a non-self adhering film according to the invention can be stored in contact with another such film (e.g., in a stack), or can be wound about itself (e.g., around a spool), without having to place a non-stick agent (e.g., a plastic film, paper or other support) between adjacent portions of film.
The film-forming agent used in the films according to the present invention can be selected from the group consisting of pullulan, hydroxypropyimethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl pyrroIidone, carboxymethyl cellulose, polyvinyl alcohol, sodium alginate, polyethylene glycol, xanthan gum, tragacanth gum, guar gum, acacia gum, arabic gum, polyacrylic acid, methylmethacryiate copolymer, carboxyvinyl polymer. amylose, high amylose starch, hydroxypropylated high amylose starch, dextrin, pectin, chitin, chitosan, levan, elsinan, collagen, gelatin, zero. gluten, soy protein isolate. whev protein isolate, casein and mixtures thereof. A preferred film former is pullulan, in amounts ranging from about 0.01 to about 99 wt %, preferably about 30 to about 80 wt %, more preferably from about 45 to about 70 wt % of the film and even more preferably from about 60 to about 65 wt % of the film.
The film of the invention preferably comprises pullulan as a film-forming agent and the essential oils as antimicrobial/flavoring agents, and can further comprise water, additional antimicrobiai agents, additional film-forming agents, plasticizing agents, additional flavoring agents, sulfur precipitating agents. saliva stimulating agents, cooling agents, surfactants, stabilizing agents, emulsifying agents, thickening agents, binding agents, coloring agents, sweeteners, fragrances, and the like.
Due to the relatively high oil content in the oral care film, it is preferable to avoid substantial amounts of humectant in the film (and more preferable to have no humectant in the film), so as to avoid producing an overly moist, self adhering film.
In particular, it is preferred to formulate the film with a plasticizing agent other than glycerin, which is also a humectant, and with a sweetener other than sorbitol, which is a mild humectant.
Sulfur precipitating agents that reduce oral malodor can also be added to the oral care films according to the present invention. These agents bind with, and inactivate, the volatile sulfur compounds that cause a large percentage of oral malodor.
Sulfur precipitating agents useful in the present invention include metal salts such as copper salts and zinc salts. Preferred salts include copper gluconate, zinc citrate and zinc gluconate. 'The amount of sulfur precipitating agent is from about 0.01 to about 2 wt %, preferably about . l5 wt % to about 1.5 wt %, even more preferably about .25 wt to about 1.0 wt % of the film.
Saliva stimulating agents can also be added to the oral care films according to the present mventaon. Useful saliva stimulating agents are those disclosed in U.S.
Patent No.
4,820,506. Saliva stimulating agents include food acids such as citric, lactic, malic, succinic, ascorbic, adipie, fumaric and tartaric acids. Preferred food acids are citric, malic and ascorbic acids. The amount of saliva stimulating agents in the f Im is from about 0.01 to about 12 wt %, preferably about 1 wt % to about 10 wt %, even more preferably about 2.5 wt % to about 6wt%.
Preferred plasticizing agents include triacetin in amounts ranging from about to about 20 wt %, preferably about 0 to about 2 wt %. Other suitable plasticizing agents include monoacetin and diacetin.
Preferred cooling agents include monomenthyl succinate, in amounts ranging from about 0.001 to about 2.0 wt %, preferably about 0.2 to about 0.4 wt %. A
monomenthyl succinate containing cooling agent is available from Mane, Ine.
Other suitable cooling agents include WS3TM, WS23T"', UltracoolTMII and the like.
Preferred surfactants incl ude mono and diglycerides of fatty acids and polyoxyethyiene sorbitol esters, such as, AtmosT"' 300 and PolysorbateTM 80. The surfactant can be added in amounts ranging from about 0.5 to about l5 wt %, preferably about 1 to about ~ wt % of the film. Other suitable surfactants include pluronic acid, sodium lauryl sulfate, and the like.
Preferred stabilizing agents include xanthan gum, locust bean gum and S carrageenan, in amounts ranging from about 0 to about 10 wt %, preferably about 0.1 to about 2 wt % of the film. Other suitable stabilizing agents include guar gum and the like.
Preferred emulsifying agents include triethanolamine stearate, quaternary ammonium compounds, acacia, gelatin, lecithin, bentonite, veegum. and the like, in amounts ranging from about 0 to about 5 wt %, preferably about 0.01 to about 0.7 wt of the film.
Preferred thickening agents include methylcellulose, carboxyl methylcellulose, and the like, in amounts ranging from about 0 to about 20 wt %, preferably about 0.01 to about 5 wt %.
Preferred binding agents include starch. in amounts ranging from about 0 to about 10 wt %, preferably about 0.01 to about 2 wt % of the film.
Suitable sweeteners that can be included are those well known in the art, including both natural and artificial sweeteners. Suitable sweeteners include, e.g.:
A. water-soluble sweetening agents such as monosaccharides, disaccharides and polysaccharides such as xylose, ribose, glucose (dextrose), mannose, galactose, fructose (levulose), sucrose (sugar), maltose, invert sugar (a mixture of fructose and glucose derived from sucrose), partially hydrolyzed starch, corn syrup solids, dihydrochalcones, monellin, steviosides, and glycyrrhizin;
B. water-soluble artificial sweeteners such as the soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium S or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2, 2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (acesulfameTM-K), the free acid form of saccharin, and the like;
C. dipeptide based sweeteners, such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (aspartameTM) and materials described in U.S. Pat. No. 3,492,131, L-alpha-aspartyl-N-(2,2,4,4--tetramethyl-3-thietanyl)-D-alaninamide hydrate, methyl esters of L-aspartyl-L-phenylglycerin and L-aspartyl-L-2,S,dihydrophenyl-glycine, L-aspartyl-2,5-dihydro- L-phenylalanine, L-aspartyl-L-( I -cyclohexyen)-alanine, and the like;
D. water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, such as a chlorinated derivative of ordinary sugar (sucrose), known, for example, under the product description of sucralose; and E. protein based sweeteners such as thaumatoccous danielli (ThaumatinTM I and II) In general, an effective amount of auxiliary sweetener is utilized to provide the level of sweetness desired for a particular composition, and this amount will vary with the sweetener selected. This amount will normally be 0.01 % to about l0 % by weight of the composition when using an easily extractable sweetener. The water-soluble sweeteners described in category A above, are usually used in amounts of about 0.01 to about 10 wt %, and preferably in amounts of about 2 to about 5 wt %. Some of the sweeteners in category A (e.g., glycyrrhizin) can be used in amounts set forth for categories B-E below due to the sweeteners' known sweetening ability. In contrast, the sweeteners described in categories B-E are generally used in amounts of about 0.01 to about 10 wt %, with about 2 to about 8 wt % being preferred and about 3 to about 6 wt % being most preferred. These amounts may be used to achieve a desired level of sweetness independent from the flavor level achieved from any optional flavor oils used. Of course, sweeteners need not be added to films intended for non-oral administration.
The flavorings that can be used include those known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics, and/or oils, oleo resins and extracts derived from plants, leaves, flowers, fruits and so forth, and combinations thereof. Representative flavor oils include: spearmint oil, cinnamon oil, peppermint oil, clove oil, bay oil, thyme oil, cedar leaf oil, oil of nutmeg, oil of sage, and oil of bitter almonds. Also useful are artificial, natural or synthetic fruit flavors such as vanilla, chocolate, coffee, cocoa and citrus oil, including lemon, orange, grape. lime and grapefruit and fruit essences including apple, pear, peach, strawberry, raspberry, cheny, plum, pineapple, apricot and so forth. These flavorings can be used individually or in admixture.
Commonly used flavors include mints such as peppermint. artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture.
Flavorings such as aldehydes and esters including cinnamyl acetate, cinnamaldehyde, citral, diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylanisole, and so forth may also be used. Generally, any flavoring or food additive, such as those described in Chemicals Used in Food Processing, publication 1274 by the National Academy of Sciences, pages 63-258, may be used. Further examples of aldehyde flavorings include. but are not limited to acetaldehyde (apple); benzaldehyde (cherry, almond);
cinnamic aldehyde (cinnamon); citral, i.e., alpha citral (lemon, lime); neral, i.e. beta citral (lemon, lime); decanal (orange, lemon); ethyl vanillin (vanilla, cream);
heliotropine, i.e., piperonal (vanilla, cream); vanillin (vanilla, cream);
alpha-amyl cinnamaldehyde (spicy fruity flavors); butyraldehyde (butter, cheese);
valeraldehyde (butter, cheese); citronella) (modifies, many types); decanal (citrus fruits);
aldehyde C-8 (citrus fruits); aldehyde C-9 (citrus fruits); aldehyde C-12 (citrus fruits); 2-ethyl butyraldehyde (berry fruits); hexenal, i.e. trans-2 (berry fruits); tolyl aldehyde (cherry, almond); veratraldehyde (vanilla); 2,6-dimethyl- S-heptenal, i.e. melonal (melon);
2-6-dimethyloctanal (green fruit); and 2-dodece~al (citrus, mandarin); cherry;
grape;
mixtures thereof; and the like.
The amount of flavoring employed is normally a matter of preference subject to such factors as flavor type, individual flavor, and strength desired. Thus, the amount may be varied in order to obtain the result desired in the final product. Such variations are within the capabilities of those skilled in the art without the need for undue experimentation. In general, amounts of about 0.1 to about 30 wt % are useable with amounts of about 2 to about 25 wt % being preferred and amounts from about 8 to S about 10 wt % are more preferred.
The compositions of this invention can also contain coloring agents or colorants. The coloring agents are used in amounts effective to produce the desired color. The coloring agents useful in the present invention, include pigments such as titanium dioxide, which may be incorporated in amounts of up to about S wt %, and preferably less than about 1 wt %. Colorants can also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as FD&C dyes and lakes. The materials acceptable for the foregoing spectrum of use are preferably water-soluble, and include FD&C Blue No. 2, which is the disodium salt of 5,5-indigotindisulfonic acid. Similarly, the dye known as Green No. 3 comprises a triphenylmethane dye and is the monosodium salt of 4-(4-N-ethyl-p-sulfobenzylamino) diphenyl-methylene)-[1-N-ethyl-N-p-sulfonium benzyl)-2,5-cyclo-hexadienimine).
A
full recitation of all FD&C and D&C dyes and their corresponding chemical swctures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, Volume S, Pages 857-884.
Antimicrobial Efficacy of Oral Care Films The preferred embodiment of the oral care film composition according to the present invention contains the essential oils used in Listerine~ mouthwash to provide antimicrobial efficacy. The films are shaped and sized to be placed in the oral cavity.
The film adheres to a surface in the mouth, usually the roof of the mouth or the tongue, and quickly dissolves. The amount of essential oils in one individual film that is a preferred size for placing in the mouth is significantly lower than that in the recommended amount, 20m1, of Listerine~ mouthwash.
In a preferred formula according to the present invention, the amount of thymol and eucalyptol in the film is about 70 times less than in the mouthwash. The amount of methyl salicylate in the film is about 46 times less than in the mouthwash.
The amount of menthol in the film is about 2.8 times less than in the mouthwash.
These figures are based on comparing a 20 ml dose of liquid mouthwash with a 0.0358 gram film.
The inventors have unexpectedly found that the film provides sustained antimicrobial efficacy at these low amounts of oils. The inventors believe that the efficacy of the essential oils is enhanced by the creation of a layer of pullulan in the oral cavity that holds the essential oils. This is unexpected because pullulan is water-soluble and the film dissolves very quickly.
The extended antimicrobial activity is shown in the following experiments.
The purpose of these experiments was to determine the antibacterial efficacy of an application of a breath film on tongue malodor microorganisms thirty, sixty or ninety minutes after use. The thirty minute study also tested the efficacy of using two films. Subjects' baseline oral malodor microbial recoverable counts were detecznined by plating the microorganisms recovered from a tongue swab on a selective agar medium. The test product was dispensed and subjects dissolved one or two breath films on their tongue. Subjects remained on the premises and returned for a second tongue swab thirty, sixty or ninety minutes after placement of the test product on their tongue. After a forty-eight hour washout period, subjects returned for a no treatment control.
The thirty minute single film use group showed a reduction in mean log malodor microbial counts compared to the control group. The data was borderline statistically significant (p=0.052). The difference between the one film group and the no treatment control group represented a 42.7% reduction in malodor microbial colony counts.
Statistically significant malodor microbial reduction was also observed with the two film use group. A 79.6% reduction in malodor microbial colony counts was 1 S obtained (p<0.00 I ).
Statistically significant malodor microbial reduction was observed sixty minutes after use of a single breath film. A 69.8% reduction in malodor microbial colony counts was obtained (p=0.002).
Significant malodor reduction was also observed ninety minutes after use of a single breath film. A 69.1 % reduction in malodor microbial colony counts was obtained (p=0.006).
Tte data from these studies support the following conclusions: ( 1 ) E'ullulan polymer-based breath film containing essential oils is an effective antibacterial composition against oral malodor causing bacteria and (2) significant in vivo bacterial reductions were achieved at thirty, sixty and ninety minutes post use.
Experimental Procedures The procedures used in these antimicrobial studies were as follows. The subject were required to refrain from all oral hygiene procedures (e.g., toothbrushing, oral lavage) eating or drinking any food, beverage or confectionery products from midnight prior to the study and until the study was completed on each test day.
Subjects refrained from smoking on mornings prior to the odor evaluations.
In vivo Germ Kill Assay 1. Materials Test tubes containing 10 ml of sterile 0.01 % peptone Sterile Swabs 1 S OOPS fIIT"' Agar (B.-F. Turng, G.E. Minah, and W.A. Falkler. Development of an Agar Medium for Detection of Oral HAS-producing Organisms. 1 Dent Res 76 IADR Abstracts 1997.):
Columbia Agar Base (Catalogue # DF0792- l 7-3 ) 44 grams Distilled Water 1 liter Lead Acetate' (Sigma L3396) 0.? grams Hemin Solutionb (Sigma H-1652) 2 ml Glutathione' (Sigma G4251TM) 1.2 grams Forty-four grams of Columbia Blood Agar Base was suspended in 1 liter distilled water and boiled to dissolve completely. The media was sterilized at I 2 I -124°C for 15 minutes.
S ° Dissolved 0.2 grams of lead acetate in 1 ml of distilled Hz0 and filter sterilized.
Added after autoclaving the base media.
b Dissolved SO mg of hemin in 1 ml of 1N NaOH; qs'd to 100 ml with distilled HzO.
Filter sterilized. Added 2 ml per liter of OOPS III after autoclaving base media.
Dissolved 1.2 grams of glutathione in 10 ml of distilled HzO. Filter sterilized.
Added after autoclaving base media.
2. Procedure a. All media were prereduced in an anaerobic chamber overnight. Plates were loosely wrapped in plastic bags to prevent excessive drying.
b. Panelists refrained from oral hygiene, eating and drinking from midnight prior ~S to the assay and until the assay was complete. Twelve panelists were used for the sixty and ninety minute experiments. Eighteen panelists were used for the thirty minute experiments.
c. Each panelist swabbed the right side of his tongue by placing the swab at the midpoint of the tongue and swiping forward to the tip. The swab was placed in a tube of peptone.
d. The panelist received a film treatment, either a single or double film.
Panelists placed the breath film on the left side of their tongue covering the tongue from the midpoint to the tip and allowed the film to dissolve with the mouth slightly open for thirty seconds to prevent the film from sticking to the palate.
e. After thirty or sixty minutes, panelists swabbed the left side of the tongue by S placing the swab at the midpoint of the tongue and swiping forward to the tip.
The swab was placed in a tube of peptone.
f. The tubes of peptone were vortexed vigorously for 10 seconds, and serial dilutions were made. The 10'' dilution was plated in duplicate on OOPS III
Agar using a Spiral Biotech Autoplate 4000r"' (Bethesda, MD). All plates were identified with the subject's initials, assay date, sampling time station, and replicate number.
g. The plates were incubated in an anaerobic chamber at 35-37°C for 7 days to permit full development of colonies without overgrowth.
h. After a 48 hour wash out period, panelists returned for the no treatment control.
No film was applied, and steps (e) through (g) were followed as described above.
i. After a 48 hour wash out period, the sixty minute panelists returned for another single Flm application. Steps (a) through (h) were followed, with the exception that panelists returned after 90 min in step e.
j. The dark-pigmented colonies (HZS-producing organisms) were counted as whole plate counts by hand under appropriate magnification or by Segment counts using a Spiral BiotechT"' counting template. The appropriate code was entered on the data sheet to permit interpretation of the counts. The CFU's counted were converted to CFU/mi by dividing by the appropriate exponential volume constant listed in Table A and multiplying by 1000. This value was S then multiplied by the dilution factor of the plate ( 104) Table A. Exponential Volume Constants for Segment Pairs Last Counted SegmentExponential Volume Constant 8 1.214 9 2.968 S.S00 11 9.157 12 14.482 13 25.01 S
Total Plate 50.030 The film used in the in vivo gen-n kill tests was Example 19 as described in Table 2. The films used in the study were approximately 22mm x 32mm, between 10 about 0.0013 and O.OOIS inches thick and weighed between about 3S to about 37 mg.
The enhanced activity of the essential oil containing pullulan film is also shown in Figures l and 2. Figure 1 is a photograph of an agar plate spread with Streptococcus mutonS, ATCC # 2S 17S, to which a piece of an essential oil pullulan film according to the present invention was added. The piece of film delivered approximately .391 mg of essential oils using Example 15 listed below.
Figure 2 is a photograph of an agar plate spread with Streptococcus mutans, ATCC # 25175 to which drops of essential oils have been added. The drops were S u1 in volume and contained 0.391 mg of essential oils. The percentages of each essential oil in the drop are 2.200% menthol, 0.186% eucalyptol, 0.186% methyl salicylate and 0.1300% thymol in a hydro alcohol solution.
The area or zone of inhibition around the film in Figure 1 is much larger than the dimensions of the film. This is due to the presence of pullulan because the oils in the pullulan film were spread by the puliulan, diffused outward and did not wash away after repeated rinses. In contrast, the essential oils in Figure 2 did not diffuse away from the droplet, remained as a circle and easily washed off after 1-2 rinses.
This shows that the antimicrobial efficacy of the essential oils is enhanced by the presence of pullulan.
Methods For Preparing Essential Oil Containing Films Methods for preparing films according to the invention are capable of encapsulating the oil ingredients within the film-forming matrix and maintaining the integrity of the film, even when the film contains oils in amounts of 10 wt %
or more.
In certain methods for preparing films according to the invention, the film-forming ingredients are mixed and hydrated with water separately from the water-soluble ingredients, which are mixed in aqueous solution separately from the organic ingredients and surfactants. In these methods, the final formulation is preferably produced by mixing the film-forming phase with the aqueous phase. then mixing in TM TM
the organic phase, which includes surfactants, such as Polysorbate 80 and Atmos 300.
This mass is mixed until emulsified. In other embodiments, the aqueous and film forming phases are combined into a single phase by dissolving the water soluble ingredients in the water and then adding the gums to hydrate. The organic phase is then added to this single aqueous phase.
The resulting formulation is cast on a suitable substrate and dried to form a film. The film is preferably air-dried or dried under warm air and cut to a desired dimension, packaged and stored. The film can contain from about 0. I % to about I 0 wt % moisture, preferably from about 3 % to about 8 wt % moisture, even more preferably from about 4 to about 7 wt % moisture.
The film-forming phase can include pullulan and stabilizing agents such as xanthan gum, locust bean gum and carrageenan. These ingredients are mixed and then hydrated in water forabout 30 to about 48 hours to form a gel. The water is preferably heated to a temperature of about 25 to about 45 °C to promote hydration. The amount of water is about 40 to 80 % of the gel. The resulting hydrated gel is then chilled to a temperature of about 20 to about 30 °C for about 1 to about 48 hours.
The water is preferably deionized.
The aqueous phase can include ingredients such as coloring agent(s), copper gluconate and sweetener. The water is preferably deionized and the amount of water used is about 5 to about 80 wt % of the final gel mixture.
If sodium saccharin and copper giuconate are both ingredients in the formulation, it is preferable to dissolve them separately in solution to avoid precipitation.
S In a preferred method of producing essential oil containing films according to the invention, it is possible to hydrate the film-forming ingredients and combine all of the ingredients without heating. The preferred method of producing films comprises dissolving the water-soluble ingredients in water to form an aqueous mixture;
mixing the film-forming ingredients in powder form to form a powder mixture; adding the powder mixture to the aqueous mixture to form a hydrated polymer gel; stirring the hydrated polymer at room temperature for about 30 minutes to about 48 hours;
mixing the cooling agent, thymol and menthol in the flavor oil to form an oil mixture; adding methyl salicylate; eucalyptol and surfactants to the oil mixture; adding the oil mixture to the hydrated polymer gel and mixing until uniform; deaerating the film until air bubbles are removed, casting the uniform mixture on a suitable substrate; and drying the cast mixture to form a film.
The preferred method for making an essential oil containing film hydrates the film-forming ingredients without heating the water. Heating the ingredients increases energy costs in the manufacturing process. Moreover, heating results in undesirable losses of volatile ingredients to evaporation, which also affects the germ killing activity of the composition due to the loss of essential oils. Further, mixing the oils in two steps minimizes the amount of flavor lost.
While not wishing to be bound by any theories, it is believed that the film-forming ingredients can be hydrated and mixed without heating due to an ionic effect known as the Donnan equilibrium. Hydrating the film-fon-ning agents in the presence of electrolytes in solution effectively lowers the viscosity of the polymer gel being formed, thus increasing the efficiency of the hydrating process. The water-soluble ingredients of the formulation provide the electrolytes, which are dissolved in the hydration solution prior to addition of the film-forming ingredients. High-shear mixing also accelerates hydration, which delumps the powders, providing greater surface area for water contact. In addition, local heating effects, generated in the shear regions, provide energy for hydration without substantially raising the temperature of the mass.
It is preferable to avoid adding both copper gluconate and saccharin at the same time to the aqueous solution, as a precipitate will form. Thus, it is preferred to combine sweeteners other than saccharin with copper gluconate.
Description of Film Compositions That Deliver Pharmaceutical Agents A second embodiment of the invention is a fast dissolving film that includes at least one physiologically acceptable, pharmaceutically active agent. The expression "physiologically acceptable" as used herein is intended to encompass compounds, which upon administration to a patient, are adequately tolerated without causing undue negative side effects. The expression encompasses edible compounds.
The expression "pharmaceutically active agents" as used herein is intended to encompass agents other than foods, which promote a structural and/or functional change in and/or on bodies to which they have been administered. These agents are not particularly limited; however, they should be physiologically acceptable and compatible with the film. Suitable pharmaceutically active agents include, but are not limited to:
A. antimicrobial agents, such as triclosan, cetyl pyridium chloride, domiphen bromide, quaternary ammonium salts, zinc compounds, sanguinarine, fluorides, alexidine, octonidine, EDTA, and the like, B. non-steroidal anti-inflammatory drugs, such as aspirin, acetaminophen, ibuprofen, ketoprofen, diflunisal, fenoprofen calcium, naproxen, tolmetin sodium, indomethacin, and the like, C. anti-tussives, such as benzonatate, caramiphen edisylate, menthol, dextromethorphan hydrobromide, chlophedianol hydrochloride, and the like, D. decongestants, such as pseudoephedrine hydrochloride, phenylepherine, phenylpropanolamine, pseudoephedrine sulfate, and the like, E. anti-histamines, such as brompheniramine maleate, chlorpheniramine maleate, carbinoxamine maleate, clemastine fumarate, dexchlorpheniramine maleate, diphenhydramine hydrochloride, diphenylpyraline hydrochloride, azatadine meleate, diphenhydramine citrate. doxylamine succinate, promethazine hydrochloride, pyrilamine maleate, tripelennamine citrate, triprolidine hydrochloride, acrivastine, loratadine, brompheniramine, dexbrompheniramine, and the like, F. expectorants, such as guaifenesin, ipecac, potassium iodide, tenpin hydrate, and the like, G. anti-diarrheals, such a loperamide, and the like, H. Hz -antagonists, such as famotidine, ranitidine, and the like; and I. proton pump inhibitors, such as omeprazole, lansoprazole. and the tike, J. general nonselective CNS depressants, such as aliphatic alcohols, barbiturates and the like, K. general nonselective CNS stimulants such as caffeine, nicotine, strychnine, picrotoxin, pentyienetetrazol and the like, L. drugs that selectively modify CNS function such as phenyhydantoin, phenobarbital, primidone, carbamazepine, ethosuximide, methsuximide, phensuximide, trimethadione, diazepam, benzodiazepines, phenacemide, pheneturide, acetazolamide, sulthiame, bromide, and the like, M. antiparkinsonism drugs such as levodopa, amantadine and the like, N. narcotic-analgesics such as morphine, heroin, hydromorphone, metopon, oxymorphone, levorphanol, codeine, hydrocodone, xycodone, nalorphine, naloxone, naltrexone and the like, O. analgesic-antipyretics such as salycilates, pheny(butazone, indomethacin, phenacetin and the like, P. psychopharmacological drugs such as chlorpromazine, methotrimepra2ine, haloperidol, clozapine, reserpine, imipramine, tranylcypromine, phenelzine, lithium and the like.
The amount of medicament that can be used in the rapidly dissolving films, according to the present invention, is dependent upon the dose needed to provide an effective amount of the medicament. Examples of doses for specific medicaments that can be delivered per one strip of rapidly dissolving oral film are reviewed in Table 1.
1o TABLE 1 MEDICAMENT DOS E
Chlo heniramine Maleate 4 m .
Brom heniramine Maleate 4 m .
Dexchlo heniramine 2 m .
Dexbrom heniramine 2 m .
Tri rolidine H drochloride 2.5 m .
Acrivastine 8 m .
Azatadine Maleate 1 m .
Loratidine 10 m .
Phen 1e brine H drochloride10 m .
Dextrometho ban H drochloride10-20 m .
Keto rofen 12.5 m .
Sumatri tan Succinate 3 5 - 70 m .
Zolmitri tan 2.5 m .
Lo eramide 2 m .
Famotidine 10 m .
Nicotine 2 m .
Di henh dramine H drochloride25 m .
Pseudoephedrine Hydrochloride30 mg.~
The ingredients used io make the pharmaceutical containing films are similar to those used to make oral care films. Specifically, the plasticizing agents, cooling agents, surfactants, stabilizing agents, emulsifiers, thickening agents, binding agents, film formers, sweeteners, flavors and colors described above can also be used in all of S the films according to the present invention.
The films that deliver a pharmaceutical agent can also include a triglyceride.
Examples of triglycerides include vegetable oils such as corn oil, sunflower oil, peanut oil, olive oil, canola oil, soybean oil and mixtures thereof. A preferred triglyceride is olive oil. The trigIyceride is added to the film in amounts from about 0.1 wt % to about 12 wt %, preferably in a range from about 0.5 wt % to about 9 wt %, of the film.
The films that contain pharmaceutical agents also can include a preservative.
The preservative is added in amounts from about 0.001 wt % to about 5 wt %, preferably from about 0.01 wt % to about 1 wt % of the film. Preferred preservatives include sodium benzoate and potassium sorbate.
~S The pharmaceutical agent containing films can also include a polyethylene oxide compound. The molecular weight of the polyethylene oxide compound ranges from about 50,000 to about 6,000,000. A preferred polyethylene oxide compound is N-IOTM available from Union Carbide Corporation. The polyethylene oxide compound is added in amounts from about 0.1 wt % to about 5 wt %, preferably from about 0.2 wt % to about 4.0 wt % of the film.
The pharmaceutical agent containing films can also include propylene glycol.
The propylene glycol is added in amounts from about l wt % to about 20 wt %, preferably from about S wt % to about 1 S wt % of the film.
The active ingredient used in the film can be coated to mask the taste of the active ingredient or to prevent the active ingredient from numbing the tongue or other S surfaces in the oral cavity. The coatings that can be used are known to those skilled in the art. These include polymers such, as Eudragit~ E, cellulosics, such a_s ethylcellulose, and the like.
An additional way to mask the taste of the active ingredient is by using an ion exchange resin such as Amberlite RP-69TM, available from Rohm and Haas, and Dow XYS-40010.OOTM, available from the Dow Chemical Co.
Examples The invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be Limited thereto.
Preparation Method I
The following method was used to prepare the films of Examples I-13.
A. The film-forming ingredients (e.g., xanthan gum, locust bean gum, carrageenan and pullulan) other than Polysorbate 80 and Atmos 300 are mixed and hydrated in hot purified water to form a gel and stored in a refrigerator overnight at a temperature of approximately 4 °C to form preparation A.
B. The coloring agent(s). copper gluconate and sweetener are added to and dissolved in purified water to form preparation B.
C. Preparation B is added to preparation A and mixed well to form preparation C.
D. The flavoring agent and the oils (e.g., cooling agent, thymol, methyl salicylate, eucalyptol and menthol) are mixed to form preparation D.
E. The polysorbate 80 and Atmos 300 are added to preparation D and mixed well to form preparation E.
F. Preparation E is added to preparation C and mixed well to form preparation F.
Preparation F is poured on a mold and cast to form a film of a desired thickness at room temperature. The film is dried under warm air and cut to a desired dimension, packaged and stored.
Preparation Method Il Examples 14-18 were prepared using a preferred method, which comprised the following steps:
A. dissolve copper giuconate, acesulfame K, aspartame, glycerin, sorbitol and dye in purified water to form an aqueous mixture;
B. mix pullulan, xanthan gum, locust bean gum and carrageenan together in powder form to form a powder mixture;
C. add the powder mixture from step B to the aqueous mixture from step A to form a hydrated polymer gel;
D. stir the hydrated polymer from step C at slow speed (about 50-100 RPM) overnight at room temperature;
E. mix and dissolve cooling agent, thymol and menthol in the flavor oil;
F. add methyl salicylate, eucalyptol, Polysorbate 80 and Atmos 300 to the oii mixture from step E;
G. add the oil mixture from step F to the hydrated polymer gel from step D and mix until uniform;
H. cast the uniform mixture from step G on a suitable backing; and I. dry the cast mixture to form a film.
Example 1 Example 1 produced a film according to the invention having a blue-green tint, a mint odor and a refreshing mint taste.
Examples 2-4 Examples 2-4 contain sorbitol, glycerin or both. These examples yielded products that easily broke off pieces, or were too moist andlor self adhering.
However they did produce films that rapidly dissolved in the oral cavity with a refreshing mint taste.
Examples 5-6 Examples 5 and 6 removed glycerin and sorbitol. 'fhe resultant films did not stick together during processing and packaging and were more moisture stable over a long time frame.
Examples 7-9 Examples 7-9 were produced to determine the effect of Avicel~ on germ killing activity. While Examples 7-9 produced more acceptable films from a S processing and handling perspective, they had diminished antimicrobial activity relative to films without Avicel~, such as Example $.
Examples 10-15 Examples 10 - 15 varied the amounts of aspartame and menthol to alter the sweetness and coolness of the film.
Example 16 Example 16 was prepared by replacing the sorbitol replaced with maltitol, which has less humectant properties. The resultant film was less sticky during processing and long term storage.
Example 17 Example 17 is prepared in which pullulan is replaced with another Flm former, polyvinyl pyrrolidone, to produce films according to the invention.
Example 18 Example 18 is prepared in which pullulan is partially replaced with another film former, konjac gum, to produce films according to the invention.
Example 19 Example 19 represents a film containing a salivary stimulant, citric acid.
Example 20 Example 20 is the film composition used in the antimicrobial efficacy studies described above.
The formulas for examples 1 - 20 are summarized in Table 2. The amounts in S these examples are presented as the actual weight (grams) or w/w %. These formulas create the solution/gel that is cast and dried into a Flm. The actual amount of each ingredient in the finished, dried film depends upon the amount of relative moisture removed during drying.
o go 0 0 00 0 0 o ~ 0 $
, ~~ n o; 00 0 00 0 0 0 0 o r0 "' sn o aoo ~~ of p ~ o s c O~ N ~~ Q< ~ D .-NV( OD
~ N C c f~ O
O
O O ~ O O OO O
O
~ OOO O O O OO OO O
n~ ~
_ ~O
~ ~ 0 N
ID N N N u1 OaDN m ~ O f h~ t1~ ..
~ ~
(D VhY h r - t p p m N
O OO O O O O OOO
O
t0 O OOo O O 0 O O O OOO
~'n O
t~ O~ m ~ t~ O f O
f0 f~ N ~~ Nt f N ~ M
~ m V Y J .- O
M O
~ ~
m n ~ ~N - .-Ott O N N M
p r O
~
M A I~ f~OOO t~ O pN O O O O
N
u'l O p rr P N O ~fOO O N N NI
~
Mt ~ t~ f~OOO (~ O aDN O O O O
N
N
d f- ~ ~ O O N
m r ~ < (V<; ON N M
M ~ ~ ~ NO O O
N
O
m ~ G< O N N M
M ~~ ~ ~
~
Y O C O
tnO O <~r7 W n ~
NN N aD O MC ~C'f N ~
MN ~ 1~ OON N O N~ O Y NO O O
O
O
'OM OA CDO OOO O ON O O
~ 1A1') N
lfO NEDaD~ .- OI
M
N y Y Y~l14DM
W ; O W O OO~naD~-N t0 OO O
O
V
A
O
r. p C
C
w c H Z a s ~ ~ c c N >> yn H ' A? ~ O~ Z MO
u' _ C7C7 ~ C ~~Y toH O L~
O ~ V
7 7 CC o d ~V U C v1 ~ !
~ ~VV ~ 0C NZ 1OO~ p ~; LHE V n j O (/1~
a V
~ .r O N p O
w ~mm ~ aar Uy A m : A ' ~g c c ~mo o Q o E- ooc o U(7m L C VN v1 ~ . o ' 'v' >' c c>> . ''C~ >?E c~c g c ~ m .~ i,c~~oA oU
~~ c ' -- n "
~
- tnbU
a Wo0 0 m~o'>5~L ood ~ o~ ooc~Ho~ o'o oE .a 0 ' x xJJ x UUa aav.-~uW ~i~Ua cncna aU~ ~n~nc~aa~ ._po Na a =u.
N
N O N~D
~ ~ f ~ m~O O~LfPlN fm N~
O N
~ O~O OO
N O O O O OON NNOn ;
QfWt1~ O~ ~~ NraD O~m IWl1 ~
O ~ mm V
~ p ~ O f0 l'7~ ~ O Y f~~
G
O G ~ C OGN N Ot~ ~O OO O
O
tD
~ ~
O O ~ ~ ~ m ~ ~ ~O ffO !hc~
f O O O O O OON N Ot~ O~O OO O
m t0tD O O m OO
O
p PfO < O l~7!'~
O O O O OON N O1~ Or-O OO O
O
N
M tDt0~ ~ ~ ~Nm O ~~ O
~O
f p ~p P1~ <O a0 l'1N) O
O
O O O ~ O GCfVN O1~ O~O N CO
~D
N
~ ~~O~ ~~ O
o '- m~ ~ Pf O Nfc~ O
f O
3 O O O O OON N G1~ O~O O O
a N
tP~!m~ ~ ~ ~
O ~ ~ f ~ ~ aO 17 O
f O O O O OON N Or O~O OO O
;
~O_ ~ O N ~ !1 O O ! h r NN!'O f b10 < R
~
O O ~ O OON t'f O~ O~O O O O
O
m ~., ~ t0__ N
N ~~ O
O O C 9 ~ ~ NNM O < off < <
O O O O OON P'f C~ O~O O O O
M
O N ~
O O rf ~ NNOiO 'P ~(D < R O
O O O ~ O OO~ ~ O~ OeO O O O
N O~ M
O O lh ~ ~ NN~ O ~ Ufl V '?
O~fO O O
O C O O OOfVC"~ Oa0 ~ O
O v G
a a ~r L7 !'~ ~ !L
a C a U~ _ ~ Z n ~ d o . ti C ~~
Oa E 9 ~j ~ Z P'>
ll~ E . p T~ . 1W H N C C L Y H 7 Vii!
C'C'O _ C N 4 ~
77 ~ E 1C N~ - N ~R L A dp~ Vp mOO (nN
W A H O
C7C711 7 C N NO~ O~~; N H WEW A O O' 0 C Z " ~ ~r> a i cc moo-~ d cc U >v v m A c O Ur a o - 'Qv E ~ o~~- oH~ C~
r r ~A ~~ c~ mma~AmE t~~ ~~ d H y'-acc ~__~ ~~a t~ndU
r '_~ '=-ac' ~o'o ~2 ' mA OO OO '~''e' 5t '~' .S'~oo o'o c~HO WOO- o - _D~
~
XX O d U Q aa~-~w~ ~UUd N N a~U ~tnNC7dQQ Zti ~ Y U O
.~
a The following examples are films according to the second embodiment of the present invention, in which the rapidly dissolving film contains a pharmaceutical agent. Examples 21 A-21 E, listed in Table 3, are medicament containing rapidly S dissolvable oral film formulas. The amounts in Table 3 are in milligrams.
Exam !e Number 21 A 2 1 H 2 t C 21 D 21 E
Dextrometho han 7.500 HBr Phen 1 Brine HCl 10.0000 10.00 Chio henicamine 4.0000 Maleate Lo idc HCl 2.0000 Nicotine 2.0000 Xanthan Gum 0.0818 0.0818 0.0818 0.0818 0.0818 Locust Bean Gum 0.0954 0.0954 0.0954 0.0954 0.0954 Catra eenan 0.4088 0.4088 0.4088 0.4088 0.4088 Pulluian 21.8036 21.8036 21.8036 21.8036 21.8036 Sodium Benzoate 0.0954 0.0954 0.0954 0.0954 0.0954 Acesuifame Potassium0.6814 0.6814 0.6814 0.6814 0.6814 Salt a NF 1.9078 1.9078 1.9078 1.9078 l .9078 Purified Water Coolin a ent 0.1363 0.1363 0.1363 0.1363 0.1363 Menthol 2.7255 2.7255 2.7255 2.7255 2.7255 Pol rbate 80 NF 0.4770 0.4770 0.4770 0.4770 0.4770 Atmos 300 0.4'770 0.4770 0.4770 0.4770 0.4770 lent Gl I 4.0882 4.0882 4.0882 4.0882 4.0882 Olive Oil 0.6814 0.6814 0.6814 0.6814 0.6814 Titanium Dioxide 0.34x7 0.3407 0.3407 0.3407 0.3407 Total Dose Wei 41.5000 44.0000 48.0000 36.0000 36.0000 t '(:alculated assuming complete evaporation of water fiom the films after drying Table 4 summarizes additional films according to the present invention. The amounts in Table 4 are % w/w prior to drying.
Table 4 Examples 22A 228 22C 220 22E 22F 22G 22H 221 Xanthan .03 .03 .06 .03 .03 .03 .06 .06 .06 Gum Locust Bean.07 .07 .07 .07 .07 .07 .07 .07 .07 Gum Carrageenan0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Pullulan 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 Sodium 0.1 0.1 0.1 .07 .07 .07 .07 .07 0.7 senzoate Acesulfame 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Potassium Aspartame 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Water qs100 qs100 4s100 Os100qs100 q5100 qs100 qs100 Os100 Cooilng 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 agent Menthol 2.0 2.0 2.0 1.3 2.0 2.0 2.0 2.0 2.0 Polysorbate0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 Atmos 300 0.35 0.35 0.35 0.35 0.35 _0.35 0.35 0.35 0.35 Propylene 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 Glycol Peg 1450 - 3.10 - _ _ _ Olive Oil - 1-2 2.0 2.0 .5-2 .5 POIyOX N-10 - - - - - 1.0 Titanium 0.25 0.25 0.25 0.25 0.25 0.25 0loxide Example 22A was used to make films containing a) 7.5 mg of dextromethorphan hydrobromide, b) 2.5 mg of tripolidine, c) 4.0 mg of S chlorpheniramine maleate and d) 12.5 mg of diphenhydramine hydrochloride.
Example 22B was used to make a film containing 10 mg of dextrometorphan hydrobromide.
Example 22C was used to make a film containing 10 mg of dextromethorphan hydrobromide.
Example 22D was used to make a film containing a) 10 mg of phenylepherine hydrochloride, h) 10 mg of phenylepherine hydrochloride and 4 mg of chlorpheniramine maleate and c) 10 mg of dextromethorphan hydrobromide.
Example 22E was used to make a film containing 7.5 mg dextromethorphan hydrobromide.
Example 22F was used to make a film containing 20 mg of coated dextromethorphan hydrobromide to provide a 7.5 mg dose.
Example 22G was used to make a film containing a) 7.5 mg dextromethorphan hydrobromide, b) 10 mg phenylepherine hydrochloride and c) 10 mg phenyiepherine hydrochloride and 4 mg chlorpheniramine maleate.
Example 22H was used to make a film containing 15 mg of dextromethorphan hydrobromide.
Example 22I was used to make a film containing 15 mg of dextromethorphan hydrobromide.
Processes For Making Pharmecutical Containing Films Example 22A was made using the following procedure.
1. Add the sodium benzoate and sweeteners to water.
S 2. Mix the locust bean gum, xanthan gum and carrageenan together.
3. Add the gum mixture to the mixture of step I and mix until dissolved.
4. Mix the active ingredient with either water or propylene glycol. Heat if needed.
5. Add the remaining ingredients to the mixture of step 4 or mix the remaining ingredients in a separate mixture.
6. Add the mixtures of step 4 and step 5 to the mixture of step 3. Cast and dry to make a film and cut to a size to achieve the desired dose.
Examples 22B-22E were made using the following procedure.
1. Add the sodium benzoate to water heated to SO C. Mix to dissolve.
2. Separately, add the Peg 1450, titanium dioxide and active ingredient to the mixture of step l, mixing with each addition.
3. Mix the locust bean gum, xanthan gum and carrageenan together.
4. Add the gums to the mixture of step 2 and mix until dissolve.
S. Add the remaining ingredients together with heat if needed.
6. Add the mixture of steps 4 and 5 together. Cast and dry to make a film and cut to a size to achieve the desired dose.
w Examples 22F - 22I were made in the same manner as Examples 20B - 20E, except the active was dispersed right before the film was cast.
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Description of Oral Care Film Compositions The invention is directed to a consumable film which dissolves in the mouth of a consumer, wherein the film comprises a single layer comprising pullulan and at least one pharmaceutical agent.
A related embodiment of the invention is a physiologically acceptable film that is particularly well adapted to adhere to and dissolve in a mouth of a consumer to deliver an antimicrobial agent that kills germs that cause halitosis, dental plaque and gingivitis.
Thus, the film can be an effective tool in the prevention and treatment of halitosis, dental plaque accumulation, dental tartar accumulation and gingivitis. This film preferably comprises pullulan, thymol, methyl salicylate, eucalyptol and menthol.
LISTERINE~ brand mouthwash is, perhaps, the most well-known example of an antiseptic oral composition that has proven effective in killing microbes in the oral cavity that are responsible for plaque, gingivitis and bad breath. LISTERINE~
brand mouthwash achieves its antimicrobial effect through a combination of essential oils that penetrate and kill the microorganisms. These essential oils include precisely balanced amounts of thymol, methyl salicylate, menthol and eucalyptol (hereinafter S "the essential oils") in a hydro alcoholic solution. Many bad breath bacteria live in pits or fissure on the surface of the tongue. Listerine~ Antiseptic mouthwash reduces bad breath because of high concentrations of antimicrobial agents in a liquid medium that can easily penetrate into these pits and fissures. This would not be possible with a solid dosage form containing low amounts of these antimicrobial ingredients.
However, the preferred consumable film of the invention captures a significant portion of the hygienic benefits and the consumer appeal of LIST'ERINE~ brand mouthwash, in a more portable and unobtrusively consumed form.
It was a significant challenge to maintain the essential oil interaction and relatively high oil content of LISTERINE~ brand mouthwash in a film. However, the inventors have overcome this challenge in providing the film of the invention.
A further aspect of this invention is that while the amounts of LIST'ERINE~
essential oils are relatively high for incorporation in a film, the film according to the present invention still delivers a lower total amount of essential oils per unit dose when compared to that of LISTERINE~ mouthwash. Yet the f lm suprisingly provides antimicrobial efficacy in the oral cavity. The inventors theorize that the preferred film forming ingredient, pullulan, forms a thin layer on the oral surfaces entrapping the small amount of essential oils which are capable of penetrating into the pits and fissures of the oral cavity to provide sustained antimicrobial efficacy.
Although the inventors are presently unaware of any other breath-freshening consumable film that provides antimicrobial efficacy, they are aware of a consumable film disclosed in JP S-236885, which is said to possess breath-freshening activity, but is not described as possessing any ingredients having significant antimicrobial activity.
Moreover, JP 5-236885 teaches that its film should contain flavor and extract in amounts of 5 to 7 wt %, with the flavor being added as an oil (the essential oils are not disclosed), whereas the film of the invention preferably has an oil content of at least about 10 wt %, more preferably about 15 wt % to about 30 wt %, most preferably about 1 S wt % to about 25 wt %. Except as otherwise noted in the examples, the amounts of oils and other ingredients in the film are wt% after the film formulation has been dried to create the film.
The amounts of the specific essential oils used in the film compositions can vary as long as they are in amounts sufficient to provide antimicrobial efficacy.
Generally the amount of thymol. methyl salicylate and eucalyptol is from about 0.01 to about 4 wt % of the film composition, preferably about 0.50 to about 3.0 wt %
and even more preferably from about 0.70 to about 2.0 wt % of the film. Menthol can be added from about 0.01 to about 1 S wt % of the composition, preferably about 2.0 to about 10 wt % and even more preferably from about 3 to about 9 wt % of the film.
The amounts added can be readily determined to those skilled in the art and can exceed these amounts as long as the total oil content does not create sticking or other processing problems. In certain embodiments, the essential oils are combined in amounts synergistically effective to kill the plaque-producing germs that cause dental plaque, gingivitis and bad breath.
S A major difficulty in formulating a film having such a relatively high oil content is that simply increasing the amount of oil in the film without determining the precise proportions of the many other ingredients typically results in a film that is too moist and therefore difficult to handle or process. The inventors have discovered how to provide a high oil content film that is moist enough so that it is not brittle, but is not so moist that it feels undesirably slimy or significantly adheres to adjacent films.
Thus, a non-self adhering film according to the invention can be stored in contact with another such film (e.g., in a stack), or can be wound about itself (e.g., around a spool), without having to place a non-stick agent (e.g., a plastic film, paper or other support) between adjacent portions of film.
The film-forming agent used in the films according to the present invention can be selected from the group consisting of pullulan, hydroxypropyimethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl pyrroIidone, carboxymethyl cellulose, polyvinyl alcohol, sodium alginate, polyethylene glycol, xanthan gum, tragacanth gum, guar gum, acacia gum, arabic gum, polyacrylic acid, methylmethacryiate copolymer, carboxyvinyl polymer. amylose, high amylose starch, hydroxypropylated high amylose starch, dextrin, pectin, chitin, chitosan, levan, elsinan, collagen, gelatin, zero. gluten, soy protein isolate. whev protein isolate, casein and mixtures thereof. A preferred film former is pullulan, in amounts ranging from about 0.01 to about 99 wt %, preferably about 30 to about 80 wt %, more preferably from about 45 to about 70 wt % of the film and even more preferably from about 60 to about 65 wt % of the film.
The film of the invention preferably comprises pullulan as a film-forming agent and the essential oils as antimicrobial/flavoring agents, and can further comprise water, additional antimicrobiai agents, additional film-forming agents, plasticizing agents, additional flavoring agents, sulfur precipitating agents. saliva stimulating agents, cooling agents, surfactants, stabilizing agents, emulsifying agents, thickening agents, binding agents, coloring agents, sweeteners, fragrances, and the like.
Due to the relatively high oil content in the oral care film, it is preferable to avoid substantial amounts of humectant in the film (and more preferable to have no humectant in the film), so as to avoid producing an overly moist, self adhering film.
In particular, it is preferred to formulate the film with a plasticizing agent other than glycerin, which is also a humectant, and with a sweetener other than sorbitol, which is a mild humectant.
Sulfur precipitating agents that reduce oral malodor can also be added to the oral care films according to the present invention. These agents bind with, and inactivate, the volatile sulfur compounds that cause a large percentage of oral malodor.
Sulfur precipitating agents useful in the present invention include metal salts such as copper salts and zinc salts. Preferred salts include copper gluconate, zinc citrate and zinc gluconate. 'The amount of sulfur precipitating agent is from about 0.01 to about 2 wt %, preferably about . l5 wt % to about 1.5 wt %, even more preferably about .25 wt to about 1.0 wt % of the film.
Saliva stimulating agents can also be added to the oral care films according to the present mventaon. Useful saliva stimulating agents are those disclosed in U.S.
Patent No.
4,820,506. Saliva stimulating agents include food acids such as citric, lactic, malic, succinic, ascorbic, adipie, fumaric and tartaric acids. Preferred food acids are citric, malic and ascorbic acids. The amount of saliva stimulating agents in the f Im is from about 0.01 to about 12 wt %, preferably about 1 wt % to about 10 wt %, even more preferably about 2.5 wt % to about 6wt%.
Preferred plasticizing agents include triacetin in amounts ranging from about to about 20 wt %, preferably about 0 to about 2 wt %. Other suitable plasticizing agents include monoacetin and diacetin.
Preferred cooling agents include monomenthyl succinate, in amounts ranging from about 0.001 to about 2.0 wt %, preferably about 0.2 to about 0.4 wt %. A
monomenthyl succinate containing cooling agent is available from Mane, Ine.
Other suitable cooling agents include WS3TM, WS23T"', UltracoolTMII and the like.
Preferred surfactants incl ude mono and diglycerides of fatty acids and polyoxyethyiene sorbitol esters, such as, AtmosT"' 300 and PolysorbateTM 80. The surfactant can be added in amounts ranging from about 0.5 to about l5 wt %, preferably about 1 to about ~ wt % of the film. Other suitable surfactants include pluronic acid, sodium lauryl sulfate, and the like.
Preferred stabilizing agents include xanthan gum, locust bean gum and S carrageenan, in amounts ranging from about 0 to about 10 wt %, preferably about 0.1 to about 2 wt % of the film. Other suitable stabilizing agents include guar gum and the like.
Preferred emulsifying agents include triethanolamine stearate, quaternary ammonium compounds, acacia, gelatin, lecithin, bentonite, veegum. and the like, in amounts ranging from about 0 to about 5 wt %, preferably about 0.01 to about 0.7 wt of the film.
Preferred thickening agents include methylcellulose, carboxyl methylcellulose, and the like, in amounts ranging from about 0 to about 20 wt %, preferably about 0.01 to about 5 wt %.
Preferred binding agents include starch. in amounts ranging from about 0 to about 10 wt %, preferably about 0.01 to about 2 wt % of the film.
Suitable sweeteners that can be included are those well known in the art, including both natural and artificial sweeteners. Suitable sweeteners include, e.g.:
A. water-soluble sweetening agents such as monosaccharides, disaccharides and polysaccharides such as xylose, ribose, glucose (dextrose), mannose, galactose, fructose (levulose), sucrose (sugar), maltose, invert sugar (a mixture of fructose and glucose derived from sucrose), partially hydrolyzed starch, corn syrup solids, dihydrochalcones, monellin, steviosides, and glycyrrhizin;
B. water-soluble artificial sweeteners such as the soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium S or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2, 2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (acesulfameTM-K), the free acid form of saccharin, and the like;
C. dipeptide based sweeteners, such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (aspartameTM) and materials described in U.S. Pat. No. 3,492,131, L-alpha-aspartyl-N-(2,2,4,4--tetramethyl-3-thietanyl)-D-alaninamide hydrate, methyl esters of L-aspartyl-L-phenylglycerin and L-aspartyl-L-2,S,dihydrophenyl-glycine, L-aspartyl-2,5-dihydro- L-phenylalanine, L-aspartyl-L-( I -cyclohexyen)-alanine, and the like;
D. water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, such as a chlorinated derivative of ordinary sugar (sucrose), known, for example, under the product description of sucralose; and E. protein based sweeteners such as thaumatoccous danielli (ThaumatinTM I and II) In general, an effective amount of auxiliary sweetener is utilized to provide the level of sweetness desired for a particular composition, and this amount will vary with the sweetener selected. This amount will normally be 0.01 % to about l0 % by weight of the composition when using an easily extractable sweetener. The water-soluble sweeteners described in category A above, are usually used in amounts of about 0.01 to about 10 wt %, and preferably in amounts of about 2 to about 5 wt %. Some of the sweeteners in category A (e.g., glycyrrhizin) can be used in amounts set forth for categories B-E below due to the sweeteners' known sweetening ability. In contrast, the sweeteners described in categories B-E are generally used in amounts of about 0.01 to about 10 wt %, with about 2 to about 8 wt % being preferred and about 3 to about 6 wt % being most preferred. These amounts may be used to achieve a desired level of sweetness independent from the flavor level achieved from any optional flavor oils used. Of course, sweeteners need not be added to films intended for non-oral administration.
The flavorings that can be used include those known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics, and/or oils, oleo resins and extracts derived from plants, leaves, flowers, fruits and so forth, and combinations thereof. Representative flavor oils include: spearmint oil, cinnamon oil, peppermint oil, clove oil, bay oil, thyme oil, cedar leaf oil, oil of nutmeg, oil of sage, and oil of bitter almonds. Also useful are artificial, natural or synthetic fruit flavors such as vanilla, chocolate, coffee, cocoa and citrus oil, including lemon, orange, grape. lime and grapefruit and fruit essences including apple, pear, peach, strawberry, raspberry, cheny, plum, pineapple, apricot and so forth. These flavorings can be used individually or in admixture.
Commonly used flavors include mints such as peppermint. artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture.
Flavorings such as aldehydes and esters including cinnamyl acetate, cinnamaldehyde, citral, diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylanisole, and so forth may also be used. Generally, any flavoring or food additive, such as those described in Chemicals Used in Food Processing, publication 1274 by the National Academy of Sciences, pages 63-258, may be used. Further examples of aldehyde flavorings include. but are not limited to acetaldehyde (apple); benzaldehyde (cherry, almond);
cinnamic aldehyde (cinnamon); citral, i.e., alpha citral (lemon, lime); neral, i.e. beta citral (lemon, lime); decanal (orange, lemon); ethyl vanillin (vanilla, cream);
heliotropine, i.e., piperonal (vanilla, cream); vanillin (vanilla, cream);
alpha-amyl cinnamaldehyde (spicy fruity flavors); butyraldehyde (butter, cheese);
valeraldehyde (butter, cheese); citronella) (modifies, many types); decanal (citrus fruits);
aldehyde C-8 (citrus fruits); aldehyde C-9 (citrus fruits); aldehyde C-12 (citrus fruits); 2-ethyl butyraldehyde (berry fruits); hexenal, i.e. trans-2 (berry fruits); tolyl aldehyde (cherry, almond); veratraldehyde (vanilla); 2,6-dimethyl- S-heptenal, i.e. melonal (melon);
2-6-dimethyloctanal (green fruit); and 2-dodece~al (citrus, mandarin); cherry;
grape;
mixtures thereof; and the like.
The amount of flavoring employed is normally a matter of preference subject to such factors as flavor type, individual flavor, and strength desired. Thus, the amount may be varied in order to obtain the result desired in the final product. Such variations are within the capabilities of those skilled in the art without the need for undue experimentation. In general, amounts of about 0.1 to about 30 wt % are useable with amounts of about 2 to about 25 wt % being preferred and amounts from about 8 to S about 10 wt % are more preferred.
The compositions of this invention can also contain coloring agents or colorants. The coloring agents are used in amounts effective to produce the desired color. The coloring agents useful in the present invention, include pigments such as titanium dioxide, which may be incorporated in amounts of up to about S wt %, and preferably less than about 1 wt %. Colorants can also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as FD&C dyes and lakes. The materials acceptable for the foregoing spectrum of use are preferably water-soluble, and include FD&C Blue No. 2, which is the disodium salt of 5,5-indigotindisulfonic acid. Similarly, the dye known as Green No. 3 comprises a triphenylmethane dye and is the monosodium salt of 4-(4-N-ethyl-p-sulfobenzylamino) diphenyl-methylene)-[1-N-ethyl-N-p-sulfonium benzyl)-2,5-cyclo-hexadienimine).
A
full recitation of all FD&C and D&C dyes and their corresponding chemical swctures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, Volume S, Pages 857-884.
Antimicrobial Efficacy of Oral Care Films The preferred embodiment of the oral care film composition according to the present invention contains the essential oils used in Listerine~ mouthwash to provide antimicrobial efficacy. The films are shaped and sized to be placed in the oral cavity.
The film adheres to a surface in the mouth, usually the roof of the mouth or the tongue, and quickly dissolves. The amount of essential oils in one individual film that is a preferred size for placing in the mouth is significantly lower than that in the recommended amount, 20m1, of Listerine~ mouthwash.
In a preferred formula according to the present invention, the amount of thymol and eucalyptol in the film is about 70 times less than in the mouthwash. The amount of methyl salicylate in the film is about 46 times less than in the mouthwash.
The amount of menthol in the film is about 2.8 times less than in the mouthwash.
These figures are based on comparing a 20 ml dose of liquid mouthwash with a 0.0358 gram film.
The inventors have unexpectedly found that the film provides sustained antimicrobial efficacy at these low amounts of oils. The inventors believe that the efficacy of the essential oils is enhanced by the creation of a layer of pullulan in the oral cavity that holds the essential oils. This is unexpected because pullulan is water-soluble and the film dissolves very quickly.
The extended antimicrobial activity is shown in the following experiments.
The purpose of these experiments was to determine the antibacterial efficacy of an application of a breath film on tongue malodor microorganisms thirty, sixty or ninety minutes after use. The thirty minute study also tested the efficacy of using two films. Subjects' baseline oral malodor microbial recoverable counts were detecznined by plating the microorganisms recovered from a tongue swab on a selective agar medium. The test product was dispensed and subjects dissolved one or two breath films on their tongue. Subjects remained on the premises and returned for a second tongue swab thirty, sixty or ninety minutes after placement of the test product on their tongue. After a forty-eight hour washout period, subjects returned for a no treatment control.
The thirty minute single film use group showed a reduction in mean log malodor microbial counts compared to the control group. The data was borderline statistically significant (p=0.052). The difference between the one film group and the no treatment control group represented a 42.7% reduction in malodor microbial colony counts.
Statistically significant malodor microbial reduction was also observed with the two film use group. A 79.6% reduction in malodor microbial colony counts was 1 S obtained (p<0.00 I ).
Statistically significant malodor microbial reduction was observed sixty minutes after use of a single breath film. A 69.8% reduction in malodor microbial colony counts was obtained (p=0.002).
Significant malodor reduction was also observed ninety minutes after use of a single breath film. A 69.1 % reduction in malodor microbial colony counts was obtained (p=0.006).
Tte data from these studies support the following conclusions: ( 1 ) E'ullulan polymer-based breath film containing essential oils is an effective antibacterial composition against oral malodor causing bacteria and (2) significant in vivo bacterial reductions were achieved at thirty, sixty and ninety minutes post use.
Experimental Procedures The procedures used in these antimicrobial studies were as follows. The subject were required to refrain from all oral hygiene procedures (e.g., toothbrushing, oral lavage) eating or drinking any food, beverage or confectionery products from midnight prior to the study and until the study was completed on each test day.
Subjects refrained from smoking on mornings prior to the odor evaluations.
In vivo Germ Kill Assay 1. Materials Test tubes containing 10 ml of sterile 0.01 % peptone Sterile Swabs 1 S OOPS fIIT"' Agar (B.-F. Turng, G.E. Minah, and W.A. Falkler. Development of an Agar Medium for Detection of Oral HAS-producing Organisms. 1 Dent Res 76 IADR Abstracts 1997.):
Columbia Agar Base (Catalogue # DF0792- l 7-3 ) 44 grams Distilled Water 1 liter Lead Acetate' (Sigma L3396) 0.? grams Hemin Solutionb (Sigma H-1652) 2 ml Glutathione' (Sigma G4251TM) 1.2 grams Forty-four grams of Columbia Blood Agar Base was suspended in 1 liter distilled water and boiled to dissolve completely. The media was sterilized at I 2 I -124°C for 15 minutes.
S ° Dissolved 0.2 grams of lead acetate in 1 ml of distilled Hz0 and filter sterilized.
Added after autoclaving the base media.
b Dissolved SO mg of hemin in 1 ml of 1N NaOH; qs'd to 100 ml with distilled HzO.
Filter sterilized. Added 2 ml per liter of OOPS III after autoclaving base media.
Dissolved 1.2 grams of glutathione in 10 ml of distilled HzO. Filter sterilized.
Added after autoclaving base media.
2. Procedure a. All media were prereduced in an anaerobic chamber overnight. Plates were loosely wrapped in plastic bags to prevent excessive drying.
b. Panelists refrained from oral hygiene, eating and drinking from midnight prior ~S to the assay and until the assay was complete. Twelve panelists were used for the sixty and ninety minute experiments. Eighteen panelists were used for the thirty minute experiments.
c. Each panelist swabbed the right side of his tongue by placing the swab at the midpoint of the tongue and swiping forward to the tip. The swab was placed in a tube of peptone.
d. The panelist received a film treatment, either a single or double film.
Panelists placed the breath film on the left side of their tongue covering the tongue from the midpoint to the tip and allowed the film to dissolve with the mouth slightly open for thirty seconds to prevent the film from sticking to the palate.
e. After thirty or sixty minutes, panelists swabbed the left side of the tongue by S placing the swab at the midpoint of the tongue and swiping forward to the tip.
The swab was placed in a tube of peptone.
f. The tubes of peptone were vortexed vigorously for 10 seconds, and serial dilutions were made. The 10'' dilution was plated in duplicate on OOPS III
Agar using a Spiral Biotech Autoplate 4000r"' (Bethesda, MD). All plates were identified with the subject's initials, assay date, sampling time station, and replicate number.
g. The plates were incubated in an anaerobic chamber at 35-37°C for 7 days to permit full development of colonies without overgrowth.
h. After a 48 hour wash out period, panelists returned for the no treatment control.
No film was applied, and steps (e) through (g) were followed as described above.
i. After a 48 hour wash out period, the sixty minute panelists returned for another single Flm application. Steps (a) through (h) were followed, with the exception that panelists returned after 90 min in step e.
j. The dark-pigmented colonies (HZS-producing organisms) were counted as whole plate counts by hand under appropriate magnification or by Segment counts using a Spiral BiotechT"' counting template. The appropriate code was entered on the data sheet to permit interpretation of the counts. The CFU's counted were converted to CFU/mi by dividing by the appropriate exponential volume constant listed in Table A and multiplying by 1000. This value was S then multiplied by the dilution factor of the plate ( 104) Table A. Exponential Volume Constants for Segment Pairs Last Counted SegmentExponential Volume Constant 8 1.214 9 2.968 S.S00 11 9.157 12 14.482 13 25.01 S
Total Plate 50.030 The film used in the in vivo gen-n kill tests was Example 19 as described in Table 2. The films used in the study were approximately 22mm x 32mm, between 10 about 0.0013 and O.OOIS inches thick and weighed between about 3S to about 37 mg.
The enhanced activity of the essential oil containing pullulan film is also shown in Figures l and 2. Figure 1 is a photograph of an agar plate spread with Streptococcus mutonS, ATCC # 2S 17S, to which a piece of an essential oil pullulan film according to the present invention was added. The piece of film delivered approximately .391 mg of essential oils using Example 15 listed below.
Figure 2 is a photograph of an agar plate spread with Streptococcus mutans, ATCC # 25175 to which drops of essential oils have been added. The drops were S u1 in volume and contained 0.391 mg of essential oils. The percentages of each essential oil in the drop are 2.200% menthol, 0.186% eucalyptol, 0.186% methyl salicylate and 0.1300% thymol in a hydro alcohol solution.
The area or zone of inhibition around the film in Figure 1 is much larger than the dimensions of the film. This is due to the presence of pullulan because the oils in the pullulan film were spread by the puliulan, diffused outward and did not wash away after repeated rinses. In contrast, the essential oils in Figure 2 did not diffuse away from the droplet, remained as a circle and easily washed off after 1-2 rinses.
This shows that the antimicrobial efficacy of the essential oils is enhanced by the presence of pullulan.
Methods For Preparing Essential Oil Containing Films Methods for preparing films according to the invention are capable of encapsulating the oil ingredients within the film-forming matrix and maintaining the integrity of the film, even when the film contains oils in amounts of 10 wt %
or more.
In certain methods for preparing films according to the invention, the film-forming ingredients are mixed and hydrated with water separately from the water-soluble ingredients, which are mixed in aqueous solution separately from the organic ingredients and surfactants. In these methods, the final formulation is preferably produced by mixing the film-forming phase with the aqueous phase. then mixing in TM TM
the organic phase, which includes surfactants, such as Polysorbate 80 and Atmos 300.
This mass is mixed until emulsified. In other embodiments, the aqueous and film forming phases are combined into a single phase by dissolving the water soluble ingredients in the water and then adding the gums to hydrate. The organic phase is then added to this single aqueous phase.
The resulting formulation is cast on a suitable substrate and dried to form a film. The film is preferably air-dried or dried under warm air and cut to a desired dimension, packaged and stored. The film can contain from about 0. I % to about I 0 wt % moisture, preferably from about 3 % to about 8 wt % moisture, even more preferably from about 4 to about 7 wt % moisture.
The film-forming phase can include pullulan and stabilizing agents such as xanthan gum, locust bean gum and carrageenan. These ingredients are mixed and then hydrated in water forabout 30 to about 48 hours to form a gel. The water is preferably heated to a temperature of about 25 to about 45 °C to promote hydration. The amount of water is about 40 to 80 % of the gel. The resulting hydrated gel is then chilled to a temperature of about 20 to about 30 °C for about 1 to about 48 hours.
The water is preferably deionized.
The aqueous phase can include ingredients such as coloring agent(s), copper gluconate and sweetener. The water is preferably deionized and the amount of water used is about 5 to about 80 wt % of the final gel mixture.
If sodium saccharin and copper giuconate are both ingredients in the formulation, it is preferable to dissolve them separately in solution to avoid precipitation.
S In a preferred method of producing essential oil containing films according to the invention, it is possible to hydrate the film-forming ingredients and combine all of the ingredients without heating. The preferred method of producing films comprises dissolving the water-soluble ingredients in water to form an aqueous mixture;
mixing the film-forming ingredients in powder form to form a powder mixture; adding the powder mixture to the aqueous mixture to form a hydrated polymer gel; stirring the hydrated polymer at room temperature for about 30 minutes to about 48 hours;
mixing the cooling agent, thymol and menthol in the flavor oil to form an oil mixture; adding methyl salicylate; eucalyptol and surfactants to the oil mixture; adding the oil mixture to the hydrated polymer gel and mixing until uniform; deaerating the film until air bubbles are removed, casting the uniform mixture on a suitable substrate; and drying the cast mixture to form a film.
The preferred method for making an essential oil containing film hydrates the film-forming ingredients without heating the water. Heating the ingredients increases energy costs in the manufacturing process. Moreover, heating results in undesirable losses of volatile ingredients to evaporation, which also affects the germ killing activity of the composition due to the loss of essential oils. Further, mixing the oils in two steps minimizes the amount of flavor lost.
While not wishing to be bound by any theories, it is believed that the film-forming ingredients can be hydrated and mixed without heating due to an ionic effect known as the Donnan equilibrium. Hydrating the film-fon-ning agents in the presence of electrolytes in solution effectively lowers the viscosity of the polymer gel being formed, thus increasing the efficiency of the hydrating process. The water-soluble ingredients of the formulation provide the electrolytes, which are dissolved in the hydration solution prior to addition of the film-forming ingredients. High-shear mixing also accelerates hydration, which delumps the powders, providing greater surface area for water contact. In addition, local heating effects, generated in the shear regions, provide energy for hydration without substantially raising the temperature of the mass.
It is preferable to avoid adding both copper gluconate and saccharin at the same time to the aqueous solution, as a precipitate will form. Thus, it is preferred to combine sweeteners other than saccharin with copper gluconate.
Description of Film Compositions That Deliver Pharmaceutical Agents A second embodiment of the invention is a fast dissolving film that includes at least one physiologically acceptable, pharmaceutically active agent. The expression "physiologically acceptable" as used herein is intended to encompass compounds, which upon administration to a patient, are adequately tolerated without causing undue negative side effects. The expression encompasses edible compounds.
The expression "pharmaceutically active agents" as used herein is intended to encompass agents other than foods, which promote a structural and/or functional change in and/or on bodies to which they have been administered. These agents are not particularly limited; however, they should be physiologically acceptable and compatible with the film. Suitable pharmaceutically active agents include, but are not limited to:
A. antimicrobial agents, such as triclosan, cetyl pyridium chloride, domiphen bromide, quaternary ammonium salts, zinc compounds, sanguinarine, fluorides, alexidine, octonidine, EDTA, and the like, B. non-steroidal anti-inflammatory drugs, such as aspirin, acetaminophen, ibuprofen, ketoprofen, diflunisal, fenoprofen calcium, naproxen, tolmetin sodium, indomethacin, and the like, C. anti-tussives, such as benzonatate, caramiphen edisylate, menthol, dextromethorphan hydrobromide, chlophedianol hydrochloride, and the like, D. decongestants, such as pseudoephedrine hydrochloride, phenylepherine, phenylpropanolamine, pseudoephedrine sulfate, and the like, E. anti-histamines, such as brompheniramine maleate, chlorpheniramine maleate, carbinoxamine maleate, clemastine fumarate, dexchlorpheniramine maleate, diphenhydramine hydrochloride, diphenylpyraline hydrochloride, azatadine meleate, diphenhydramine citrate. doxylamine succinate, promethazine hydrochloride, pyrilamine maleate, tripelennamine citrate, triprolidine hydrochloride, acrivastine, loratadine, brompheniramine, dexbrompheniramine, and the like, F. expectorants, such as guaifenesin, ipecac, potassium iodide, tenpin hydrate, and the like, G. anti-diarrheals, such a loperamide, and the like, H. Hz -antagonists, such as famotidine, ranitidine, and the like; and I. proton pump inhibitors, such as omeprazole, lansoprazole. and the tike, J. general nonselective CNS depressants, such as aliphatic alcohols, barbiturates and the like, K. general nonselective CNS stimulants such as caffeine, nicotine, strychnine, picrotoxin, pentyienetetrazol and the like, L. drugs that selectively modify CNS function such as phenyhydantoin, phenobarbital, primidone, carbamazepine, ethosuximide, methsuximide, phensuximide, trimethadione, diazepam, benzodiazepines, phenacemide, pheneturide, acetazolamide, sulthiame, bromide, and the like, M. antiparkinsonism drugs such as levodopa, amantadine and the like, N. narcotic-analgesics such as morphine, heroin, hydromorphone, metopon, oxymorphone, levorphanol, codeine, hydrocodone, xycodone, nalorphine, naloxone, naltrexone and the like, O. analgesic-antipyretics such as salycilates, pheny(butazone, indomethacin, phenacetin and the like, P. psychopharmacological drugs such as chlorpromazine, methotrimepra2ine, haloperidol, clozapine, reserpine, imipramine, tranylcypromine, phenelzine, lithium and the like.
The amount of medicament that can be used in the rapidly dissolving films, according to the present invention, is dependent upon the dose needed to provide an effective amount of the medicament. Examples of doses for specific medicaments that can be delivered per one strip of rapidly dissolving oral film are reviewed in Table 1.
1o TABLE 1 MEDICAMENT DOS E
Chlo heniramine Maleate 4 m .
Brom heniramine Maleate 4 m .
Dexchlo heniramine 2 m .
Dexbrom heniramine 2 m .
Tri rolidine H drochloride 2.5 m .
Acrivastine 8 m .
Azatadine Maleate 1 m .
Loratidine 10 m .
Phen 1e brine H drochloride10 m .
Dextrometho ban H drochloride10-20 m .
Keto rofen 12.5 m .
Sumatri tan Succinate 3 5 - 70 m .
Zolmitri tan 2.5 m .
Lo eramide 2 m .
Famotidine 10 m .
Nicotine 2 m .
Di henh dramine H drochloride25 m .
Pseudoephedrine Hydrochloride30 mg.~
The ingredients used io make the pharmaceutical containing films are similar to those used to make oral care films. Specifically, the plasticizing agents, cooling agents, surfactants, stabilizing agents, emulsifiers, thickening agents, binding agents, film formers, sweeteners, flavors and colors described above can also be used in all of S the films according to the present invention.
The films that deliver a pharmaceutical agent can also include a triglyceride.
Examples of triglycerides include vegetable oils such as corn oil, sunflower oil, peanut oil, olive oil, canola oil, soybean oil and mixtures thereof. A preferred triglyceride is olive oil. The trigIyceride is added to the film in amounts from about 0.1 wt % to about 12 wt %, preferably in a range from about 0.5 wt % to about 9 wt %, of the film.
The films that contain pharmaceutical agents also can include a preservative.
The preservative is added in amounts from about 0.001 wt % to about 5 wt %, preferably from about 0.01 wt % to about 1 wt % of the film. Preferred preservatives include sodium benzoate and potassium sorbate.
~S The pharmaceutical agent containing films can also include a polyethylene oxide compound. The molecular weight of the polyethylene oxide compound ranges from about 50,000 to about 6,000,000. A preferred polyethylene oxide compound is N-IOTM available from Union Carbide Corporation. The polyethylene oxide compound is added in amounts from about 0.1 wt % to about 5 wt %, preferably from about 0.2 wt % to about 4.0 wt % of the film.
The pharmaceutical agent containing films can also include propylene glycol.
The propylene glycol is added in amounts from about l wt % to about 20 wt %, preferably from about S wt % to about 1 S wt % of the film.
The active ingredient used in the film can be coated to mask the taste of the active ingredient or to prevent the active ingredient from numbing the tongue or other S surfaces in the oral cavity. The coatings that can be used are known to those skilled in the art. These include polymers such, as Eudragit~ E, cellulosics, such a_s ethylcellulose, and the like.
An additional way to mask the taste of the active ingredient is by using an ion exchange resin such as Amberlite RP-69TM, available from Rohm and Haas, and Dow XYS-40010.OOTM, available from the Dow Chemical Co.
Examples The invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be Limited thereto.
Preparation Method I
The following method was used to prepare the films of Examples I-13.
A. The film-forming ingredients (e.g., xanthan gum, locust bean gum, carrageenan and pullulan) other than Polysorbate 80 and Atmos 300 are mixed and hydrated in hot purified water to form a gel and stored in a refrigerator overnight at a temperature of approximately 4 °C to form preparation A.
B. The coloring agent(s). copper gluconate and sweetener are added to and dissolved in purified water to form preparation B.
C. Preparation B is added to preparation A and mixed well to form preparation C.
D. The flavoring agent and the oils (e.g., cooling agent, thymol, methyl salicylate, eucalyptol and menthol) are mixed to form preparation D.
E. The polysorbate 80 and Atmos 300 are added to preparation D and mixed well to form preparation E.
F. Preparation E is added to preparation C and mixed well to form preparation F.
Preparation F is poured on a mold and cast to form a film of a desired thickness at room temperature. The film is dried under warm air and cut to a desired dimension, packaged and stored.
Preparation Method Il Examples 14-18 were prepared using a preferred method, which comprised the following steps:
A. dissolve copper giuconate, acesulfame K, aspartame, glycerin, sorbitol and dye in purified water to form an aqueous mixture;
B. mix pullulan, xanthan gum, locust bean gum and carrageenan together in powder form to form a powder mixture;
C. add the powder mixture from step B to the aqueous mixture from step A to form a hydrated polymer gel;
D. stir the hydrated polymer from step C at slow speed (about 50-100 RPM) overnight at room temperature;
E. mix and dissolve cooling agent, thymol and menthol in the flavor oil;
F. add methyl salicylate, eucalyptol, Polysorbate 80 and Atmos 300 to the oii mixture from step E;
G. add the oil mixture from step F to the hydrated polymer gel from step D and mix until uniform;
H. cast the uniform mixture from step G on a suitable backing; and I. dry the cast mixture to form a film.
Example 1 Example 1 produced a film according to the invention having a blue-green tint, a mint odor and a refreshing mint taste.
Examples 2-4 Examples 2-4 contain sorbitol, glycerin or both. These examples yielded products that easily broke off pieces, or were too moist andlor self adhering.
However they did produce films that rapidly dissolved in the oral cavity with a refreshing mint taste.
Examples 5-6 Examples 5 and 6 removed glycerin and sorbitol. 'fhe resultant films did not stick together during processing and packaging and were more moisture stable over a long time frame.
Examples 7-9 Examples 7-9 were produced to determine the effect of Avicel~ on germ killing activity. While Examples 7-9 produced more acceptable films from a S processing and handling perspective, they had diminished antimicrobial activity relative to films without Avicel~, such as Example $.
Examples 10-15 Examples 10 - 15 varied the amounts of aspartame and menthol to alter the sweetness and coolness of the film.
Example 16 Example 16 was prepared by replacing the sorbitol replaced with maltitol, which has less humectant properties. The resultant film was less sticky during processing and long term storage.
Example 17 Example 17 is prepared in which pullulan is replaced with another Flm former, polyvinyl pyrrolidone, to produce films according to the invention.
Example 18 Example 18 is prepared in which pullulan is partially replaced with another film former, konjac gum, to produce films according to the invention.
Example 19 Example 19 represents a film containing a salivary stimulant, citric acid.
Example 20 Example 20 is the film composition used in the antimicrobial efficacy studies described above.
The formulas for examples 1 - 20 are summarized in Table 2. The amounts in S these examples are presented as the actual weight (grams) or w/w %. These formulas create the solution/gel that is cast and dried into a Flm. The actual amount of each ingredient in the finished, dried film depends upon the amount of relative moisture removed during drying.
o go 0 0 00 0 0 o ~ 0 $
, ~~ n o; 00 0 00 0 0 0 0 o r0 "' sn o aoo ~~ of p ~ o s c O~ N ~~ Q< ~ D .-NV( OD
~ N C c f~ O
O
O O ~ O O OO O
O
~ OOO O O O OO OO O
n~ ~
_ ~O
~ ~ 0 N
ID N N N u1 OaDN m ~ O f h~ t1~ ..
~ ~
(D VhY h r - t p p m N
O OO O O O O OOO
O
t0 O OOo O O 0 O O O OOO
~'n O
t~ O~ m ~ t~ O f O
f0 f~ N ~~ Nt f N ~ M
~ m V Y J .- O
M O
~ ~
m n ~ ~N - .-Ott O N N M
p r O
~
M A I~ f~OOO t~ O pN O O O O
N
u'l O p rr P N O ~fOO O N N NI
~
Mt ~ t~ f~OOO (~ O aDN O O O O
N
N
d f- ~ ~ O O N
m r ~ < (V<; ON N M
M ~ ~ ~ NO O O
N
O
m ~ G< O N N M
M ~~ ~ ~
~
Y O C O
tnO O <~r7 W n ~
NN N aD O MC ~C'f N ~
MN ~ 1~ OON N O N~ O Y NO O O
O
O
'OM OA CDO OOO O ON O O
~ 1A1') N
lfO NEDaD~ .- OI
M
N y Y Y~l14DM
W ; O W O OO~naD~-N t0 OO O
O
V
A
O
r. p C
C
w c H Z a s ~ ~ c c N >> yn H ' A? ~ O~ Z MO
u' _ C7C7 ~ C ~~Y toH O L~
O ~ V
7 7 CC o d ~V U C v1 ~ !
~ ~VV ~ 0C NZ 1OO~ p ~; LHE V n j O (/1~
a V
~ .r O N p O
w ~mm ~ aar Uy A m : A ' ~g c c ~mo o Q o E- ooc o U(7m L C VN v1 ~ . o ' 'v' >' c c>> . ''C~ >?E c~c g c ~ m .~ i,c~~oA oU
~~ c ' -- n "
~
- tnbU
a Wo0 0 m~o'>5~L ood ~ o~ ooc~Ho~ o'o oE .a 0 ' x xJJ x UUa aav.-~uW ~i~Ua cncna aU~ ~n~nc~aa~ ._po Na a =u.
N
N O N~D
~ ~ f ~ m~O O~LfPlN fm N~
O N
~ O~O OO
N O O O O OON NNOn ;
QfWt1~ O~ ~~ NraD O~m IWl1 ~
O ~ mm V
~ p ~ O f0 l'7~ ~ O Y f~~
G
O G ~ C OGN N Ot~ ~O OO O
O
tD
~ ~
O O ~ ~ ~ m ~ ~ ~O ffO !hc~
f O O O O O OON N Ot~ O~O OO O
m t0tD O O m OO
O
p PfO < O l~7!'~
O O O O OON N O1~ Or-O OO O
O
N
M tDt0~ ~ ~ ~Nm O ~~ O
~O
f p ~p P1~ <O a0 l'1N) O
O
O O O ~ O GCfVN O1~ O~O N CO
~D
N
~ ~~O~ ~~ O
o '- m~ ~ Pf O Nfc~ O
f O
3 O O O O OON N G1~ O~O O O
a N
tP~!m~ ~ ~ ~
O ~ ~ f ~ ~ aO 17 O
f O O O O OON N Or O~O OO O
;
~O_ ~ O N ~ !1 O O ! h r NN!'O f b10 < R
~
O O ~ O OON t'f O~ O~O O O O
O
m ~., ~ t0__ N
N ~~ O
O O C 9 ~ ~ NNM O < off < <
O O O O OON P'f C~ O~O O O O
M
O N ~
O O rf ~ NNOiO 'P ~(D < R O
O O O ~ O OO~ ~ O~ OeO O O O
N O~ M
O O lh ~ ~ NN~ O ~ Ufl V '?
O~fO O O
O C O O OOfVC"~ Oa0 ~ O
O v G
a a ~r L7 !'~ ~ !L
a C a U~ _ ~ Z n ~ d o . ti C ~~
Oa E 9 ~j ~ Z P'>
ll~ E . p T~ . 1W H N C C L Y H 7 Vii!
C'C'O _ C N 4 ~
77 ~ E 1C N~ - N ~R L A dp~ Vp mOO (nN
W A H O
C7C711 7 C N NO~ O~~; N H WEW A O O' 0 C Z " ~ ~r> a i cc moo-~ d cc U >v v m A c O Ur a o - 'Qv E ~ o~~- oH~ C~
r r ~A ~~ c~ mma~AmE t~~ ~~ d H y'-acc ~__~ ~~a t~ndU
r '_~ '=-ac' ~o'o ~2 ' mA OO OO '~''e' 5t '~' .S'~oo o'o c~HO WOO- o - _D~
~
XX O d U Q aa~-~w~ ~UUd N N a~U ~tnNC7dQQ Zti ~ Y U O
.~
a The following examples are films according to the second embodiment of the present invention, in which the rapidly dissolving film contains a pharmaceutical agent. Examples 21 A-21 E, listed in Table 3, are medicament containing rapidly S dissolvable oral film formulas. The amounts in Table 3 are in milligrams.
Exam !e Number 21 A 2 1 H 2 t C 21 D 21 E
Dextrometho han 7.500 HBr Phen 1 Brine HCl 10.0000 10.00 Chio henicamine 4.0000 Maleate Lo idc HCl 2.0000 Nicotine 2.0000 Xanthan Gum 0.0818 0.0818 0.0818 0.0818 0.0818 Locust Bean Gum 0.0954 0.0954 0.0954 0.0954 0.0954 Catra eenan 0.4088 0.4088 0.4088 0.4088 0.4088 Pulluian 21.8036 21.8036 21.8036 21.8036 21.8036 Sodium Benzoate 0.0954 0.0954 0.0954 0.0954 0.0954 Acesuifame Potassium0.6814 0.6814 0.6814 0.6814 0.6814 Salt a NF 1.9078 1.9078 1.9078 1.9078 l .9078 Purified Water Coolin a ent 0.1363 0.1363 0.1363 0.1363 0.1363 Menthol 2.7255 2.7255 2.7255 2.7255 2.7255 Pol rbate 80 NF 0.4770 0.4770 0.4770 0.4770 0.4770 Atmos 300 0.4'770 0.4770 0.4770 0.4770 0.4770 lent Gl I 4.0882 4.0882 4.0882 4.0882 4.0882 Olive Oil 0.6814 0.6814 0.6814 0.6814 0.6814 Titanium Dioxide 0.34x7 0.3407 0.3407 0.3407 0.3407 Total Dose Wei 41.5000 44.0000 48.0000 36.0000 36.0000 t '(:alculated assuming complete evaporation of water fiom the films after drying Table 4 summarizes additional films according to the present invention. The amounts in Table 4 are % w/w prior to drying.
Table 4 Examples 22A 228 22C 220 22E 22F 22G 22H 221 Xanthan .03 .03 .06 .03 .03 .03 .06 .06 .06 Gum Locust Bean.07 .07 .07 .07 .07 .07 .07 .07 .07 Gum Carrageenan0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Pullulan 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 Sodium 0.1 0.1 0.1 .07 .07 .07 .07 .07 0.7 senzoate Acesulfame 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Potassium Aspartame 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Water qs100 qs100 4s100 Os100qs100 q5100 qs100 qs100 Os100 Cooilng 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 agent Menthol 2.0 2.0 2.0 1.3 2.0 2.0 2.0 2.0 2.0 Polysorbate0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 Atmos 300 0.35 0.35 0.35 0.35 0.35 _0.35 0.35 0.35 0.35 Propylene 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 Glycol Peg 1450 - 3.10 - _ _ _ Olive Oil - 1-2 2.0 2.0 .5-2 .5 POIyOX N-10 - - - - - 1.0 Titanium 0.25 0.25 0.25 0.25 0.25 0.25 0loxide Example 22A was used to make films containing a) 7.5 mg of dextromethorphan hydrobromide, b) 2.5 mg of tripolidine, c) 4.0 mg of S chlorpheniramine maleate and d) 12.5 mg of diphenhydramine hydrochloride.
Example 22B was used to make a film containing 10 mg of dextrometorphan hydrobromide.
Example 22C was used to make a film containing 10 mg of dextromethorphan hydrobromide.
Example 22D was used to make a film containing a) 10 mg of phenylepherine hydrochloride, h) 10 mg of phenylepherine hydrochloride and 4 mg of chlorpheniramine maleate and c) 10 mg of dextromethorphan hydrobromide.
Example 22E was used to make a film containing 7.5 mg dextromethorphan hydrobromide.
Example 22F was used to make a film containing 20 mg of coated dextromethorphan hydrobromide to provide a 7.5 mg dose.
Example 22G was used to make a film containing a) 7.5 mg dextromethorphan hydrobromide, b) 10 mg phenylepherine hydrochloride and c) 10 mg phenyiepherine hydrochloride and 4 mg chlorpheniramine maleate.
Example 22H was used to make a film containing 15 mg of dextromethorphan hydrobromide.
Example 22I was used to make a film containing 15 mg of dextromethorphan hydrobromide.
Processes For Making Pharmecutical Containing Films Example 22A was made using the following procedure.
1. Add the sodium benzoate and sweeteners to water.
S 2. Mix the locust bean gum, xanthan gum and carrageenan together.
3. Add the gum mixture to the mixture of step I and mix until dissolved.
4. Mix the active ingredient with either water or propylene glycol. Heat if needed.
5. Add the remaining ingredients to the mixture of step 4 or mix the remaining ingredients in a separate mixture.
6. Add the mixtures of step 4 and step 5 to the mixture of step 3. Cast and dry to make a film and cut to a size to achieve the desired dose.
Examples 22B-22E were made using the following procedure.
1. Add the sodium benzoate to water heated to SO C. Mix to dissolve.
2. Separately, add the Peg 1450, titanium dioxide and active ingredient to the mixture of step l, mixing with each addition.
3. Mix the locust bean gum, xanthan gum and carrageenan together.
4. Add the gums to the mixture of step 2 and mix until dissolve.
S. Add the remaining ingredients together with heat if needed.
6. Add the mixture of steps 4 and 5 together. Cast and dry to make a film and cut to a size to achieve the desired dose.
w Examples 22F - 22I were made in the same manner as Examples 20B - 20E, except the active was dispersed right before the film was cast.
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Claims (10)
1. A consumable film which dissolves in the mouth of a consumer, wherein said film comprises:
a single layer comprising pullulan;
from about 0.1% to about 2 wt % of a stabilizing agent comprising a mixture of xanthan gum, locust bean gum and carrageenan; and at least one pharmaceutical agent, wherein said pharmaceutical agent is selected from the group consisting of antimicrobial agents, non-steroidal anti-inflammatory agents, antitussives, decongestants, anti-histamines, expectorants, anti-diarrheals, H2-antagonists, proton pump inhibitors, central nervous system agents, analgesics and mixtures thereof.
a single layer comprising pullulan;
from about 0.1% to about 2 wt % of a stabilizing agent comprising a mixture of xanthan gum, locust bean gum and carrageenan; and at least one pharmaceutical agent, wherein said pharmaceutical agent is selected from the group consisting of antimicrobial agents, non-steroidal anti-inflammatory agents, antitussives, decongestants, anti-histamines, expectorants, anti-diarrheals, H2-antagonists, proton pump inhibitors, central nervous system agents, analgesics and mixtures thereof.
2. The consumable film according to claim 1, wherein the pharmaceutical agent is an antimicrobial agent selected from the group consisting of triclosan, cetyl pyridinium chloride, domiphen bromide, sanguinarine, alexidine, octonidine, EDTA and mixtures thereof.
3. The consumable film according to claim 1, wherein the pharmaceutical agent is a non-steroidal anti-inflammatory agent selected from the group consisting of aspirin, acetaminophen, ibuprofen, diflunisal, fenoprofen calcium, naproxen, tolmetin sodium, indomethacin, and mixtures thereof.
4. The consumable film according to claim 1 wherein the pharmaceutical agent is an antitussive selected from the group consisting of benzonatate, caramiphen edisylate, dextromethorphan hydrobromide, chlophedianol hydrochloride and mixtures thereof.
5. The consumable film according to claim 1 wherein the decongestant is selected from the group consisting of pseudoephedrine hydrochloride, phenylepherine, phenylpropanolamine and mixtures thereof.
6. The consumable film according to claim 1, wherein the pharmaceutical agent is an anti-histamine selected from the group consisting of brompheniramine maleate, chlorpheniramine maleate, carbinoxamine maleate, clemastine fumarate, dexchlorpheniramine maleate, diphenhydramine hydrochloride, diphenhydramine citrate, diphenylpyraline hydrochloride, doxylamine succinate, promethazine hydrochloride, pyrilamine maleate, tripelennamine citrate, triprolidine hydrochloride and mixtures thereof.
7. The consumable film according to claim 1 wherein the pharmaceutical agent is an expectorant selected from the group consisting of guaifenesin, ipecac, potassium iodide, terpin hydrate and mixtures thereof.
8. The consumable film according to claim 1 wherein the pharmaceutical agent is an anti-diarrheal which is loperamide.
9. The consumable film according to claim 1, wherein the pharmaceutical agent is an HZ-antagonist selected from the group consisting of famotidine, ranitidine and mixtures thereof.
10. The consumable film according to claim 1, wherein the pharmaceutical agent is a proton pump inhibitor selected from the group consisting of omeprazole, lansoprazole, and mixtures thereof.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10179898P | 1998-09-25 | 1998-09-25 | |
| US60/101,798 | 1998-09-25 | ||
| CA002520986A CA2520986C (en) | 1998-09-25 | 1999-09-23 | Physiological compatible film |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002520986A Division CA2520986C (en) | 1998-09-25 | 1999-09-23 | Physiological compatible film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2572461A1 CA2572461A1 (en) | 2000-04-06 |
| CA2572461C true CA2572461C (en) | 2009-12-01 |
Family
ID=37770822
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002572461A Expired - Lifetime CA2572461C (en) | 1998-09-25 | 1999-09-23 | Physiological compatible film |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2572461C (en) |
-
1999
- 1999-09-23 CA CA002572461A patent/CA2572461C/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| CA2572461A1 (en) | 2000-04-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7867509B2 (en) | Fast dissolving orally consumable films | |
| CA2520986C (en) | Physiological compatible film | |
| US20030211136A1 (en) | Fast dissolving orally consumable films containing a sweetener | |
| US20150359739A1 (en) | Edible film-strips for immediate release of active ingredients | |
| US20090196908A1 (en) | Edible film-strips with modified release active ingredients | |
| CA2467378C (en) | Cereal beta glucan compositions, methods of preparation and uses thereof | |
| CA2523372A1 (en) | Fast dissolving orally consumable films containing a modified starch for improved heat and moisture resistance | |
| CA2572461C (en) | Physiological compatible film | |
| HK1144783A (en) | Fast dissolving orally consumable films | |
| MXPA01001539A (en) | Fast dissolving orally consumable films | |
| BR9917782B1 (en) | method for the preparation of a physiologically compatible film. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| MKEX | Expiry |
Effective date: 20190923 |