CN104034315B - Assembly method of truss structure for ultra-long focal length remote sensing camera - Google Patents
Assembly method of truss structure for ultra-long focal length remote sensing camera Download PDFInfo
- Publication number
- CN104034315B CN104034315B CN201410310102.3A CN201410310102A CN104034315B CN 104034315 B CN104034315 B CN 104034315B CN 201410310102 A CN201410310102 A CN 201410310102A CN 104034315 B CN104034315 B CN 104034315B
- Authority
- CN
- China
- Prior art keywords
- assembly
- link
- assembly link
- remote sensing
- sensing camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/02—Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
超长焦距遥感相机桁架结构的装配方法,涉及航空航天领域,该方法由以下步骤实现:将遥感相机光轴方向与大地水平方向垂直放置,依据该装配方式设计桁架结构装配工装;分析遥感相机在步骤一确定的装配方式下受自重载荷作用的变形情况,采用有限元计算方式计算出装配环节的角度与线量变化的理论值;将步骤二得到的理论变形值作为装配环节装配时的补偿量进行预补偿;按照步骤三补偿后的装配数据和步骤一确定的装配方式对桁架杆组进行装配;装配完成后搁置10~15天以释放应力,对桁架结构进行检测。本发明的装配方法在重力方向占用空间减小,所需设计装配工装体量较小,可操作空间较大,不易造成测量误差、操作失误等。
The method for assembling the truss structure of the ultra-long focal length remote sensing camera relates to the field of aerospace. For the deformation under the self-weight load determined in step 1, use the finite element calculation method to calculate the theoretical value of the angle and line quantity change of the assembly link; use the theoretical deformation value obtained in step 2 as the compensation amount during assembly of the assembly link Perform pre-compensation; assemble the truss rod group according to the assembly data after compensation in step 3 and the assembly method determined in step 1; after the assembly is completed, put it aside for 10 to 15 days to release the stress and inspect the truss structure. The assembly method of the present invention takes up less space in the direction of gravity, requires less design and assembly tooling, has a larger operable space, and is less likely to cause measurement errors, operational errors, and the like.
Description
技术领域technical field
本发明涉及航空航天技术领域,具体涉及一种超长焦距遥感相机桁架结构的装配方法。The invention relates to the field of aerospace technology, in particular to an assembly method for a truss structure of an ultra-long focal length remote sensing camera.
背景技术Background technique
框架结构是空间相机的骨架结构,负责光学元件以及控制电箱等重要部件的支撑与定位,因此其对空间相机的成像具有关键作用。The frame structure is the skeleton structure of the space camera, responsible for the support and positioning of important components such as optical components and control electrical boxes, so it plays a key role in the imaging of the space camera.
当遥感相机的焦距过大时,将会导致其桁架结构在光轴方向尺寸过于庞大(即主次镜间隔过大),目前,遥感相机桁架结构的装配方法,一般采用装配方向为遥感相机光轴方向(一般为尺寸量最大的方向)与大地水平方向平行的方式,该方法在重力方向占用空间过大,所需设计装配工装体量过于庞大,使得可操作空间较小,容易造成测量误差、操作失误等问题。When the focal length of the remote sensing camera is too large, the size of the truss structure in the direction of the optical axis will be too large (that is, the distance between the primary and secondary mirrors is too large). The axial direction (generally the direction with the largest dimension) is parallel to the horizontal direction of the earth. This method takes up too much space in the direction of gravity, and the required design and assembly tooling volume is too large, which makes the operable space small and easily causes measurement errors. , operating errors, etc.
发明内容Contents of the invention
为了解决现有遥感相机桁架结构的装配方法存在的重力方向占用空间过大、所需装配工装体量过于庞大、可操作空间小、易造成测量误差和操作失误的问题,本发明提供一种超长焦距遥感相机桁架结构的装配方法。In order to solve the problems existing in the assembly method of the truss structure of the remote sensing camera that the gravity direction occupies too much space, the required assembly tooling volume is too large, the operable space is small, and it is easy to cause measurement errors and operation errors, the present invention provides a super The assembly method of the truss structure of the remote sensing camera with long focal length.
本发明为解决技术问题所采用的技术方案如下:The technical scheme that the present invention adopts for solving technical problems is as follows:
超长焦距遥感相机桁架结构的装配方法,该方法由以下步骤实现:An assembly method for a truss structure of an ultra-long focal length remote sensing camera, the method is realized by the following steps:
步骤一、将遥感相机光轴方向与大地水平方向垂直放置,根据该装配方式设计桁架结构装配工装;Step 1. Place the optical axis direction of the remote sensing camera vertically to the horizontal direction of the earth, and design the truss structure assembly tooling according to the assembly method;
步骤二、将第一装配环节安装在支撑平台上,将第二装配环节安装在装调工装上,采用位置测量设备测量出第一装配环节和第二装配环节的相对位置关系,并通过调整装配工装直至将第二装配环节调整到目标安装位置;Step 2: Install the first assembly link on the support platform, install the second assembly link on the assembly tooling, use position measuring equipment to measure the relative positional relationship between the first assembly link and the second assembly link, and adjust the assembly Tooling until the second assembly link is adjusted to the target installation position;
步骤三、分析整个遥感相机在步骤一所确定的装配方式下受自重载荷作用的变形情况,采用有限元计算方式计算出第一装配环节和第二装配环节的角度与线量变化的理论值;Step 3. Analyzing the deformation of the entire remote sensing camera under the action of the self-weight load under the assembly method determined in step 1, and calculating the theoretical values of the angle and line quantity changes of the first assembly link and the second assembly link by means of finite element calculation;
步骤四、将步骤三计算出的第一装配环节和第二装配环节的角度与线量变化的理论值作为第一装配环节和第二装配环节装配理论值的补偿量对第一装配环节和第二装配环节的目标安装位置进行预补偿;Step 4. Use the theoretical value of the angle and line change calculated in step 3 for the first assembly link and the second assembly link as the compensation amount for the theoretical assembly value of the first assembly link and the second assembly link. The target installation position of the second assembly link is pre-compensated;
步骤五、按照步骤四补偿后的装配数据以及步骤一确定的装配方式对桁架杆组进行装配;Step 5. Assembling the truss bar group according to the compensated assembly data in step 4 and the assembly method determined in step 1;
步骤六、桁架杆组装配完成后搁置10~15天以释放应力;Step 6. After the truss rod assembly is assembled, put it on hold for 10-15 days to release the stress;
步骤七、通过位置测量设备对第一装配环节和第二装配环节的相对位置进行检测。Step 7: Detect the relative positions of the first assembly link and the second assembly link by using a position measuring device.
所述装配工装具有六个自由度调整能力,满足六个方向调整精度需求。The assembly tool has the ability to adjust six degrees of freedom to meet the requirements for adjustment accuracy in six directions.
本发明的有益效果是:本发明的装配方法采用将遥感相机光轴方向与大地水平方向垂直放置的方式,该桁架结构在重力方向占用的空间将大幅减小,具有基本与小型相机框架结构相似的装配难度;所需设计装配工装体量较小,可操作空间较大,不易造成测量误差、操作失误等;采用有限元计算的方式对转变方向带来的自重变形进行预补偿,可以在系统装配完成后,实际的自重变形将与计算的预补偿值抵消,从而实现该超长焦距遥感相机桁架结构在理论值附近较好的装配。The beneficial effects of the present invention are: the assembly method of the present invention adopts the method of placing the optical axis direction of the remote sensing camera perpendicular to the horizontal direction of the earth, the space occupied by the truss structure in the direction of gravity will be greatly reduced, and it has a structure similar to that of a small camera frame structure. The difficulty of assembly; the required design and assembly tooling volume is small, and the operable space is large, which is not easy to cause measurement errors and operation errors; the finite element calculation method is used to pre-compensate the self-weight deformation caused by the changing direction, which can be used in the system After the assembly is completed, the actual self-weight deformation will be offset against the calculated pre-compensation value, so that the truss structure of the ultra-long focal length remote sensing camera can be better assembled near the theoretical value.
附图说明Description of drawings
图1为本发明的超长焦距遥感相机桁架结构的装配方法中用到的装配装置组成结构示意图。Fig. 1 is a schematic diagram of the composition and structure of the assembly device used in the assembly method of the truss structure of the ultra-long focal length remote sensing camera of the present invention.
图2为本发明的超长焦距遥感相机桁架结构的装配方法流程示意图。Fig. 2 is a schematic flowchart of the assembly method of the truss structure of the ultra-long focal distance remote sensing camera of the present invention.
图中:1、支撑平台,2、位置测量设备,3、第一装配环节,4、第二装配环节,5、桁架杆组,6、装调工装。In the figure: 1. Supporting platform, 2. Position measuring equipment, 3. First assembly link, 4. Second assembly link, 5. Truss bar group, 6. Assembly and adjustment tooling.
具体实施方式detailed description
以下结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
如图2所示,本发明的一种超长焦距遥感相机桁架结构的装配方法,该方法由以下步骤实现:As shown in Figure 2, a kind of assembling method of the truss structure of the ultra-long focal length remote sensing camera of the present invention, this method is realized by the following steps:
步骤一、将遥感相机光轴方向(尺寸量最大的方向)与大地水平方向垂直放置,依据该装配方式设计桁架结构装配工装6,装配工装6应具有6个自由度调整能力,满足6个方向调整精度需求,其具体结构形式可以根据需要进行设计;Step 1. Place the direction of the optical axis of the remote sensing camera (the direction with the largest size) perpendicular to the horizontal direction of the earth, and design the truss structure assembly tooling 6 according to this assembly method. The assembly tooling 6 should have the ability to adjust 6 degrees of freedom to meet the requirements of 6 directions. Adjust the precision requirements, and its specific structure can be designed according to the needs;
步骤二、如图1所示,将第一装配环节3安装在支撑平台1上,将第二装配环节4安装在装调工装6上,采用位置测量设备2测量出第一装配环节3和第二装配环节4的相对位置关系,并通过调整装配工装6直至将第二装配环节4调整到目标安装位置;Step 2, as shown in Figure 1, install the first assembly link 3 on the support platform 1, install the second assembly link 4 on the assembly and adjustment tool 6, and use the position measuring device 2 to measure the first assembly link 3 and the second assembly link 3. The relative positional relationship of the second assembly link 4, and adjusting the assembly tooling 6 until the second assembly link 4 is adjusted to the target installation position;
步骤三、分析整个遥感相机在步骤一所确定的装配方式下受自重载荷作用的变形情况,采用有限元计算方式计算出第一装配环节3和第二装配环节4的角度与线量变化的理论值;Step 3. Analyze the deformation of the entire remote sensing camera under the action of its own weight load under the assembly method determined in step 1, and use the finite element calculation method to calculate the theory of the angle and line quantity change of the first assembly link 3 and the second assembly link 4 value;
步骤四、将步骤三计算出的第一装配环节3和第二装配环节4的角度与线量变化的理论值作为第一装配环节3和第二装配环节4装配理论值的补偿量对第一装配环节3和第二装配环节4的目标安装位置进行预补偿;Step 4, use the theoretical value of the angle and line quantity change of the first assembly link 3 and the second assembly link 4 calculated in step 3 as the compensation amount of the theoretical value of the first assembly link 3 and the second assembly link 4 to the first assembly link 3 and the second assembly link 4. The target installation positions of the assembly link 3 and the second assembly link 4 are pre-compensated;
步骤五、按照步骤四补偿后的装配数据以及步骤一确定的装配方式(遥感相机光轴方向与大地水平方向垂直放置)对桁架杆组5进行装配;Step 5, assemble the truss bar group 5 according to the compensated assembly data in step 4 and the assembly method determined in step 1 (the optical axis direction of the remote sensing camera is placed vertically to the horizontal direction of the earth);
步骤六、桁架杆组5装配完成后搁置10~15天以释放应力,通过位置测量设备2对第一装配环节3和第二装配环节4的相对位置进行检测,在整个遥感相机自重载荷的作用下可以获得一个与理论值接近的桁架结构。Step 6. After the truss rod group 5 is assembled, it is put on hold for 10-15 days to release the stress. The relative position of the first assembly link 3 and the second assembly link 4 is detected by the position measuring device 2. A truss structure close to the theoretical value can be obtained below.
本发明的装配方法有效的避免了由于桁架结构体量庞大带来的一系列问题,所需装配工装6结构简单、不占用过多操作空间,方法过程易于操作,能够较好的获得理论装配精度。The assembly method of the present invention effectively avoids a series of problems caused by the large volume of the truss structure, the required assembly tooling 6 has a simple structure, does not occupy too much operating space, the method process is easy to operate, and can better obtain theoretical assembly accuracy .
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410310102.3A CN104034315B (en) | 2014-06-30 | 2014-06-30 | Assembly method of truss structure for ultra-long focal length remote sensing camera |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410310102.3A CN104034315B (en) | 2014-06-30 | 2014-06-30 | Assembly method of truss structure for ultra-long focal length remote sensing camera |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104034315A CN104034315A (en) | 2014-09-10 |
| CN104034315B true CN104034315B (en) | 2016-01-13 |
Family
ID=51465181
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410310102.3A Expired - Fee Related CN104034315B (en) | 2014-06-30 | 2014-06-30 | Assembly method of truss structure for ultra-long focal length remote sensing camera |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104034315B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111689397B (en) * | 2020-06-29 | 2022-05-24 | 西南科技大学 | A truss hoisting and angle adjustment method |
| CN112965324B (en) * | 2021-03-24 | 2022-02-18 | 中国科学院西安光学精密机械研究所 | Installation and adjustment device and process of carbon fiber truss fuselage based on glue error compensation |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2743875Y (en) * | 2004-10-28 | 2005-11-30 | 中国科学院长春光学精密机械与物理研究所 | Strucure of optical remote sensing camera frame |
| CN101571389A (en) * | 2009-06-05 | 2009-11-04 | 中国科学院长春光学精密机械与物理研究所 | Method for precisely assembling space remote sensing camera body structure |
| CN102284859A (en) * | 2011-05-06 | 2011-12-21 | 中国科学院上海技术物理研究所 | Digital assembly method of space remote sensing instrument |
| CN102368113A (en) * | 2011-10-31 | 2012-03-07 | 中国科学院长春光学精密机械与物理研究所 | Assembling device and non-stress assembling method of high-precision optical element |
| CN102853220A (en) * | 2012-09-13 | 2013-01-02 | 中国科学院长春光学精密机械与物理研究所 | Hinge type remote-space-sensing camera support |
| US8360662B1 (en) * | 2008-01-11 | 2013-01-29 | Brandebury Tool Company, Inc. | Miniaturized turret-mounted camera assembly |
| CN103795907A (en) * | 2014-01-23 | 2014-05-14 | 中国科学院长春光学精密机械与物理研究所 | Main frame assembling device and assembling method for space optical camera |
-
2014
- 2014-06-30 CN CN201410310102.3A patent/CN104034315B/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2743875Y (en) * | 2004-10-28 | 2005-11-30 | 中国科学院长春光学精密机械与物理研究所 | Strucure of optical remote sensing camera frame |
| US8360662B1 (en) * | 2008-01-11 | 2013-01-29 | Brandebury Tool Company, Inc. | Miniaturized turret-mounted camera assembly |
| CN101571389A (en) * | 2009-06-05 | 2009-11-04 | 中国科学院长春光学精密机械与物理研究所 | Method for precisely assembling space remote sensing camera body structure |
| CN102284859A (en) * | 2011-05-06 | 2011-12-21 | 中国科学院上海技术物理研究所 | Digital assembly method of space remote sensing instrument |
| CN102368113A (en) * | 2011-10-31 | 2012-03-07 | 中国科学院长春光学精密机械与物理研究所 | Assembling device and non-stress assembling method of high-precision optical element |
| CN102853220A (en) * | 2012-09-13 | 2013-01-02 | 中国科学院长春光学精密机械与物理研究所 | Hinge type remote-space-sensing camera support |
| CN103795907A (en) * | 2014-01-23 | 2014-05-14 | 中国科学院长春光学精密机械与物理研究所 | Main frame assembling device and assembling method for space optical camera |
Non-Patent Citations (4)
| Title |
|---|
| 国外长焦距高分辨率遥感相机桁架结构研究;范斌 等;《航天返回与遥感》;20080630;全文 * |
| 空间相机机身桁架结构装配技术;张凯 等;《激光与红外》;20100331;全文 * |
| 空间相机桁架支撑结构满应力优化设计与试验;贾学志 等;《空间科学学报》;20131231;全文 * |
| 长焦距空间遥感器支撑结构设计研究;辛宏伟;《光机电信息》;20091231;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104034315A (en) | 2014-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104851104A (en) | Flexible-target-based close-range large-field-of-view calibrate method of high-speed camera | |
| CN204555989U (en) | A kind of plumb line coordinator on-line proving device | |
| CN104034315B (en) | Assembly method of truss structure for ultra-long focal length remote sensing camera | |
| CN103575442A (en) | Method for optimizing reinforced concrete support axial force monitor data with stress-free meter | |
| CN104197839A (en) | Compensation method for spacecraft assembly accuracy influenced by gravity and temperature | |
| CN204202812U (en) | The caliberating device of simple and easy force cell | |
| CN109387329A (en) | Small drone weight center of gravity measuring device and measuring method | |
| CN104655496B (en) | The method of testing conducted oneself with dignity on the influence of off axis reflector mirror surface-shaped | |
| CN206235290U (en) | A kind of height-adjustable dial gauge clamping measurement apparatus | |
| CN102121815B (en) | Differential settlement producing device and method for thin-walled cylindrical shell structure test | |
| CN207541066U (en) | Rock expansion experimental rig | |
| CN104655066A (en) | Joint arm measuring machine | |
| CN104076616A (en) | Trefoil aberration deformation mirror device | |
| CN203616050U (en) | Hydraulic reinforcing system | |
| CN108534739A (en) | A kind of concrete shrinkage full-automatic wireless acquisition system | |
| CN104048608A (en) | Device for measuring thermal displacement of pipeline | |
| CN203587119U (en) | Road engineering survey instrument calibrating device | |
| CN108507502B (en) | Method for measuring engineering collimation parameters of accelerator | |
| CN204007580U (en) | Steering column phasing degree testing agency | |
| CN104655409B (en) | Space optical remote sensor focus adjusting mechanism simulates in-orbit gravity release detection method | |
| CN104777709B (en) | The method for supporting of camera back plate during the large-scale off-axis three anti-quasi- adjustment of system cobasis | |
| CN104165980B (en) | A kind of experimental provision observing assembly with earth horizontal displacement and pressure one | |
| CN103604334B (en) | Light stop block for axial movement measurement of large cylindrical rotating equipment and mounting method | |
| CN103419165A (en) | High-precision torque wrench and checkout, installation and detection method thereof | |
| CN205228412U (en) | Horizontal portable displacement meter calibrating device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 |