CA2758782A1 - Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance - Google Patents
Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance Download PDFInfo
- Publication number
- CA2758782A1 CA2758782A1 CA 2758782 CA2758782A CA2758782A1 CA 2758782 A1 CA2758782 A1 CA 2758782A1 CA 2758782 CA2758782 CA 2758782 CA 2758782 A CA2758782 A CA 2758782A CA 2758782 A1 CA2758782 A1 CA 2758782A1
- Authority
- CA
- Canada
- Prior art keywords
- treatment system
- fluid treatment
- group
- acid
- ethylenically unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 221
- 239000000203 mixture Substances 0.000 title claims abstract description 184
- 238000011282 treatment Methods 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 35
- 229910021645 metal ion Inorganic materials 0.000 title claims description 56
- 230000006641 stabilisation Effects 0.000 title description 15
- 238000011105 stabilization Methods 0.000 title description 15
- 239000007864 aqueous solution Substances 0.000 title description 4
- 239000000463 material Substances 0.000 claims abstract description 134
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 59
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 45
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 38
- 239000004094 surface-active agent Substances 0.000 claims abstract description 31
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims abstract description 28
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 22
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 22
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims abstract description 22
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 15
- 238000001556 precipitation Methods 0.000 claims abstract description 14
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims abstract 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 77
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 76
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 70
- -1 acrylamido functionality Chemical group 0.000 claims description 51
- 229920000642 polymer Polymers 0.000 claims description 51
- 150000001732 carboxylic acid derivatives Chemical group 0.000 claims description 46
- 229920001577 copolymer Polymers 0.000 claims description 41
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims description 37
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 35
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 31
- 239000011593 sulfur Substances 0.000 claims description 31
- 229910052717 sulfur Inorganic materials 0.000 claims description 31
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 30
- 239000007795 chemical reaction product Substances 0.000 claims description 30
- 239000000376 reactant Substances 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 30
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 26
- 239000000178 monomer Substances 0.000 claims description 23
- 229910001448 ferrous ion Inorganic materials 0.000 claims description 21
- 229920001451 polypropylene glycol Polymers 0.000 claims description 21
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical group [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 18
- 150000008064 anhydrides Chemical class 0.000 claims description 18
- 229920002125 Sokalan® Polymers 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 16
- 239000007762 w/o emulsion Substances 0.000 claims description 16
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 12
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- SZHQPBJEOCHCKM-UHFFFAOYSA-N 2-phosphonobutane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(P(O)(O)=O)(C(O)=O)CC(O)=O SZHQPBJEOCHCKM-UHFFFAOYSA-N 0.000 claims description 10
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 10
- 229920005646 polycarboxylate Polymers 0.000 claims description 10
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000011859 microparticle Substances 0.000 claims description 9
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 9
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 8
- 229910019142 PO4 Inorganic materials 0.000 claims description 8
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 8
- 235000021317 phosphate Nutrition 0.000 claims description 8
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 8
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 8
- VSSGDAWBDKMCMI-UHFFFAOYSA-N 2-methyl-2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NC(C)(C)CS(O)(=O)=O VSSGDAWBDKMCMI-UHFFFAOYSA-N 0.000 claims description 7
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 7
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 7
- 239000011976 maleic acid Substances 0.000 claims description 7
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 6
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 6
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 6
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 6
- 125000005394 methallyl group Chemical group 0.000 claims description 6
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 claims description 6
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 5
- XMWLVXXYIYBETQ-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NCC(O)CS(O)(=O)=O XMWLVXXYIYBETQ-UHFFFAOYSA-N 0.000 claims description 5
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 claims description 5
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 claims description 5
- 239000003139 biocide Substances 0.000 claims description 5
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000001530 fumaric acid Substances 0.000 claims description 5
- 125000001475 halogen functional group Chemical group 0.000 claims description 5
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 5
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical group CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 claims description 5
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims description 5
- QQVDJLLNRSOCEL-UHFFFAOYSA-N (2-aminoethyl)phosphonic acid Chemical compound [NH3+]CCP(O)([O-])=O QQVDJLLNRSOCEL-UHFFFAOYSA-N 0.000 claims description 4
- IQEKRNXJPCBUAT-UHFFFAOYSA-N 2-[hydroperoxy(hydroxy)phosphoryl]acetic acid Chemical compound OOP(O)(=O)CC(O)=O IQEKRNXJPCBUAT-UHFFFAOYSA-N 0.000 claims description 4
- YDJFNSJFJXJHBG-UHFFFAOYSA-N 2-carbamoylprop-2-ene-1-sulfonic acid Chemical compound NC(=O)C(=C)CS(O)(=O)=O YDJFNSJFJXJHBG-UHFFFAOYSA-N 0.000 claims description 4
- 150000003926 acrylamides Chemical class 0.000 claims description 4
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 4
- 230000003115 biocidal effect Effects 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- 235000010980 cellulose Nutrition 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 229920000388 Polyphosphate Polymers 0.000 claims description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical class CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000004450 alkenylene group Chemical group 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 3
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 claims description 3
- 229940092714 benzenesulfonic acid Drugs 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000004584 polyacrylic acid Substances 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 239000001205 polyphosphate Substances 0.000 claims description 3
- 235000011176 polyphosphates Nutrition 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910001415 sodium ion Inorganic materials 0.000 claims description 3
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 3
- 150000003463 sulfur Chemical class 0.000 claims description 3
- 229920001567 vinyl ester resin Polymers 0.000 claims description 3
- BAERPNBPLZWCES-UHFFFAOYSA-N (2-hydroxy-1-phosphonoethyl)phosphonic acid Chemical compound OCC(P(O)(O)=O)P(O)(O)=O BAERPNBPLZWCES-UHFFFAOYSA-N 0.000 claims description 2
- KMDMOMDSEVTJTI-UHFFFAOYSA-N 2-phosphonobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)P(O)(O)=O KMDMOMDSEVTJTI-UHFFFAOYSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical class [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical class O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 claims description 2
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004115 Sodium Silicate Chemical class 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 claims description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Chemical class 0.000 claims description 2
- MEUIIHOXOWVKNP-UHFFFAOYSA-N phosphanylformic acid Chemical compound OC(P)=O MEUIIHOXOWVKNP-UHFFFAOYSA-N 0.000 claims description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical class [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 125000004964 sulfoalkyl group Chemical group 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 125000006353 oxyethylene group Chemical group 0.000 claims 3
- FKWRAZBTUUDSDE-UHFFFAOYSA-N C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(CCCCCCCCCCCCCCC)[Na] Chemical compound C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(CCCCCCCCCCCCCCC)[Na] FKWRAZBTUUDSDE-UHFFFAOYSA-N 0.000 claims 2
- 239000002904 solvent Substances 0.000 claims 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 claims 1
- FPJDONUJMHAPAZ-UHFFFAOYSA-N C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(CCCCCCCCCCCCCCCCC)[Na] Chemical compound C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(CCCCCCCCCCCCCCCCC)[Na] FPJDONUJMHAPAZ-UHFFFAOYSA-N 0.000 claims 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 claims 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 claims 1
- 229940117927 ethylene oxide Drugs 0.000 claims 1
- 239000000194 fatty acid Substances 0.000 claims 1
- 229930195729 fatty acid Natural products 0.000 claims 1
- 150000004665 fatty acids Chemical class 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 239000001593 sorbitan monooleate Substances 0.000 claims 1
- 235000011069 sorbitan monooleate Nutrition 0.000 claims 1
- 229940035049 sorbitan monooleate Drugs 0.000 claims 1
- 239000001587 sorbitan monostearate Substances 0.000 claims 1
- 235000011076 sorbitan monostearate Nutrition 0.000 claims 1
- 229940035048 sorbitan monostearate Drugs 0.000 claims 1
- 239000004711 α-olefin Substances 0.000 claims 1
- 238000005755 formation reaction Methods 0.000 abstract description 28
- 125000002843 carboxylic acid group Chemical group 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 117
- 230000000670 limiting effect Effects 0.000 description 70
- 229910052742 iron Inorganic materials 0.000 description 54
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 44
- 238000012360 testing method Methods 0.000 description 34
- 235000002639 sodium chloride Nutrition 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 15
- 230000009467 reduction Effects 0.000 description 15
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- 239000000654 additive Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 239000003381 stabilizer Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- 150000001768 cations Chemical class 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 8
- 239000002738 chelating agent Substances 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- 235000010216 calcium carbonate Nutrition 0.000 description 7
- 239000013505 freshwater Substances 0.000 description 7
- 229920001002 functional polymer Polymers 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000002455 scale inhibitor Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 244000303965 Cyamopsis psoralioides Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 6
- 239000011790 ferrous sulphate Substances 0.000 description 6
- 235000003891 ferrous sulphate Nutrition 0.000 description 6
- 239000003673 groundwater Substances 0.000 description 6
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 6
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 235000013980 iron oxide Nutrition 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 229920002907 Guar gum Polymers 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101000985497 Staphylococcus saprophyticus subsp. saprophyticus (strain ATCC 15305 / DSM 20229 / NCIMB 8711 / NCTC 7292 / S-41) 3-hexulose-6-phosphate synthase 1 Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- CMPOVQUVPYXEBN-UHFFFAOYSA-N bis(2-hydroxyethyl)-methylazanium;chloride Chemical compound Cl.OCCN(C)CCO CMPOVQUVPYXEBN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 235000010417 guar gum Nutrition 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- IHBKAGRPNRKYAO-UHFFFAOYSA-M methyl sulfate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium Chemical compound COS([O-])(=O)=O.CC(=C)C(=O)OCC[N+](C)(C)C IHBKAGRPNRKYAO-UHFFFAOYSA-M 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- FZGFBJMPSHGTRQ-UHFFFAOYSA-M trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCOC(=O)C=C FZGFBJMPSHGTRQ-UHFFFAOYSA-M 0.000 description 3
- 239000002349 well water Substances 0.000 description 3
- 235000020681 well water Nutrition 0.000 description 3
- BSTPEQSVYGELTA-UHFFFAOYSA-N 2-(dimethylamino)ethanol;hydrobromide Chemical compound [Br-].C[NH+](C)CCO BSTPEQSVYGELTA-UHFFFAOYSA-N 0.000 description 2
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical compound OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000002470 solid-phase micro-extraction Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- UKKLUBWWAGMMAG-UHFFFAOYSA-N tris(2-hydroxyethyl)azanium;bromide Chemical compound Br.OCCN(CCO)CCO UKKLUBWWAGMMAG-UHFFFAOYSA-N 0.000 description 2
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- DXOFMKNITCKTIS-QXMHVHEDSA-N (z)-2-ethyloctadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCC(CC)C(O)=O DXOFMKNITCKTIS-QXMHVHEDSA-N 0.000 description 1
- JUUBMADBGZQVFT-KHPPLWFESA-N (z)-2-methyloctadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCC(C)C(O)=O JUUBMADBGZQVFT-KHPPLWFESA-N 0.000 description 1
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- UUIVKBHZENILKB-UHFFFAOYSA-N 2,2-dibromo-2-cyanoacetamide Chemical compound NC(=O)C(Br)(Br)C#N UUIVKBHZENILKB-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- RXVQXHJHJCCIFZ-UHFFFAOYSA-M 2-carboxyphenolate;hexadecyl-bis(2-hydroxyethyl)-methylazanium Chemical compound OC(=O)C1=CC=CC=C1[O-].CCCCCCCCCCCCCCCC[N+](C)(CCO)CCO RXVQXHJHJCCIFZ-UHFFFAOYSA-M 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- QDDVPEWXBBSVQT-UHFFFAOYSA-M 2-hydroxyethyl-dimethyl-octadecylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCO QDDVPEWXBBSVQT-UHFFFAOYSA-M 0.000 description 1
- IYAQFFOKAFGDKE-UHFFFAOYSA-N 4,5-dihydro-1h-imidazol-3-ium;methyl sulfate Chemical compound C1CN=CN1.COS(O)(=O)=O IYAQFFOKAFGDKE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 101000759355 Bacillus subtilis (strain 168) GTP pyrophosphokinase YwaC Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- GDFCSMCGLZFNFY-UHFFFAOYSA-N Dimethylaminopropyl Methacrylamide Chemical compound CN(C)CCCNC(=O)C(C)=C GDFCSMCGLZFNFY-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- QTEIYBBKJCLSFT-UHFFFAOYSA-M bis(2-hydroxyethyl)-methyl-octadecylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(CCO)CCO QTEIYBBKJCLSFT-UHFFFAOYSA-M 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920003118 cationic copolymer Polymers 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LFQRKUIOSYPVFY-UHFFFAOYSA-L dipotassium diacetate Chemical compound [K+].[K+].CC([O-])=O.CC([O-])=O LFQRKUIOSYPVFY-UHFFFAOYSA-L 0.000 description 1
- OPGYRRGJRBEUFK-UHFFFAOYSA-L disodium;diacetate Chemical compound [Na+].[Na+].CC([O-])=O.CC([O-])=O OPGYRRGJRBEUFK-UHFFFAOYSA-L 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- NJEGWWIFBWWYMD-UHFFFAOYSA-M ethyl-hexadecyl-bis(2-hydroxyethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](CC)(CCO)CCO NJEGWWIFBWWYMD-UHFFFAOYSA-M 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- GGDGVDMTSZPOIB-UHFFFAOYSA-M hexadecyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)CCO GGDGVDMTSZPOIB-UHFFFAOYSA-M 0.000 description 1
- JYWAVOMMQHIDEU-UHFFFAOYSA-N hexadecyl-bis(2-hydroxyethyl)-methylazanium Chemical compound CCCCCCCCCCCCCCCC[N+](C)(CCO)CCO JYWAVOMMQHIDEU-UHFFFAOYSA-N 0.000 description 1
- WKRGZRRAVBFYTJ-UHFFFAOYSA-M hexadecyl-bis(2-hydroxyethyl)-propan-2-ylazanium;iodide Chemical compound [I-].CCCCCCCCCCCCCCCC[N+](CCO)(CCO)C(C)C WKRGZRRAVBFYTJ-UHFFFAOYSA-M 0.000 description 1
- VCXTZNHFQXXDNK-UHFFFAOYSA-M hexadecyl-tris(2-hydroxyethyl)azanium;iodide Chemical compound [I-].CCCCCCCCCCCCCCCC[N+](CCO)(CCO)CCO VCXTZNHFQXXDNK-UHFFFAOYSA-M 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000000797 iron chelating agent Substances 0.000 description 1
- 229940075525 iron chelating agent Drugs 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical class OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229960004995 magnesium peroxide Drugs 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-O morpholinium Chemical compound [H+].C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-O 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- GCDRFNRPAKWXPC-UHFFFAOYSA-N n-hexadecyl-1-octadecylpyridin-1-ium-2-amine;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+]1=CC=CC=C1NCCCCCCCCCCCCCCCC GCDRFNRPAKWXPC-UHFFFAOYSA-N 0.000 description 1
- WGESLFUSXZBFQF-UHFFFAOYSA-N n-methyl-n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCN(C)CC=C WGESLFUSXZBFQF-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 235000017454 sodium diacetate Nutrition 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- XZPVPNZTYPUODG-UHFFFAOYSA-M sodium;chloride;dihydrate Chemical compound O.O.[Na+].[Cl-] XZPVPNZTYPUODG-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229940061610 sulfonated phenol Drugs 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 description 1
- OIKOKWGHIVKJBQ-UHFFFAOYSA-M tris(2-hydroxyethyl)-octadecylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](CCO)(CCO)CCO OIKOKWGHIVKJBQ-UHFFFAOYSA-M 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
- C02F5/14—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/68—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/30—Viscoelastic surfactants [VES]
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Lubricants (AREA)
Abstract
Fluid treatment systems and compositions are provided including (a) at least one material including (1) at least one carboxylic acid functional group and (2) at least one sulfur--containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent. The fluid treatment systems and compositions can be used to treat aqueous systems, for example as fracturing fluids for treating aqueous compositions found in subterranean formations. Methods for inhibiting formation and/or precipitation of metal oxides in an aqueous composition using the fluid treatment systems or compositions also are provided.
Description
FLUID TREATMENT SYSTEMS. COMPOSITIONS AND METHODS FOR METAL
ION STABILIZATION IN AQUEOUS SOLUTIONS AND/OR ENHANCED FLUID
PERFORMANCE
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
100011 The present invention relates to fluid treatment systems and compositions comprising carboxylic acid functional and sulfonyl and/or sulfonate functional polymer(s), friction reducing agent(s) and scale control agent(s), and methods using such fluid treatment systems and compositions for stabilizing metal ions in aqueous compositions, such as hydraulic fracturing compositions, and/or enhancing fluid performance.
II. TECHNICAL CONSIDERATIONS
100021 The presence of iron provides a significant and complex problem in well stimulation operations. Iron in the ferric state can form iron complexes that can block flow pathways and inhibit the flow of gas and/or oil therethrough. Also, iron can impair the performance of fracturing fluid components, such as the friction reducing additive.
100031 In oil and gas wells, air can be introduced into water present in the underground formation through the borehole or from comingling of underground water with air-saturated water which has been pumped from the surface into the well. Ground or well water typically exists in a reducing environment. As a result, iron in ground or well water typically is present as the ferrous ion (Fe 2) species. The ferrous iron can originate from many sources, such as the minerals contained within stratigraphic formations surrounding the water or from additives added to the water during oil or gas well drilling or fracturing operations.
Exposure to air (oxygen) or other oxidants (chlorine, bromine, stabilized bromine, etc.) causes ferrous ions to be oxidized to insoluble ferric (Fe) ion complexes. Ferric ion complexes, such as hydrated ferric oxides (Fe2O3=nH2O), are much less soluble than ferrous iron, and once formed can readily precipitate. The accumulation of these solids can block pores and flow pathways (or fracture conductivity) in the oil or gas well formation, thus causing permeability impairment with an associated decline in oil or gas flow. While not intending to be bound by any theory, it is believed that when iron is present in soluble or dispersed form, it is less likely to block the flow pathways, thus enhancing production potential of the well.
[00041 The formation or precipitation of iron oxides can be inhibited by stabilization of the ferrous ion, and/or suspension or dispersion of the iron oxide(s).
Stabilization is the process by which polymers: (1) form stable complexes with dissolved iron, thus preventing the formation of insoluble Fe203=nH20 and (2) absorb onto the surface of particulates that are forming, thereby greatly restricting particle growth and thus allowing the particles to remain suspended. In contrast, dispersion is the process by which pre-formed iron oxide (Fe203) particles are prevented from settling by the action of a polymer. Dispersants are generally negatively charged, low molecular weight polymers. Likewise, the surface charge of iron oxide particles is negative. The repulsion between the negatively charged particle surface and negatively charged polymers prevents the particles from agglomerating and settling.
[0005] To prevent clogging of the flow pathways in oil and gas well formations, chelating agents have been used. Citric acid, ethylenediaminetetraacetic acid (EDTA) and nitriloacetic acid (NTA) are common iron chelating agents used for iron control in fracturing fluid design.
Chelating agents function on a stoichiometric basis, i.e., one mole of chelating agent is needed per mole of iron. Additional chelating agent is needed to drive the reaction, with the dose depending on the conditional stability constant (K = [complex] /[metal]
[chelating agent], K being a function of pH). Thus, high doses of chelating agent are needed. The large dose requirement of citric acid results in pH depression, which in turn can negatively impact some friction reducing additives, such as polyacrylamide-based products. While sulfonated polymers have been used to disperse pre-formed ferric iron particulates and/or to stabilize low levels (510 mg/L) of ferrous ions in cooling water applications, they have not been used in oil and gas well water to stabilize the high levels of ferrous ions and/or ferric oxide particulates which can exceed 20 mg/L.
[0006] In another aspect of the stimulation process, during the hydraulic fracturing operation fluid is pumped at high velocity and high pressure drops are encountered, resulting in large energy losses. Pressures at the surface of the well of 3,000 to 15,000 psi are often required to overcome the frictional losses and fracture initiation pressure. It is well known that energy is lost due to frictional forces encountered during the movement of liquid through a pipe, tubing or conduit. The energy loss is reflected in a progressive drop in pressure measured along the path
ION STABILIZATION IN AQUEOUS SOLUTIONS AND/OR ENHANCED FLUID
PERFORMANCE
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
100011 The present invention relates to fluid treatment systems and compositions comprising carboxylic acid functional and sulfonyl and/or sulfonate functional polymer(s), friction reducing agent(s) and scale control agent(s), and methods using such fluid treatment systems and compositions for stabilizing metal ions in aqueous compositions, such as hydraulic fracturing compositions, and/or enhancing fluid performance.
II. TECHNICAL CONSIDERATIONS
100021 The presence of iron provides a significant and complex problem in well stimulation operations. Iron in the ferric state can form iron complexes that can block flow pathways and inhibit the flow of gas and/or oil therethrough. Also, iron can impair the performance of fracturing fluid components, such as the friction reducing additive.
100031 In oil and gas wells, air can be introduced into water present in the underground formation through the borehole or from comingling of underground water with air-saturated water which has been pumped from the surface into the well. Ground or well water typically exists in a reducing environment. As a result, iron in ground or well water typically is present as the ferrous ion (Fe 2) species. The ferrous iron can originate from many sources, such as the minerals contained within stratigraphic formations surrounding the water or from additives added to the water during oil or gas well drilling or fracturing operations.
Exposure to air (oxygen) or other oxidants (chlorine, bromine, stabilized bromine, etc.) causes ferrous ions to be oxidized to insoluble ferric (Fe) ion complexes. Ferric ion complexes, such as hydrated ferric oxides (Fe2O3=nH2O), are much less soluble than ferrous iron, and once formed can readily precipitate. The accumulation of these solids can block pores and flow pathways (or fracture conductivity) in the oil or gas well formation, thus causing permeability impairment with an associated decline in oil or gas flow. While not intending to be bound by any theory, it is believed that when iron is present in soluble or dispersed form, it is less likely to block the flow pathways, thus enhancing production potential of the well.
[00041 The formation or precipitation of iron oxides can be inhibited by stabilization of the ferrous ion, and/or suspension or dispersion of the iron oxide(s).
Stabilization is the process by which polymers: (1) form stable complexes with dissolved iron, thus preventing the formation of insoluble Fe203=nH20 and (2) absorb onto the surface of particulates that are forming, thereby greatly restricting particle growth and thus allowing the particles to remain suspended. In contrast, dispersion is the process by which pre-formed iron oxide (Fe203) particles are prevented from settling by the action of a polymer. Dispersants are generally negatively charged, low molecular weight polymers. Likewise, the surface charge of iron oxide particles is negative. The repulsion between the negatively charged particle surface and negatively charged polymers prevents the particles from agglomerating and settling.
[0005] To prevent clogging of the flow pathways in oil and gas well formations, chelating agents have been used. Citric acid, ethylenediaminetetraacetic acid (EDTA) and nitriloacetic acid (NTA) are common iron chelating agents used for iron control in fracturing fluid design.
Chelating agents function on a stoichiometric basis, i.e., one mole of chelating agent is needed per mole of iron. Additional chelating agent is needed to drive the reaction, with the dose depending on the conditional stability constant (K = [complex] /[metal]
[chelating agent], K being a function of pH). Thus, high doses of chelating agent are needed. The large dose requirement of citric acid results in pH depression, which in turn can negatively impact some friction reducing additives, such as polyacrylamide-based products. While sulfonated polymers have been used to disperse pre-formed ferric iron particulates and/or to stabilize low levels (510 mg/L) of ferrous ions in cooling water applications, they have not been used in oil and gas well water to stabilize the high levels of ferrous ions and/or ferric oxide particulates which can exceed 20 mg/L.
[0006] In another aspect of the stimulation process, during the hydraulic fracturing operation fluid is pumped at high velocity and high pressure drops are encountered, resulting in large energy losses. Pressures at the surface of the well of 3,000 to 15,000 psi are often required to overcome the frictional losses and fracture initiation pressure. It is well known that energy is lost due to frictional forces encountered during the movement of liquid through a pipe, tubing or conduit. The energy loss is reflected in a progressive drop in pressure measured along the path
2 between the inlet and discharge point. Factors such as fluid velocity, pipe diameter, pipe length, interior surface roughness, fluid density, and fluid viscosity impact the pressure drop, also known as differential pressure.
100071 Well-known laws of fluid dynamics correlate pressure drop as being proportional to fluid velocity. The Reynolds' number (Re) is a dimensionless number that gives a measure of the ratio of inertial forces (PV2C)to viscous forces (j '\TL), and is used to describe different flow regimes, such as laminar or turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion, while turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce random eddies, vortices and other flow instabilities. As fluid velocity increases, the conditions change from laminar to transitional to turbulent flow. Under laminar conditions flow is smooth and energy loss is minimal, while under turbulent conditions random impurities and other flow instabilities contribute to greater energy loss. Generally, turbulent flow exists when the Reynolds' number of a fluid is > 5,000. For the most part, hydraulic fracturing operations occur in the turbulent flow regime. Therefore, reducing energy loss results in significant economic and safety incentives based on lower operating pressures, less equipment fatigue, lower horsepower demand and less capital for equipment.
100081 It is well known that small amounts of high molecular weight polymers can be very effective in reducing friction loss of flowing aqueous fluids. Slickwater applications have been effectively applied in the hydraulic fracturing of Barnett Shale and other unconventional gas shale applications. Certain metal ions, such as ferrous iron, are known to degrade polyacrylamide polymers. The exact mechanism for this degradation is not completely understood but is thought to proceed by a free radical mechanism. Since oxygen is known to accelerate degradation, it seems plausible that an oxygen-anion radical is formed when a metal ion is oxidized. The highly reactive oxygen-anion radical then can attack the polymer chain, scission the polymer backbone and result in performance deterioration.
[00091 Also, carbonate and sulfate ions can be present in flowback water from fracturing operations. The fracturing fluid in the down-hole environment can release soluble salts from the formation that can combine with the fracturing fluid and form precipitates such as calcium carbonate, calcium sulfate, barium sulfate, strontium sulfate, and iron carbonate within the
100071 Well-known laws of fluid dynamics correlate pressure drop as being proportional to fluid velocity. The Reynolds' number (Re) is a dimensionless number that gives a measure of the ratio of inertial forces (PV2C)to viscous forces (j '\TL), and is used to describe different flow regimes, such as laminar or turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion, while turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce random eddies, vortices and other flow instabilities. As fluid velocity increases, the conditions change from laminar to transitional to turbulent flow. Under laminar conditions flow is smooth and energy loss is minimal, while under turbulent conditions random impurities and other flow instabilities contribute to greater energy loss. Generally, turbulent flow exists when the Reynolds' number of a fluid is > 5,000. For the most part, hydraulic fracturing operations occur in the turbulent flow regime. Therefore, reducing energy loss results in significant economic and safety incentives based on lower operating pressures, less equipment fatigue, lower horsepower demand and less capital for equipment.
100081 It is well known that small amounts of high molecular weight polymers can be very effective in reducing friction loss of flowing aqueous fluids. Slickwater applications have been effectively applied in the hydraulic fracturing of Barnett Shale and other unconventional gas shale applications. Certain metal ions, such as ferrous iron, are known to degrade polyacrylamide polymers. The exact mechanism for this degradation is not completely understood but is thought to proceed by a free radical mechanism. Since oxygen is known to accelerate degradation, it seems plausible that an oxygen-anion radical is formed when a metal ion is oxidized. The highly reactive oxygen-anion radical then can attack the polymer chain, scission the polymer backbone and result in performance deterioration.
[00091 Also, carbonate and sulfate ions can be present in flowback water from fracturing operations. The fracturing fluid in the down-hole environment can release soluble salts from the formation that can combine with the fracturing fluid and form precipitates such as calcium carbonate, calcium sulfate, barium sulfate, strontium sulfate, and iron carbonate within the
3 underground fracture network and cause scale accumulation in perforations or fissures in the fractured rock [0010] There is a long-felt need in the art for alternative metal ion stabilizers that can be used to control high levels of ferrous ions and/or ferric oxide particulates which can exceed 20 mg/L in aqueous solutions, such as are typically found in hydraulic fracturing applications, and which are compatible with or provide enhanced performance of friction reducing agents and the resulting friction reducing fluid comprised of the friction reducing agents and other fluid additives. A
metal ion stabilizer or a metal precipitant dispersant that would mitigate the adverse impact of metal ions, such as ferrous iron, on the friction reduction additive would be of significant advantage to the well drilling industry.
SUMMARY OF THE INVENTION
[0011] In some non-limiting embodiments, fluid treatment systems and compositions are provided comprising: (a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof; (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
[0012] In some non-limiting embodiments, aqueous compositions or fracturing fluids are provided comprising metal ions, such as ferrous ions, and the above fluid treatment system or composition.
[0013] In some non-limiting embodiments, aqueous compositions or fracturing fluids are provided comprising at least one acid and the above fluid treatment system or composition. Such acid treatments can be used for acid fracturing treatments or combined to use in part or stages within a near-neutral pH fracturing fluid system.
[0014] In some non-limiting embodiments, methods of inhibiting formation of metal oxides in an aqueous composition comprising metal ions are provided which comprise:
mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
metal ion stabilizer or a metal precipitant dispersant that would mitigate the adverse impact of metal ions, such as ferrous iron, on the friction reduction additive would be of significant advantage to the well drilling industry.
SUMMARY OF THE INVENTION
[0011] In some non-limiting embodiments, fluid treatment systems and compositions are provided comprising: (a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof; (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
[0012] In some non-limiting embodiments, aqueous compositions or fracturing fluids are provided comprising metal ions, such as ferrous ions, and the above fluid treatment system or composition.
[0013] In some non-limiting embodiments, aqueous compositions or fracturing fluids are provided comprising at least one acid and the above fluid treatment system or composition. Such acid treatments can be used for acid fracturing treatments or combined to use in part or stages within a near-neutral pH fracturing fluid system.
[0014] In some non-limiting embodiments, methods of inhibiting formation of metal oxides in an aqueous composition comprising metal ions are provided which comprise:
mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
4 100151 In some non-limiting embodiments, methods of inhibiting precipitation of metal oxides in an aqueous composition comprising metal ions are provided which comprise:
mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
[00161 In some non-limiting embodiments, methods of treating a subterranean formation penetrated by a well bore are provided which comprise: contacting the subterranean formation with the above fracturing fluid.
100171 In some non-limiting embodiments, methods of inhibiting formation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition are provided which comprise: mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
[0018] In some non-limiting embodiments, methods of inhibiting precipitation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising: mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
BRIEF DESCRIPTION OF THE DRAWING
[0019] The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawing. In the drawing:
100201 Fig. 1 is a schematic drawing of a closed loop test apparatus for evaluating friction reduction of water systems.
DETAILED DESCRIPTION
[0021] For the purposes of this specification, unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, dimensions, physical characteristics, and so forth, used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
[00221 Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
[00231 Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "I to 10" is intended to include any and all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10, that is, all sub-ranges beginning with a minimum value equal to or greater than 1 and ending with a maximum value equal to or less than 10, and all sub-ranges in between, e.g., 1 to 6.3, or 5.5 to 10, or 2.7 to 6.1.
100241 As used herein, the term "substantially free" is meant to indicate that a material is present as an incidental impurity. In other words, the material is not intentionally added to an indicated composition, but may be present at minor or inconsequential levels because it was carried over as an impurity as part of an intended composition component.
[00251 It should also be noted that any carbon, as well as heteroatom, with unsatisfied valences in the text, schemes, examples and Table herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
[00261 When any variable (e.g., alkyl, heterocycle, R2, etc.) occurs more than one time in any constituent, its definition on each occurrence is independent of its definition at every other occurrence.
[00271 As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from the combination of the specified ingredients in the specified amounts.
[00281 As used herein, "formed from" or "prepared from" denotes open, e.g., "comprising,"
claim language. As such, it is intended that a composition "formed from" or "prepared from" a list of recited components be a composition comprising at least these recited components or the reaction product of at least these recited components, and can further comprise other, non-recited components, during the composition's formation or preparation.
[00291 As used herein, the phrase "reaction product of' means chemical reaction product(s) of the recited components, and can include partial reaction products as well as fully reacted products.
[00301 As used herein, the term "polymer" means a substance, typically of large molecular mass, comprising structural units or monomers. Examples of polymers include oligomers, homopolymers and copolymers. The term "oligomer" means a polymer consisting of only a few monomer units up to about ten monomer units, for example a dimer, trimer or tetramer.
[00311 The compositions and methods of the present invention can be useful in a wide variety of applications, non-limiting examples of which include stabilization of metal ions in aqueous systems, as well as in petroleum and gas field well drilling or fracturing operations.
[00321 In some non-limiting embodiments, the fluid treatment systems and compositions of the present invention comprise: (a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof; (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
[0033] In some non-limiting embodiments, the fluid treatment systems and compositions of the present invention consist essentially of or consist of: the at least one material (a) as described above; the at least one friction reducing agent (b) as described above; and the at least one scale control agent (c) as described above.
[0034] In some non-limiting embodiments, the at least one material (a) is a reaction product or salt thereof, wherein the reaction product is prepared from reactants comprising: at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof (includes at least one sulfonyl functional group and at least one sulfonate functional group).
[00351 In some non-limiting embodiments, suitable ethylenically unsaturated, carboxylic acid functional materials or anhydrides thereof for preparing the reaction product in the fluid treatment systems, compositions and methods of the present invention include those having acrylic or vinyl functionality. Non-limiting examples of suitable ethylenically unsaturated, carboxylic acid functional materials include those selected from the group consisting of acrylic acid, methacrylic acid, a-halo acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, a lyl acetic acid, fumaric acid, P-carboxyethyl acrylic acid, salts thereof, and mixtures thereof. A non-limiting example of a suitable ethylenically unsaturated, carboxylic acid functional anhydride is maleic anhydride.
[00361 In some non-limiting embodiments, the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof comprises about 10 to about 90 weight percent of the reactants, or about 20 to about 80 weight percent, or about 30 to about 70 weight percent, on a basis of total weight of the reactants.
[00371 In some non-limiting embodiments, suitable ethylenically unsaturated, sulfur-containing materials for preparing the reaction product in the fluid treatment systems, compositions and methods of the present invention include those having vinyl functionality, acrylic functionality, acrylamido functionality, acrylamido alkyl functionality and/or acrylamido aryl functionality.
Non-limiting examples of suitable ethylenically unsaturated, sulfur-containing materials include those selected from the group consisting of 2-acrylamido-2-methylpropyl sulfonic acid; allyl-2-hydroxypropyl sulfonic acid ether; allyl-2-hydroxypropyl sulfonate ether;
sulfomethylacrylamide; 2-propene-l-sulfonic acid, 2-methyl; 2-methacrylamido-2-methylpropyl sulfonic acid; styrene sulfonic acid; vinyl sulfonic acid; sulfoalkyl acrylate; sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
[00381 In some non-limiting embodiments, the at least one ethylenically unsaturated, sulfur-containing material comprises about 5 to about 95 weight percent of the reactants, or about 10 to about 90 weight percent of the reactants, or about 20 to about 80 weight percent, or about 30 to about 70 weight percent, on a basis of total weight of the reactants.
[00391 In some non-limiting embodiments, the weight ratio of ethylenically unsaturated, carboxylic acid functional material or anhydride thereof to ethylenically unsaturated, sulfur-containing material ranges from about 1:20 to about 20:1, or about 1:10 to about 10:1, or about 1:5 to about 5:1.
[0040] In some non-limiting embodiments, the reaction product or salt thereof useful as material (a) has a weight average molecular weight ranging from about 500 to about 1,000,000 grams per mole, or about 1,000 to about 100,000 grams per mole, or about 2,000 to about 30,000 grams per mole.
[0041] In some non-limiting embodiments, the reaction product useful as material (a) can be prepared from acrylic acid (AA) and 2-acrylamido-2-methylpropyl sulfonic acid (AMPS), for example about 25 to about 95 mole percent of acrylic acid and about 5 to about 75 mole percent of 2-acrylamido-2-methylpropyl sulfonic acid. Non-limiting examples of suitable AA/AMPS
copolymers include KR-DP0184 copolymer prepared from about 60 weight percent AA and about 40 weight percent AMPS, which is available from Kroff Chemical Co. of Pittsburgh, PA.
Another useful AA/AMPS copolymer is Acumer 2100 AA/AMPS copolymer prepared from 60 weight percent AA and 40 weight percent AMPS available from Rohm and Haas Co., a subsidiary of Dow Chemical, of Philadelphia, PA. Also, ICP-1000, a composition which is available from Superior Well Services of Indiana, PA, is supplied as a blend of an AA/AMPS
copolymer and propylene glycol, and the balance being water, sodium ion, residual sodium bisulfate, catalysts and other non-active components. Other useful AA/AMPS
copolymers include those disclosed in U.S. Patent No. 3,928,196.
[0042] Other non-limiting examples of suitable copolymers useful as material (a) include those prepared from unsaturated mono-carboxylic acids and unsaturated sulfonic acids include those disclosed in U.S. Patent No. 4,640,793.
[0043] Other non-limiting examples of suitable reaction products useful as material (a) include copolymers prepared from acrylic acid and sulfonated methacrylic acid ether (AA/SPME) such as AQUATREAT AR-540 available from Alco Chemical of Chattanooga, TN or those disclosed in U.S. Patent No. 4,892,898.
[0044] Other non-limiting examples of suitable copolymers useful as material (a) include copolymers prepared from acrylic acid and allyl-2-hydroxypropyl sulfonic acid ether (AA/AHPSE) such as HPS-1 available from GE Betz, or those disclosed in U.S.
Patent No.
4,560,481.
[0045] Other non-limiting examples of suitable copolymers useful as material (a) include those having repeat units:
R, RI
HH2 i C -CC-C
I o ItE2 L I
R2 (X
Z)a Y
wherein R1 is H or lower alkyl (CI-C3); R2 is OH or OM, or NH2; R3 is a hydroxy substituted alkyl or alkylene radical having from 1 to 6 carbon atoms or a non-substituted alkyl or alkylene radical having from 1 to about 6 carbon atoms; X, when present, is an anionic radical selected from the group consisting of SO3, P03, P04, and COO; Z, when present, is H or hydrogen or any water soluble cation or cations which together counterbalance the valence of the anionic radical; a is 0 or 1; and the molar ratio of x:y is between about 30:1 to about 1:20, such as are disclosed in U.S. Patent Nos. 4,895,663, 4,895,664, 4,944,885, 4,801,387, and 4,869,845. The number average molecular weight may fall within the range of 1,000 to 1,000,000 grams/mole.
[00461 Other non-limiting examples of suitable copolymers useful as material (a) include those having as repeat units: (i) at least one sulfonated styrene moiety:
H H
I -C
and (ii) at least one moiety derived from maleic anhydride:
I
C-C
I
C=o C=c) I
OM OM
to wherein M is a water soluble cation, or each M is independently selected from NH4, H, Na, or K.
Non-limiting examples of such copolymers include VERSA TL-4 sulfonated styrene copolymer available from Akzo-Nobel and those disclosed in U.S. Patent No. 4,288,327.
[0047] Other non-limiting examples of suitable copolymers useful as material (a) include CARBOSPERSETM K-798 terpolymer of acrylic acid, 2-acrylamido-2-methylpropyl sulfonic acid and sulfonated styrene (AA/AMPS/SS) available from Lubrizol Advanced Materials, Inc. of Cleveland, OH, and those disclosed in U.S. Patent No. 4,952,327.
[0048] In some non-limiting embodiments, the reactants used to prepare material (a) further comprise at least one ethylenically unsaturated material that is different from (1) the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (2) the at least one ethylenically unsaturated, sulfonyl functional material, and the at least one ethylenically unsaturated, sulfonate functional material. The ethylenically unsaturated material that is different from (1) and (2) is chemically different from (1) and (2), i.e., has at least one different atom or arrangement of atoms from (1) and (2). Non-limiting examples of suitable ethylenically unsaturated materials that are different from (1) and (2) include at least one monomer selected from the group consisting of acrylamides, vinyl esters, vinyl acetates and mixtures thereof, for example tert-butyl acrylamide; 2-propenoic acid, 2-methyl-, methyl ester; and mixtures thereof.
In some non-limiting embodiments, the ethylenically unsaturated materials different from (1) and (2) can comprise up to about 60 weight percent of the at least one ethylenically unsaturated material (1) above, or about 0.1 to about 60 weight percent, or about 0.5 to about 30 weight percent, or about 1 to about 15 weight percent, on a basis of total weight of the reactants.
[0049] Non-limiting examples of such copolymers useful as material (a) include terpolymer of acrylic acid, 2-acrylamido-2-methylpropyl sulfonic acid and tert-butyl acrylamide (AA/AMPS/TBAM) available from Mid South Chemical Co., Inc. of Ringgold, LA or Rohm and Haas Co.; PRISM terpolymer of acrylic acid, sulfomethylacrylamide and acrylamide (AA/SMA/AM) available from Nalco Chemical; or those disclosed in U.S. Patent Nos.
4,711,725, 4,801,388, and 5,282,976.
[0050] In some non-limiting embodiments, the reactants used to prepare material (a) further comprise at least one ethylenically unsaturated polyalkylene oxide. Non-limiting examples of suitable ethylenically unsaturated polyalkylene oxides include those selected from the group consisting of allyl polyethylene glycol, methallyl polyethylene glycol, polyethylene glycol acrylate, polyethylene glycol methacrylate, methoxy allyl polyethylene oxide, alkoxyallyl polyethylene oxide, allyl polypropylene glycol, methallyl polypropylene glycol, polypropylene glycol acrylate, polypropylene glycol methacrylate, methoxy allyl polypropylene oxide, alkoxyallyl polypropylene oxide, and mixtures thereof.
[0051] Non-limiting examples of such copolymers useful as material (a) include copolymer prepared from AA, AMPS and (CH2CH2O5)H-Methacrylic acid ether (HEM-
mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
[00161 In some non-limiting embodiments, methods of treating a subterranean formation penetrated by a well bore are provided which comprise: contacting the subterranean formation with the above fracturing fluid.
100171 In some non-limiting embodiments, methods of inhibiting formation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition are provided which comprise: mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
[0018] In some non-limiting embodiments, methods of inhibiting precipitation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising: mixing an aqueous composition comprising metal ions with the above fluid treatment system or composition.
BRIEF DESCRIPTION OF THE DRAWING
[0019] The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawing. In the drawing:
100201 Fig. 1 is a schematic drawing of a closed loop test apparatus for evaluating friction reduction of water systems.
DETAILED DESCRIPTION
[0021] For the purposes of this specification, unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, dimensions, physical characteristics, and so forth, used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
[00221 Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
[00231 Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "I to 10" is intended to include any and all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10, that is, all sub-ranges beginning with a minimum value equal to or greater than 1 and ending with a maximum value equal to or less than 10, and all sub-ranges in between, e.g., 1 to 6.3, or 5.5 to 10, or 2.7 to 6.1.
100241 As used herein, the term "substantially free" is meant to indicate that a material is present as an incidental impurity. In other words, the material is not intentionally added to an indicated composition, but may be present at minor or inconsequential levels because it was carried over as an impurity as part of an intended composition component.
[00251 It should also be noted that any carbon, as well as heteroatom, with unsatisfied valences in the text, schemes, examples and Table herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
[00261 When any variable (e.g., alkyl, heterocycle, R2, etc.) occurs more than one time in any constituent, its definition on each occurrence is independent of its definition at every other occurrence.
[00271 As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from the combination of the specified ingredients in the specified amounts.
[00281 As used herein, "formed from" or "prepared from" denotes open, e.g., "comprising,"
claim language. As such, it is intended that a composition "formed from" or "prepared from" a list of recited components be a composition comprising at least these recited components or the reaction product of at least these recited components, and can further comprise other, non-recited components, during the composition's formation or preparation.
[00291 As used herein, the phrase "reaction product of' means chemical reaction product(s) of the recited components, and can include partial reaction products as well as fully reacted products.
[00301 As used herein, the term "polymer" means a substance, typically of large molecular mass, comprising structural units or monomers. Examples of polymers include oligomers, homopolymers and copolymers. The term "oligomer" means a polymer consisting of only a few monomer units up to about ten monomer units, for example a dimer, trimer or tetramer.
[00311 The compositions and methods of the present invention can be useful in a wide variety of applications, non-limiting examples of which include stabilization of metal ions in aqueous systems, as well as in petroleum and gas field well drilling or fracturing operations.
[00321 In some non-limiting embodiments, the fluid treatment systems and compositions of the present invention comprise: (a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof; (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
[0033] In some non-limiting embodiments, the fluid treatment systems and compositions of the present invention consist essentially of or consist of: the at least one material (a) as described above; the at least one friction reducing agent (b) as described above; and the at least one scale control agent (c) as described above.
[0034] In some non-limiting embodiments, the at least one material (a) is a reaction product or salt thereof, wherein the reaction product is prepared from reactants comprising: at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof (includes at least one sulfonyl functional group and at least one sulfonate functional group).
[00351 In some non-limiting embodiments, suitable ethylenically unsaturated, carboxylic acid functional materials or anhydrides thereof for preparing the reaction product in the fluid treatment systems, compositions and methods of the present invention include those having acrylic or vinyl functionality. Non-limiting examples of suitable ethylenically unsaturated, carboxylic acid functional materials include those selected from the group consisting of acrylic acid, methacrylic acid, a-halo acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, a lyl acetic acid, fumaric acid, P-carboxyethyl acrylic acid, salts thereof, and mixtures thereof. A non-limiting example of a suitable ethylenically unsaturated, carboxylic acid functional anhydride is maleic anhydride.
[00361 In some non-limiting embodiments, the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof comprises about 10 to about 90 weight percent of the reactants, or about 20 to about 80 weight percent, or about 30 to about 70 weight percent, on a basis of total weight of the reactants.
[00371 In some non-limiting embodiments, suitable ethylenically unsaturated, sulfur-containing materials for preparing the reaction product in the fluid treatment systems, compositions and methods of the present invention include those having vinyl functionality, acrylic functionality, acrylamido functionality, acrylamido alkyl functionality and/or acrylamido aryl functionality.
Non-limiting examples of suitable ethylenically unsaturated, sulfur-containing materials include those selected from the group consisting of 2-acrylamido-2-methylpropyl sulfonic acid; allyl-2-hydroxypropyl sulfonic acid ether; allyl-2-hydroxypropyl sulfonate ether;
sulfomethylacrylamide; 2-propene-l-sulfonic acid, 2-methyl; 2-methacrylamido-2-methylpropyl sulfonic acid; styrene sulfonic acid; vinyl sulfonic acid; sulfoalkyl acrylate; sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
[00381 In some non-limiting embodiments, the at least one ethylenically unsaturated, sulfur-containing material comprises about 5 to about 95 weight percent of the reactants, or about 10 to about 90 weight percent of the reactants, or about 20 to about 80 weight percent, or about 30 to about 70 weight percent, on a basis of total weight of the reactants.
[00391 In some non-limiting embodiments, the weight ratio of ethylenically unsaturated, carboxylic acid functional material or anhydride thereof to ethylenically unsaturated, sulfur-containing material ranges from about 1:20 to about 20:1, or about 1:10 to about 10:1, or about 1:5 to about 5:1.
[0040] In some non-limiting embodiments, the reaction product or salt thereof useful as material (a) has a weight average molecular weight ranging from about 500 to about 1,000,000 grams per mole, or about 1,000 to about 100,000 grams per mole, or about 2,000 to about 30,000 grams per mole.
[0041] In some non-limiting embodiments, the reaction product useful as material (a) can be prepared from acrylic acid (AA) and 2-acrylamido-2-methylpropyl sulfonic acid (AMPS), for example about 25 to about 95 mole percent of acrylic acid and about 5 to about 75 mole percent of 2-acrylamido-2-methylpropyl sulfonic acid. Non-limiting examples of suitable AA/AMPS
copolymers include KR-DP0184 copolymer prepared from about 60 weight percent AA and about 40 weight percent AMPS, which is available from Kroff Chemical Co. of Pittsburgh, PA.
Another useful AA/AMPS copolymer is Acumer 2100 AA/AMPS copolymer prepared from 60 weight percent AA and 40 weight percent AMPS available from Rohm and Haas Co., a subsidiary of Dow Chemical, of Philadelphia, PA. Also, ICP-1000, a composition which is available from Superior Well Services of Indiana, PA, is supplied as a blend of an AA/AMPS
copolymer and propylene glycol, and the balance being water, sodium ion, residual sodium bisulfate, catalysts and other non-active components. Other useful AA/AMPS
copolymers include those disclosed in U.S. Patent No. 3,928,196.
[0042] Other non-limiting examples of suitable copolymers useful as material (a) include those prepared from unsaturated mono-carboxylic acids and unsaturated sulfonic acids include those disclosed in U.S. Patent No. 4,640,793.
[0043] Other non-limiting examples of suitable reaction products useful as material (a) include copolymers prepared from acrylic acid and sulfonated methacrylic acid ether (AA/SPME) such as AQUATREAT AR-540 available from Alco Chemical of Chattanooga, TN or those disclosed in U.S. Patent No. 4,892,898.
[0044] Other non-limiting examples of suitable copolymers useful as material (a) include copolymers prepared from acrylic acid and allyl-2-hydroxypropyl sulfonic acid ether (AA/AHPSE) such as HPS-1 available from GE Betz, or those disclosed in U.S.
Patent No.
4,560,481.
[0045] Other non-limiting examples of suitable copolymers useful as material (a) include those having repeat units:
R, RI
HH2 i C -CC-C
I o ItE2 L I
R2 (X
Z)a Y
wherein R1 is H or lower alkyl (CI-C3); R2 is OH or OM, or NH2; R3 is a hydroxy substituted alkyl or alkylene radical having from 1 to 6 carbon atoms or a non-substituted alkyl or alkylene radical having from 1 to about 6 carbon atoms; X, when present, is an anionic radical selected from the group consisting of SO3, P03, P04, and COO; Z, when present, is H or hydrogen or any water soluble cation or cations which together counterbalance the valence of the anionic radical; a is 0 or 1; and the molar ratio of x:y is between about 30:1 to about 1:20, such as are disclosed in U.S. Patent Nos. 4,895,663, 4,895,664, 4,944,885, 4,801,387, and 4,869,845. The number average molecular weight may fall within the range of 1,000 to 1,000,000 grams/mole.
[00461 Other non-limiting examples of suitable copolymers useful as material (a) include those having as repeat units: (i) at least one sulfonated styrene moiety:
H H
I -C
and (ii) at least one moiety derived from maleic anhydride:
I
C-C
I
C=o C=c) I
OM OM
to wherein M is a water soluble cation, or each M is independently selected from NH4, H, Na, or K.
Non-limiting examples of such copolymers include VERSA TL-4 sulfonated styrene copolymer available from Akzo-Nobel and those disclosed in U.S. Patent No. 4,288,327.
[0047] Other non-limiting examples of suitable copolymers useful as material (a) include CARBOSPERSETM K-798 terpolymer of acrylic acid, 2-acrylamido-2-methylpropyl sulfonic acid and sulfonated styrene (AA/AMPS/SS) available from Lubrizol Advanced Materials, Inc. of Cleveland, OH, and those disclosed in U.S. Patent No. 4,952,327.
[0048] In some non-limiting embodiments, the reactants used to prepare material (a) further comprise at least one ethylenically unsaturated material that is different from (1) the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (2) the at least one ethylenically unsaturated, sulfonyl functional material, and the at least one ethylenically unsaturated, sulfonate functional material. The ethylenically unsaturated material that is different from (1) and (2) is chemically different from (1) and (2), i.e., has at least one different atom or arrangement of atoms from (1) and (2). Non-limiting examples of suitable ethylenically unsaturated materials that are different from (1) and (2) include at least one monomer selected from the group consisting of acrylamides, vinyl esters, vinyl acetates and mixtures thereof, for example tert-butyl acrylamide; 2-propenoic acid, 2-methyl-, methyl ester; and mixtures thereof.
In some non-limiting embodiments, the ethylenically unsaturated materials different from (1) and (2) can comprise up to about 60 weight percent of the at least one ethylenically unsaturated material (1) above, or about 0.1 to about 60 weight percent, or about 0.5 to about 30 weight percent, or about 1 to about 15 weight percent, on a basis of total weight of the reactants.
[0049] Non-limiting examples of such copolymers useful as material (a) include terpolymer of acrylic acid, 2-acrylamido-2-methylpropyl sulfonic acid and tert-butyl acrylamide (AA/AMPS/TBAM) available from Mid South Chemical Co., Inc. of Ringgold, LA or Rohm and Haas Co.; PRISM terpolymer of acrylic acid, sulfomethylacrylamide and acrylamide (AA/SMA/AM) available from Nalco Chemical; or those disclosed in U.S. Patent Nos.
4,711,725, 4,801,388, and 5,282,976.
[0050] In some non-limiting embodiments, the reactants used to prepare material (a) further comprise at least one ethylenically unsaturated polyalkylene oxide. Non-limiting examples of suitable ethylenically unsaturated polyalkylene oxides include those selected from the group consisting of allyl polyethylene glycol, methallyl polyethylene glycol, polyethylene glycol acrylate, polyethylene glycol methacrylate, methoxy allyl polyethylene oxide, alkoxyallyl polyethylene oxide, allyl polypropylene glycol, methallyl polypropylene glycol, polypropylene glycol acrylate, polypropylene glycol methacrylate, methoxy allyl polypropylene oxide, alkoxyallyl polypropylene oxide, and mixtures thereof.
[0051] Non-limiting examples of such copolymers useful as material (a) include copolymer prepared from AA, AMPS and (CH2CH2O5)H-Methacrylic acid ether (HEM-
5), available from Nalco Company, or copolymers of unsaturated carboxylic acid, unsaturated sulfonic acid and unsaturated polyalkylene oxide, such as are disclosed in U.S. Patent No.
4,618,448. The ethylenically unsaturated polyalkylene oxide(s) can comprise about 0.1 to about 60 weight percent, or about 0.5 to about 30 weight percent, or about 1 to about 15 weight percent, on a basis of total weight of the reactants.
[0052] The aqueous composition can comprise about 10 parts per million (ppm) active to about 10,000 ppm of material (a), or about 10 to about 1,000 ppm, or about 10 to about 1,500 ppm, on a basis of total weight of the components of the aqueous composition.
[0053] In some non-limiting embodiments, the material (a) is at least partially water soluble. As used herein with respect to the material (a), "water soluble" means that the material (a) is capable of being at least partially or fully dissolved in water at ambient temperature (about 25 C). The solubility of a component of the fluid treatment systems or compositions of the present invention, for example solubility of the material (a), can be determined by adding 1.0 weight percent of the component to water at 25 C and mixing thoroughly (about 5 minutes) with a magnetic stirrer. The mixture is permitted to stand for 24 hours and the clarity and separation of components of the mixture is assessed by visual observation. A clear, generally haze-free solution is "water soluble", a hazy/turbid solution is "water dispersible" or "partially water soluble", and a mixture that separates into layers or has noticeable solid particulates is "water insoluble".
[0054] The fluid treatment systems or compositions comprise at least one friction reducing agent (b) selected from the group consisting of guar gums, hydratable cellulosic materials, polyacrylamides, viscoelastic surfactants and mixtures thereof. As used herein, "friction reducing agent" means a material that alters fluid rheological properties to reduce energy loss associated with friction created within the fluid or between the fluid and tubing or piping as the fluid flows though the tubing or piping. Generally, friction reducing agents decrease the turbulence induced as the fluid flows. The determination of whether a material is a friction reducing agent can be made by comparing the pressure drop in turbulent flow in a closed loop piping system such as is described in Example 3 using two aqueous compositions containing the same components, with one composition replacing a portion of the water component with the friction reducing agent. If the pressure drop is less for the composition containing the proposed friction reducing agent, then the friction reducing agent is functioning as a friction reducer. In some non-limiting embodiments, the percent friction reduction can be at least 5%, or at least 10%, or at least 20% or more. Methods for determining the percent friction reduction are described in Example 3 below.
[00551 The friction reducing agent(s) can comprise about 10 parts per million (ppm) active to about 20,000 ppm of the aqueous compositions, or about 10 to about 10,000 ppm, or about 10 to about 1,500 ppm on a basis of total weight of the components of the aqueous composition.
[00561 In some non-limiting embodiments, the friction reducing agent comprises one or more guar gums. The guar gum can be non-hydrolyzed or partially hydrolyzed (PHGG), and can be produced by the partial enzymatic hydrolysis of guaran, the galactomannan of the endosperm of guar seeds (guar gum). PHGG is a neutral polysaccharide consisting of a mannose backbone chain with single galactose side units occurring on almost two out of every three mannose units.
The average molecular weight can be about 25,000 Daltons. Other useful guar materials include hydroxypropylguar, carboxymethylhydroxypropylguar, carboxymethylguar and mixtures thereof.
[00571 In some non-limiting embodiments, the friction reducing agent comprises one or more viscoelastic surfactants. As used herein, "viscoelastic" means a viscous liquid having elastic properties, i.e., the liquid at least partially returns to its original form when an applied stress is released, or that the elastic (or storage) modulus G' of the fluid is greater than the loss modulus G" as measured using an oscillatory shear rheometer (such as a Bohlin CVO 50) at a frequency of 1 Hz. The measurement of these moduli is described in An Introduction to Rheology, by H.
A. Barnes, J. F. Hutton, and K. Walters, Elsevier, Amsterdam (1997).
[00581 Non-limiting examples of viscoelastic surfactants (VES), methods for making the same, and amounts suitable for use in a fracturing fluid are disclosed in: U.S. Pat.
No. 4,790,958; U.S.
Pat. No. 5,258,137; U.S. Pat. No. 5,551,516; U.S. Pat. No. 5,964,295; U.S.
Pat. No. 5,979,557;
U.S. Pat. No. 6,508,307; U.S. Pat. No. 6,306,800; U.S. Pat. No. 6,140,277;
U.S. Pat. No.
4,618,448. The ethylenically unsaturated polyalkylene oxide(s) can comprise about 0.1 to about 60 weight percent, or about 0.5 to about 30 weight percent, or about 1 to about 15 weight percent, on a basis of total weight of the reactants.
[0052] The aqueous composition can comprise about 10 parts per million (ppm) active to about 10,000 ppm of material (a), or about 10 to about 1,000 ppm, or about 10 to about 1,500 ppm, on a basis of total weight of the components of the aqueous composition.
[0053] In some non-limiting embodiments, the material (a) is at least partially water soluble. As used herein with respect to the material (a), "water soluble" means that the material (a) is capable of being at least partially or fully dissolved in water at ambient temperature (about 25 C). The solubility of a component of the fluid treatment systems or compositions of the present invention, for example solubility of the material (a), can be determined by adding 1.0 weight percent of the component to water at 25 C and mixing thoroughly (about 5 minutes) with a magnetic stirrer. The mixture is permitted to stand for 24 hours and the clarity and separation of components of the mixture is assessed by visual observation. A clear, generally haze-free solution is "water soluble", a hazy/turbid solution is "water dispersible" or "partially water soluble", and a mixture that separates into layers or has noticeable solid particulates is "water insoluble".
[0054] The fluid treatment systems or compositions comprise at least one friction reducing agent (b) selected from the group consisting of guar gums, hydratable cellulosic materials, polyacrylamides, viscoelastic surfactants and mixtures thereof. As used herein, "friction reducing agent" means a material that alters fluid rheological properties to reduce energy loss associated with friction created within the fluid or between the fluid and tubing or piping as the fluid flows though the tubing or piping. Generally, friction reducing agents decrease the turbulence induced as the fluid flows. The determination of whether a material is a friction reducing agent can be made by comparing the pressure drop in turbulent flow in a closed loop piping system such as is described in Example 3 using two aqueous compositions containing the same components, with one composition replacing a portion of the water component with the friction reducing agent. If the pressure drop is less for the composition containing the proposed friction reducing agent, then the friction reducing agent is functioning as a friction reducer. In some non-limiting embodiments, the percent friction reduction can be at least 5%, or at least 10%, or at least 20% or more. Methods for determining the percent friction reduction are described in Example 3 below.
[00551 The friction reducing agent(s) can comprise about 10 parts per million (ppm) active to about 20,000 ppm of the aqueous compositions, or about 10 to about 10,000 ppm, or about 10 to about 1,500 ppm on a basis of total weight of the components of the aqueous composition.
[00561 In some non-limiting embodiments, the friction reducing agent comprises one or more guar gums. The guar gum can be non-hydrolyzed or partially hydrolyzed (PHGG), and can be produced by the partial enzymatic hydrolysis of guaran, the galactomannan of the endosperm of guar seeds (guar gum). PHGG is a neutral polysaccharide consisting of a mannose backbone chain with single galactose side units occurring on almost two out of every three mannose units.
The average molecular weight can be about 25,000 Daltons. Other useful guar materials include hydroxypropylguar, carboxymethylhydroxypropylguar, carboxymethylguar and mixtures thereof.
[00571 In some non-limiting embodiments, the friction reducing agent comprises one or more viscoelastic surfactants. As used herein, "viscoelastic" means a viscous liquid having elastic properties, i.e., the liquid at least partially returns to its original form when an applied stress is released, or that the elastic (or storage) modulus G' of the fluid is greater than the loss modulus G" as measured using an oscillatory shear rheometer (such as a Bohlin CVO 50) at a frequency of 1 Hz. The measurement of these moduli is described in An Introduction to Rheology, by H.
A. Barnes, J. F. Hutton, and K. Walters, Elsevier, Amsterdam (1997).
[00581 Non-limiting examples of viscoelastic surfactants (VES), methods for making the same, and amounts suitable for use in a fracturing fluid are disclosed in: U.S. Pat.
No. 4,790,958; U.S.
Pat. No. 5,258,137; U.S. Pat. No. 5,551,516; U.S. Pat. No. 5,964,295; U.S.
Pat. No. 5,979,557;
U.S. Pat. No. 6,508,307; U.S. Pat. No. 6,306,800; U.S. Pat. No. 6,140,277;
U.S. Pat. No.
6,412,561; U.S. Pat. No. 6,435,277; U.S. Pat. No. 6,446,727; U.S. Pat. No.
7,196,041; U.S. Pat.
No. 7,343,978 and U.S. Patent Publication No. 2008/0248976. Additional information relating to selected VES-based fluids is found in the SPE article, Polymer-Free Fluids for Hydraulic Fracturing, SPE 38622 (1997).
100591 For example, U.S. Patent No. 5,551,516 discloses suitable viscoelastic surfactants, for use in combination with an organic salt and/or alcohol, as follows:
(a) an amine corresponding to the formula:
RC
RI -N
wherein R1 is at least about a C16 aliphatic group which may be branched or straight chained and which may be saturated or unsaturated, R2 and R3 are each independently, hydrogen or a C 1 to about C6 aliphatic group which can be branched or straight chained, saturated or unsaturated and which may be substituted with a group that renders the R2 and/or R3 group more hydrophilic;
(b) salts of the amine corresponding to the formula:
RZ
R,-N-W X' wherein R 1, R2 and R3 are the same as defined hereinbefore and V is an inorganic anion; and (c) a quaternary ammonium salt of the amine corresponding to the formula:
RZ
RI-N-R4* X-I
wherein R 1, R2 and R3 and X- are the same as defined hereinbefore and R4 independently constitutes a group which has previously been set forth for R3 and R3, none of R1, R2, R3 or R4 are hydrogen, and the R2, R3 and R4 groups of the amine salt and quaternary ammonium salt may be formed into a heterocyclic 5- or 6-member ring structure which includes the nitrogen atom of the amine.
100601 A non-limiting example of a useful viscoelastic surfactant is a quaternary ammonium salt, erucyl methyl bis (2-hydroxyethyl) ammonium chloride.
[00611 The viscoelastic surfactant is capable of forming rod-shaped micelles as opposed to typical surfactant materials which tend to form spherical micelles or sheet-like structures. Non-limiting examples of suitable viscoelastic surfactants include erucyl trimethyl ammonium chloride; N-methyl-N,N-bis(2-hydroxyethyl) rapeseed ammonium chloride; oleyl methyl bis(hydroxyethyl) ammonium chloride; octadecyl methyl bis(hydroxyethyl) ammonium bromide;
octadecyl tris(hydroxyethyl) ammonium bromide; octadecyl dimethyl hydroxyethyl ammonium bromide; cetyl dimethyl hydroxyethyl ammonium bromide; cetyl methyl bis(hydroxyethyl) ammonium salicylate; cetyl methyl bis(hydroxyethyl) ammonium 3,4,-dichlorobenzoate; cetyl tris(hydroxyethyl) ammonium iodide; bis(hydroxyethyl) soya amine; N-methyl, N-hydroxyethyl tallow amine; bis(hydroxyethyl) octadecyl amine; cosyl dimethyl hydroxyethyl ammonium bromide; cosyl methyl bis(hydroxyethyl) ammonium chloride; cosyl tris(hydroxyethyl) ammonium bromide; dicosyl dimethyl hydroxyethyl ammonium bromide; dicosyl methyl bis(hydroxyethyl) ammonium chloride; dicosyl tris(hydroxyethyl) ammonium bromide;
hexadecyl ethyl bis(hydroxyethyl) ammonium chloride; hexadecyl isopropyl bis(hydroxyethyl) ammonium iodide; N,N-dihydroxypropyl hexadecyl amine, N-methyl, N-hydroxyethyl hexadecyl amine; N,N-dihydroxyethyl dihydroxypropyl oleyl amine; N,N-dihydroxypropyl soya amine; N,N-dihydroxypropyl tallow amine; N-butyl hexadecyl amine; N-hydroxyethyl octadecyl amine; N-hydroxyethyl cosyl amine; cetylamino, N-octadecyl pyridinium chloride; N-soya-N-ethyl morpholinium ethosulfate; methyl-l-oleyl amido ethyl-2-oleyl imidazolinium-methyl sulfate; and methyl- l-tallow amido ethyl-2-tallow imidazolinium-methyl sulfate.
[00621 Other non-limiting examples of suitable viscoelastic surfactants include those disclosed in U.S. Patent No. 6,508,307 having the general formula:
R,011 '-R3 in which R1 and R2 are the same or different and are each short alkyl chains (i.e., from about two to about five carbon atoms in length), R3 is an alkyl group of about one to four carbon atoms, and R4 is a much longer alkyl chain, that can be unsubstituted.
100631 Other non-limiting examples of suitable viscoelastic surfactants include those disclosed in U.S. Patent No. 7,196,041 having the general formula: (R1--X)õ Z, as defined therein. R1 is an aliphatic group comprising a C10-C25 straight chain bonded at a terminal carbon atom thereof to X, the straight chain having a length such that a viscoelastic gel is formable by the surfactant in aqueous media; and further comprising at least one side C 1-C6 side chain enhancing the solubility of the surfactant in hydrocarbons, and being sufficiently close to said head group and sufficiently short such that the surfactant forms micelles in said viscoelastic gel. X is a charged head group, Z is a counterion, and n is an integer which ensures that the surfactant is charge neutral. X may be a carboxylate (-COO-), quaternary ammonium (-NR2R3R4 ), sulphate (-0S03-), or sulphonate (--S03-) charged group; N being a nitrogen atom, and R2, R3 and R4 being C1-C6 aliphatic groups, or one of R2, R3 and R4 being a C1-C6 aliphatic group and the others of R2, R3 and R4 forming a five- or six-member heterocylic ring with the nitrogen atom.
When X is a carboxylate, sulphate, or sulphonate group, Z may be an alkali metal cation or an alkaline earth metal cation, such as Na+or K When X is a quaternary ammonium group, Z may be a halide anion, such as Cl- or Br, or a small organic anion, such as a salicylate. In some non-limiting embodiments, the surfactant is an alkali metal salt of 2-methyl oleic acid or 2-ethyl oleic acid.
[00641 Another non-limiting example of a suitable viscoelastic surfactant is erucyl-N,N-di-(2-hydroxyethyl)-N-methylammonium chloride (EHMAC).
[00651 In some non-limiting embodiments, the friction reducing agent comprises one or more hydratable cellulosic materials. Non-limiting examples of suitable hydratable cellulosic materials include those selected from the group consisting of cellulose, methyl cellulose, hydroxyethyl cellulose, grafted hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, carboxymethylhydroxyethyl cellulose and mixtures thereof.
[00661 In some non-limiting embodiments, the friction reducing agent comprises one or more polyacrylamides. Non-limiting examples of suitable polyacrylamides include water-in-oil emulsion polymers comprising a polymer or copolymer comprising repeat units from an acrylamide monomer, such as are disclosed in U.S. Patent No. 7,482,310. For example, suitable polyacrylamides can comprise one or more repeat units according to Formula I:
[cHR12_1R1_J_C O
(I) wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C 1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group,-R3-NR 22,-R3-N+R23 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
[00671 As used herein the term "water-in-oil emulsion polymer" refers to a system or composition having a hydrophobic liquid as a continuous phase and an aqueous solution or gel as a dispersed phase, where the aqueous phase includes one or more water soluble or water dispersible polymers. The dispersed phase, present as droplets and/or discrete microgels, can have size ranging from at least 10 nm up to 500 microns. The size of the droplets and/or discrete microgels can be determined by light scattering and/or scanning electron microscopy, as is known in the art.
[00681 As used herein, the phrase "repeat units from an acrylamide monomer" is meant to indicate not only the monomer acrylamide, but also analogous repeat units derived from, for example, methacrylamide, N-methylacrylamide, and N,N-dimethylacrylamide;
functionalized acrylamides, such as acrylamidomethylpropane sulfonic acid; hydrolysis products of acrylamide, such as acrylic acid and acrylic and methacrylic acid esters.
[00691 In some non-limiting embodiments, the polymer or copolymer contains repeat units from an acrylamide monomer can be non-ionic, anionic, cationic, amphoteric, or ampholytic. As used herein, the term "anionic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that can carry a negative charge at an appropriate pH and/or when neutralized with a suitable cation, non-limiting examples being acrylic acid, methacrylic acid, and acrylamidomethylpropanesulfonic acid. As used herein, the term "cationic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge, non-limiting examples being methacrylamidopropyltrimethyl ammonium chloride, methacryloyloxyethyl trimethyl ammonium methylsulfate, and dimethyl diallyl ammonium chloride. As used herein, the term "amphoteric polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge at an appropriate pH and a monomer that carries a negative charge at an appropriate pH. Non-limiting examples of the former are methacrylamidopropyldimethylamine, methacryloyloxyethyldimethylamine and methyl diallyl amine, and the latter are acrylic acid, methacrylic acid and maleic acid. As used herein, the term "ampholytic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge and a monomer that carries a negative charge at an appropriate pH. Non-limiting examples of the former are methacrylamidopropyltrimethyl ammonium chloride, methacryloyloxyethyl trimethyl ammonium methylsulfate, acryloyloxyethyl trimethyl ammonium chloride and dimethyl diallyl ammonium chloride, and the latter are acrylic acid, methacrylic acid and maleic acid.
100701 In some non-limiting embodiments, the copolymer containing repeat units from an acrylamide monomer can further comprise repeat units derived from one or more monomers selected from acrylamidopropyl trimethyl ammonium chloride (APTAC), methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), methacryloyloxyethyl trimethyl ammonium chloride (METAC), methacryloyloxyethyl trimethyl ammonium methylsulfate (METAMS), acryloyloxyethyl trimethyl ammonium chloride (AETAC), dimethyl diallyl ammonium chloride (DMDAAC), acrylic acid (AA), methacrylic acid (MAA), acrylamido-2-methylpropane sulfonic acid (AMPSA), 2-methacrylamido-2-methylpropane sulfonic acid (MAMPSA), C1-C3 alkyl acrylate, C1-C3 alkyl methacrylate, n-alkyl acrylamide, methacrylamide, n-alkylmethacrylamide, and/or diacetone acrylamide.
10071] The molecular weight of the polymer or copolymer containing repeat units from an acrylamide monomer is typically approximated by measuring the reduced viscosity of a solution of the polymer using an appropriately sized Ubbelohde Capillary Viscometer at 0.05 g/dl in IN
NaCl at 30 C and pH of 7. In some non-limiting embodiments, the polymer or copolymer of the aqueous phase has a reduced viscosity of at least 5 dl/g and up to 50 dl/g.
10072] Although the molecular weight of the polymer or copolymer containing repeat units from an acrylamide monomer can be difficult to determine, it can be measured using gel permeation chromatography (GPC) using acrylamide or poly(styrene sulfonate) standards as is known in the art. As such, the molecular weight of the polymer or copolymer can be at least 10,000 and up to 1,000,000 as measured using GPC techniques.
[00731 The fluid treatment systems or compositions comprise at least one scale control agent (c) selected from the group consisting of water-soluble polycarboxylates, phosphonates, phosphates, polyphosphates, metal salts and sulfonates. The polycarboxylates, metal salts and sulfonates are chemically different from material (a) discussed above, i.e., have at least one different atom or arrangement of atoms from material (a) discussed above.
[00741 Non-limiting examples of suitable water-soluble polycarboxylates, phosphonates, phosphates, polyphosphates, metal salts and sulfonates include disclosed in U.S. Patent No.
4,640,793. Non-limiting examples of suitable water-soluble polycarboxylates include polymers derived from homo- and/or copolymers (including terpolymers, tetra-, etc.) of acrylic acid, methacrylic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, phosphinocarboxylic acid, maleic acid or anhydride, itaconic acid, a-halo acrylic acid and 0-carboxyethyl acrylic acid. It is possible that the carboxylic acid, from which the polycarboxylate is prepared, is the same carboxylic acid used to prepare the reaction product of material (a). However, the carboxylic acid used to prepare the polycarboxylate is not polymerized with the same ethylenically unsaturated, sulfonyl functional and/or sulfonate functional material as used to prepare material (a) as above. Non-limiting examples of suitable water-soluble phosphonates include hydroxyphosphono acetic acid (HPA), diethylenetriaminepenta(methylenephosphonic acid), hexamethylenediaminetetra-(methylenephosphonic acid), 2-phosphono-1,2,4-tricarboxybutane, amino tri(methylene phosphonic acid), hydroxyethylidene diphosphonic acid, phosphonosuccinic acid, benzene phosphonic acid, 2-aminoethyl phosphonic acid, and polyamino phosphonates, and salts thereof where they exist. Other useful phosphonates are disclosed in U.S. Pat. No.
3,837,803. Non-limiting examples of suitable water-soluble phosphates include orthophosphate;
condensed phosphates, such as sodium hexametaphosphate; phosphate esters;
organophosphate esters, such as the lower alkyl mono-, di- and trialkyl phosphates. The alkyl group can be selected from C 1 to C4 and may be branched or unbranched. The alkyl group may be substituted with hydroxy, amino, halide, sulfate or sulfonate, alone or in combination;
and molecularly dehydrated phosphates. Non-limiting examples of suitable water-soluble metal salts include water-soluble salts of zinc, molybdenum, chromate and sodium silicate and mixtures thereof.
Non-limiting examples of suitable water-soluble sulfonates include homo-and/or copolymers of 2-acrylamido-2-methylpropylsulfonic acid, 2-methacrylamido-2-methylpropylsulfonic acid, styrene sulfonic acid, vinyl sulfonic acid, sulfo alkyl acrylate or methacrylate, allyl or methallyl sulfonic acid, sulfonic acid acrylate, 3-methacrylamido-2-hydroxy propyl sulfonic acid, their salts and mixtures thereof.
[00751 In some non-limiting embodiments, the fluid treatment systems or compositions can further comprise at least one polyether polyamino phosphonate. Non-limiting examples of suitable polyether polyamino methylene phosphonates are disclosed in U.S.
Patent No.
5,262,061, and include those of the formula: R M203P I H2 I R I I H2PO3M2 N H C2--~OCH2-C f -N
I n and optionally the N-oxides thereof; where n is an integer or fractional integer which is about 2 to about 12; M is hydrogen or a suitable cation; and each R may be the same or different and is independently selected from hydrogen and methyl.
[00761 In some non-limiting embodiments, the scale control agent comprises 2-phosphono-1,2,4-tricarboxybutane, polyacrylic acid and a reaction product prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid.
[00771 The fluid treatment system(s) or composition(s) of the present invention can be used to treat water, for example to inhibit the formation and/or precipitation of compounds such as metal oxides. In some non-limiting embodiments, the water can comprise metal ions or other contaminants, such as ferrous ions, ferric ions, and/or ferric compounds, as described below. In some non-limiting embodiments, the water can be subterranean water, surface water or brine water.
[00781 The components of the fluid treatment system, such as material(s) (a) and friction reducing agent(s) (b), and scale control agent(s) (c) can be combined with the water sequentially (in any order desired) or concurrently. In some non-limiting embodiments, the friction reducing agent(s) (b) is added to the water last. The amount of material (a) added to the water can be at least about 0.001 %, or about 0.001 % to about 1.0%, or about 0.005 to about 1.0%, or about 0.01% to about 0.5% on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives). The amount of friction reducing agent(s) (b) added to the water can be at least about 0.001 %, or about 0.001 % to about 2.0%, or about 0.01 % to about 2.0%, or about 0.02% to about 0.5% on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives). The amount of scale control agent(s) (c) added to the water can be at least about 0.1 mg/L, or about 0.2 to about 1,000 mg/L, or about 0.2 to about 100 mg/L on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives).
100791 In some non-limiting embodiments, the fluid treatment system or composition is a fracturing fluid for treating water in a subterranean formation penetrated by a well bore. The fracturing fluid comprises water and the fluid treatment system or composition described above.
100801 Suitable water-in-oil emulsion polymers include water-in-oil emulsion polymers containing polymers and copolymers of acrylamide, such as are discussed above.
In some non-limiting embodiments, the water-in-oil emulsion polymer includes a hydrophobic oil phase, a surfactant system and a polymer-containing aqueous phase comprising water and the polymer or copolymer containing repeat units from an acrylamide monomer. Commercially available "water-in-oil emulsion polymers" that can be used in the present invention include, but are not limited to, WFR-3B, WFR-5, SAS-2 and Cw-3K polyacrylamides-based products available from Superior Well Services of Indiana, PA.
[00811 In some non-limiting embodiments, the fluid treatment system or composition according to the present invention can comprise or consist of (a) ICP-1000 composition;
(b) WFR-3B
polyacrylamide and (c) 2-phosphono-1,2,4-tricarboxybutane, polyacrylic acid and a reaction product prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid as scale control agents, in a weight ratio of (a):(b) of about 0.005:1 to about 50:1 and in a weight ratio of (b):(c) of about 2:1 to about 1:40. In some non-limiting embodiments, the fluid treatment system is the Gamma FRacTM system available from Superior Well Services.
[00821 In some non-limiting embodiments, the polymer-containing aqueous phase including water and the polymer or copolymer containing repeat units from an acrylamide monomer makes up at least about 5 to about 90% by weight of the water-in-oil emulsion polymer.
[00831 As discussed above, the fracturing fluid can comprise one or more inorganic microparticles. As used herein, the term "microparticle" means solid particles with very small dimensions, which can range from nanometers to microns. Suitable inorganic microparticles include, but are not limited to, fumed silica, fumed alumina, precipitated silica, colloidal silica, alumina silicates, treated silica, calcium carbonate, silica flour, diatomites, talc, borosilicates, and mixtures thereof. Treated silicas can include surface treated or surface modified silica that has been treated with organic materials (hydrophobic silica) or alumina (alumina treated silica) as is known in the art. In some non-limiting embodiments, the surface area of the inorganic microparticle can range from at least about 1 m2/g to about 1,000 m2/g. The surface area of the microparticles is determined using BET nitrogen absorption as is known in the art. In some non-limiting embodiments, the inorganic microparticles comprise at least about 0.1% to about 10%
by weight of the water-in-oil emulsion composition.
[0084] In an embodiment of the invention, the water-in-oil emulsion composition comprises at least about 0.005% up to about 20%, or at least about 0.01% up to about 20%, by weight of the fracturing fluid. The water-in-oil emulsion composition can be made as disclosed in U.S. Patent No. 7,482,310.
[0085] The fracturing fluid can further comprise one or more proppant materials. Suitable proppant materials include, but are not limited to, resin coated or uncoated sand, Ottawa type sand (round), Brady type sand (angular), sintered bauxite, ceramic materials and glass beads.
The particle size of the proppant material can range from about 200 m to about 5,000 gm. The particle size is the weight average determined using a series of Tyler Sieves of various mesh sizes available from W.S. Tyler, Mento, Ohio. Further description of suitable proppant materials, their use and concentrations thereof in the present fracturing fluid are described in Glidley et al., Recent Advances in Hydraulic Fracturing, Chapter 6, "Propping Agents and Fracture Conductivity", Society of Petroleum Engineers, Richardson, TX, pp.
109-130. In some non-limiting embodiments, the fracturing fluid can comprise about 0.5% to about 30% proppant material based on the weight of the fracturing fluid. In some non-limiting embodiments, the fracturing fluid can comprise about 0.1 to about 10 pounds of proppant material per gallon of fracturing fluid.
[0086] The water used to make up the fracturing fluid can be selected from fresh water, recycled water, water containing high dissolved constituents such as flowback water or mine drainage water, unsaturated brine, and saturated brine. Flowback water is the recovered fracturing fluid and produced water which flows back to the surface from an oil or gas well drilling operation and is extracted. Flowback water may have high salinity and total dissolved solids (TDS).
[0087] In some non-limiting embodiments, the fracturing fluid can further comprise an additive that is a pH adjusting compound selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium diacetate, potassium diacetate, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and mixtures thereof. These additives are present at a level sufficient to maintain a desired pH. The level of pH adjusting compound can be from about 0.0 1% to about 1.0% based on the weight of the fracturing fluid.
[0088] In some non-limiting embodiments, the fracturing fluid can further comprise a clay stabilizer selected from the group consisting of potassium chloride, sodium chloride, ammonium chloride, tetramethyl ammonium chloride and temporary clay stabilizers. The level of clay stabilizers can be from about 0.1 % to about 10% based on the weight of the fracturing fluid.
[0089] In some non-limiting embodiments, the fracturing fluid can further comprise a fluid loss control agent selected from the group consisting of silica flour, starches, waxes and resins. The level of fluid loss control agent can range from about 0.01% to about 2.0%
based on the weight of the fracturing fluid.
[0090] In some non-limiting embodiments, the fracturing fluid can further comprise a delayed breaker for causing the treating fluid to revert to a thin fluid selected from the group of oxidizers, encapsulated oxidizers and enzyme breakers consisting of sodium persulfate, potassium persulfate, ammonium persulfate, magnesium peroxide, sodium chlorite, sodium bromate, alpha and beta amylases, amyloglucosidase, invertase, maltase, cellulose, halogenated isocyanurate, hypochlorites and hemicellulase. The amount of delayed breaker can range from about 0.01% to about 2% by weight based on the weight of the fracturing fluid.
[0091] In some non-limiting embodiments, the fracturing fluid can further comprise a biocide, such as 2,2-dibromo-3-nitrilopropionamide, which is available in a 20%
solution as KR-153SL
biocide from Kroff Chemical Co. Other suitable biocides are known to those skilled in the art.
The amount of biocide can range from about 20 to about 2,000 ppm, based upon the total weight of the fracturing fluid.
[0092] The fracturing fluid can be injected into a formation by first providing a bore hole or well hole, which may or may not include a casing or liner and may or may not have been shape charged to initiate fractures. The fracturing fluid is pumped into the bore hole or well hole to provide a pressure of about 0.1 to about 2 psi/ft. (ft. referring to the depth of the bore hole or well hole), depending on the composition of the fracturing fluid and the nature of the formation to be fractured. As such, the pressure in the bore hole or well hole can be at least about 500 psi up to about 15,000 psi. While not intending to be bound by any single theory, it is believed that the pressure drives the fluid into cracks, fissures and fractures in the formation, forcing such openings to become larger and propagate. The proppant material tends to wedge into the expanded cracks, fissures and fractures to help hold them open when the pressure is reduced.
However, the pressure can act to force water out of the fluid, in an action similar to syneresis (i.e., exudation of the liquid component of a gel). This liquid can then seep or imbibe through capillary action into microscopic and larger cracks, fractures and fissures, thus removing water from the fluid, increasing the effective polymer concentration and therefore the viscosity of the fluid. Such increases in viscosity can limit the ability of the fluid to penetrate the formation. It is believed that the microparticles can fill the relatively small cracks, fractures and fissures, slowing or limiting water loss, which increases the productivity and efficiency of the fluid and the fracturing operation.
[0093] As discussed in detail above, the air (oxygen) in the ground water causes dissolved ferrous ions contained in the ground water to be oxidized to the insoluble ferric state. Ions in the ferric state readily precipitate, clogging flow pathways in the oil or gas well formation, thus restricting oil or gas flow. Chelating agents such as citric acid have been used as an iron control agent to treat oil and gas well formations. However, improper dosing of certain chelating agents such as citric acid can negatively impact friction reducing additives, for example certain polyacrylamide-based products, such as acrylic acid/acrylamide copolymers. The fluid treatment systems, compositions and fracturing fluids of the present invention can inhibit the formation of metal oxides, such as iron oxide, from metal ions present in the groundwater, such as ferrous ions, while minimizing the adverse impact of the metal ions on performance of the friction reducing agent to enhance the performance of the friction reducing agent.
Thus, when the fluid treatment systems, compositions or fracturing fluids of the present invention are mixed with water comprising metal ions, such as ferrous ions, an aqueous composition is formed that inhibits the formation and precipitation of metal oxides. Thus, in some non-limiting embodiments, the present invention provides methods of inhibiting formation and/ or precipitation of metal oxides in an aqueous composition comprising metal ions, comprising: mixing an aqueous composition comprising metal ions with any of the above fluid treatment systems or compositions. Non-limiting examples of such metal ions include ferrous ions, chromium ions, zinc ions, manganese ions, aluminum ions, and mixtures thereof.
[0094] In some non-limiting embodiments, methods of inhibiting formation and/or precipitation of metal oxides in an aqueous composition or ground water comprising at least 20 milligrams, or at least about 50 mg, or at least about 70 mg, of metal ions (such as ferrous ions) per liter of aqueous composition are provided which comprise: (a) mixing the aqueous composition or water with the fluid treatment system, composition or fracturing fluid of the present invention. In some non-limiting embodiments, one or more additional friction reducing agents or other additives as described above can be included.
[0095] Generally, the amount of fluid treatment system or composition according to the present invention administered as a metal stabilizer or iron control agent in down-hole applications is at least about 0.1 mg/L reaction product per mg/L metal ion, or at least about 1.0 mg/L reaction product per mg/L metal ion, or at least about 1.5 mg/L reaction product per mg/L metal ion, or at least about 1.6 mg/L reaction product per mg/L metal ion, or at least about 2.0 mg/L stabilizer per mg/L metal ion, or at least about 10 mg/L stabilizer per mg/L metal ion, or at least about 20 mg/L stabilizer per mg/L metal ion, or at least about 40 mg/L stabilizer per mg/L metal ion, depending upon such factors as system demand and pH.
[0096] In some non-limiting embodiments, the fracturing fluid can be an acid fracturing fluid.
The acid fracturing fluids of the present invention can comprise water, acid, and a fluid treatment system or composition according to the present invention as described in detail above. Non-limiting examples of suitable acids include hydrochloric acid, acetic acid, formic acid, hydrofluoric acid, sulfainic acid, chlorinated acetic acid, gelled or emulsified acids, and mixtures thereof. The amount of acid in the fracturing fluid can range from about 0.01 weight percent to about 25 weight percent based upon the total weight of the fracturing fluid.
Such acid fracturing fluids can be used for matrix acidizing treatments and/or fracture acidizing treatments. In matrix acidizing, the acid fluid flows through the flow pathways in a formation, dissolving solids and fines entrained in pore throats and pore spaces that impede oil or gas flow.
Acid fracturing is an alternative to hydraulic fracturing with proppant. The acid etches the fracture face to create voids and points of support which hold the rock channel open.
[00971 The present invention will further be described by reference to the following examples.
The following examples are merely illustrative of the invention and are not intended to be limiting. Unless otherwise indicated, all percentages are by weight.
EXAMPLES
Example 1 [00981 Citric acid functions stoichiometrically (one mole of citric acid complexes one mole of iron), however additional citric acid is needed to drive the formation of the metal complex, the additional amount being a function of pH (i.e., the conditional stability constant). On a stoichiometric basis, 2.0 mg/L Fe 42 would require 6.88 mg/L citric acid.
Interestingly, a Minimum Effective Dose ("MED") of 7.50 mg/L is close to the stoichiometric requirement.
[00991 The ability to stabilize iron in an aqueous sample was evaluated using the "High Iron Stabilization Test" at 70 mg Fee/per liter of water. Samples of conventional iron stabilizers, such as citric acid, the tetrasodium salt of ethylenediaminetetraacetic acid (Na4EDTA), and triethanolamine (TEA) were evaluated and compared to compositions including sulfonyl and carboxyl functional reaction products according to the present invention, such as KR-DP0184 AA/AMPS copolymer prepared from 60 weight percent AA and 40 weight percent AMPS
available from Kroff Chemical Co., as discussed in detail below.
High Iron Stabilization Test 1001001 The iron stabilization test evaluates and quantifies the ability of an iron control additive to maintain the iron in soluble form and to prevent precipitation.
This is accomplished by measuring the iron content that remains in solution after a specified time under test conditions and comparing to an untreated control. Conditions for the test were:
pHi: 8.5 pHf: 8.0-8.5 Temperature: Ambient (about 25 C) Test Duration: 2.0 hr Mixing Rate: 20 rpm on gang stirrer Filter: >20-25 micron Matrix: Synthetic 4X Pittsburgh water Initial Fe 70.0 (m /L) The percent stabilization is calculated as follows:
% Stabilization = (Fey-,,,al - Feblank) - X 100%
(Feinitial - Feblank) where: Feinitial = Initial concentration of dissolved iron (-70.0 mg/L) (This is the value for the "Start" sample.) Fefnal =Final concentration of dissolved iron in treated test Feblank =Final concentration of dissolved iron in untreated test The Minimum Effective Dose ("MED") for the scale inhibition tests is defined as the dosage at which -:90% stabilzation is attained.
V. SAMPLE CALCULATION
1001011 Suppose the final iron concentration, Fegnal, for an iron stabilizer is 60.0 mg/L, the amount of iron remaining in the blank, Feblank, is 1.3 mg/L, and the initial Fe(II) concentration, Feinitial is 69.5, The % Stabilization would be calculated as follows:
% Stabilization = (60.0 - 1.3) x 100% = 86.1%
(69.5-1.3) (001021 The composition of the 4X Pittsburgh Water matrix and the composition of the test water are listed in Table 1 below.
Table 1 Ion 4X Pittsburgh Water Test Water*
m L mg/L
Ca 88.3 88.3 MgZ+ 24.0 24.0 Na 71.0 240.2 Fe + --- 70.0 S041- 328.9 689.3 Cl- 70.0 70.0 Alkalinity 32.8 151.0 (as CaCO3) Cations (Meg) 9.47 19.34 Anions (Meg) 9.48 19.35 *Test Water Composition included Fe (II) Stock Solution and the addition of the 1.0 N
NaOH needed to neutralized the Fe (II) Stock Solution [00103] To determine the viability of using sulfonyl and carboxylic acid functional polymers compositions in down-hole applications, the High Iron Stabilization Test was developed with an initial ferrous ion level of 70 mg/L. Control compositions including Citric Acid, Na4EDTA, TEA and Test Compositions containing sulfonyl and carboxylic acid functional polymers according to the present invention were evaluated.
Composition of Stabilizers:
KR-DPO 184: 60/40 AA/AMPS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid), Mw = 17,700; Mn = 5,900 Acumer 3100: - 65/22/13 AA/AMPS/TBAM (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid/Tertbutylacrylamide), Mw = 4,500 Prism: 20-80/5-55/5-60 AA/SMA/AM (Acrylic Acid/Sulfomethylacrylamide/
Acrylamide), Mw = 7,000-90,000 HPS-1: -52.4:47.6 AA/AHPSE (Acrylic Acid/Allyl-2-hydroxypropylsulfonic acid ether).
Monomer ratio is 3:1. Mw - 14,000.
Aquatreat AR-540: AA/SPME/Monomer 3/Monomer 4 (Acrylic Acid/Sulfonated Phenol Methacrylic Ether/2-Propene-l-sulfonic acid, 2-methyl/2-Propenoic Acid, 2-methyl-, methyl ester) CH2CH000]w-[CH2CH3CCH20C6H4S031x-[CH2CH3CCH2S03]y-[CH2CH3000OCH3]z, Mw = 15,277; Mn = 4,961 K-798: 60/34/6 AA/AMPS/SS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid/Sulfonated Styrene), MW = 1,000-10,000 Acumer 2000: 75/25 AA/AMPS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid), Mw = 4,500 Note: Monomer Ratios are weight ratios as opposed to mole ratios.
1001041 Tables 2a-2c present the testing results. The first tier of compositions, containing sulfonyl and carboxylic acid functional polymers KR-DPO 184, Acumer 3100, Prism, Acumer 2000, and K-798 each required a minimum active dose (MED) of 100-120 mg/L. The second tier of compositions, containing sulfonyl and carboxylic acid functional polymers HPS-1 and AR-540 each required an active dose of 125-150 mg/L. Citric acid performed the best, with an MED of 80 mg/L. The MED for Na4EDTA was 700 mg/L. TEA was ineffective.
[001051 Interestingly, the MED of 80 mg/L for citric acid was lower than even the stoichiometric requirement of 241 mg/L (3.4 mg Citric Acid/mg Fe). This would suggest that chelation was not the only mechanism of action in effect. In contrast, the MED
of 700 mg/L for Na4EDTA exceeded the stoichiometric dose of 477 mg/L (6.8 mg Na4EDTA per mg Fe) as would be expected.
[001061 The results of the High Iron Stabilization Studies indicate that the tested sulfonyl and carboxylic acid functional polymers are effective iron stabilizers even at the extremely high iron levels present down hole.
[001071 The results show that as expected sulfonyl and carboxylic acid functional polymers provide good Fe(II) stabilization under high iron conditions. Factors such as the degree of sulfonation and molecular weight appear to be optimized with each of the top tier products. With the top performing polymers, the ratio of mg/L polymer to mg/L
Fe(II) is about 1.6:1.00.
p LO M
cV 0) O CO
Q 0)(O COCV It ON M N- 0 O Co U1) .- NCONM O) N- O
0) 0) CO CO CO 0) 0) (0 N- O
U) O
0) N
a.+
N
4) w o r r N M
4ma U) co 0) 0) M (L6D
4) G
++
N W) oil_ O
L ti M O
t N c W
J
m H
q co N
C) C) 0 0 Irm, W 0 O 00 r- ems- r- N 00 C
co r- r O N N O - N Z
T- r e-:~
Q oCo () d . a) 00 p rml C E 0 E cn moo W Q H
IL v Y0QM a` z < Y <NZ F-O O 0?
W) co O
O cv) M
O N
N 'T
N
U) a, O
N N M
a, I-M O I~
N CO rn rn N
> M
E
0 cv) rn W
J
O U') (D cl) qt N N
04 CO rn N CO CO CO rn CN Lo O O 00 e- LO N 00 C
O
W co O In O r, z N N
r r r r O
< co (D co U O E o E U) E o w Q
a U Y0 QMd 2 < Y QNZ F-N
N
w Q ry~
N rnrn C
O
a~ m ccl U ~ M
0 o O 0 v a E D o o_ o 04 V) V) LO
o o c N N - N Z
.C r e- r V U
tV Q ado oEoE ci) U? rn E o w LJ.I tea. U L- d Oo ca w J G. U Yo<c a. z < Y QNz I-OQ
H
Example 2 [001081 The threshold inhibition test evaluates and quantifies the ability of a scale inhibitor to prevent precipitation of a particular scale. This is accomplished by measuring the concentration of cations that remain in solution after a specified time under supersaturated conditions and comparing to the concentration in an untreated control. The percent inhibition is calculated as follows:
% Inhibition =-C) X 100%
(C1 - C0 ) Where:
CT =cation concentration in the treated filtered sample C,,,, =cation concentration in the filtered untreated sample C; =cation concentration in the initial sample 1001091 The Minimum Effective Dose ("M.E.D.") for the scale inhibition tests is defined as the dosage at which 90% inhibition is attained. KR-DP0515 is a 1:1:1 blend, on an active basis, of (60/40) PAA/AMPS copolymer:PAA:PBTC, respectively.
[00110] For this example, treated and untreated supersaturated solutions containing calcium chloride and sodium bicarbonate were prepared at an initial pH of 8.00 to 8.35 in Erlenmeyer flasks.
The flasks were then heated in a water bath for 24 hours at 60 C. After the incubation period, the samples were filtered and then the soluble calcium concentration determined by titration with EDTA. As shown in Table 3, on an active basis, the M.E.D. for KR-DP0515 is 0.70 mg/L, indicating that KR-DP0515 is an effective calcium carbonate scale inhibitor when compared to other known calcium carbonate scale inhibitors.
Table 3 Calcium Carbonate Threshold Inhibition Test Results Percent Inhibition (%
Active Dose AA/AMPS
m fL KR-DP0515 PBTC PAA cool er HEDP
0.10 74.4 0.20 63.7 94.4 0.30 72.5 94.1,80.2 100.0 Avg.=8 .2 0.40 81.4 101.0, 98.1 Avg.=99.6 0.50 84.6 101.0 46.0 0.60 87.8, 82.0 v g.=84.9 0.70 89.6,101.1, 92.0 Avg.=94.2 0.75 84.2 0.80 95.6, 90.0 87.9, 27.3 Avg.=92.8 Avg.=57.6 0.90 87.9, 87.8 Av .=87.9 1.00 96.0 76.0 1.25 97.0 1.50 82.0 2.00 77.0 2.50 70.3 3.00 77.0 4.00 91.5, 75.6 Avg.=83.6 5.00 84.6, 80.2 Avg. =82.4 6.00 102.2 7.00 70.0
No. 7,343,978 and U.S. Patent Publication No. 2008/0248976. Additional information relating to selected VES-based fluids is found in the SPE article, Polymer-Free Fluids for Hydraulic Fracturing, SPE 38622 (1997).
100591 For example, U.S. Patent No. 5,551,516 discloses suitable viscoelastic surfactants, for use in combination with an organic salt and/or alcohol, as follows:
(a) an amine corresponding to the formula:
RC
RI -N
wherein R1 is at least about a C16 aliphatic group which may be branched or straight chained and which may be saturated or unsaturated, R2 and R3 are each independently, hydrogen or a C 1 to about C6 aliphatic group which can be branched or straight chained, saturated or unsaturated and which may be substituted with a group that renders the R2 and/or R3 group more hydrophilic;
(b) salts of the amine corresponding to the formula:
RZ
R,-N-W X' wherein R 1, R2 and R3 are the same as defined hereinbefore and V is an inorganic anion; and (c) a quaternary ammonium salt of the amine corresponding to the formula:
RZ
RI-N-R4* X-I
wherein R 1, R2 and R3 and X- are the same as defined hereinbefore and R4 independently constitutes a group which has previously been set forth for R3 and R3, none of R1, R2, R3 or R4 are hydrogen, and the R2, R3 and R4 groups of the amine salt and quaternary ammonium salt may be formed into a heterocyclic 5- or 6-member ring structure which includes the nitrogen atom of the amine.
100601 A non-limiting example of a useful viscoelastic surfactant is a quaternary ammonium salt, erucyl methyl bis (2-hydroxyethyl) ammonium chloride.
[00611 The viscoelastic surfactant is capable of forming rod-shaped micelles as opposed to typical surfactant materials which tend to form spherical micelles or sheet-like structures. Non-limiting examples of suitable viscoelastic surfactants include erucyl trimethyl ammonium chloride; N-methyl-N,N-bis(2-hydroxyethyl) rapeseed ammonium chloride; oleyl methyl bis(hydroxyethyl) ammonium chloride; octadecyl methyl bis(hydroxyethyl) ammonium bromide;
octadecyl tris(hydroxyethyl) ammonium bromide; octadecyl dimethyl hydroxyethyl ammonium bromide; cetyl dimethyl hydroxyethyl ammonium bromide; cetyl methyl bis(hydroxyethyl) ammonium salicylate; cetyl methyl bis(hydroxyethyl) ammonium 3,4,-dichlorobenzoate; cetyl tris(hydroxyethyl) ammonium iodide; bis(hydroxyethyl) soya amine; N-methyl, N-hydroxyethyl tallow amine; bis(hydroxyethyl) octadecyl amine; cosyl dimethyl hydroxyethyl ammonium bromide; cosyl methyl bis(hydroxyethyl) ammonium chloride; cosyl tris(hydroxyethyl) ammonium bromide; dicosyl dimethyl hydroxyethyl ammonium bromide; dicosyl methyl bis(hydroxyethyl) ammonium chloride; dicosyl tris(hydroxyethyl) ammonium bromide;
hexadecyl ethyl bis(hydroxyethyl) ammonium chloride; hexadecyl isopropyl bis(hydroxyethyl) ammonium iodide; N,N-dihydroxypropyl hexadecyl amine, N-methyl, N-hydroxyethyl hexadecyl amine; N,N-dihydroxyethyl dihydroxypropyl oleyl amine; N,N-dihydroxypropyl soya amine; N,N-dihydroxypropyl tallow amine; N-butyl hexadecyl amine; N-hydroxyethyl octadecyl amine; N-hydroxyethyl cosyl amine; cetylamino, N-octadecyl pyridinium chloride; N-soya-N-ethyl morpholinium ethosulfate; methyl-l-oleyl amido ethyl-2-oleyl imidazolinium-methyl sulfate; and methyl- l-tallow amido ethyl-2-tallow imidazolinium-methyl sulfate.
[00621 Other non-limiting examples of suitable viscoelastic surfactants include those disclosed in U.S. Patent No. 6,508,307 having the general formula:
R,011 '-R3 in which R1 and R2 are the same or different and are each short alkyl chains (i.e., from about two to about five carbon atoms in length), R3 is an alkyl group of about one to four carbon atoms, and R4 is a much longer alkyl chain, that can be unsubstituted.
100631 Other non-limiting examples of suitable viscoelastic surfactants include those disclosed in U.S. Patent No. 7,196,041 having the general formula: (R1--X)õ Z, as defined therein. R1 is an aliphatic group comprising a C10-C25 straight chain bonded at a terminal carbon atom thereof to X, the straight chain having a length such that a viscoelastic gel is formable by the surfactant in aqueous media; and further comprising at least one side C 1-C6 side chain enhancing the solubility of the surfactant in hydrocarbons, and being sufficiently close to said head group and sufficiently short such that the surfactant forms micelles in said viscoelastic gel. X is a charged head group, Z is a counterion, and n is an integer which ensures that the surfactant is charge neutral. X may be a carboxylate (-COO-), quaternary ammonium (-NR2R3R4 ), sulphate (-0S03-), or sulphonate (--S03-) charged group; N being a nitrogen atom, and R2, R3 and R4 being C1-C6 aliphatic groups, or one of R2, R3 and R4 being a C1-C6 aliphatic group and the others of R2, R3 and R4 forming a five- or six-member heterocylic ring with the nitrogen atom.
When X is a carboxylate, sulphate, or sulphonate group, Z may be an alkali metal cation or an alkaline earth metal cation, such as Na+or K When X is a quaternary ammonium group, Z may be a halide anion, such as Cl- or Br, or a small organic anion, such as a salicylate. In some non-limiting embodiments, the surfactant is an alkali metal salt of 2-methyl oleic acid or 2-ethyl oleic acid.
[00641 Another non-limiting example of a suitable viscoelastic surfactant is erucyl-N,N-di-(2-hydroxyethyl)-N-methylammonium chloride (EHMAC).
[00651 In some non-limiting embodiments, the friction reducing agent comprises one or more hydratable cellulosic materials. Non-limiting examples of suitable hydratable cellulosic materials include those selected from the group consisting of cellulose, methyl cellulose, hydroxyethyl cellulose, grafted hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, carboxymethylhydroxyethyl cellulose and mixtures thereof.
[00661 In some non-limiting embodiments, the friction reducing agent comprises one or more polyacrylamides. Non-limiting examples of suitable polyacrylamides include water-in-oil emulsion polymers comprising a polymer or copolymer comprising repeat units from an acrylamide monomer, such as are disclosed in U.S. Patent No. 7,482,310. For example, suitable polyacrylamides can comprise one or more repeat units according to Formula I:
[cHR12_1R1_J_C O
(I) wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C 1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group,-R3-NR 22,-R3-N+R23 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
[00671 As used herein the term "water-in-oil emulsion polymer" refers to a system or composition having a hydrophobic liquid as a continuous phase and an aqueous solution or gel as a dispersed phase, where the aqueous phase includes one or more water soluble or water dispersible polymers. The dispersed phase, present as droplets and/or discrete microgels, can have size ranging from at least 10 nm up to 500 microns. The size of the droplets and/or discrete microgels can be determined by light scattering and/or scanning electron microscopy, as is known in the art.
[00681 As used herein, the phrase "repeat units from an acrylamide monomer" is meant to indicate not only the monomer acrylamide, but also analogous repeat units derived from, for example, methacrylamide, N-methylacrylamide, and N,N-dimethylacrylamide;
functionalized acrylamides, such as acrylamidomethylpropane sulfonic acid; hydrolysis products of acrylamide, such as acrylic acid and acrylic and methacrylic acid esters.
[00691 In some non-limiting embodiments, the polymer or copolymer contains repeat units from an acrylamide monomer can be non-ionic, anionic, cationic, amphoteric, or ampholytic. As used herein, the term "anionic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that can carry a negative charge at an appropriate pH and/or when neutralized with a suitable cation, non-limiting examples being acrylic acid, methacrylic acid, and acrylamidomethylpropanesulfonic acid. As used herein, the term "cationic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge, non-limiting examples being methacrylamidopropyltrimethyl ammonium chloride, methacryloyloxyethyl trimethyl ammonium methylsulfate, and dimethyl diallyl ammonium chloride. As used herein, the term "amphoteric polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge at an appropriate pH and a monomer that carries a negative charge at an appropriate pH. Non-limiting examples of the former are methacrylamidopropyldimethylamine, methacryloyloxyethyldimethylamine and methyl diallyl amine, and the latter are acrylic acid, methacrylic acid and maleic acid. As used herein, the term "ampholytic polymer or copolymer containing repeat units from an acrylamide monomer" refers to polymers containing acrylamide repeat units and repeat units from a monomer that carries a positive charge and a monomer that carries a negative charge at an appropriate pH. Non-limiting examples of the former are methacrylamidopropyltrimethyl ammonium chloride, methacryloyloxyethyl trimethyl ammonium methylsulfate, acryloyloxyethyl trimethyl ammonium chloride and dimethyl diallyl ammonium chloride, and the latter are acrylic acid, methacrylic acid and maleic acid.
100701 In some non-limiting embodiments, the copolymer containing repeat units from an acrylamide monomer can further comprise repeat units derived from one or more monomers selected from acrylamidopropyl trimethyl ammonium chloride (APTAC), methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), methacryloyloxyethyl trimethyl ammonium chloride (METAC), methacryloyloxyethyl trimethyl ammonium methylsulfate (METAMS), acryloyloxyethyl trimethyl ammonium chloride (AETAC), dimethyl diallyl ammonium chloride (DMDAAC), acrylic acid (AA), methacrylic acid (MAA), acrylamido-2-methylpropane sulfonic acid (AMPSA), 2-methacrylamido-2-methylpropane sulfonic acid (MAMPSA), C1-C3 alkyl acrylate, C1-C3 alkyl methacrylate, n-alkyl acrylamide, methacrylamide, n-alkylmethacrylamide, and/or diacetone acrylamide.
10071] The molecular weight of the polymer or copolymer containing repeat units from an acrylamide monomer is typically approximated by measuring the reduced viscosity of a solution of the polymer using an appropriately sized Ubbelohde Capillary Viscometer at 0.05 g/dl in IN
NaCl at 30 C and pH of 7. In some non-limiting embodiments, the polymer or copolymer of the aqueous phase has a reduced viscosity of at least 5 dl/g and up to 50 dl/g.
10072] Although the molecular weight of the polymer or copolymer containing repeat units from an acrylamide monomer can be difficult to determine, it can be measured using gel permeation chromatography (GPC) using acrylamide or poly(styrene sulfonate) standards as is known in the art. As such, the molecular weight of the polymer or copolymer can be at least 10,000 and up to 1,000,000 as measured using GPC techniques.
[00731 The fluid treatment systems or compositions comprise at least one scale control agent (c) selected from the group consisting of water-soluble polycarboxylates, phosphonates, phosphates, polyphosphates, metal salts and sulfonates. The polycarboxylates, metal salts and sulfonates are chemically different from material (a) discussed above, i.e., have at least one different atom or arrangement of atoms from material (a) discussed above.
[00741 Non-limiting examples of suitable water-soluble polycarboxylates, phosphonates, phosphates, polyphosphates, metal salts and sulfonates include disclosed in U.S. Patent No.
4,640,793. Non-limiting examples of suitable water-soluble polycarboxylates include polymers derived from homo- and/or copolymers (including terpolymers, tetra-, etc.) of acrylic acid, methacrylic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, phosphinocarboxylic acid, maleic acid or anhydride, itaconic acid, a-halo acrylic acid and 0-carboxyethyl acrylic acid. It is possible that the carboxylic acid, from which the polycarboxylate is prepared, is the same carboxylic acid used to prepare the reaction product of material (a). However, the carboxylic acid used to prepare the polycarboxylate is not polymerized with the same ethylenically unsaturated, sulfonyl functional and/or sulfonate functional material as used to prepare material (a) as above. Non-limiting examples of suitable water-soluble phosphonates include hydroxyphosphono acetic acid (HPA), diethylenetriaminepenta(methylenephosphonic acid), hexamethylenediaminetetra-(methylenephosphonic acid), 2-phosphono-1,2,4-tricarboxybutane, amino tri(methylene phosphonic acid), hydroxyethylidene diphosphonic acid, phosphonosuccinic acid, benzene phosphonic acid, 2-aminoethyl phosphonic acid, and polyamino phosphonates, and salts thereof where they exist. Other useful phosphonates are disclosed in U.S. Pat. No.
3,837,803. Non-limiting examples of suitable water-soluble phosphates include orthophosphate;
condensed phosphates, such as sodium hexametaphosphate; phosphate esters;
organophosphate esters, such as the lower alkyl mono-, di- and trialkyl phosphates. The alkyl group can be selected from C 1 to C4 and may be branched or unbranched. The alkyl group may be substituted with hydroxy, amino, halide, sulfate or sulfonate, alone or in combination;
and molecularly dehydrated phosphates. Non-limiting examples of suitable water-soluble metal salts include water-soluble salts of zinc, molybdenum, chromate and sodium silicate and mixtures thereof.
Non-limiting examples of suitable water-soluble sulfonates include homo-and/or copolymers of 2-acrylamido-2-methylpropylsulfonic acid, 2-methacrylamido-2-methylpropylsulfonic acid, styrene sulfonic acid, vinyl sulfonic acid, sulfo alkyl acrylate or methacrylate, allyl or methallyl sulfonic acid, sulfonic acid acrylate, 3-methacrylamido-2-hydroxy propyl sulfonic acid, their salts and mixtures thereof.
[00751 In some non-limiting embodiments, the fluid treatment systems or compositions can further comprise at least one polyether polyamino phosphonate. Non-limiting examples of suitable polyether polyamino methylene phosphonates are disclosed in U.S.
Patent No.
5,262,061, and include those of the formula: R M203P I H2 I R I I H2PO3M2 N H C2--~OCH2-C f -N
I n and optionally the N-oxides thereof; where n is an integer or fractional integer which is about 2 to about 12; M is hydrogen or a suitable cation; and each R may be the same or different and is independently selected from hydrogen and methyl.
[00761 In some non-limiting embodiments, the scale control agent comprises 2-phosphono-1,2,4-tricarboxybutane, polyacrylic acid and a reaction product prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid.
[00771 The fluid treatment system(s) or composition(s) of the present invention can be used to treat water, for example to inhibit the formation and/or precipitation of compounds such as metal oxides. In some non-limiting embodiments, the water can comprise metal ions or other contaminants, such as ferrous ions, ferric ions, and/or ferric compounds, as described below. In some non-limiting embodiments, the water can be subterranean water, surface water or brine water.
[00781 The components of the fluid treatment system, such as material(s) (a) and friction reducing agent(s) (b), and scale control agent(s) (c) can be combined with the water sequentially (in any order desired) or concurrently. In some non-limiting embodiments, the friction reducing agent(s) (b) is added to the water last. The amount of material (a) added to the water can be at least about 0.001 %, or about 0.001 % to about 1.0%, or about 0.005 to about 1.0%, or about 0.01% to about 0.5% on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives). The amount of friction reducing agent(s) (b) added to the water can be at least about 0.001 %, or about 0.001 % to about 2.0%, or about 0.01 % to about 2.0%, or about 0.02% to about 0.5% on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives). The amount of scale control agent(s) (c) added to the water can be at least about 0.1 mg/L, or about 0.2 to about 1,000 mg/L, or about 0.2 to about 100 mg/L on a basis of total weight of the aqueous composition (fluid treatment system, water, and any other additives).
100791 In some non-limiting embodiments, the fluid treatment system or composition is a fracturing fluid for treating water in a subterranean formation penetrated by a well bore. The fracturing fluid comprises water and the fluid treatment system or composition described above.
100801 Suitable water-in-oil emulsion polymers include water-in-oil emulsion polymers containing polymers and copolymers of acrylamide, such as are discussed above.
In some non-limiting embodiments, the water-in-oil emulsion polymer includes a hydrophobic oil phase, a surfactant system and a polymer-containing aqueous phase comprising water and the polymer or copolymer containing repeat units from an acrylamide monomer. Commercially available "water-in-oil emulsion polymers" that can be used in the present invention include, but are not limited to, WFR-3B, WFR-5, SAS-2 and Cw-3K polyacrylamides-based products available from Superior Well Services of Indiana, PA.
[00811 In some non-limiting embodiments, the fluid treatment system or composition according to the present invention can comprise or consist of (a) ICP-1000 composition;
(b) WFR-3B
polyacrylamide and (c) 2-phosphono-1,2,4-tricarboxybutane, polyacrylic acid and a reaction product prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid as scale control agents, in a weight ratio of (a):(b) of about 0.005:1 to about 50:1 and in a weight ratio of (b):(c) of about 2:1 to about 1:40. In some non-limiting embodiments, the fluid treatment system is the Gamma FRacTM system available from Superior Well Services.
[00821 In some non-limiting embodiments, the polymer-containing aqueous phase including water and the polymer or copolymer containing repeat units from an acrylamide monomer makes up at least about 5 to about 90% by weight of the water-in-oil emulsion polymer.
[00831 As discussed above, the fracturing fluid can comprise one or more inorganic microparticles. As used herein, the term "microparticle" means solid particles with very small dimensions, which can range from nanometers to microns. Suitable inorganic microparticles include, but are not limited to, fumed silica, fumed alumina, precipitated silica, colloidal silica, alumina silicates, treated silica, calcium carbonate, silica flour, diatomites, talc, borosilicates, and mixtures thereof. Treated silicas can include surface treated or surface modified silica that has been treated with organic materials (hydrophobic silica) or alumina (alumina treated silica) as is known in the art. In some non-limiting embodiments, the surface area of the inorganic microparticle can range from at least about 1 m2/g to about 1,000 m2/g. The surface area of the microparticles is determined using BET nitrogen absorption as is known in the art. In some non-limiting embodiments, the inorganic microparticles comprise at least about 0.1% to about 10%
by weight of the water-in-oil emulsion composition.
[0084] In an embodiment of the invention, the water-in-oil emulsion composition comprises at least about 0.005% up to about 20%, or at least about 0.01% up to about 20%, by weight of the fracturing fluid. The water-in-oil emulsion composition can be made as disclosed in U.S. Patent No. 7,482,310.
[0085] The fracturing fluid can further comprise one or more proppant materials. Suitable proppant materials include, but are not limited to, resin coated or uncoated sand, Ottawa type sand (round), Brady type sand (angular), sintered bauxite, ceramic materials and glass beads.
The particle size of the proppant material can range from about 200 m to about 5,000 gm. The particle size is the weight average determined using a series of Tyler Sieves of various mesh sizes available from W.S. Tyler, Mento, Ohio. Further description of suitable proppant materials, their use and concentrations thereof in the present fracturing fluid are described in Glidley et al., Recent Advances in Hydraulic Fracturing, Chapter 6, "Propping Agents and Fracture Conductivity", Society of Petroleum Engineers, Richardson, TX, pp.
109-130. In some non-limiting embodiments, the fracturing fluid can comprise about 0.5% to about 30% proppant material based on the weight of the fracturing fluid. In some non-limiting embodiments, the fracturing fluid can comprise about 0.1 to about 10 pounds of proppant material per gallon of fracturing fluid.
[0086] The water used to make up the fracturing fluid can be selected from fresh water, recycled water, water containing high dissolved constituents such as flowback water or mine drainage water, unsaturated brine, and saturated brine. Flowback water is the recovered fracturing fluid and produced water which flows back to the surface from an oil or gas well drilling operation and is extracted. Flowback water may have high salinity and total dissolved solids (TDS).
[0087] In some non-limiting embodiments, the fracturing fluid can further comprise an additive that is a pH adjusting compound selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium diacetate, potassium diacetate, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and mixtures thereof. These additives are present at a level sufficient to maintain a desired pH. The level of pH adjusting compound can be from about 0.0 1% to about 1.0% based on the weight of the fracturing fluid.
[0088] In some non-limiting embodiments, the fracturing fluid can further comprise a clay stabilizer selected from the group consisting of potassium chloride, sodium chloride, ammonium chloride, tetramethyl ammonium chloride and temporary clay stabilizers. The level of clay stabilizers can be from about 0.1 % to about 10% based on the weight of the fracturing fluid.
[0089] In some non-limiting embodiments, the fracturing fluid can further comprise a fluid loss control agent selected from the group consisting of silica flour, starches, waxes and resins. The level of fluid loss control agent can range from about 0.01% to about 2.0%
based on the weight of the fracturing fluid.
[0090] In some non-limiting embodiments, the fracturing fluid can further comprise a delayed breaker for causing the treating fluid to revert to a thin fluid selected from the group of oxidizers, encapsulated oxidizers and enzyme breakers consisting of sodium persulfate, potassium persulfate, ammonium persulfate, magnesium peroxide, sodium chlorite, sodium bromate, alpha and beta amylases, amyloglucosidase, invertase, maltase, cellulose, halogenated isocyanurate, hypochlorites and hemicellulase. The amount of delayed breaker can range from about 0.01% to about 2% by weight based on the weight of the fracturing fluid.
[0091] In some non-limiting embodiments, the fracturing fluid can further comprise a biocide, such as 2,2-dibromo-3-nitrilopropionamide, which is available in a 20%
solution as KR-153SL
biocide from Kroff Chemical Co. Other suitable biocides are known to those skilled in the art.
The amount of biocide can range from about 20 to about 2,000 ppm, based upon the total weight of the fracturing fluid.
[0092] The fracturing fluid can be injected into a formation by first providing a bore hole or well hole, which may or may not include a casing or liner and may or may not have been shape charged to initiate fractures. The fracturing fluid is pumped into the bore hole or well hole to provide a pressure of about 0.1 to about 2 psi/ft. (ft. referring to the depth of the bore hole or well hole), depending on the composition of the fracturing fluid and the nature of the formation to be fractured. As such, the pressure in the bore hole or well hole can be at least about 500 psi up to about 15,000 psi. While not intending to be bound by any single theory, it is believed that the pressure drives the fluid into cracks, fissures and fractures in the formation, forcing such openings to become larger and propagate. The proppant material tends to wedge into the expanded cracks, fissures and fractures to help hold them open when the pressure is reduced.
However, the pressure can act to force water out of the fluid, in an action similar to syneresis (i.e., exudation of the liquid component of a gel). This liquid can then seep or imbibe through capillary action into microscopic and larger cracks, fractures and fissures, thus removing water from the fluid, increasing the effective polymer concentration and therefore the viscosity of the fluid. Such increases in viscosity can limit the ability of the fluid to penetrate the formation. It is believed that the microparticles can fill the relatively small cracks, fractures and fissures, slowing or limiting water loss, which increases the productivity and efficiency of the fluid and the fracturing operation.
[0093] As discussed in detail above, the air (oxygen) in the ground water causes dissolved ferrous ions contained in the ground water to be oxidized to the insoluble ferric state. Ions in the ferric state readily precipitate, clogging flow pathways in the oil or gas well formation, thus restricting oil or gas flow. Chelating agents such as citric acid have been used as an iron control agent to treat oil and gas well formations. However, improper dosing of certain chelating agents such as citric acid can negatively impact friction reducing additives, for example certain polyacrylamide-based products, such as acrylic acid/acrylamide copolymers. The fluid treatment systems, compositions and fracturing fluids of the present invention can inhibit the formation of metal oxides, such as iron oxide, from metal ions present in the groundwater, such as ferrous ions, while minimizing the adverse impact of the metal ions on performance of the friction reducing agent to enhance the performance of the friction reducing agent.
Thus, when the fluid treatment systems, compositions or fracturing fluids of the present invention are mixed with water comprising metal ions, such as ferrous ions, an aqueous composition is formed that inhibits the formation and precipitation of metal oxides. Thus, in some non-limiting embodiments, the present invention provides methods of inhibiting formation and/ or precipitation of metal oxides in an aqueous composition comprising metal ions, comprising: mixing an aqueous composition comprising metal ions with any of the above fluid treatment systems or compositions. Non-limiting examples of such metal ions include ferrous ions, chromium ions, zinc ions, manganese ions, aluminum ions, and mixtures thereof.
[0094] In some non-limiting embodiments, methods of inhibiting formation and/or precipitation of metal oxides in an aqueous composition or ground water comprising at least 20 milligrams, or at least about 50 mg, or at least about 70 mg, of metal ions (such as ferrous ions) per liter of aqueous composition are provided which comprise: (a) mixing the aqueous composition or water with the fluid treatment system, composition or fracturing fluid of the present invention. In some non-limiting embodiments, one or more additional friction reducing agents or other additives as described above can be included.
[0095] Generally, the amount of fluid treatment system or composition according to the present invention administered as a metal stabilizer or iron control agent in down-hole applications is at least about 0.1 mg/L reaction product per mg/L metal ion, or at least about 1.0 mg/L reaction product per mg/L metal ion, or at least about 1.5 mg/L reaction product per mg/L metal ion, or at least about 1.6 mg/L reaction product per mg/L metal ion, or at least about 2.0 mg/L stabilizer per mg/L metal ion, or at least about 10 mg/L stabilizer per mg/L metal ion, or at least about 20 mg/L stabilizer per mg/L metal ion, or at least about 40 mg/L stabilizer per mg/L metal ion, depending upon such factors as system demand and pH.
[0096] In some non-limiting embodiments, the fracturing fluid can be an acid fracturing fluid.
The acid fracturing fluids of the present invention can comprise water, acid, and a fluid treatment system or composition according to the present invention as described in detail above. Non-limiting examples of suitable acids include hydrochloric acid, acetic acid, formic acid, hydrofluoric acid, sulfainic acid, chlorinated acetic acid, gelled or emulsified acids, and mixtures thereof. The amount of acid in the fracturing fluid can range from about 0.01 weight percent to about 25 weight percent based upon the total weight of the fracturing fluid.
Such acid fracturing fluids can be used for matrix acidizing treatments and/or fracture acidizing treatments. In matrix acidizing, the acid fluid flows through the flow pathways in a formation, dissolving solids and fines entrained in pore throats and pore spaces that impede oil or gas flow.
Acid fracturing is an alternative to hydraulic fracturing with proppant. The acid etches the fracture face to create voids and points of support which hold the rock channel open.
[00971 The present invention will further be described by reference to the following examples.
The following examples are merely illustrative of the invention and are not intended to be limiting. Unless otherwise indicated, all percentages are by weight.
EXAMPLES
Example 1 [00981 Citric acid functions stoichiometrically (one mole of citric acid complexes one mole of iron), however additional citric acid is needed to drive the formation of the metal complex, the additional amount being a function of pH (i.e., the conditional stability constant). On a stoichiometric basis, 2.0 mg/L Fe 42 would require 6.88 mg/L citric acid.
Interestingly, a Minimum Effective Dose ("MED") of 7.50 mg/L is close to the stoichiometric requirement.
[00991 The ability to stabilize iron in an aqueous sample was evaluated using the "High Iron Stabilization Test" at 70 mg Fee/per liter of water. Samples of conventional iron stabilizers, such as citric acid, the tetrasodium salt of ethylenediaminetetraacetic acid (Na4EDTA), and triethanolamine (TEA) were evaluated and compared to compositions including sulfonyl and carboxyl functional reaction products according to the present invention, such as KR-DP0184 AA/AMPS copolymer prepared from 60 weight percent AA and 40 weight percent AMPS
available from Kroff Chemical Co., as discussed in detail below.
High Iron Stabilization Test 1001001 The iron stabilization test evaluates and quantifies the ability of an iron control additive to maintain the iron in soluble form and to prevent precipitation.
This is accomplished by measuring the iron content that remains in solution after a specified time under test conditions and comparing to an untreated control. Conditions for the test were:
pHi: 8.5 pHf: 8.0-8.5 Temperature: Ambient (about 25 C) Test Duration: 2.0 hr Mixing Rate: 20 rpm on gang stirrer Filter: >20-25 micron Matrix: Synthetic 4X Pittsburgh water Initial Fe 70.0 (m /L) The percent stabilization is calculated as follows:
% Stabilization = (Fey-,,,al - Feblank) - X 100%
(Feinitial - Feblank) where: Feinitial = Initial concentration of dissolved iron (-70.0 mg/L) (This is the value for the "Start" sample.) Fefnal =Final concentration of dissolved iron in treated test Feblank =Final concentration of dissolved iron in untreated test The Minimum Effective Dose ("MED") for the scale inhibition tests is defined as the dosage at which -:90% stabilzation is attained.
V. SAMPLE CALCULATION
1001011 Suppose the final iron concentration, Fegnal, for an iron stabilizer is 60.0 mg/L, the amount of iron remaining in the blank, Feblank, is 1.3 mg/L, and the initial Fe(II) concentration, Feinitial is 69.5, The % Stabilization would be calculated as follows:
% Stabilization = (60.0 - 1.3) x 100% = 86.1%
(69.5-1.3) (001021 The composition of the 4X Pittsburgh Water matrix and the composition of the test water are listed in Table 1 below.
Table 1 Ion 4X Pittsburgh Water Test Water*
m L mg/L
Ca 88.3 88.3 MgZ+ 24.0 24.0 Na 71.0 240.2 Fe + --- 70.0 S041- 328.9 689.3 Cl- 70.0 70.0 Alkalinity 32.8 151.0 (as CaCO3) Cations (Meg) 9.47 19.34 Anions (Meg) 9.48 19.35 *Test Water Composition included Fe (II) Stock Solution and the addition of the 1.0 N
NaOH needed to neutralized the Fe (II) Stock Solution [00103] To determine the viability of using sulfonyl and carboxylic acid functional polymers compositions in down-hole applications, the High Iron Stabilization Test was developed with an initial ferrous ion level of 70 mg/L. Control compositions including Citric Acid, Na4EDTA, TEA and Test Compositions containing sulfonyl and carboxylic acid functional polymers according to the present invention were evaluated.
Composition of Stabilizers:
KR-DPO 184: 60/40 AA/AMPS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid), Mw = 17,700; Mn = 5,900 Acumer 3100: - 65/22/13 AA/AMPS/TBAM (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid/Tertbutylacrylamide), Mw = 4,500 Prism: 20-80/5-55/5-60 AA/SMA/AM (Acrylic Acid/Sulfomethylacrylamide/
Acrylamide), Mw = 7,000-90,000 HPS-1: -52.4:47.6 AA/AHPSE (Acrylic Acid/Allyl-2-hydroxypropylsulfonic acid ether).
Monomer ratio is 3:1. Mw - 14,000.
Aquatreat AR-540: AA/SPME/Monomer 3/Monomer 4 (Acrylic Acid/Sulfonated Phenol Methacrylic Ether/2-Propene-l-sulfonic acid, 2-methyl/2-Propenoic Acid, 2-methyl-, methyl ester) CH2CH000]w-[CH2CH3CCH20C6H4S031x-[CH2CH3CCH2S03]y-[CH2CH3000OCH3]z, Mw = 15,277; Mn = 4,961 K-798: 60/34/6 AA/AMPS/SS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid/Sulfonated Styrene), MW = 1,000-10,000 Acumer 2000: 75/25 AA/AMPS (Acrylic Acid/2-Acrylamido-2-methylpropylsulfonic Acid), Mw = 4,500 Note: Monomer Ratios are weight ratios as opposed to mole ratios.
1001041 Tables 2a-2c present the testing results. The first tier of compositions, containing sulfonyl and carboxylic acid functional polymers KR-DPO 184, Acumer 3100, Prism, Acumer 2000, and K-798 each required a minimum active dose (MED) of 100-120 mg/L. The second tier of compositions, containing sulfonyl and carboxylic acid functional polymers HPS-1 and AR-540 each required an active dose of 125-150 mg/L. Citric acid performed the best, with an MED of 80 mg/L. The MED for Na4EDTA was 700 mg/L. TEA was ineffective.
[001051 Interestingly, the MED of 80 mg/L for citric acid was lower than even the stoichiometric requirement of 241 mg/L (3.4 mg Citric Acid/mg Fe). This would suggest that chelation was not the only mechanism of action in effect. In contrast, the MED
of 700 mg/L for Na4EDTA exceeded the stoichiometric dose of 477 mg/L (6.8 mg Na4EDTA per mg Fe) as would be expected.
[001061 The results of the High Iron Stabilization Studies indicate that the tested sulfonyl and carboxylic acid functional polymers are effective iron stabilizers even at the extremely high iron levels present down hole.
[001071 The results show that as expected sulfonyl and carboxylic acid functional polymers provide good Fe(II) stabilization under high iron conditions. Factors such as the degree of sulfonation and molecular weight appear to be optimized with each of the top tier products. With the top performing polymers, the ratio of mg/L polymer to mg/L
Fe(II) is about 1.6:1.00.
p LO M
cV 0) O CO
Q 0)(O COCV It ON M N- 0 O Co U1) .- NCONM O) N- O
0) 0) CO CO CO 0) 0) (0 N- O
U) O
0) N
a.+
N
4) w o r r N M
4ma U) co 0) 0) M (L6D
4) G
++
N W) oil_ O
L ti M O
t N c W
J
m H
q co N
C) C) 0 0 Irm, W 0 O 00 r- ems- r- N 00 C
co r- r O N N O - N Z
T- r e-:~
Q oCo () d . a) 00 p rml C E 0 E cn moo W Q H
IL v Y0QM a` z < Y <NZ F-O O 0?
W) co O
O cv) M
O N
N 'T
N
U) a, O
N N M
a, I-M O I~
N CO rn rn N
> M
E
0 cv) rn W
J
O U') (D cl) qt N N
04 CO rn N CO CO CO rn CN Lo O O 00 e- LO N 00 C
O
W co O In O r, z N N
r r r r O
< co (D co U O E o E U) E o w Q
a U Y0 QMd 2 < Y QNZ F-N
N
w Q ry~
N rnrn C
O
a~ m ccl U ~ M
0 o O 0 v a E D o o_ o 04 V) V) LO
o o c N N - N Z
.C r e- r V U
tV Q ado oEoE ci) U? rn E o w LJ.I tea. U L- d Oo ca w J G. U Yo<c a. z < Y QNz I-OQ
H
Example 2 [001081 The threshold inhibition test evaluates and quantifies the ability of a scale inhibitor to prevent precipitation of a particular scale. This is accomplished by measuring the concentration of cations that remain in solution after a specified time under supersaturated conditions and comparing to the concentration in an untreated control. The percent inhibition is calculated as follows:
% Inhibition =-C) X 100%
(C1 - C0 ) Where:
CT =cation concentration in the treated filtered sample C,,,, =cation concentration in the filtered untreated sample C; =cation concentration in the initial sample 1001091 The Minimum Effective Dose ("M.E.D.") for the scale inhibition tests is defined as the dosage at which 90% inhibition is attained. KR-DP0515 is a 1:1:1 blend, on an active basis, of (60/40) PAA/AMPS copolymer:PAA:PBTC, respectively.
[00110] For this example, treated and untreated supersaturated solutions containing calcium chloride and sodium bicarbonate were prepared at an initial pH of 8.00 to 8.35 in Erlenmeyer flasks.
The flasks were then heated in a water bath for 24 hours at 60 C. After the incubation period, the samples were filtered and then the soluble calcium concentration determined by titration with EDTA. As shown in Table 3, on an active basis, the M.E.D. for KR-DP0515 is 0.70 mg/L, indicating that KR-DP0515 is an effective calcium carbonate scale inhibitor when compared to other known calcium carbonate scale inhibitors.
Table 3 Calcium Carbonate Threshold Inhibition Test Results Percent Inhibition (%
Active Dose AA/AMPS
m fL KR-DP0515 PBTC PAA cool er HEDP
0.10 74.4 0.20 63.7 94.4 0.30 72.5 94.1,80.2 100.0 Avg.=8 .2 0.40 81.4 101.0, 98.1 Avg.=99.6 0.50 84.6 101.0 46.0 0.60 87.8, 82.0 v g.=84.9 0.70 89.6,101.1, 92.0 Avg.=94.2 0.75 84.2 0.80 95.6, 90.0 87.9, 27.3 Avg.=92.8 Avg.=57.6 0.90 87.9, 87.8 Av .=87.9 1.00 96.0 76.0 1.25 97.0 1.50 82.0 2.00 77.0 2.50 70.3 3.00 77.0 4.00 91.5, 75.6 Avg.=83.6 5.00 84.6, 80.2 Avg. =82.4 6.00 102.2 7.00 70.0
8.00
9.00
10.00 97.2 M.E.D. 0.70 0.40 1.00 For doses 0.20 * >1.00, Avg. % I =
82.0**
**Average %I is 82%; is not >90% at doses greater or equal to M.E.D.
Conditions:
24 hr@60 C (140 F) pHi: 8.00-8.35 200 mg/L Can, 600 mg/L HCO3 [00111] For this example, treated and untreated supersaturated solutions containing calcium chloride and sodium sulfate were prepared and adjusted to an initial pH of 6.50 to 7.00 in Erlenmeyer flasks. The flasks were then heated in a water bath for 24 hours at 60 C. After the incubation period, the samples were filtered and then the soluble calcium concentration determined by titration with EDTA. As shown in Table 4, on an active basis, the M.E.D. for Super TSC is 2.0 mg/L, indicating that KR-DP0515 is an effective calcium sulfate scale inhibitor when compared to other known calcium carbonate scale inhibitors. Synergy of components was observed with the KR-DP0515 at a dosage of 2.50 mg/L, active basis. At a product dose of 2.5 mg/L, the component treatment dosages are: 0.83 mg/L PBTC, 0.83 mg/L PAA, and 0.83 mg/L
60/40 AA/AMPS. The Expected Percent Inhibition, based on the contribution of components, would be 7.5% + 22.5% + 15.0% = 45%. The observed inhibition for the blended composition is 100.0%, indicating a synergy between components.
Table 4 Calcium Sulfate Threshold Inhibition Test Results Percent Inhibition Active Dose AA/AMPS
m /L KR-DP0515 PBTC PAA copolymer HEDP
0.50 7.2 3.7 0.83 7.5 25.2, 15.0 19.8 Avg.=22.5 1.00 15.3 97.3 1.50 55.9 99.1 2.00 81.1, 95.3, 27.9 98.2 93.7 Avg.=90.0 2.50 100.0 52.3 9.0 3.00 73.9, 45.9 84.7 Avg.=59.9 3.50 95.5 99.1 4.00 100.0 4.50 5.00 19.8 M.E.D.* 2.00 3.50 1.00 3.50 >5.00 Conditions:
24 hr@60 C (140 F) pHi: 6.5-7.0 2000 mg/L Cad, 4800 mg/L SO4-2 1001121 For this example, treated and untreated supersaturated solutions containing barium chloride and sodium sulfate were prepared and adjusted to an initial pH of 7.00 to 8.00 in plastic bottles. The bottles were then heated in an oven for 24 hours at 30 C. After the incubation period, the samples were filtered and then the soluble barium concentration determined. As shown in Table 5, on an active basis, the M.E.D. for KR-DP0515 was 3.0 mg/L, indicating that KR-performed as well or better than its components for barium sulfate scale inhibition.
Table 5 Barium Sulfate Threshold Inhibition Test Results Percent Inhibition (%) Active Dose 60/40 AA/AMPS
Lm IL KR-DP0515 PBTC PAA cool er 1.00 51.2, 0.0 55.8, 31.7 58.1, 24.1,0.0 Avg.=25.6 Avg. X3.8 Avg.=27.4 1.50 2.00 58.4 74.4 2.50 3.00 95.9 39.0 48.8 3.50 4.00 95.3 73.2 5.00 6.00 99.2 7.00 8.00 9.00 10.00 24.1, 56.1 Avg.= 0. 1 15.00 63.4 20.00 89.9 M.E.D.* 3.00 >4.00 >10.0 Conditions:
24 hr @ 30 C (86 F) pHi: 7.0-8.0 68.7 mg/L Baa, 48.0 mg/L SO4-2 Example 3 [001131 A fluid treatment system according to the present invention was evaluated for friction reduction properties on a friction loop test apparatus.
[001141 Referring now to Fig. 1, the friction test apparatus, indicated generally as 10, consisted of a reservoir chamber 12, a pump 14 connected to the bottom 16 of the reservoir chamber 12, and a closed loop piping system 18 which received the test fluid from the pump and returned the test fluid to the reservoir chamber 12. The closed loop piping system 18 includes a flow meter (FM) for monitoring the flow rate of the test fluid through the pipe.
1001151 The treatment chemistry was added to the water returning from the closed loop piping system 18 as it entered the reservoir chamber 12. High turbulence at the injection point 20 ensured thorough and rapid dispersion of the treatment in the reservoir chamber 12. The friction test apparatus 10 was configured to provide flow through a section of pipe 22 under a fixed, steady-state flow rate. For the following examples, the Reynolds' number of the fluid in the pipe 22 was calculated to be 58,100 and was well within the turbulent flow regime. For each test, a differential pressure gauge 24 was used to measure the pressure differential between the pressure in the first position (P1) and the second position (P2) in the piping system 18. The length 26 of the pipe 22 between the first position (P1) and the second position (P2) was at least times the pipe diameter, or at least about 2 feet. The frictional loss through the pipe 22 between P1 and P2 was proportional to the pressure drop: PI minus P2 = AP.
Precision measurements of flow and pressure are required for an accurate assessment of the friction reduction. A datalogger 26 recorded pressure and flow measurements in 1 second increments during the test run. After the pressure differential for the base fluid was recorded, then the treatment was injected. The treatment rate of the liquid treatment products are reported in (gpt) or gallons per 1000 gallons of base fluid.
[00116] The differential pressure reading 60 seconds after injection was used in the analysis. The base fluid consisted of the water, dissolved ions and treatment chemicals prior to adding the friction reducing agent. The percent of friction reduction achieved by the water treatment was determined by measuring the differential pressure for base fluid and comparing to differential pressure for the treated fluid, according to the following formula:
Friction Reduction (%) _ (APbase fluid - OPtreated fluid)/ APbase fluid* 100.
1001171 One skilled in the art would understand that the diameter and length of the pipe 22 can vary, as long as steady-state turbulent flow conditions are maintained between P1 and P2.
The pipe diameter can be about 1/4 inch to about 2 inches, and the pipe length can be about 10 feet to about 200 feet. Space and cost considerations can be taken into account in determining the pipe dimensions for the test unit. Since the percent of friction reduction is determined by relative pressure drop for tests with and without the fluid treatment, the actual dimensions of the piping are not important as long as the dimensions fall within the ranges specified above and steady-state turbulent is maintained.
[00118] The adverse impact of ferrous iron on the performance the WFR-3B
friction reducing agent was evaluated. An amount of a 5 % (as Fe+2) solution of ferrous sulfate solution was added to the recirculating fresh water in the friction test apparatus to achieve a desired iron content in the base fluid. The iron concentration was confirmed using Hach FerroVer Iron Reagent (Catalog Number 854-99). The friction reducing agent was introduced thirty seconds after the addition of the ferrous compound. For Example 3, the friction reducing agent was WFR-3B and was applied at 0.5 gallons per 1000 gallons of base fluid (gpt).
Table 6 Ferrous Content (ppm) % Friction Reduction 0 70%
26%
25 25%
50 13%
75 0%
[00119] In this example, the effect of using a fluid treatment system including at least one material (a) (an iron control agent) and friction reducing agent (b) according to the present invention was evaluated. The same apparatus was used and the same flow conditions were maintained as above with fresh water. The concentration of ferrous iron was held constant at 25 ppm. The material (a), ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 1.0 gpt. As observed in Table 7, performance of the friction reducing agent was significantly improved in the presence of the material (a) and surpassed the performance of the no iron control.
Table 7 ICP-1000 % Friction ( t) Reduction Control - no iron or ICP-1000 64%
0.00 44%
0.25 59%
0.50 68%
0.75 68%
1.00 68%
[001201 In this example the same flow conditions were observed as above. The base fluid was prepared by adding various inorganic salts to fresh water to simulate well flowback water.
The chemical makeup of the water is presented below in Table 8:
Table 8 Ion ppm Na 4,050 Ca 1,000 Mg 500 Cl 9,400 1001211 In this example, an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 9, performance of the friction reducing agent is significantly improved in the presence of the iron control agent and performed almost equivalently to the no iron-containing control.
Table 9 ICP-1000 % Friction (gpt) Reduction Control - no iron or ICP-1000 63%
0.00 43%
0.25 59%
0.50 60%
1.00 61%
[001221 In this example the same flow conditions were observed as above. The base fluid was prepared by adding 10,200 ppm of sodium chloride to fresh water to produce a high TDS
brine. In this example an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 10, performance of the friction reducing agent was significantly improved in the presence of the iron control agent and performed almost equivalently to the no iron-containing control.
Table 10 ICP-1000 % Friction (gpt) Reduction Control - no iron or ICP- 1000 69%
0.00 53%
0.25 59%
0.50 62%
1.00 70%
[001231 In this example the same flow conditions were observed as above with fresh water, an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. For comparison, the performance of ICP-1000 was evaluated against citric acid and EDTA which are commonly used in fracturing fluids as iron control agents. The iron control agent was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 1.0 gpt. As observed in Table 11, the performance of the commonly used iron control agents in some instances impaired the performance of the friction reducing agent. EDTA
had a deleterious effect on the performance of the friction reducing agent over the entire dosage range. In contrast, at lower levels of treatment citric acid combined with iron to cause significant deterioration to the performance of the friction reducing agent. It is significant to note that ICP-1000 improved the performance of the friction reducing agent over the entire treatment range.
Table 11 Iron Control Additive Friction Reduction (%) (gpt) ICP-1000 Citric Acid EDTA
0.00 44% 44% 44%
0.15 - 13% -0.25 59% 27% 43%
0.35 - 48% -0.50 68% 68% 35%
0.75 68% 68% 33%
Example 4 [00124] In this example the same flow conditions were observed as in Example 3. As in Table 8, the base fluid was prepared by adding various inorganic salts to fresh water to simulate well flowback water. In this example the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000 and/or the KR-DP0510, a phosphonate-ester/acrylic acid copolymer scale inhibitor blend was applied and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 12, the performance of the friction reducing agent with either treatment was significantly improved over the untreated test condition.
Surprisingly, the performance of the friction reducing agent also was improved in the presence of the scale inhibitor at the same application dosage of the iron control agent.
Table 12 ICP-1000 KR-DP0520 % Friction ( t) (gpt) Reduction 0.00 0.00 43%
0.50 0.00 60%
0.50 2.00 69%
[001251 It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications which are within the spirit and scope of the invention, as defined by the appended claims.
82.0**
**Average %I is 82%; is not >90% at doses greater or equal to M.E.D.
Conditions:
24 hr@60 C (140 F) pHi: 8.00-8.35 200 mg/L Can, 600 mg/L HCO3 [00111] For this example, treated and untreated supersaturated solutions containing calcium chloride and sodium sulfate were prepared and adjusted to an initial pH of 6.50 to 7.00 in Erlenmeyer flasks. The flasks were then heated in a water bath for 24 hours at 60 C. After the incubation period, the samples were filtered and then the soluble calcium concentration determined by titration with EDTA. As shown in Table 4, on an active basis, the M.E.D. for Super TSC is 2.0 mg/L, indicating that KR-DP0515 is an effective calcium sulfate scale inhibitor when compared to other known calcium carbonate scale inhibitors. Synergy of components was observed with the KR-DP0515 at a dosage of 2.50 mg/L, active basis. At a product dose of 2.5 mg/L, the component treatment dosages are: 0.83 mg/L PBTC, 0.83 mg/L PAA, and 0.83 mg/L
60/40 AA/AMPS. The Expected Percent Inhibition, based on the contribution of components, would be 7.5% + 22.5% + 15.0% = 45%. The observed inhibition for the blended composition is 100.0%, indicating a synergy between components.
Table 4 Calcium Sulfate Threshold Inhibition Test Results Percent Inhibition Active Dose AA/AMPS
m /L KR-DP0515 PBTC PAA copolymer HEDP
0.50 7.2 3.7 0.83 7.5 25.2, 15.0 19.8 Avg.=22.5 1.00 15.3 97.3 1.50 55.9 99.1 2.00 81.1, 95.3, 27.9 98.2 93.7 Avg.=90.0 2.50 100.0 52.3 9.0 3.00 73.9, 45.9 84.7 Avg.=59.9 3.50 95.5 99.1 4.00 100.0 4.50 5.00 19.8 M.E.D.* 2.00 3.50 1.00 3.50 >5.00 Conditions:
24 hr@60 C (140 F) pHi: 6.5-7.0 2000 mg/L Cad, 4800 mg/L SO4-2 1001121 For this example, treated and untreated supersaturated solutions containing barium chloride and sodium sulfate were prepared and adjusted to an initial pH of 7.00 to 8.00 in plastic bottles. The bottles were then heated in an oven for 24 hours at 30 C. After the incubation period, the samples were filtered and then the soluble barium concentration determined. As shown in Table 5, on an active basis, the M.E.D. for KR-DP0515 was 3.0 mg/L, indicating that KR-performed as well or better than its components for barium sulfate scale inhibition.
Table 5 Barium Sulfate Threshold Inhibition Test Results Percent Inhibition (%) Active Dose 60/40 AA/AMPS
Lm IL KR-DP0515 PBTC PAA cool er 1.00 51.2, 0.0 55.8, 31.7 58.1, 24.1,0.0 Avg.=25.6 Avg. X3.8 Avg.=27.4 1.50 2.00 58.4 74.4 2.50 3.00 95.9 39.0 48.8 3.50 4.00 95.3 73.2 5.00 6.00 99.2 7.00 8.00 9.00 10.00 24.1, 56.1 Avg.= 0. 1 15.00 63.4 20.00 89.9 M.E.D.* 3.00 >4.00 >10.0 Conditions:
24 hr @ 30 C (86 F) pHi: 7.0-8.0 68.7 mg/L Baa, 48.0 mg/L SO4-2 Example 3 [001131 A fluid treatment system according to the present invention was evaluated for friction reduction properties on a friction loop test apparatus.
[001141 Referring now to Fig. 1, the friction test apparatus, indicated generally as 10, consisted of a reservoir chamber 12, a pump 14 connected to the bottom 16 of the reservoir chamber 12, and a closed loop piping system 18 which received the test fluid from the pump and returned the test fluid to the reservoir chamber 12. The closed loop piping system 18 includes a flow meter (FM) for monitoring the flow rate of the test fluid through the pipe.
1001151 The treatment chemistry was added to the water returning from the closed loop piping system 18 as it entered the reservoir chamber 12. High turbulence at the injection point 20 ensured thorough and rapid dispersion of the treatment in the reservoir chamber 12. The friction test apparatus 10 was configured to provide flow through a section of pipe 22 under a fixed, steady-state flow rate. For the following examples, the Reynolds' number of the fluid in the pipe 22 was calculated to be 58,100 and was well within the turbulent flow regime. For each test, a differential pressure gauge 24 was used to measure the pressure differential between the pressure in the first position (P1) and the second position (P2) in the piping system 18. The length 26 of the pipe 22 between the first position (P1) and the second position (P2) was at least times the pipe diameter, or at least about 2 feet. The frictional loss through the pipe 22 between P1 and P2 was proportional to the pressure drop: PI minus P2 = AP.
Precision measurements of flow and pressure are required for an accurate assessment of the friction reduction. A datalogger 26 recorded pressure and flow measurements in 1 second increments during the test run. After the pressure differential for the base fluid was recorded, then the treatment was injected. The treatment rate of the liquid treatment products are reported in (gpt) or gallons per 1000 gallons of base fluid.
[00116] The differential pressure reading 60 seconds after injection was used in the analysis. The base fluid consisted of the water, dissolved ions and treatment chemicals prior to adding the friction reducing agent. The percent of friction reduction achieved by the water treatment was determined by measuring the differential pressure for base fluid and comparing to differential pressure for the treated fluid, according to the following formula:
Friction Reduction (%) _ (APbase fluid - OPtreated fluid)/ APbase fluid* 100.
1001171 One skilled in the art would understand that the diameter and length of the pipe 22 can vary, as long as steady-state turbulent flow conditions are maintained between P1 and P2.
The pipe diameter can be about 1/4 inch to about 2 inches, and the pipe length can be about 10 feet to about 200 feet. Space and cost considerations can be taken into account in determining the pipe dimensions for the test unit. Since the percent of friction reduction is determined by relative pressure drop for tests with and without the fluid treatment, the actual dimensions of the piping are not important as long as the dimensions fall within the ranges specified above and steady-state turbulent is maintained.
[00118] The adverse impact of ferrous iron on the performance the WFR-3B
friction reducing agent was evaluated. An amount of a 5 % (as Fe+2) solution of ferrous sulfate solution was added to the recirculating fresh water in the friction test apparatus to achieve a desired iron content in the base fluid. The iron concentration was confirmed using Hach FerroVer Iron Reagent (Catalog Number 854-99). The friction reducing agent was introduced thirty seconds after the addition of the ferrous compound. For Example 3, the friction reducing agent was WFR-3B and was applied at 0.5 gallons per 1000 gallons of base fluid (gpt).
Table 6 Ferrous Content (ppm) % Friction Reduction 0 70%
26%
25 25%
50 13%
75 0%
[00119] In this example, the effect of using a fluid treatment system including at least one material (a) (an iron control agent) and friction reducing agent (b) according to the present invention was evaluated. The same apparatus was used and the same flow conditions were maintained as above with fresh water. The concentration of ferrous iron was held constant at 25 ppm. The material (a), ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 1.0 gpt. As observed in Table 7, performance of the friction reducing agent was significantly improved in the presence of the material (a) and surpassed the performance of the no iron control.
Table 7 ICP-1000 % Friction ( t) Reduction Control - no iron or ICP-1000 64%
0.00 44%
0.25 59%
0.50 68%
0.75 68%
1.00 68%
[001201 In this example the same flow conditions were observed as above. The base fluid was prepared by adding various inorganic salts to fresh water to simulate well flowback water.
The chemical makeup of the water is presented below in Table 8:
Table 8 Ion ppm Na 4,050 Ca 1,000 Mg 500 Cl 9,400 1001211 In this example, an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 9, performance of the friction reducing agent is significantly improved in the presence of the iron control agent and performed almost equivalently to the no iron-containing control.
Table 9 ICP-1000 % Friction (gpt) Reduction Control - no iron or ICP-1000 63%
0.00 43%
0.25 59%
0.50 60%
1.00 61%
[001221 In this example the same flow conditions were observed as above. The base fluid was prepared by adding 10,200 ppm of sodium chloride to fresh water to produce a high TDS
brine. In this example an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000, was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 10, performance of the friction reducing agent was significantly improved in the presence of the iron control agent and performed almost equivalently to the no iron-containing control.
Table 10 ICP-1000 % Friction (gpt) Reduction Control - no iron or ICP- 1000 69%
0.00 53%
0.25 59%
0.50 62%
1.00 70%
[001231 In this example the same flow conditions were observed as above with fresh water, an iron control agent was added and the concentration of ferrous iron was held constant at 25 ppm. For comparison, the performance of ICP-1000 was evaluated against citric acid and EDTA which are commonly used in fracturing fluids as iron control agents. The iron control agent was applied at various treatment rates and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 1.0 gpt. As observed in Table 11, the performance of the commonly used iron control agents in some instances impaired the performance of the friction reducing agent. EDTA
had a deleterious effect on the performance of the friction reducing agent over the entire dosage range. In contrast, at lower levels of treatment citric acid combined with iron to cause significant deterioration to the performance of the friction reducing agent. It is significant to note that ICP-1000 improved the performance of the friction reducing agent over the entire treatment range.
Table 11 Iron Control Additive Friction Reduction (%) (gpt) ICP-1000 Citric Acid EDTA
0.00 44% 44% 44%
0.15 - 13% -0.25 59% 27% 43%
0.35 - 48% -0.50 68% 68% 35%
0.75 68% 68% 33%
Example 4 [00124] In this example the same flow conditions were observed as in Example 3. As in Table 8, the base fluid was prepared by adding various inorganic salts to fresh water to simulate well flowback water. In this example the concentration of ferrous iron was held constant at 25 ppm. The iron control agent, ICP-1000 and/or the KR-DP0510, a phosphonate-ester/acrylic acid copolymer scale inhibitor blend was applied and was mixed for 30 seconds prior addition of the ferrous sulfate. For this example, the friction reducing agent was WFR-3B and was applied at 0.5 gpt. As observed in Table 12, the performance of the friction reducing agent with either treatment was significantly improved over the untreated test condition.
Surprisingly, the performance of the friction reducing agent also was improved in the presence of the scale inhibitor at the same application dosage of the iron control agent.
Table 12 ICP-1000 KR-DP0520 % Friction ( t) (gpt) Reduction 0.00 0.00 43%
0.50 0.00 60%
0.50 2.00 69%
[001251 It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications which are within the spirit and scope of the invention, as defined by the appended claims.
Claims (94)
1. A fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
2. The fluid treatment system according to claim 1, wherein the at least one material (a) is a reaction product or salt thereof, wherein the reaction product is prepared from reactants comprising:
(a) at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (b) at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof.
(a) at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (b) at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof.
3. The fluid treatment system according to claim 1, wherein the material (a) has a weight average molecular weight ranging from about 500 to about 1,000,000 grams per mole.
4. The fluid treatment system according to claim 1, wherein the material (a) has a weight average molecular weight ranging from about 500 to about 100,000 grams per mole.
5. The fluid treatment system according to claim 2, wherein the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof comprises about 10 to about 90 weight percent of the reactants, on a basis of total weight of the reactants.
6. The fluid treatment system according to claim 2, wherein the weight ratio of ethylenically unsaturated, carboxylic acid functional material or anhydride thereof to ethylenically unsaturated, sulfonyl functional or sulfonate functional material ranges from about 1:20 to about 20:1.
7. The fluid treatment system according to claim 2, wherein the ethylenically unsaturated, carboxylic acid functional material or salt thereof has acrylic or vinyl functionality.
8. The fluid treatment system according to claim 2, wherein the ethylenically unsaturated, carboxylic acid functional material is selected from the group consisting of acrylic acid, methacrylic acid, .alpha..-halo acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, .beta.-carboxyethyl acrylic acid, salts thereof, and mixtures thereof.
9. The fluid treatment system according to claim 2, wherein the ethylenically unsaturated, carboxylic acid functional anhydride is maleic anhydride.
10. The fluid treatment system according to claim 2, wherein the ethylenically unsaturated, sulfur-containing material has vinyl functionality, acrylic functionality, acrylamido functionality, acrylamido alkyl functionality or acrylamido aryl functionality.
11. The fluid treatment system according to claim 2, wherein the ethylenically unsaturated, sulfur-containing material is selected from the group consisting of 2-acrylamido-2-methylpropyl sulfonic acid; allyl-2-hydroxypropyl sulfonic acid ether; allyl-2-hydroxypropyl sulfonate ether; sulfomethylacrylamide; 2-propene-1-sulfonic acid, 2-methyl; 2-methacrylamido-2-methylpropyl sulfonic acid; styrene sulfonic acid; vinyl sulfonic acid;
sulfoalkyl acrylate;
sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
sulfoalkyl acrylate;
sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
12. The fluid treatment system according to claim 2, wherein the reaction product (a) is prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid.
13. The fluid treatment system according to claim 12, wherein the reaction product (a) is prepared from about 25 to about 95 mole percent of acrylic acid and about 5 to about 75 mole percent of 2-acrylamido-2-methylpropyl sulfonic acid.
14. The fluid treatment system according to claim 2, wherein the at least one ethylenically unsaturated, sulfur-containing material comprises about 5 to about 95 weight percent of the reactants, on a basis of total weight of the reactants.
15. The fluid treatment system according to claim 2, wherein the reaction product (a) comprises (i) at least one sulfonated styrene moiety:
and (ii) at least one moiety derived from maleic anhydride:
wherein each M is independently selected from NH4, H, Na, or K.
and (ii) at least one moiety derived from maleic anhydride:
wherein each M is independently selected from NH4, H, Na, or K.
16. The fluid treatment system according to claim 2, wherein the reactants further comprise at least one ethylenically unsaturated material that is different from (1) the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (2) the at least one ethylenically unsaturated, sulfur-containing material.
17. The fluid treatment system according to claim 2, wherein the reactants further comprise at least one monomer selected from the group consisting of acrylamides, vinyl esters, vinyl acetates and mixtures thereof, the monomer being different from the ethylenically unsaturated, carboxylic acid functional material or anhydride thereof and the at least one ethylenically unsaturated, sulfur-containing material.
18. The fluid treatment system according to claim 17, wherein the monomer is selected from the group consisting of tert-butyl acrylamide; 2-propenoic acid, 2-methyl-, methyl ester; and mixtures thereof.
19. The fluid treatment system according to claim 16, wherein the reactants comprise up to about 60 weight percent of the at least one ethylenically unsaturated material, on a basis of total weight of the reactants.
20. The fluid treatment system according to claim 2, wherein the reactants further comprise at least one ethylenically unsaturated polyalkylene oxide.
21. The fluid treatment system according to claim 20, wherein the ethylenically unsaturated polyalkylene oxide is selected from the group consisting of allyl polyethylene glycol, methallyl polyethylene glycol, polyethylene glycol acrylate, polyethylene glycol methacrylate, methoxy allyl polyethylene oxide, alkoxyallyl polyethylene oxide, allyl polypropylene glycol, methallyl polypropylene glycol, polypropylene glycol acrylate, polypropylene glycol methacrylate, methoxy allyl polypropylene oxide, alkoxyallyl polypropylene oxide, and mixtures thereof.
22. The fluid treatment system according to claim 1, wherein the at least one friction reducing agent is polyacrylamide.
23. The fluid treatment system according to claim 22, wherein the polyacrylamide is a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer.
24. The fluid treatment system according to claim 23, wherein the polyacrylamide comprises one or more repeat units according to Formula I:
wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group,-R3-NR2 2,-R3-N+R2 3 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group,-R3-NR2 2,-R3-N+R2 3 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
25. The fluid treatment system according to claim 1, wherein the at least one friction reducing agent comprises a water-in-oil emulsion composition comprising:
(a) about 5 % to about 99% by weight of a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer;
(b) about 0.1 % to about 10 % by weight of one or more inorganic microparticles;
(c) about 0.5% to about 90% by weight of a carrier solvent; and (d) 0 to about 90% by weight of a fluidizing agent.
(a) about 5 % to about 99% by weight of a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer;
(b) about 0.1 % to about 10 % by weight of one or more inorganic microparticles;
(c) about 0.5% to about 90% by weight of a carrier solvent; and (d) 0 to about 90% by weight of a fluidizing agent.
26. The fluid treatment system according to claim 1, wherein the hydratable cellulosic material is selected from the group consisting of cellulose, methyl cellulose, hydroxyethyl cellulose, grafted hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, carboxymethylhydroxyethyl cellulose and mixtures thereof.
27. The fluid treatment system according to claim 1, wherein the scale control agent is selected from the group consisting of water-soluble polycarboxylates, phosphonates, phosphates, polyphosphates, metal salts, sulfonates that are chemically different from the at least one material (a), and mixtures thereof.
28. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble polycarboxylate comprising a polymer derived from at least one carboxylic acid functional, ethylenically unsaturated material selected from the group consisting of acrylic acid, methacrylic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, phosphinocarboxylic acid, maleic acid or anhydride, itaconic acid, .alpha.-halo acrylic acid, .beta.-carboxyethyl acrylic acid and mixtures thereof.
29. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble phosphonate selected from the group consisting of hydroxyphosphono acetic acid (HPA), diethylenetriamine-penta(methylenephosphonic acid), hexamethylenediaminetetra(methylenephosphonic acid), 2-phosphono-1,2,4-tricarboxybutane, amino tri(methylene phosphonic acid), hydroxyethylidene diphosphonic acid, phosphonosuccinic acid, benzene phosphonic acid, 2-aminoethyl phosphonic acid, polyamino phosphonates, and salts thereof where they exist.
30. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble phosphonate polyether selected from the group consisting of polyamino methylene phosphonates.
31. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble phosphate selected from the group consisting of orthophosphate; condensed phosphates; phosphate esters; organophosphate esters and mixtures thereof.
32. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble metal salt selected from the group consisting of water-soluble salts of zinc, molybdenum, chromate, sodium silicate and mixtures thereof.
33. The fluid treatment system according to claim 27, wherein the scale control agent comprises at least one water-soluble sulfonate comprising a polymer derived from at least one monomer selected from the group consisting of 2-acrylamido-2-methylpropylsulfonic acid, 2-methacrylamido-2-methylpropylsulfonic acid, styrene sulfonic acid, vinyl sulfonic acid, sulfo alkyl acrylate or methacrylate, allyl or methallyl sulfonic acid, sulfonic acid acrylate, 3-methacrylamido-2-hydroxy propyl sulfonic acid, their salts and mixtures thereof.
34. The fluid treatment system according to claim 1, wherein the scale control agent comprises at least one water-soluble phosphonate and at least one water-soluble polycarboxylate.
35. The fluid treatment system according to claim 1, wherein the scale control agent comprises at least one water-soluble phosphonate, at least one water-soluble polycarboxylate and at least one material (al) comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof, wherein the material (a1) can be the same or different from the material (a).
36. The fluid treatment system according to claim 34, wherein the scale control agent comprises 2-phosphono-1,2,4-tricarboxybutane, polyacrylic acid and a reaction product prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid.
37. The fluid treatment system according to claim 1, further comprising at least one surfactant.
38. The fluid treatment system according to claim 37, wherein the at least one surfactant is selected from the group consisting of alkanolamides, polyoxyethylene derivatives of sorbitan esters, sorbitan monooleate, sorbitan monostearate, C6-C22 linear or branched alkyl ethoxylates having 1 to 30 oxyethylene units, C6-C22 linear or branched alkyl propoxylates having 1 to 30 oxypropylene units, C6-C22 linear or branched alkyl ethoxylates/propoxylates having 1 to 30 combined oxyethylene and propoxylate units, alkylaryl ethoxylates containing a C6-C22 aryl group and having 1 to 30 oxyethylene units, hexadecyl sodium phthalate, cetyl sodium phthalate, stearyl sodium phthalate, ethylene oxide condensates of fatty acid amides, alpha olefin sulfonates, ether sulfates, ether sulfonates, alkoxylated alcohol surfactants, sulfosuccinates, and mixtures thereof.
39. The fluid treatment system according to claim 1, further comprising at least one biocide.
40. The fluid treatment system according to claim 1, wherein the at least one material (a), at least one friction reducing agent (b), and at least one scale control agent (c) are added to water sequentially or concurrently.
41. An aqueous composition comprising water and the fluid treatment system according to claim 1.
42. The aqueous composition according to claim 41, wherein the water comprises metal ions.
43. The aqueous composition according to claim 42, wherein the water comprises ferrous ions.
44. The aqueous composition according to claim 42, wherein the water comprises sodium ions.
45. A fracturing fluid for treating a subterranean formation penetrated by a well bore, the fracturing fluid comprising water and the fluid treatment system according to claim 1.
46. The fracturing fluid according to claim 45, further comprising at least one acid.
47. A composition comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
48. A method of inhibiting formation of metal oxides in an aqueous composition comprising metal ions, comprising:
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 1.
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 1.
49. The method according to claim 47, wherein the metal ions are ferrous ions and the metal oxide is iron oxide.
50. A method of inhibiting precipitation of metal oxides in an aqueous composition comprising metal ions, comprising:
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 1.
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 1.
51. A method of treating a subterranean formation penetrated by a well bore comprising: contacting the subterranean formation with the fracturing fluid of claim 45.
52. A method of inhibiting formation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising:
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
53. The method according to claim 51, wherein the metal ions are ferrous ions and the metal oxide is iron oxide.
54. A method of inhibiting precipitation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising:
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof;
(b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof; and (c) at least one scale control agent.
55. A fluid treatment system comprising:
(d) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
and (e) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
(d) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
and (e) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
56. The fluid treatment system according to claim 55, wherein the at least one material (a) is a reaction product or salt thereof, wherein the reaction product is prepared from reactants comprising:
(c) at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (d) at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof.
(c) at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (d) at least one ethylenically unsaturated, sulfur-containing material, wherein the ethylenically unsaturated sulfur-containing material comprises at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof.
57. The fluid treatment system according to claim 55, wherein the material (a) has a weight average molecular weight ranging from about 500 to about 1,000,000 grams per mole.
58. The fluid treatment system according to claim 55, wherein the material (a) has a weight average molecular weight ranging from about 500 to about 100,000 grams per mole.
59. The fluid treatment system according to claim 56, wherein the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof comprises about 10 to about 90 weight percent of the reactants, on a basis of total weight of the reactants.
60. The fluid treatment system according to claim 2, wherein the weight ratio of ethylenically unsaturated, carboxylic acid functional material or anhydride thereof to ethylenically unsaturated, sulfonyl functional or sulfonate functional material ranges from about 1:20 to about 20:1.
61. The fluid treatment system according to claim 56, wherein the ethylenically unsaturated, carboxylic acid functional material or salt thereof has acrylic or vinyl functionality.
62. The fluid treatment system according to claim 56, wherein the ethylenically unsaturated, carboxylic acid functional material is selected from the group consisting of acrylic acid, methacrylic acid, .alpha..-halo acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, .beta.-carboxyethyl acrylic acid, salts thereof, and mixtures thereof.
63. The fluid treatment system according to claim 56, wherein the ethylenically unsaturated, carboxylic acid functional anhydride is maleic anhydride.
64. The fluid treatment system according to claim 56, wherein the ethylenically unsaturated, sulfur-containing material has vinyl functionality, acrylic functionality, acrylamido functionality, acrylamido alkyl functionality or acrylamido aryl functionality.
65. The fluid treatment system according to claim 56, wherein the ethylenically unsaturated, sulfur-containing material is selected from the group consisting of 2-acrylamido-2-methylpropyl sulfonic acid; allyl-2-hydroxypropyl sulfonic acid ether; allyl-2-hydroxypropyl sulfonate ether; sulfomethylacrylamide; 2-propene-1-sulfonic acid, 2-methyl; 2-methacrylamido-2-methylpropyl sulfonic acid; styrene sulfonic acid; vinyl sulfonic acid;
sulfoalkyl acrylate;
sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
sulfoalkyl acrylate;
sulfoalkyl methacrylate; sulfoalkyl acrylamide; allyl sulfonic acid; methallyl sulfonic acid; para methallyloxy benzene sulfonic acid; allyl-2-hydroxypropyl sulfonic acid; 3-methacrylamido-2-hydroxypropyl sulfonic acid; sulfonic acid acrylate; sulfonated phenolmethacrylic ether; salts thereof and mixtures thereof.
66. The fluid treatment system according to claim 56, wherein the reaction product (a) is prepared from acrylic acid and 2-acrylamido-2-methylpropyl sulfonic acid.
67. The fluid treatment system according to claim 66, wherein the reaction product (a) is prepared from about 25 to about 95 mole percent of acrylic acid and about 5 to about 75 mole percent of 2-acrylamido-2-methylpropyl sulfonic acid.
68. The fluid treatment system according to claim 56, wherein the at least one ethylenically unsaturated, sulfur-containing material comprises about 5 to about 95 weight percent of the reactants, on a basis of total weight of the reactants.
69. The fluid treatment system according to claim 56, wherein the reaction product (a) comprises (i) at least one sulfonated styrene moiety:
and (ii) at least one moiety derived from maleic anhydride:
wherein each M is independently selected from NH4, H, Na, or K.
and (ii) at least one moiety derived from maleic anhydride:
wherein each M is independently selected from NH4, H, Na, or K.
70. The fluid treatment system according to claim 56, wherein the reactants further comprise at least one ethylenically unsaturated material that is different from (1) the at least one ethylenically unsaturated, carboxylic acid functional material or anhydride thereof; and (2) the at least one ethylenically unsaturated, sulfur-containing material.
71. The fluid treatment system according to claim 56, wherein the reactants further comprise at least one monomer selected from the group consisting of acrylamides, vinyl esters, vinyl acetates and mixtures thereof, the monomer being different from the ethylenically unsaturated, carboxylic acid functional material or anhydride thereof and the at least one ethylenically unsaturated, sulfur-containing material.
72. The fluid treatment system according to claim 71, wherein the monomer is selected from the group consisting of tert-butyl acrylamide; 2-propenoic acid, 2-methyl-, methyl ester; and mixtures thereof.
73. The fluid treatment system according to claim 70, wherein the reactants comprise up to about 60 weight percent of the at least one ethylenically unsaturated material, on a basis of total weight of the reactants.
74. The fluid treatment system according to claim 56, wherein the reactants further comprise at least one ethylenically unsaturated polyalkylene oxide.
75. The fluid treatment system according to claim 74 wherein the ethylenically unsaturated polyalkylene oxide is selected from the group consisting of allyl polyethylene glycol, methallyl polyethylene glycol, polyethylene glycol acrylate, polyethylene glycol methacrylate, methoxy allyl polyethylene oxide, alkoxyallyl polyethylene oxide, allyl polypropylene glycol, methallyl polypropylene glycol, polypropylene glycol acrylate, polypropylene glycol methacrylate, methoxy allyl polypropylene oxide, alkoxyallyl polypropylene oxide, and mixtures thereof.
76. The fluid treatment system according to claim 55, wherein the at least one friction reducing agent is polyacrylamide.
77. The fluid treatment system according to claim 76, wherein the polyacrylamide is a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer.
78. The fluid treatment system according to claim 77, wherein the polyacrylamide comprises one or more repeat units according to Formula I:
wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group ,-R3-NR22,-R3-N4R23 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
wherein each occurrence of R1 is independently selected from H, methyl and ethyl; n is an integer from 10 to 10,000,000; Z is selected from -O- and -NR2-; and each occurrence of R2 is independently selected from the group consisting of H, C1-C22 linear, branched or cyclic alkyl, aryl, alkaryl, aralkyl or alkenyl group ,-R3-NR22,-R3-N4R23 X, and -R3-SO3Y, wherein R2 is as previously defined; R3 is a divalent linking group selected from the group consisting of C1-C22 linear, branched or cyclic alkylene, arylene, alkarylene, aralkylene or alkenylene, poly(ethyleneoxide) and poly(propyleneoxide); Y is H or an alkali metal ion; and X
is a halide or methylsulfate.
79. The fluid treatment system according to claim 55, wherein the at least one friction reducing agent comprises a water-in-oil emulsion composition comprising:
(a) about 5 % to about 99 % by weight of a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer;
(b) about 0.1 % to about 10 % by weight of one or more inorganic microparticles;
(c) about 0.5 % to about 90 % by weight of a carrier solvent; and (d) 0 to about 90 % by weight of a fluidizing agent.
(a) about 5 % to about 99 % by weight of a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer;
(b) about 0.1 % to about 10 % by weight of one or more inorganic microparticles;
(c) about 0.5 % to about 90 % by weight of a carrier solvent; and (d) 0 to about 90 % by weight of a fluidizing agent.
80. The fluid treatment system according to claim 55, wherein the hydratable cellulosic material is selected from the group consisting of cellulose, methyl cellulose, hydroxyethyl cellulose, grafted hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, carboxymethylhydroxyethyl cellulose and mixtures thereof.
81. The fluid treatment system according to claim 55, wherein the at least one material (a) and at least one friction reducing agent (b) are added to water sequentially or concurrently.
82. An aqueous composition comprising water and the fluid treatment system according to claim 1.
83. The aqueous composition according to claim 82, wherein the water comprises metal ions.
84. The aqueous composition according to claim 83, wherein the water comprises ferrous ions.
85. A fracturing fluid for treating a subterranean formation penetrated by a well bore, the fracturing fluid comprising water and the fluid treatment system according to claim 76
86. The fracturing fluid according to claim 85, further comprising at least one acid.
87. A composition comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups, and mixtures thereof;
and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
88. A method of inhibiting formation of metal oxides in an aqueous composition comprising metal ions, comprising:
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 55.
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 55.
89. The method according to claim 88, wherein the metal ions are ferrous ions and the metal oxide is iron oxide.
90. A method of inhibiting precipitation of metal oxides in an aqueous composition comprising metal ions, comprising:
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 55.
mixing an aqueous composition comprising metal ions with the fluid treatment system according to claim 55.
91. A method of treating a subterranean formation penetrated by a well bore comprising: contacting the subterranean formation with the fracturing fluid of claim 85.
92. A method of inhibiting formation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising:
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
93. The method according to claim 92, wherein the metal ions are ferrous ions and the metal oxide is iron oxide.
94. A method of inhibiting precipitation of metal oxides in an aqueous composition comprising at least 20 milligrams of metal ions per liter of aqueous composition, comprising:
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
mixing an aqueous composition comprising metal ions with a fluid treatment system comprising:
(a) at least one material comprising (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2758782A CA2758782C (en) | 2011-11-18 | 2011-11-18 | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2758782A CA2758782C (en) | 2011-11-18 | 2011-11-18 | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2758782A1 true CA2758782A1 (en) | 2013-01-14 |
| CA2758782C CA2758782C (en) | 2015-01-06 |
Family
ID=47553791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2758782A Expired - Fee Related CA2758782C (en) | 2011-11-18 | 2011-11-18 | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2758782C (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210371728A1 (en) * | 2018-10-31 | 2021-12-02 | Kemira Oyj | Methods and compositions for enhanced oil recovery |
| CN114032085A (en) * | 2021-12-23 | 2022-02-11 | 成都理工大学 | Efficient gas suspension proppant for fracturing and preparation method thereof |
| US20240166941A1 (en) * | 2022-11-22 | 2024-05-23 | Saudi Arabian Oil Company | Ultra-lightweight proppants |
-
2011
- 2011-11-18 CA CA2758782A patent/CA2758782C/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210371728A1 (en) * | 2018-10-31 | 2021-12-02 | Kemira Oyj | Methods and compositions for enhanced oil recovery |
| US11840664B2 (en) * | 2018-10-31 | 2023-12-12 | Kemira Oyj | Methods and compositions for enhanced oil recovery |
| CN114032085A (en) * | 2021-12-23 | 2022-02-11 | 成都理工大学 | Efficient gas suspension proppant for fracturing and preparation method thereof |
| CN114032085B (en) * | 2021-12-23 | 2022-07-15 | 成都理工大学 | Efficient gas suspension proppant for fracturing and preparation method thereof |
| US20240166941A1 (en) * | 2022-11-22 | 2024-05-23 | Saudi Arabian Oil Company | Ultra-lightweight proppants |
| US12264282B2 (en) * | 2022-11-22 | 2025-04-01 | Saudi Arabian Oil Company | Ultra-lightweight proppants |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2758782C (en) | 2015-01-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8940667B2 (en) | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance | |
| EP2524018B1 (en) | Surfactants and friction reducing polymers for the reduction of water blocks and gas condensates and associated methods | |
| EP2524017B1 (en) | Treatment fluids for wetting control of multiple rock types and associated methods | |
| AU2014414836B2 (en) | Activity enhanced scale dispersant for treating inorganic sulfide scales | |
| AlMubarak et al. | Design and application of high temperature seawater based fracturing fluids in Saudi Arabia | |
| CA2758686A1 (en) | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions | |
| Budiman et al. | Seawater-based fracturing fluid: a review | |
| US11274243B2 (en) | Friction reducers, fracturing fluid compositions and uses thereof | |
| CA2758782C (en) | Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance | |
| US9399728B2 (en) | In-situ crosslinking and calcium ion complexation for acidizing a subterranean formation | |
| CN113583653A (en) | Novel aqueous fracturing fluid composition and fracturing method using the same | |
| US11718781B2 (en) | Method to produce a scale inhibitor | |
| US11746282B2 (en) | Friction reducers, fracturing fluid compositions and uses thereof | |
| EP4361183B1 (en) | High molecular weight anionic polyacrylamides | |
| US12054669B2 (en) | Friction reducers, fluid compositions and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MKLA | Lapsed |
Effective date: 20201118 |