CN104038220A - 16-bit pipelined analog-digital converter - Google Patents
16-bit pipelined analog-digital converter Download PDFInfo
- Publication number
- CN104038220A CN104038220A CN201310070652.8A CN201310070652A CN104038220A CN 104038220 A CN104038220 A CN 104038220A CN 201310070652 A CN201310070652 A CN 201310070652A CN 104038220 A CN104038220 A CN 104038220A
- Authority
- CN
- China
- Prior art keywords
- output
- stage
- analog
- digital
- nmos transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 claims abstract description 16
- 239000003990 capacitor Substances 0.000 claims description 179
- 230000005540 biological transmission Effects 0.000 claims description 85
- 238000005070 sampling Methods 0.000 claims description 23
- 230000033228 biological regulation Effects 0.000 claims description 9
- 101150010353 Ascl1 gene Proteins 0.000 claims description 8
- 238000003491 array Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 abstract description 4
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 abstract 1
- 101100112673 Rattus norvegicus Ccnd2 gene Proteins 0.000 description 33
- 238000013139 quantization Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000013642 negative control Substances 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 101100203600 Caenorhabditis elegans sor-1 gene Proteins 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
本发明提供一种16位流水线型模数转换器,包括:顺序连接的前置采样保持电路、第一级、第二级、第三级、第四级多位数数模转换器和第五级快闪模数转换器,以及分别与所述第一级、第二级、第三级、第四级多位数数模转换器和所述第五级快闪模数转换器连接的数字校正电路。模数转换器中采用数字校正技术使得模数转换器可以容忍比较器具有一定的失调而不影响模数转换器的性能。另外,通过前台模拟校准消除由于电容失配所引起的MDAC中的子DAC误差和级间增益误差。本发明的方案可以有效的缩短校准的时间。
The present invention provides a 16-bit pipelined analog-to-digital converter, comprising: a sequentially connected pre-sample and hold circuit, a first stage, a second stage, a third stage, a fourth stage multi-digit digital-to-analog converter and a fifth stage flash analog-to-digital converters, and digital digital-to-analog converters connected to the first, second, third, and fourth-stage multi-digit digital-to-analog converters and the fifth-stage flash analog-to-digital converters respectively correction circuit. The use of digital correction technology in the analog-to-digital converter enables the analog-to-digital converter to tolerate a certain offset of the comparator without affecting the performance of the analog-to-digital converter. In addition, the sub-DAC error and inter-stage gain error in the MDAC caused by capacitance mismatch are eliminated through foreground analog calibration. The solution of the invention can effectively shorten the calibration time.
Description
技术领域technical field
本发明涉及混合信号集成电路技术领域,特别是指一种16位125MSPSCMOS流水线型模数转换器。The invention relates to the technical field of mixed-signal integrated circuits, in particular to a 16-bit 125MSPSCMOS pipeline analog-to-digital converter.
背景技术Background technique
随着现代通讯技术和数字信号处理技术的发展,整个通信系统对模拟信号与数字信号的接口电路在速度和精度上有着更高的要求,因此需要设计高速高精度的模数转化器。With the development of modern communication technology and digital signal processing technology, the entire communication system has higher requirements on the speed and precision of the interface circuit between analog signal and digital signal, so it is necessary to design a high-speed and high-precision analog-to-digital converter.
在现有的结构中精度高于10位以上的流水线型模数转化器中很难实现,这是由于受芯片上电容的匹配性限制和比较器的阈值失调限制。模数转化器需要相应的校准技术和校正技术。It is difficult to implement in the pipelined analog-to-digital converter whose precision is higher than 10 bits in the existing structure, because it is limited by the matching of the capacitance on the chip and the threshold offset of the comparator. Analog-to-digital converters require corresponding calibration techniques and correction techniques.
在实现本发明的过程中,发现现有技术中存在如下问题:大部分数字校准技术需要很长的校准时间来实现。In the process of implementing the present invention, it is found that the following problems exist in the prior art: most digital calibration techniques require a long calibration time to implement.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种16位125MSPS CMOS流水线型模数转换器,有效的缩短校准的时间。The technical problem to be solved by the present invention is to provide a 16-bit 125MSPS CMOS pipeline analog-to-digital converter, which can effectively shorten the calibration time.
为解决上述技术问题,本发明的实施例提供一种16位流水线型模数转换器,包括:In order to solve the above technical problems, an embodiment of the present invention provides a 16-bit pipelined analog-to-digital converter, including:
顺序连接的前置采样保持电路、第一级、第二级、第三级、第四级多位数数模转换器和第五级快闪模数转换器,以及分别与所述第一级、第二级、第三级、第四级多位数数模转换器和所述第五级快闪模数转换器连接的数字校正电路;其中,The pre-sampling and holding circuit, the first stage, the second stage, the third stage, the fourth stage multi-digit digital-to-analog converter and the fifth-stage flash analog-to-digital converter connected in sequence, and the first stage and the first stage respectively , the digital correction circuit connected to the second stage, the third stage, the fourth stage multi-digit digital-to-analog converter and the fifth-stage flash analog-to-digital converter; wherein,
所述采样保持电路对输入信号进行采样,并将所述输入信号输出至第一级多位数数模转换器;The sample-and-hold circuit samples the input signal, and outputs the input signal to the first-stage multi-digit digital-to-analog converter;
第一级多位数数模转换器对所述采样保持电路的输出进行采样,并将量化剩余差值放大输出,同时完成对本级输出可控比较器的输出值的编码;The first-stage multi-digit digital-to-analog converter samples the output of the sample-and-hold circuit, amplifies and outputs the quantized residual difference, and completes the encoding of the output value of the output controllable comparator at this stage;
第二级多位数数模转换器对第一级多位数数模转换器的输出进行采样,并将量化剩余差值放大输出,同时完成对本级输出可控比较器的输出值的编码;The second-stage multi-digit digital-to-analog converter samples the output of the first-stage multi-digit digital-to-analog converter, amplifies and outputs the quantized residual difference, and completes the encoding of the output value of the current-stage output controllable comparator;
第三级多位数数模转换器对第二级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The third-stage multi-digit digital-to-analog converter samples the output of the second-stage multi-digit digital-to-analog converter, and at the same time completes the encoding of the output value of the output controllable comparator at this stage;
第四级多位数数模转换器对第三级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The fourth-stage multi-digit digital-to-analog converter samples the output of the third-stage multi-digit digital-to-analog converter, and at the same time completes the coding of the output value of the output controllable comparator at this stage;
第五级快闪模数转换器对第四级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The fifth-stage flash analog-to-digital converter samples the output of the fourth-stage multi-digit digital-to-analog converter, and at the same time completes the encoding of the output value of the output controllable comparator of this stage;
第三级多位数数模转换器和所述第五级快闪模数转换器与第一级多位数数模转换器的时序相同;The timing of the third-stage multi-digit digital-to-analog converter and the fifth-stage flash analog-to-digital converter is the same as that of the first-stage multi-digit digital-to-analog converter;
第四级多位数数模转换器与第二级多位数数模转换器的时序相同。The timing of the fourth-stage multi-digit DAC is the same as that of the second-stage multi-digit DAC.
其中,所述前置采样保持电路包括:第一运算放大器(Ash1),第一、第二、第三和第四自举开关,传输门以及电容;Wherein, the pre-sampling and holding circuit includes: a first operational amplifier (Ash1), a first, a second, a third and a fourth bootstrap switch, a transmission gate and a capacitor;
所述第一运算放大器的正负输入端由一NMOS晶体管(M7)短接在一起,并通过一NMOS晶体管(M5)和一NMOS晶体管(M6)将一输入电压(Vin_com)加入到所述第一运算放大器的正负输入端;The positive and negative input terminals of the first operational amplifier are short-circuited together by an NMOS transistor (M7), and an input voltage (Vin_com) is added to the first operational amplifier through an NMOS transistor (M5) and an NMOS transistor (M6). positive and negative input terminals of an operational amplifier;
所述第一运算放大器的正负输出端由一NMOS晶体管(M8)短接在一起,用于对所述第一运算放大器的输出进行复位;The positive and negative output ends of the first operational amplifier are short-circuited together by an NMOS transistor (M8), which is used to reset the output of the first operational amplifier;
第一自举开关(S1)、第二自举开关(S2)输出相应的控制信号将起开关作用的一NMOS晶体管(M1)和一NMOS晶体管(M2)打开,使得第十九电容(C19)、第十七电容(C17)与正输入信号相连,第二十电容(C20)和第十八电容(C18)和负输入信号相连;The first bootstrap switch (S1) and the second bootstrap switch (S2) output corresponding control signals to turn on an NMOS transistor (M1) and an NMOS transistor (M2) which function as switches, so that the nineteenth capacitor (C19) , The seventeenth capacitor (C17) is connected to the positive input signal, the twentieth capacitor (C20) and the eighteenth capacitor (C18) are connected to the negative input signal;
所述传输门根据控制信号的高低电平将输入端的信号传输到输出端或者与输出端断开;The transmission gate transmits the signal at the input terminal to the output terminal or disconnects it from the output terminal according to the high and low levels of the control signal;
所述第一自举开关和第二自举开关复位,输出信号为低电平,使一NMOS晶体管(M1)和一NMOS晶体管(M2)的源极和漏极断开;The first bootstrap switch and the second bootstrap switch are reset, and the output signal is low level, so that the source and drain of an NMOS transistor (M1) and an NMOS transistor (M2) are disconnected;
所述第三自举开关(S3)和第四自举开关(S4)输出有效的控制信号,使得起开关作用的一NMOS晶体管(M3)和另一NMOS晶体管(M4)导通,将所述第十七电容(C17)、所述第十九电容(C19)和所述第十八电容(C18)、所述第二十电容(C20)的下极板分别与所述运第一算放大器的负正输出端相连接;The third bootstrap switch (S3) and the fourth bootstrap switch (S4) output effective control signals, so that an NMOS transistor (M3) and another NMOS transistor (M4) that function as switches are turned on, and the The lower plates of the seventeenth capacitor (C17), the nineteenth capacitor (C19), the eighteenth capacitor (C18), and the twentieth capacitor (C20) are respectively connected to the first operational amplifier The negative and positive output terminals are connected;
所述第一运算放大器正常工作时,将采样的信号保持并输出到流水线第一级多位数数模转换器的输入端。When the first operational amplifier is working normally, the sampled signal is held and output to the input end of the multi-digit digital-to-analog converter at the first stage of the pipeline.
其中,所述流水线第一级多位数数模转换器包括:第二运算放大器(A1),10个传输门,64个开关阵列、电容以及32个输出可控比较器;Wherein, the first-stage multi-digit digital-to-analog converter of the pipeline includes: a second operational amplifier (A1), 10 transmission gates, 64 switch arrays, capacitors, and 32 output controllable comparators;
其中,所述第二运算放大器(A1)正负输入端通过一NMOS晶体管(M62)短接在一起,并且通过一NMOS晶体管(M60)和一NMOS晶体管(M61)在所述第二运算放大器A1的输入端加入了输入共模参考电平Vcom1;所述第二运算放大器(A1)的输出端被一NMOS晶体管(M77)短接在一起,对所述第二运算放大器(A1)的输出起着复位的作用;Wherein, the positive and negative input ends of the second operational amplifier (A1) are short-circuited together through an NMOS transistor (M62), and the second operational amplifier A1 is connected through an NMOS transistor (M60) and an NMOS transistor (M61). The input terminal of the input common mode reference level Vcom1 is added; the output terminal of the second operational amplifier (A1) is short-circuited together by an NMOS transistor (M77), which acts on the output of the second operational amplifier (A1) With the role of reset;
所述32个输出可控比较器实现对输入信号的采样;The 32 output controllable comparators realize the sampling of the input signal;
所述传输门在控制信号的控制下,使与传输门连接的电容的一端接地或者接输入共模参考电平;Under the control of the control signal, the transmission gate grounds one end of the capacitor connected to the transmission gate or connects to the input common-mode reference level;
所述开关阵列的输出由输出可控比较器的输出决定。The output of the switch array is determined by the output of the output controllable comparator.
其中,所述流水线第一级多位数数模转换器还包括:Wherein, the first-stage multi-digit digital-to-analog converter of the pipeline also includes:
编码电路,用于将输出可控比较器的输出进行编码。The encoding circuit is used for encoding the output of the output controllable comparator.
其中,所述流水线第二级多位数数模转换器包括:第三运算放大器(A2),8个传输门,32个开关阵列、电容以及16个输出可控比较器;Wherein, the second-stage multi-digit digital-to-analog converter of the pipeline includes: a third operational amplifier (A2), 8 transmission gates, 32 switch arrays, capacitors, and 16 output controllable comparators;
所述第三运算放大器(A2)的正负输入端通过一NMOS晶体管(M86)短接在一起,并通过一NMOS晶体管(M84)和一NMOS晶体管(M85)加入输入共模参考电压(Vcom2),正负输出端通过一NMOS晶体管(M106)也短接在一起;The positive and negative input ends of the third operational amplifier (A2) are short-circuited together through an NMOS transistor (M86), and the input common-mode reference voltage (Vcom2) is added through an NMOS transistor (M84) and an NMOS transistor (M85) , the positive and negative output terminals are also shorted together through an NMOS transistor (M106);
所述16个输出可控比较器实现对输入信号的采样;The 16 output controllable comparators realize the sampling of the input signal;
所述8个传输门在控制信号的控制下,使与传输门连接的电容的一端接地或者接输入共模参考电平;Under the control of the control signal, the eight transmission gates ground one end of the capacitor connected to the transmission gates or connect to the input common mode reference level;
所述开关阵列的输出由输出可控比较器的输出决定。The output of the switch array is determined by the output of the output controllable comparator.
其中,所述流水线第二级多位数数模转换器还包括:Wherein, the second-stage multi-digit digital-to-analog converter of the pipeline also includes:
16个正校准误差存储电路,用于将第一级多位数数模转换器中与16个输出可控比较器相关联的电容失配所引起的误差存储起来;16 positive calibration error storage circuits for storing errors caused by capacitance mismatch associated with the 16 output controllable comparators in the first stage multi-digit digital-to-analog converter;
16个负校准误差存储电路,用于将第一级多位数数模转换器中与另外16个输出可控比较器相关联的电容失配所引起的误差存储起来。Sixteen negative calibration error storage circuits are used to store errors caused by capacitance mismatches associated with the other 16 output controllable comparators in the first-stage multi-digit digital-to-analog converter.
其中,所述流水线第三级多位数数模转换器包括:第三运算放大器(A3),18个开关阵列、电容以及17个输出可控比较器;Wherein, the third-stage multi-digit digital-to-analog converter of the pipeline includes: a third operational amplifier (A3), 18 switch arrays, capacitors, and 17 output controllable comparators;
所述第三运算放大器(A3)的正负输入端由一NMOS晶体管(M124)短接在一起,并通过一NMOS晶体管(M122)和一NMOS晶体管(M123)加入输入共模参考电压Vcom3,正负输出端通过一NMOS晶体管(M128)短接在一起;The positive and negative input terminals of the third operational amplifier (A3) are short-circuited together by an NMOS transistor (M124), and the input common-mode reference voltage Vcom3 is added through an NMOS transistor (M122) and an NMOS transistor (M123). The negative output terminals are shorted together through an NMOS transistor (M128);
所述17个输出可控比较器实现对输入信号的采样;The 17 output controllable comparators realize the sampling of the input signal;
所述开关阵列的输出由输出可控比较器的输出决定。The output of the switch array is determined by the output of the output controllable comparator.
其中,所述流水线第三级多位数数模转换器还包括:Wherein, the third-stage multi-digit digital-to-analog converter of the pipeline also includes:
9个正校准误差存储电路,用于将第二级多位数数模转换器中与9个输出可控比较器相关联的电容失配所引起的误差存储起来;nine positive calibration error storage circuits for storing errors caused by capacitance mismatches associated with the nine output controllable comparators in the second stage multi-digit digital-to-analog converter;
8个负校准误差存储电路,用于将第二级多位数数模转换器中与另外8个输出可控比较器相关联的电容失配所引起的误差存储起来。Eight negative calibration error storage circuits for storing errors caused by capacitance mismatches associated with the other eight output controllable comparators in the second stage of the multi-digit digital-to-analog converter.
其中,所述流水线第三级多位数数模转换器还包括:一编码电路(E3),用于将输出可控比较器的输出进行编码。Wherein, the third-stage multi-digit digital-to-analog converter of the pipeline further includes: an encoding circuit (E3), used for encoding the output of the output controllable comparator.
其中,所述流水线第四级多位数数模转换器包括:第四运算放大器(A4),20个开关阵列、电容以及16个输出可控比较器;Wherein, the fourth-stage multi-digit digital-to-analog converter of the pipeline includes: a fourth operational amplifier (A4), 20 switch arrays, capacitors, and 16 output controllable comparators;
其中,所述第四运算放大器(A4)的正负输入端由一NMOS晶体管(M144)短接在一起,并通过一NMOS晶体管(M142)和一NMOS晶体管(M143)加入输入共模参考电压Vcom4,正负输出端通过一NMOS晶体管(M152)短接在一起;Wherein, the positive and negative input ends of the fourth operational amplifier (A4) are short-circuited together by an NMOS transistor (M144), and the input common-mode reference voltage Vcom4 is added through an NMOS transistor (M142) and an NMOS transistor (M143). , the positive and negative output terminals are shorted together through an NMOS transistor (M152);
所述16个输出可控比较器实现对输入信号的采样;The 16 output controllable comparators realize the sampling of the input signal;
所述开关阵列的输出由输出可控比较器的输出决定。The output of the switch array is determined by the output of the output controllable comparator.
其中,所述流水线第四级多位数数模转换器还包括:编码电路4,用于将输出可控比较器的输出进行编码。Wherein, the fourth-stage multi-digit digital-to-analog converter of the pipeline further includes: an encoding circuit 4 for encoding the output of the output controllable comparator.
其中,所述第五级快闪模数转换器包括:Wherein, the fifth-level flash analog-to-digital converter includes:
7个比较器,用于对输入信号进行采样。7 comparators for sampling the input signal.
其中,所述第五级快闪模数转换器还包括:编码电路E5,用于将比较器的输出进行编码。Wherein, the fifth-level flash analog-to-digital converter further includes: an encoding circuit E5, configured to encode the output of the comparator.
其中,所述正校准误差存储电路包括:Wherein, the positive calibration error storage circuit includes:
2个CMOS传输门、4个反向器、一与非门、一同或门、电流调节电路、2个电阻、2个NMOS晶体管;其中,2 CMOS transmission gates, 4 inverters, a NAND gate, an OR gate, a current regulation circuit, 2 resistors, and 2 NMOS transistors; among them,
所述2个CMOS传输门顺序连接,4个反向器中的第一反向器(I1)与所述2个CMOS传输门的第一传输门连接,第二反向器(I2)与第二传输门连接,第一反向器与第二反向器连接;所述第一反向器还与所述与非门连接,所述与非门与所述同或门连接,所述同或门与第三反向器连接,所述第三反向器与第四反向器连接,所述第三反向器通过第一MOS管与电流调节电路连接,所述电流调节电路通过一电阻接地,所述第四反向器通过一MOS管和电阻接地,与第四反向器连接的MOS管和与第三反向器连接的MOS管相互连接。The two CMOS transmission gates are connected sequentially, the first inverter (I1) of the four inverters is connected to the first transmission gate of the two CMOS transmission gates, and the second inverter (I2) is connected to the first transmission gate of the two CMOS transmission gates. Two transmission gates are connected, the first inverter is connected with the second inverter; the first inverter is also connected with the NAND gate, the NAND gate is connected with the NOR gate, and the NAND gate is connected The OR gate is connected to the third inverter, the third inverter is connected to the fourth inverter, the third inverter is connected to the current regulation circuit through the first MOS tube, and the current regulation circuit is connected to the current regulation circuit through a The resistor is grounded, the fourth inverter is grounded through a MOS transistor and the resistor, and the MOS transistor connected to the fourth inverter and the MOS transistor connected to the third inverter are connected to each other.
本发明的上述技术方案的有益效果如下:The beneficial effects of above-mentioned technical scheme of the present invention are as follows:
上述方案中,采用模拟技术进行校准,不仅可以提高模数转化器的精度,有效的缩短校准的时间。同时采用将流水线第一级MDAC的级间增益压缩4倍,流水线第二级MDAC、流水线第三级MDAC,流水线第四级MDAC、流水线第五级的快闪ADC的量化范围扩大一倍的方式进行校正,用来消除流水线每级MDAC中的比较器的阈值失调所产生的影响。In the above solution, using analog technology for calibration can not only improve the accuracy of the analog-to-digital converter, but also effectively shorten the calibration time. At the same time, the inter-stage gain of the first-stage MDAC of the pipeline is compressed by 4 times, the quantization range of the second-stage MDAC, the third-stage MDAC, the fourth-stage MDAC, and the flash ADC of the fifth-stage pipeline are doubled. Correction is performed to eliminate the influence of the threshold offset of the comparator in each stage of the pipeline MDAC.
附图说明Description of drawings
图1为本发明的实施例中16位125MSPS CMOS流水线型模数转化器的功能结构框图;Fig. 1 is the functional structural block diagram of 16 125MSPS CMOS pipeline type analog-to-digital converters in the embodiment of the present invention;
图2为图1中前置采样保持电路的原理图;Fig. 2 is the schematic diagram of the pre-sample and hold circuit in Fig. 1;
图3为图1中的流水线第一级MDAC的原理图;Fig. 3 is a schematic diagram of the first stage MDAC of the pipeline in Fig. 1;
图4为图1中的流水线第二级MDAC的原理图;Fig. 4 is the schematic diagram of the second-stage MDAC of the pipeline in Fig. 1;
图5为图1中的流水线第三级MDAC的原理图;Fig. 5 is a schematic diagram of the third stage MDAC of the pipeline in Fig. 1;
图6为图1中的流水线第四级MDAC的原理图;Fig. 6 is a schematic diagram of the fourth stage MDAC of the pipeline in Fig. 1;
图7为图1中的流水线第五级快闪ADC的原理图;FIG. 7 is a schematic diagram of the fifth-stage flash ADC of the pipeline in FIG. 1;
图8为图1中的数字校正电路的原理图;Fig. 8 is a schematic diagram of the digital correction circuit in Fig. 1;
图9为图4中的正校准误差存储电路的原理图。FIG. 9 is a schematic diagram of the positive calibration error storage circuit in FIG. 4 .
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
首先,对本发明所涉及的专业术语进行说明:At first, the technical term involved in the present invention is explained:
PMOS:P-channel metal oxide semiconductor FET,P沟道金属氧化物半导体场效应晶体管;PMOS: P-channel metal oxide semiconductor FET, P-channel metal oxide semiconductor field effect transistor;
NMOS:N-channel metal oxide semiconductor FET,N沟道金属氧化物半导体场效应晶体管;NMOS: N-channel metal oxide semiconductor FET, N-channel metal oxide semiconductor field effect transistor;
CMOS:complementary metal oxide semiconductor FET,互补金属氧化物半导体场效应晶体管;CMOS: complementary metal oxide semiconductor FET, complementary metal oxide semiconductor field effect transistor;
ADC:analog-digital converter,模数转化器;ADC: analog-digital converter, analog-to-digital converter;
DAC:digital-analog converter,数模转化器;DAC: digital-analog converter, digital-to-analog converter;
MDAC:Multi-bits digital-analog converter,多位数数模化器,在本发明中特指流水线型模数转化器的每级电路。MDAC: Multi-bits digital-analog converter, multi-digit digital analog converter, specifically refers to each stage circuit of the pipelined analog-to-digital converter in the present invention.
参见图1,为本发明的实施例中16位125MSPS CMOS流水线型模数转化器的功能结构框图,由图中可知,该流水线型模数转化器包括顺序连接的前端采样保持电路、流水线第一级多位数数模转换器(MDAC)、流水线第二级多位数数模转换器(MDAC)、流水线第三级多位数数模转换器(MDAC)、流水线第四级多位数数模转换器(MDAC)、流水线第五级快闪ADC和数字校正电路。其中:Referring to Fig. 1, it is a functional structural block diagram of a 16-bit 125MSPS CMOS pipelined analog-to-digital converter in an embodiment of the present invention. As can be seen from the figure, the pipelined analog-to-digital converter includes sequentially connected front-end sample-and-hold circuits, pipeline first stage multi-digit digital-to-analog converter (MDAC), pipeline second-stage multi-digit digital-to-analog converter (MDAC), pipeline third-stage multi-digit digital-to-analog converter (MDAC), pipeline fourth-stage multi-digit Analog-to-analog converter (MDAC), pipeline fifth-stage flash ADC and digital correction circuit. in:
所述采样保持电路对输入信号进行采样,并将所述输入信号输出至第一级多位数数模转换器;The sample-and-hold circuit samples the input signal, and outputs the input signal to the first-stage multi-digit digital-to-analog converter;
第一级多位数数模转换器对所述采样保持电路的输出进行采样,并将量化剩余差值放大输出,同时完成对本级输出可控比较器的输出值的编码;The first-stage multi-digit digital-to-analog converter samples the output of the sample-and-hold circuit, amplifies and outputs the quantized residual difference, and completes the encoding of the output value of the output controllable comparator at this stage;
第二级多位数数模转换器对第一级多位数数模转换器的输出进行采样,并将量化剩余差值放大输出,同时完成对本级输出可控比较器的输出值的编码;The second-stage multi-digit digital-to-analog converter samples the output of the first-stage multi-digit digital-to-analog converter, amplifies and outputs the quantized residual difference, and completes the encoding of the output value of the current-stage output controllable comparator;
第三级多位数数模转换器对第二级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The third-stage multi-digit digital-to-analog converter samples the output of the second-stage multi-digit digital-to-analog converter, and at the same time completes the encoding of the output value of the output controllable comparator at this stage;
第四级多位数数模转换器对第三级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The fourth-stage multi-digit digital-to-analog converter samples the output of the third-stage multi-digit digital-to-analog converter, and at the same time completes the coding of the output value of the output controllable comparator at this stage;
第五级快闪模数转换器对第四级多位数数模转换器的输出进行采样,同时完成对本级输出可控比较器的输出值的编码;The fifth-stage flash analog-to-digital converter samples the output of the fourth-stage multi-digit digital-to-analog converter, and at the same time completes the encoding of the output value of the output controllable comparator of this stage;
第三级多位数数模转换器和所述第五级快闪模数转换器与第一级多位数数模转换器的时序相同;The timing of the third-stage multi-digit digital-to-analog converter and the fifth-stage flash analog-to-digital converter is the same as that of the first-stage multi-digit digital-to-analog converter;
第四级多位数数模转换器与第二级多位数数模转换器的时序相同。The timing of the fourth-stage multi-digit DAC is the same as that of the second-stage multi-digit DAC.
下面结合具体附图对上述电路中的各个部分进行详细说明:Each part of the above-mentioned circuit will be described in detail below in conjunction with the specific drawings:
前置采样保持电路,采用全差分电荷翻转式的电路结构,全差分结构有利于抑制电源扰动对电路性能的影响,电荷翻转式的反馈系数接近1,这样对采样保持电路中的运算放大器的带宽要求将减小,通过电容C17和电容C18实现的正反馈来调节采样保持电路的建立精度,并利用伪随机数产生器产生的随机信号加入到采样保持电路的输出端,以便使得在输入信号较小时整个模数转换器具有较好的线性度,加入的随机信号将在数字校正电路中减去。The pre-sample-and-hold circuit adopts a fully differential charge-reversal circuit structure. The fully-differential structure is conducive to suppressing the influence of power supply disturbances on circuit performance. The feedback coefficient of the charge-reversal type is close to 1, which affects the bandwidth of the operational amplifier in the sample-and-hold circuit. The requirements will be reduced, and the positive feedback realized by capacitor C17 and capacitor C18 is used to adjust the establishment accuracy of the sample-and-hold circuit, and the random signal generated by the pseudo-random number generator is added to the output terminal of the sample-and-hold circuit, so that when the input signal is relatively The entire analog-to-digital converter has good linearity, and the added random signal will be subtracted in the digital correction circuit.
参见图2,由图中可知,时钟信号为低电平时,这时时钟信号clk_n1和clk_n2为高电平。采样保持电路中的运算放大器Ash1的正负输入端由NMOS晶体管M7短接在一起,并通过NMOS晶体管M5和NMOS晶体管M6将电压Vin_com加入到采样保持电路中的运算放大器Ash1的正负输入端,NMOS晶体管M8将采样保持电路中的运算放大器Ash1的正负输出端短接在一起,起着对采样保持电路中的运算放大器Ash1输出复位的作用。同时自举开关S1和自举开关S2输出相应的控制信号将起开关作用的NMOS晶体管M1和NMOS晶体管M2打开,使得电容C19,电容C17,电容C20和电容C18分别与正输入信号和负输入信号相连,也就是完成对输入信号的采样。电容C15和电容C16的两端将通过NMOS晶体管M5、NMOS晶体管M6、NMOS晶体管M9和晶体管M10分别接入固定电压Vref和固定电压Vin_com。这时的控制信号dith1_p、dith2_p、dith3_p、dith4_p、dith5_p、dith6_p信号都为低电平,控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n信号都为高电平,所以CMOS传输门T1、CMOS传输门T3、CMOS传输门T5、CMOS传输门T7、CMOS传输门T9、CMOS传输门T11、CMOS传输门T14、CMOS传输门T16、CMOS传输门T18、CMOS传输门T20和CMOS传输门T22正常工作,CMOS传输门T2、CMOS传输门T4、CMOS传输门T6、CMOS传输门T8、CMOS传输门T10、CMOS传输门T12、CMOS传输门T13、CMOS传输门T15、CMOS传输门T17、CMOS传输门T19和CMOS传输门T21的输入端与输出端断开,这时电容C2、电容C3、电容C4、电容C5、电容C6和电容C7的一端接入固定电平Vref,另一端也接入固定电平Vref;电容C8、电容C9、电容C10、电容C11、电容C12和电容C13的一端接入固定电平Vref_dith,另一端接入电平Vref,电容C1和电容C14的一端接地,另一端接入固定电平Vref。时钟电平为高电平时,这时时钟信号clk_n1和clk_n2为低电平。这时自举开关S1和自举开关S2复位,输出信号为低电平,使NMOS晶体管M1和NMOS晶体管M2的源极和漏极断开,自举开关S3和自举开关S4输出有效的控制信号,使得起开关作用的NMOS晶体管M3和NMOS晶体管M4导通,将电容C17、C19和电容C18、C20的下极板分别与采样保持电路中的运算放大器Ash1的负正输出端相连接。这时采样保持电路中的运算放大器Ash1正常工作,将采样的信号保持并输出到流水线第一级MDAC的输入端。根据输入信号大小,当不需要在输入端口加入随机信号时,这时的控制信号dith1_p、dith2_p、dith3_p、dith4_p、dith5_p、dith6_p依然都为低电平,控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n依然都为高电平。当需要在输入端口加入随机信号时,由于控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n分别是控制信号dith1_p、dith2_p、dith3_p、dith4_p、dith5_p、dith6_p的反。这时控制信号dith1_p、dith2_p、dith3_p、dith4_p、dith5_p、dith6_p高低电平的随机变化,所以相应的控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n的高低电平也随机的变化,这样由控制信号控制的CMOS传输门也将相应的导通或关断,实现对电容C2至电容C12的充电,从而在采样保持电路的输出信号中加入了随机变化的信号。在数字校正电路中根据控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n的高低电平来判断采样保持电路中加入的随机信号大小并将其在转换的输出结果中减去。Referring to FIG. 2 , it can be seen from the figure that when the clock signal is at a low level, the clock signals clk_n1 and clk_n2 are at a high level. The positive and negative input terminals of the operational amplifier Ash1 in the sample and hold circuit are short-circuited together by the NMOS transistor M7, and the voltage Vin_com is added to the positive and negative input terminals of the operational amplifier Ash1 in the sample and hold circuit through the NMOS transistor M5 and the NMOS transistor M6, The NMOS transistor M8 short-circuits the positive and negative output terminals of the operational amplifier Ash1 in the sample-and-hold circuit together, and plays the role of resetting the output of the operational amplifier Ash1 in the sample-and-hold circuit. At the same time, the bootstrap switch S1 and the bootstrap switch S2 output corresponding control signals to turn on the NMOS transistor M1 and the NMOS transistor M2, which function as switches, so that the capacitor C19, capacitor C17, capacitor C20 and capacitor C18 are connected to the positive input signal and the negative input signal respectively. Connected, that is, to complete the sampling of the input signal. Both ends of the capacitor C15 and the capacitor C16 are respectively connected to the fixed voltage Vref and the fixed voltage Vin_com through the NMOS transistor M5 , the NMOS transistor M6 , the NMOS transistor M9 and the transistor M10 . At this time, the control signals dith1_p, dith2_p, dith3_p, dith4_p, dith5_p, dith6_p are all low level, and the control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n, dith6_n are all high level, so the CMOS transmission gate T1, CMOS Transmission gate T3, CMOS transmission gate T5, CMOS transmission gate T7, CMOS transmission gate T9, CMOS transmission gate T11, CMOS transmission gate T14, CMOS transmission gate T16, CMOS transmission gate T18, CMOS transmission gate T20 and CMOS transmission gate T22 work normally , CMOS transmission gate T2, CMOS transmission gate T4, CMOS transmission gate T6, CMOS transmission gate T8, CMOS transmission gate T10, CMOS transmission gate T12, CMOS transmission gate T13, CMOS transmission gate T15, CMOS transmission gate T17, CMOS transmission gate T19 The input terminal and the output terminal of the CMOS transmission gate T21 are disconnected. At this time, one end of the capacitor C2, capacitor C3, capacitor C4, capacitor C5, capacitor C6, and capacitor C7 is connected to a fixed level Vref, and the other end is also connected to a fixed level. Vref; One end of capacitor C8, capacitor C9, capacitor C10, capacitor C11, capacitor C12, and capacitor C13 is connected to a fixed level Vref_dith, the other end is connected to a level Vref, one end of capacitor C1 and capacitor C14 is grounded, and the other end is connected to a fixed voltage Level Vref. When the clock level is high level, the clock signals clk_n1 and clk_n2 are low level at this time. At this time, the bootstrap switch S1 and the bootstrap switch S2 are reset, and the output signal is low level, so that the source and drain of the NMOS transistor M1 and the NMOS transistor M2 are disconnected, and the bootstrap switch S3 and the bootstrap switch S4 output effective control The signal makes the NMOS transistor M3 and the NMOS transistor M4 which function as switches turn on, and connects the lower plates of the capacitors C17, C19, C18, and C20 to the negative and positive output terminals of the operational amplifier Ash1 in the sample-and-hold circuit respectively. At this time, the operational amplifier Ash1 in the sample-and-hold circuit works normally, and holds and outputs the sampled signal to the input end of the first-stage MDAC of the pipeline. According to the size of the input signal, when there is no need to add a random signal to the input port, the control signals dith1_p, dith2_p, dith3_p, dith4_p, dith5_p, dith6_p are still at low level, and the control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n , dith6_n are still high. When a random signal needs to be added to the input port, since the control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n, dith6_n are the opposite of the control signals dith1_p, dith2_p, dith3_p, dith4_p, dith5_p, dith6_p respectively. At this time, the high and low levels of the control signals dith1_p, dith2_p, dith3_p, dith4_p, dith5_p, and dith6_p change randomly, so the high and low levels of the corresponding control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n, and dith6_n also change randomly. The CMOS transmission gate controlled by the signal will also be turned on or off correspondingly to realize the charging of the capacitor C2 to the capacitor C12, thereby adding a randomly changing signal to the output signal of the sample and hold circuit. In the digital correction circuit, according to the high and low levels of the control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n, dith6_n, the size of the random signal added in the sample and hold circuit is judged and subtracted from the output result of the conversion.
参见图3,流水线第一级MDAC,采用全差分电荷翻转式的电路结构,在正常工作情况下,将采样保持电路的输出进行五位的量化,输出六位数字码,并将量化后的剩余差值进行8倍的放大,相对于理论应该进行32倍的放大,实际的放大倍数被压缩了1/4。这里选择压缩1/4,主要基于以下的考虑,首先,由于比较器的阈值的失调会使得本级所产生的剩余差值放大32倍之后超过了下级的量化范围,这会引入非线性误差,所以对放大的倍数进行相应的压缩,以便消除这一影响;其二,考虑到MDAC中运算放大器的输出摆幅范围的限制,所以选择压缩1/4,而不是1/2;其三,考虑到比较器的精度要求,压缩的倍数越大,下级MDAC的量化范围就减小的越大,这样下级的用于量化的比较器的精度也就越高,所以这里选择压缩1/4,而不是1/8,在下级三位的量化的情况下,下级对比较器的精度要求与本级相同都是要达到五位精度;相应的本级的传输函数表达式:See Figure 3. The first-stage MDAC of the pipeline adopts a fully differential charge-reversal circuit structure. Under normal operating conditions, the output of the sample-and-hold circuit is quantized to five bits, and a six-digit digital code is output, and the quantized remaining The difference is magnified by 8 times, compared to the theoretical magnification of 32 times, the actual magnification is compressed by 1/4. The selection of compression 1/4 here is mainly based on the following considerations. First, due to the offset of the threshold of the comparator, the residual difference generated by this stage will be magnified by 32 times and then exceed the quantization range of the lower stage, which will introduce nonlinear errors. Therefore, the amplification factor should be compressed accordingly to eliminate this effect; secondly, considering the limitation of the output swing range of the operational amplifier in MDAC, choose to compress 1/4 instead of 1/2; thirdly, consider According to the accuracy requirements of the comparator, the larger the compression factor, the larger the quantization range of the lower-level MDAC will be reduced, so the accuracy of the lower-level comparator for quantization will be higher, so here we choose to compress 1/4, and It is not 1/8. In the case of three-bit quantization of the lower level, the accuracy requirement of the lower level for the comparator is the same as that of the current level to achieve five-digit precision; the corresponding transfer function expression of the current level:
其中Voutp1为本级的正输出值,Voutn1为本级的负输出值,Vinp1为本级的正输入值,Vinn1为本级的负输入值,Vref为参考电压值,同时也是ADC的量化范围,i1为相应的整数,它的取值范围为-14≤i1≤16。Among them, Voutp1 is the positive output value of the current stage, Voutn1 is the negative output value of the current stage, Vinp1 is the positive input value of the current stage, Vinn1 is the negative input value of the current stage, and Vref is the reference voltage value, which is also the quantization range of the ADC. i 1 is a corresponding integer, and its value range is -14≤i 1 ≤16.
这时所有的比较器输出依然为0,通过比较这两次输出码来判断级间增益的大小。当本级级间增益小于8倍时,通过调整可增加级间增益,当本级级间增益大于8倍时,通过调整可减小本级级间增益。这里需要说明的是,本级的校准是在后级的校准完成之后进行的。之后是对子DAC进行校准,通过校准控制信号对可控比较器的输出进行控制,在固定的输入值参见图3,由图中可知,在正常工作时,当时钟为高时,时钟信号clk1_p、clk1_p1、clk1_p2为高电平,这时MDAC中的运算放大器A1正负输入端通过NMOS晶体管M62被短接在一起,并且通过NMOS晶体管M60和NMOS晶体管M61在运算放大器A1的输入端加入了输入共模参考电平Vcom1。MDAC中的运算放大器A1的输出端被NMOS晶体管M77短接在一起,对MDAC中的运算放大器A1的输出起着复位的作用。这时本级的输出可控比较器Coc1至输出可控比较器Coc32的正输出和负输出都为1,正输出的反和负输出的反都为0,所以本级中的开关阵列Sr1至开关阵列Sr64中与参考电压Vref相连的PMOS晶体管和与地相连的NMOS晶体管都处于关断状态,只有与正输入信号和负输入信号相连的NMOS晶体管导通,另外这时NMOS晶体管M50、NMOS晶体管M51、NMOS晶体管M54、NMOS晶体管M58和NMOS晶体管M59导通,从而实现电容C25至电容C93对输入信号的采样。同时输出可控比较器Coc1至输出可控比较器Coc32也实现对输入信号的采样。另外NMOS晶体管M74和NMOS晶体管M75导通,将CMOS传输门T35至CMOS传输门T44的一端接入输入共模参考电平Vcom1,这时控制信号VCmdac1_gain1_p和VCmdac1_gain1_n将控制CMOS传输门T35、CMOS传输门T44、NMOS晶体管M74和NMOS晶体管M65的导通或关断,从而决定电容C94和电容C103的在时钟为高电平时一端接地或接输入共模参考电平Vcom1;控制信号VCmdac1_gain2_p和VCmdac1_gain2_n将控制CMOS传输门T36、CMOS传输门T43、NMOS晶体管M73和NMOS晶体管M66的导通或关断,从而决定电容C95和电容C102的在时钟为高电平时一端接地或接输入共模参考电平Vcom1;控制信号VCmdac1_gain3_p和VCmdac1_gain3_n将控制CMOS传输门T37、CMOS传输门T42、NMOS晶体管M72和NMOS晶体管M67的导通或关断,从而决定电容C96和电容C101的在时钟为高电平时一端接地或接输入共模参考电平Vcom1;控制信号VCmdac1_gain4_p和VCmdac1_gain4_n将控制CMOS传输门T38、CMOS传输门T41、NMOS晶体管M71和NMOS晶体管M68的导通或关断,从而决定电容C97和电容C100的在时钟为高电平时一端接地或接输入共模参考电平Vcom1;控制信号VCmdac1_gain5_p和VCmdac1_gain5_n将控制CMOS传输门T39、CMOS传输门T40、NMOS晶体管M70和NMOS晶体管M69的导通或关断,从而决定电容C98和电容C99的在时钟为高电平时一端接地或接输入共模参考电平Vcom1。编码电路电路E1处于复位状态,输出码全为0。当时钟电平为低电平时,时钟信号clk1_p、clk1_p1、clk1_p2为低电平,这时MDAC中的运算放大器A1正常工作,自举开关S5和自举开关S6输出有效控制信号,NMOS晶体管M63和NMOS晶体管M64导通,分别将电容C93和电容C25的下极板与MDAC中的运算放大器A1的负正输出端相连。采样控制信号Vsamp1和Vsamn1也就是采样保持电路中的自举开关S3和自举开关S4的输出端为低电平,所以所有采样开关都断开。这时开关阵列Sr1至开关阵列Sr64的输出由输出可控比较器Coc1至输出可控比较器Coc32的输出决定。输出可控比较器Coc1至输出可控比较器Coc32的输出根据输入信号与阈值大小的比较来判断。流水线第一级MDAC的比较器阈值分别为16/32·Vref、15/32·Vref、14/32·Vref、13/32·Vref、12/32·Vref、11/32·Vref、10/32·Vref、9/32·Vref、8/32·Vref、7/32·Vref、6/32·Vref、5/32·Vref、4/32·Vref、3/32·Vref、2/32·Vref、1/32·Vref、0/32·Vref、-1/32·Vref、-2/32·Vref、-3/32·Vref、-4/32·Vref、-5/32·Vref、-6/32·Vref、-7/32·Vref、-8/32·Vref、-9/32·Vref、-10/32·Vref、-11/32·Vref、-12/32·Vref、-13/32·Vref、-14/32·Vref、-15/32·Vref。另外这时PMOS晶体管M55、PMOS晶体管M56和PMOS晶体管M57导通。在正常工作时,控制信号Vcorrect1始终为高电平,PMOS晶体管M52关断,控制信号Vnormal1与clk1_p1反相,NMOS晶体管M53导通。从而实现对电容C26至电容C92的再次充电。电容C25至电容C59这35个电容总的电容大小和C60至电容C93这34个电容总的电容大小相同,都为64个单位电容C0_1,其中电容C25和电容C93的大小都为8个单位电容C0_1,电容C59的大小为23个单位电容C0_1,电容C60的大小为24个单位电容C0_1,剩下的电容大小都为单位电容C0_1。根据电荷守恒定理,流水线第一级MDAC实现将输入信号进行五位的量化,并将剩余差值放大8倍。编码电路1将输出可控比较器的输出进行编码。由于输出可控比较器的输出的是温度计码,所以需要编码电路1将其转化成的二进制码。首先利用异或逻辑将温度计码转化为单1码,再利用或门将单1码转化为二进制码。第一级流水线MDAC的编码结果:At this time, the output of all comparators is still 0, and the size of the inter-stage gain is judged by comparing the two output codes. When the inter-stage gain of the current stage is less than 8 times, the inter-stage gain can be increased through adjustment, and when the inter-stage gain of the current stage is greater than 8 times, the inter-stage gain of the current stage can be reduced through adjustment. What needs to be explained here is that the calibration of this stage is performed after the calibration of the subsequent stage is completed. After that, the sub-DAC is calibrated, and the output of the controllable comparator is controlled by the calibration control signal. See Figure 3 for a fixed input value. It can be seen from the figure that in normal operation, when the clock is high, the clock signal clk1_p , clk1_p1, clk1_p2 are high level, at this time the positive and negative input terminals of the operational amplifier A1 in MDAC are short-circuited together through the NMOS transistor M62, and the input terminal of the operational amplifier A1 is added through the NMOS transistor M60 and NMOS transistor M61 Common mode reference level Vcom1. The output terminals of the operational amplifier A1 in the MDAC are short-circuited together by the NMOS transistor M77, which resets the output of the operational amplifier A1 in the MDAC. At this time, the positive output and the negative output of the output controllable comparator Coc1 to the output controllable comparator Coc32 of this stage are all 1, and the inversion of the positive output and the inversion of the negative output are both 0, so the switch array Sr1 to In the switch array Sr64, the PMOS transistors connected to the reference voltage Vref and the NMOS transistors connected to the ground are in the off state, and only the NMOS transistors connected to the positive input signal and the negative input signal are turned on. In addition, at this time, the NMOS transistor M50, the NMOS transistor The M51, the NMOS transistor M54, the NMOS transistor M58 and the NMOS transistor M59 are turned on, so as to realize the sampling of the input signal by the capacitor C25 to the capacitor C93. At the same time, the output controllable comparator Coc1 to the output controllable comparator Coc32 also implement sampling of the input signal. In addition, the NMOS transistor M74 and the NMOS transistor M75 are turned on, and one end of the CMOS transmission gate T35 to the CMOS transmission gate T44 is connected to the input common mode reference level Vcom1. At this time, the control signals VCmdac1_gain1_p and VCmdac1_gain1_n will control the CMOS transmission gate T35, the CMOS transmission gate T44, NMOS transistor M74, and NMOS transistor M65 are turned on or off, thereby determining that one end of capacitor C94 and capacitor C103 is grounded or connected to the input common-mode reference level Vcom1 when the clock is high; the control signals VCmdac1_gain2_p and VCmdac1_gain2_n will control the CMOS The transmission gate T36, the CMOS transmission gate T43, the NMOS transistor M73 and the NMOS transistor M66 are turned on or off, thereby determining that one end of the capacitor C95 and the capacitor C102 is grounded or connected to the input common-mode reference level Vcom1 when the clock is at a high level; The signals VCmdac1_gain3_p and VCmdac1_gain3_n will control the CMOS transmission gate T37, the CMOS transmission gate T42, the NMOS transistor M72 and the NMOS transistor M67 to be turned on or off, thereby determining that one end of the capacitor C96 and the capacitor C101 is grounded or connected to the input common when the clock is at a high level. Modulus reference level Vcom1; control signals VCmdac1_gain4_p and VCmdac1_gain4_n will control the conduction or shutdown of CMOS transmission gate T38, CMOS transmission gate T41, NMOS transistor M71 and NMOS transistor M68, thereby determining the high voltage of capacitor C97 and capacitor C100 in the clock Normally, one end is grounded or connected to the input common-mode reference level Vcom1; the control signals VCmdac1_gain5_p and VCmdac1_gain5_n will control the on or off of the CMOS transmission gate T39, CMOS transmission gate T40, NMOS transistor M70 and NMOS transistor M69, thereby determining the capacitor C98 and the capacitor One end of C99 is grounded or connected to the input common mode reference level Vcom1 when the clock is at a high level. The encoding circuit E1 is in the reset state, and the output codes are all 0s. When the clock level is low, the clock signals clk1_p, clk1_p1, and clk1_p2 are low. At this time, the operational amplifier A1 in the MDAC works normally, the bootstrap switch S5 and the bootstrap switch S6 output effective control signals, and the NMOS transistor M63 and The NMOS transistor M64 is turned on, respectively connecting the lower plates of the capacitor C93 and the capacitor C25 to the negative and positive output terminals of the operational amplifier A1 in the MDAC. The sampling control signals Vsamp1 and Vsamn1, that is, the output terminals of the bootstrap switch S3 and the bootstrap switch S4 in the sample-and-hold circuit are at low level, so all the sampling switches are turned off. At this time, the outputs of the switch array Sr1 to the switch array Sr64 are determined by the output of the output controllable comparator Coc1 to the output controllable comparator Coc32 . The outputs of the output controllable comparator Coc1 to the output controllable comparator Coc32 are judged according to the comparison between the input signal and the threshold value. The comparator thresholds of the first-stage MDAC in the pipeline are 16/32 Vref, 15/32 Vref, 14/32 Vref, 13/32 Vref, 12/32 Vref, 11/32 Vref, 10/32 ·Vref, 9/32·Vref, 8/32·Vref, 7/32·Vref, 6/32·Vref, 5/32·Vref, 4/32·Vref, 3/32·Vref, 2/32·Vref , 1/32·Vref, 0/32·Vref, -1/32·Vref, -2/32·Vref, -3/32·Vref, -4/32·Vref, -5/32·Vref, -6 /32·Vref, -7/32·Vref, -8/32·Vref, -9/32·Vref, -10/32·Vref, -11/32·Vref, -12/32·Vref, -13/ 32·Vref, -14/32·Vref, -15/32·Vref. In addition, at this time, the PMOS transistor M55 , the PMOS transistor M56 and the PMOS transistor M57 are turned on. During normal operation, the control signal Vcorrect1 is always at a high level, the PMOS transistor M52 is turned off, the control signal Vnormal1 and clk1_p1 are inverted, and the NMOS transistor M53 is turned on. In this way, recharging of the capacitors C26 to C92 is realized. The total capacitance of the 35 capacitors from capacitor C25 to capacitor C59 is the same as the total capacitance of the 34 capacitors from C60 to capacitor C93, all of which are 64 unit capacitors C0_1, and the size of capacitor C25 and capacitor C93 are both 8 unit capacitors C0_1, the size of the capacitor C59 is 23 unit capacitors C0_1, the size of the capacitor C60 is 24 unit capacitors C0_1, and the size of the remaining capacitors are all unit capacitors C0_1. According to the principle of charge conservation, the first-stage MDAC of the pipeline realizes five-bit quantization of the input signal and amplifies the remaining difference by 8 times. The encoding circuit 1 encodes the output of the output controllable comparator. Since the output of the controllable comparator is a thermometer code, it needs to be converted into a binary code by the encoding circuit 1 . Firstly, use XOR logic to convert the thermometer code into a single code, and then use the OR gate to convert the single code into a binary code. The encoding result of the first-stage pipeline MDAC:
在校准工作模式下,由于电容的失配,使得本级会引入相应的误差影响ADC的整体性能,所以需要进行相应的校准,在校准时,本级与采样保持电路断开,采样保持电路不工作,本级输入端引入固定的值,并且这时控制信号Vnormal1始终为低,NMOS晶体管M53关断,控制信号Vcorrect1与时钟信号clk1_p同相,PMOS晶体管M52导通。校准级间增益时,首先将输入接在参考电平Vinp1-Vinn1=-33/64·Vref,这时输出可控比较器Coc1至输出可控比较器Coc32的输出都为0,得到一个相应的输出编码,再将将输入接在参考电平Vinp1-Vinn1=-31/64·Vref,得到另一个相应的输出编码,如果本级的级间增益是8倍时,前后的输出码的差值应该为-1/4·Vref。前后码的差值偏离了这个值时,可调控级间增益增减控制信号VCmdac1_gain1_n至级间增益增减控制信号VCmdac1_gain5_n的值来实现级间增益的增减调整,级间增益增减控制信号VCmdac1_gain1_p为级间增益的增减控制信号VCmdac1_gain1_n的反。级间增益的增减控制信号VCmdac1_gain_n为高电平,CMOS传输门T46和CMOS传输门T47导通,使得负反馈电容增加,实现级间增益的减小;级间增益的增减控制信号VCmdac1_gain_n为低电平,CMOS传输门T45和CMOS传输门T48导通,增加相应的正反馈,实现级间增益的增加。可调控级间增益大小控制信号VCmdac1_gain1_n、VCmdac1_gain2_n、VCmdac1_gain3_n、VCmdac1_gain4_n、VCmdac1_gain5_n来实现级间增益的改变量。级间增益的小控制信号VCmdac1_gain1_p、VCmdac1_gain2_p、VCmdac1_gain3_p、VCmdac1_gain4_p、VCmdac1_gain5_p分别为级间增益大小控制信号VCmdac1_gain1_n、VCmdac1_gain2_n、VCmdac1_gain3_n、VCmdac1_gain4_n、VCmdac1_gain5_n的反,级间增益大小控制信号VCmdac1_gain1_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac1_gain1_n为低电平,则相应的级间增益的大小变为(C60+C61+…+C93)/(C93±C94)。级间增益大小控制信号VCmdac1_gain2_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac1_gain2_n为低电平,则相应的级间增益大小变为(C60+C61+…+C93)/(C93±C95)。级间增益大小控制信号VCmdac1_gain3_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac1_gain3_n为低电平,则相应的级间增益的大小变为(C60+C61+…+C93)/(C93±C96)。级间增益大小控制信号VCmdac1_gain4_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac1_gain4_n为低电平,则相应的级间增益大小变为(C60+C61+…+C93)/(C93±C97)。级间增益大小控制信号VCmdac1_gain5_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac1_gain5_n为低电平,则相应的级间增益大小变为(C60+C61+…+C93)/(C93±C98)。通过调控级间增益增减控制信号VCmdac1_gain_n,和级间增益大小控制信号Cmdac1_gain1_n、VCmdac1_gain2_n、VCmdac1_gain3_n、VCmdac1_gain4_n、VCmdac1_gain5_n来实现级间增益的校准。当电路正常工作时,控制信号根据校准后的值直接加入电路中。在校准子DAC时,输入端接参考电平Vinp1-Vinn1=-31/64·Vref,控制输出可控比较器的控制信号VC1_1至VC1_31其中有一个为高,使得相应的输出可控比较器的输出被置为1,其它的输出可控比较器输出实际值,根据输入的值可得其它的输出可控比较器的输出都为0。通过比较输出可控比较器被置1前后的输出码的差值是否为1/4·Vref来判断与被置1的输出可控比较器所控制的开关相连的电容失配所引起的误差的大小,并通过调控流水线第二级MDAC中相应的校准误差存储电路来消除这一误差。最终,通过这样的方法将子DAC的输出进行相应的校准。在正常工作时,如果可控比较器的输出为1,那么流水线第二级MDAC中与其相应的校准误差存储电路将把在校准时产生的误差加到流水线第二级MDAC的输出信号中。如果可控比较器的输出为0,那么流水线第二级MDAC中与其相应的校准误差存储电路将不会把在校准时产生的误差加到流水线第二级MDAC的输出信号中。In the calibration mode, due to the mismatch of capacitance, this stage will introduce corresponding errors to affect the overall performance of the ADC, so corresponding calibration is required. During calibration, this stage is disconnected from the sample-and-hold circuit, and the sample-and-hold circuit does not To work, the input terminal of this stage introduces a fixed value, and at this time the control signal Vnormal1 is always low, the NMOS transistor M53 is turned off, the control signal Vcorrect1 is in phase with the clock signal clk1_p, and the PMOS transistor M52 is turned on. When calibrating the inter-stage gain, first connect the input to the reference level Vinp1-Vinn1=-33/64 Vref, then the outputs from the output controllable comparator Coc1 to the output controllable comparator Coc32 are all 0, and a corresponding Output coding, then connect the input to the reference level Vinp1-Vinn1=-31/64 Vref to get another corresponding output coding, if the inter-stage gain of this stage is 8 times, the difference between the output codes before and after Should be -1/4·Vref. When the difference between the front and rear codes deviates from this value, the value of the inter-stage gain increase and decrease control signal VCmdac1_gain1_n to the inter-stage gain increase and decrease control signal VCmdac1_gain5_n can be adjusted to realize the increase and decrease adjustment of the inter-stage gain. The inter-stage gain increase and decrease control signal VCmdac1_gain1_p It is the inverse of the interstage gain increase and decrease control signal VCmdac1_gain1_n. The increase and decrease control signal VCmdac1_gain_n of the inter-stage gain is at a high level, and the CMOS transmission gate T46 and the CMOS transmission gate T47 are turned on, so that the negative feedback capacitance is increased to realize the reduction of the inter-stage gain; the increase and decrease control signal VCmdac1_gain_n of the inter-stage gain is When the level is low, the CMOS transmission gate T45 and the CMOS transmission gate T48 are turned on, and the corresponding positive feedback is added to realize the increase of the inter-stage gain. The inter-stage gain control signals VCmdac1_gain1_n, VCmdac1_gain2_n, VCmdac1_gain3_n, VCmdac1_gain4_n, VCmdac1_gain5_n can be adjusted to realize the change amount of the inter-stage gain.级间增益的小控制信号VCmdac1_gain1_p、VCmdac1_gain2_p、VCmdac1_gain3_p、VCmdac1_gain4_p、VCmdac1_gain5_p分别为级间增益大小控制信号VCmdac1_gain1_n、VCmdac1_gain2_n、VCmdac1_gain3_n、VCmdac1_gain4_n、VCmdac1_gain5_n的反,级间增益大小控制信号VCmdac1_gain1_n为高电平时,不影响The size of the inter-stage gain, if the inter-stage gain control signal VCmdac1_gain1_n is at low level, the corresponding inter-stage gain becomes (C60+C61+...+C93)/(C93±C94). When the inter-stage gain control signal VCmdac1_gain2_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac1_gain2_n is at a low level, the corresponding inter-stage gain becomes (C60+C61+…+C93)/ (C93±C95). When the inter-stage gain control signal VCmdac1_gain3_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac1_gain3_n is at a low level, the corresponding inter-stage gain becomes (C60+C61+…+C93) /(C93±C96). When the inter-stage gain control signal VCmdac1_gain4_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac1_gain4_n is at a low level, the corresponding inter-stage gain becomes (C60+C61+…+C93)/ (C93±C97). When the inter-stage gain control signal VCmdac1_gain5_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac1_gain5_n is at a low level, the corresponding inter-stage gain becomes (C60+C61+…+C93)/ (C93±C98). Calibration of the inter-stage gain is realized by adjusting the inter-stage gain increase/decrease control signal VCmdac1_gain_n, and the inter-stage gain size control signals Cmdac1_gain1_n, VCmdac1_gain2_n, VCmdac1_gain3_n, VCmdac1_gain4_n, VCmdac1_gain5_n. When the circuit is working normally, the control signal is directly added to the circuit according to the calibrated value. When calibrating the sub-DAC, the input terminal is connected to the reference level Vinp1-Vinn1=-31/64 Vref, and one of the control signals VC1_1 to VC1_31 of the control output controllable comparator is high, so that the corresponding output controllable comparator The output is set to 1, and other output controllable comparators output actual values. According to the input value, the outputs of other output controllable comparators are all 0. By comparing whether the output code difference before and after the output controllable comparator is set to 1 is 1/4 Vref, the error caused by the mismatch of the capacitance connected to the switch controlled by the output controllable comparator that is set to 1 is judged. Size, and eliminate this error by regulating the corresponding calibration error storage circuit in the second stage MDAC of the pipeline. Finally, through such a method, the output of the sub-DAC is calibrated accordingly. In normal operation, if the output of the controllable comparator is 1, then the corresponding calibration error storage circuit in the second-stage MDAC of the pipeline will add the error generated during calibration to the output signal of the second-stage MDAC of the pipeline. If the output of the controllable comparator is 0, the corresponding calibration error storage circuit in the second-stage MDAC of the pipeline will not add the error generated during calibration to the output signal of the second-stage MDAC of the pipeline.
参见图4,流水线第二级MDAC,采用全差分电荷翻转式的电路结构,在正常工作情况下,将流水线第一级MDAC的输出进行三位的量化,输出五位数字码,量化的剩余差值放大8倍。本级中比较器的量化范围扩展了一倍,上级MDAC的输出范围从-1/8·Vref到1/8·Vref,所以比较器的量化范围为从-1/8·Vref到1/8·Vref,现在将这个范围扩展为从-1/4·Vref到1/4·Vref。这个主要是用来消除上级由于比较器的阈值失调而产生的剩余差值超过了本级的理论范围,这样通过扩展比较器的比较范围就可以将超出的值进行相应的量化,通过合适的编码和数字校正来消除由于上级的比较器的阈值偏离所产生的误差。这么做可以使电路能够容忍上级的比较器具有±1/64·Vref的阈值失调。本级还设计了相应的校准误差存储电路,主要用来产生与上级每个比较器的输出相连的电容失配所引起的误差,并将这个误差通过本级进行校准。上级有32个比较器,其中阈值为32/64·Vref的比较器不进行相应的校准处理,这样在本级需要31个校准误差存储电路,为了实现电路的对称,设计了32个校准误差存储电路,分别将32个校准误差存储电路平均接入输入端的正负两端,为了实现同样的功能,接入正负两端的校准误差存储电路结构有所不同,与MDAC中的运算放大器2的正输入端相关联的为正校准误差存储电路,相反的为负校准误差存储电路。本级的传输函数可以简单的表达为See Figure 4. The second-stage MDAC of the pipeline adopts a fully differential charge-reversal circuit structure. Under normal operating conditions, the output of the first-stage MDAC of the pipeline is quantized to three bits, and a five-digit digital code is output. The quantized residual difference The value is magnified by 8 times. The quantization range of the comparator in this stage is doubled, and the output range of the upper stage MDAC is from -1/8 Vref to 1/8 Vref, so the quantization range of the comparator is from -1/8 Vref to 1/8 · Vref, now extend this range from -1/4 · Vref to 1/4 · Vref. This is mainly used to eliminate the residual difference generated by the upper level due to the threshold offset of the comparator exceeding the theoretical range of this level, so that by expanding the comparison range of the comparator, the excess value can be quantified accordingly, and through appropriate coding And digital correction to eliminate the error caused by the deviation of the threshold value of the upper comparator. Doing so allows the circuit to tolerate a threshold offset of ±1/64·Vref from the upper-level comparator. This stage also designs the corresponding calibration error storage circuit, which is mainly used to generate the error caused by the capacitance mismatch connected to the output of each comparator in the upper stage, and calibrate this error through this stage. There are 32 comparators in the upper stage, and the comparator with the threshold value of 32/64 Vref does not perform corresponding calibration processing, so 31 calibration error storage circuits are required at this stage. In order to realize the symmetry of the circuit, 32 calibration error storage circuits are designed. Circuit, respectively connect 32 calibration error storage circuits to the positive and negative ends of the input terminal on average. In order to achieve the same function, the structure of the calibration error storage circuit connected to the positive and negative ends is different, which is different from the positive and negative terminals of the operational amplifier 2 in MDAC. The one associated with the input end is a positive calibration error storage circuit, and the opposite is a negative calibration error storage circuit. The transfer function of this stage can be simply expressed as
其中Voutp2为本级的正端输出,Voutn2为本级的负端输出,Voutp1为本级的正端输入,同时也就是上级的正端输出,Voutn1为本级的负端输入,同时也就是上级的负端输出,Verr为上级中与输出为1的输出可控比较器相关联的电容失配所引起的误差值,这个值可正可负。i2为相应的整数,它的范围为-8≤i2≤8。Among them, Voutp2 is the positive terminal output of the current stage, Voutn2 is the negative terminal output of the current stage, Voutp1 is the positive terminal input of the current stage, which is also the positive terminal output of the upper stage, and Voutn1 is the negative terminal input of the current stage, which is also the upper stage The negative terminal output of Verr is the error value caused by the capacitance mismatch associated with the output controllable comparator whose output is 1 in the upper stage, and this value can be positive or negative. i 2 is a corresponding integer, and its range is -8≤i 2 ≤8.
在校准工作模式下,将本级与上级MDAC断开,这时上级MDAC不工作,本级的输入端接入固定值。首先还是进行级间增益的校准,由于反馈电容的失配,会使级间增益产生偏离。输入端先接入固定值为-19/64·Vref这时由于比较器的输出都为0,这时理想的本级剩余差值为-1/8·Vref;再将输入端先接入固定值为-17/64·Vref,这时理想的本级剩余差值为1/8·Vref,所以前后两次输出码的差值为-1/4·Vref。由于前后两次其它电容所接的值都没有变化,所以前后两次剩余差值的差值如果偏离了-1/4·Vref,主要是由本级级间增益偏离所引起的。根据前后两次输出编码的差值来判断级间增益大于8倍还是小于8倍,在利用级间增益调整信号来调整级间增益值,使之等于8倍。之后再进行子DAC的校准,利用调控信号将本级输出可控比较器中的一个输出可控比较器的输出置为1,这时本级理想的剩余差值为-1/8·Vref,通过比较输出可控比较器置1前后剩余差值的输出编码来判断与其相关联的电容的失配所引起的误差,并在下级中调控与之对应的校准误差存储电路,使得比较器置1前后剩余差值的差值为1/4·Vref。这就将置1比较器相关联的电容的失配所引起的误差存储在下级。正常工作时,当这个输出可控比较器的输出为0时,与输出可控比较器相关联的电容的失配所引起的误差不会引入到下级中。相反当这个输出可控比较器的输出为1时,与比较器相关联的电容的失配所引起的误差将引入到下级的输出,从而消除这个误差值。In the calibration mode, the current stage is disconnected from the upper-level MDAC. At this time, the upper-level MDAC does not work, and the input terminal of the current level is connected to a fixed value. First of all, the calibration of the inter-stage gain is still carried out. Due to the mismatch of the feedback capacitor, the inter-stage gain will deviate. The input terminal is first connected to a fixed value of -19/64 Vref. At this time, since the output of the comparator is 0, the ideal residual difference of this stage is -1/8 Vref; then the input terminal is first connected to a fixed value. The value is -17/64·Vref. At this time, the ideal residual difference of this stage is 1/8·Vref, so the difference between the two output codes before and after is -1/4·Vref. Since the values connected to other capacitors do not change in the previous two times, if the difference of the residual difference between the two previous and previous times deviates from -1/4·Vref, it is mainly caused by the gain deviation between the stages of this stage. According to the difference between the two output codes before and after, it is judged whether the inter-stage gain is greater than 8 times or less than 8 times, and the inter-stage gain adjustment signal is used to adjust the inter-stage gain value to make it equal to 8 times. Afterwards, the sub-DAC is calibrated, and the output of one of the output controllable comparators of the current stage is set to 1 by using the control signal. At this time, the ideal residual difference of the current stage is -1/8·Vref, By comparing the output coding of the remaining difference before and after the controllable comparator is set to 1, the error caused by the mismatch of the associated capacitance is judged, and the corresponding calibration error storage circuit is regulated in the lower stage, so that the comparator is set to 1 The difference of the residual difference before and after is 1/4·Vref. This stores the error caused by the mismatch of the capacitance associated with the set comparator in the downstream stage. In normal operation, when the output of this output controllable comparator is 0, the error caused by the mismatch of the capacitance associated with the output controllable comparator will not be introduced into the lower stage. On the contrary, when the output of the controllable comparator is 1, the error caused by the mismatch of the capacitance associated with the comparator will be introduced to the output of the lower stage, thereby eliminating the error value.
参见图4,由图中可知,在正常工作情况下,当时钟为低电平时,时钟信号clk2_n、时钟信号clk2_n1、时钟信号clk2_n2的输出为高电平,时钟clk2_p为低电平,这时MDAC中的运算放大器A2的正负输入端通过NMOS晶体管M86短接在一起,并通过NMOS晶体管M84和NMOS晶体管M85加入输入共模参考电压Vcom2,正负输出端通过NMOS晶体管M106也短接在一起,对MDAC中的运算放大器A2的输出起着复位的作用。这时本级的输出可控比较器Coc33至输出可控比较器Coc49的正输出和负输出都为1,正输出的反和负输出的反都为0,所以本级中的开关阵列Sr65至开关阵列Sr98中与参考电压Vref相连的PMOS晶体管和与地相连的NMOS晶体管都处于关断状态,只有与正输入信号和负输入信号相连的NMOS晶体管导通,另外这时NMOS晶体管M78、NMOS晶体管M80、NMOS晶体管M81、NMOS晶体管M87、NMOS晶体管M89、NMOS晶体管M92和NMOS晶体管M93导通,从而实现电容C159至电容C196对输入信号的采样。同时输出可控比较器Coc33至输出可控比较器Coc49也实现对输入信号的采样。这时的正校准误差存储电路Ep1至正校准误差存储电路Ep16将第一级MDAC中的输出可控比较器Coc1至输出可控比较器Coc16的负输出存储起来,同时负校准误差存储电路En1至负校准误差存储电路En15将第一级MDAC中的输出可控比较器Coc17至输出可控比较器Coc31的负输出存储起来,负校准误差存储电路En16的输出始终为固定值,同时将正校准误差存储电路Ep1至正校准误差存储电路Ep16和负校准误差存储电路En1至负校准误差存储电路En15的输出置于相应的定值,从对电容C108至电容C139进行充电。电容C140至电容C155将分别与电容C108至电容C139串联,从而调节误差校准电路的输出加入到本级MDAC的输出端的值。另外NMOS晶体管M104和NMOS晶体管M105导通,将CMOS传输门T55至CMOS传输门T62的一端接入输入共模参考电平Vcom2,这时控制信号VCmdac2_gain1_p和VCmdac2_gain1_n将控制CMOS传输门T55、CMOS传输门T62、NMOS晶体管M96和NMOS晶体管M103的导通或关断,从而决定电容C197和电容C204的在时钟为高电平时一端接地或接输入共模参考电平Vcom2;控制信号VCmdac2_gain2_p和VCmdac2_gain2_n将控制CMOS传输门T56、CMOS传输门T62、NMOS晶体管M97和NMOS晶体管M102的导通或关断,从而决定电容C198和电容C203的在时钟为高电平时一端接地或接输入共模参考电平Vcom2;控制信号VCmdac2_gain3_p和VCmdac2_gain3_n将控制CMOS传输门T57、CMOS传输门T60、NMOS晶体管M98和NMOS晶体管M101的导通或关断,从而决定电容C199和电容C202的在时钟为高电平时一端接地或接输入共模参考电平Vcom2;控制信号VCmdac2_gain4_p和VCmdac2_gain4_n将控制CMOS传输门T58、CMOS传输门T59、NMOS晶体管M99和NMOS晶体管M100的导通或关断,从而决定电容C200和电容C201的在时钟为高电平时一端接地或接输入共模参考电平Vcom2;当时钟为高电平时,时钟信号clk2_n、时钟信号clk2_n1、时钟信号clk2_n2的输出为低电平,clk2_p为高电平,这时MDAC中的运算放大器A2正常工作,自举开关S7和自举开关S8输出有效控制信号,使电容C156和电容C196的下极板分别接入MDAC中的运算放大器A2的正负输出端。开关阵列Sr65至开关阵列Sr98的输出将由输出可控比较器Coc33至输出可控比较器Coc49的输出来决定。输出可控比较器根据比较输入信号与阈值的大小来得到相应的输出,流水线第二级MDAC中的比较器的阈值分别为:8/32·Vref、7/32·Vref、6/32·Vref、5/32·Vref、4/32·Vref、3/32·Vref、2/32·Vref、1/32·Vref、0/32·Vref、-1/32·Vref、-2/32·Vref、-3/32·Vref、-4/32·Vref、-5/32·Vref、-6/32·Vref、-7/32·Vref、-8/32·Vref。另外这时PMOS晶体管M79、NMOS晶体管M82、PMOS晶体管M83和PMOS晶体管M88导通,这时控制信号Vcorrect2始终为低电平,使得NMOS晶体管M91关断;控制信号VSamp2与时钟信号clk2_n同相,PMOS晶体管M90导通。从而实现对电容C157至电容C195的再次充电。同时正校准误差存储电路Ep1至正校准误差存储电路Ep16和负校准误差存储电路En1至负校准误差存储电路En15将输出由流水线第一级MDAC中输出可控比较器Coc1至输出可控比较器Coc31的负输出所决定的固定值,实现对电容C108至电容C139的再次充电,从而使得流水线第一级MDAC中子DAC的误差能加入到本级的输出信号中。电容C156至电容C175这20个电容总的电容大小和C176至电容C196这21个电容总的电容大小相同,都为64个单位电容C0_2,其中电容C156和电容C196的大小都为8个单位电容C0_2,电容C175和电容C176的大小都为20个单位电容C0_2,电容C177的大小为16个单位电容C0_2,电容C174的大小为17个单位电容C0_2,剩下的电容大小都为单位电容C0_2。电容C108至电容C155这48个电容同样大,都为C0_2。根据电荷守恒定理,流水线第二级MDAC实现将输入信号进行三位的量化,并将剩余差值放大8倍。编码电路2将输出可控比较器的输出进行编码。由于输出可控比较器的输出的是温度计码,所以需要编码电路2将其转化成的二进制码。首先利用异或逻辑将温度计码转化为单1码,再利用或门将单1码转化为二进制码。第二级流水线MDAC的编码结果:Referring to Figure 4, it can be seen from the figure that under normal working conditions, when the clock is at low level, the output of clock signal clk2_n, clock signal clk2_n1, and clock signal clk2_n2 is at high level, and the clock clk2_p is at low level. At this time, MDAC The positive and negative input terminals of the operational amplifier A2 are short-circuited together through the NMOS transistor M86, and the input common-mode reference voltage Vcom2 is added through the NMOS transistor M84 and the NMOS transistor M85, and the positive and negative output terminals are also short-circuited together through the NMOS transistor M106. It acts as a reset for the output of the operational amplifier A2 in MDAC. At this time, the positive output and the negative output of the output controllable comparator Coc33 to the output controllable comparator Coc49 of this stage are all 1, and the inversion of the positive output and the inversion of the negative output are both 0, so the switch array Sr65 in this stage to In the switch array Sr98, the PMOS transistors connected to the reference voltage Vref and the NMOS transistors connected to the ground are in the off state, and only the NMOS transistors connected to the positive input signal and the negative input signal are turned on. In addition, the NMOS transistor M78 and the NMOS transistor M80 , NMOS transistor M81 , NMOS transistor M87 , NMOS transistor M89 , NMOS transistor M92 and NMOS transistor M93 are turned on, so that the capacitors C159 to C196 can sample the input signal. At the same time, the output controllable comparator Coc33 to the output controllable comparator Coc49 also implement sampling of the input signal. At this time, the positive calibration error storage circuit Ep1 to the positive calibration error storage circuit Ep16 store the negative output of the output controllable comparator Coc1 to the output controllable comparator Coc16 in the first stage MDAC, and the negative calibration error storage circuit En1 to The negative calibration error storage circuit En15 stores the negative output from the output controllable comparator Coc17 to the output controllable comparator Coc31 in the first-stage MDAC, the output of the negative calibration error storage circuit En16 is always a fixed value, and the positive calibration error The outputs of the storage circuit Ep1 to the positive calibration error storage circuit Ep16 and the negative calibration error storage circuit En1 to the negative calibration error storage circuit En15 are set to corresponding constant values, and the capacitors C108 to C139 are charged. Capacitors C140 to C155 will be connected in series with capacitors C108 to C139 respectively, so as to adjust the value that the output of the error calibration circuit adds to the output terminal of the MDAC of the current stage. In addition, the NMOS transistor M104 and the NMOS transistor M105 are turned on, and one end of the CMOS transmission gate T55 to the CMOS transmission gate T62 is connected to the input common-mode reference level Vcom2. At this time, the control signals VCmdac2_gain1_p and VCmdac2_gain1_n will control the CMOS transmission gate T55, the CMOS transmission gate T62, NMOS transistor M96, and NMOS transistor M103 are turned on or off, thereby determining that one end of capacitor C197 and capacitor C204 is grounded or connected to the input common-mode reference level Vcom2 when the clock is high; the control signals VCmdac2_gain2_p and VCmdac2_gain2_n will control the CMOS The transmission gate T56, the CMOS transmission gate T62, the NMOS transistor M97 and the NMOS transistor M102 are turned on or off, thereby determining that one end of the capacitor C198 and the capacitor C203 is grounded or connected to the input common-mode reference level Vcom2 when the clock is at a high level; The signals VCmdac2_gain3_p and VCmdac2_gain3_n will control the CMOS transmission gate T57, the CMOS transmission gate T60, the NMOS transistor M98 and the NMOS transistor M101 to be turned on or off, thereby determining whether one end of the capacitor C199 and the capacitor C202 is grounded or connected to the input common when the clock is at a high level. Modulus reference level Vcom2; control signals VCmdac2_gain4_p and VCmdac2_gain4_n will control the conduction or closure of CMOS transmission gate T58, CMOS transmission gate T59, NMOS transistor M99 and NMOS transistor M100, thereby determining the high voltage of capacitor C200 and capacitor C201 in the clock Usually one end is grounded or connected to the input common-mode reference level Vcom2; when the clock is at high level, the output of clock signal clk2_n, clock signal clk2_n1, and clock signal clk2_n2 is at low level, and clk2_p is at high level. At this time, the operation in MDAC The amplifier A2 works normally, the bootstrap switch S7 and the bootstrap switch S8 output effective control signals, so that the lower plates of the capacitor C156 and the capacitor C196 are respectively connected to the positive and negative output terminals of the operational amplifier A2 in the MDAC. The output of the switch array Sr65 to the switch array Sr98 will be determined by the output of the output controllable comparator Coc33 to the output controllable comparator Coc49. The output controllable comparator obtains the corresponding output by comparing the input signal with the threshold. The thresholds of the comparators in the second stage of the pipeline MDAC are: 8/32 Vref, 7/32 Vref, 6/32 Vref , 5/32·Vref, 4/32·Vref, 3/32·Vref, 2/32·Vref, 1/32·Vref, 0/32·Vref, -1/32·Vref, -2/32·Vref , -3/32·Vref, -4/32·Vref, -5/32·Vref, -6/32·Vref, -7/32·Vref, -8/32·Vref. In addition, at this time, the PMOS transistor M79, the NMOS transistor M82, the PMOS transistor M83 and the PMOS transistor M88 are turned on. At this time, the control signal Vcorrect2 is always at a low level, so that the NMOS transistor M91 is turned off; the control signal VSamp2 is in phase with the clock signal clk2_n, and the PMOS transistor M90 is turned on. In this way, recharging of the capacitors C157 to C195 is realized. At the same time, the positive calibration error storage circuit Ep1 to the positive calibration error storage circuit Ep16 and the negative calibration error storage circuit En1 to the negative calibration error storage circuit En15 will output the controllable comparator Coc1 to the output controllable comparator Coc31 in the first stage MDAC of the pipeline. The fixed value determined by the negative output of the capacitor C108 to capacitor C139 is recharged, so that the error of the sub-DAC in the first stage MDAC of the pipeline can be added to the output signal of this stage. The total capacitance of the 20 capacitors from capacitor C156 to capacitor C175 is the same as the total capacitance of the 21 capacitors from C176 to capacitor C196, both of which are 64 unit capacitors C0_2, of which the size of capacitor C156 and capacitor C196 are both 8 unit capacitors The size of C0_2, capacitor C175 and capacitor C176 is 20 unit capacitors C0_2, the size of capacitor C177 is 16 unit capacitors C0_2, the size of capacitor C174 is 17 unit capacitors C0_2, and the remaining capacitors are all unit capacitors C0_2. The 48 capacitors from capacitor C108 to capacitor C155 are equally large, and they are all C0_2. According to the principle of charge conservation, the second-stage MDAC in the pipeline implements three-bit quantization of the input signal and amplifies the remaining difference by 8 times. The encoding circuit 2 encodes the output of the controllable comparator. Since the output of the controllable comparator is the thermometer code, it needs the encoding circuit 2 to convert it into a binary code. Firstly, use XOR logic to convert the thermometer code into single 1 code, and then use OR gate to convert single 1 code into binary code. The encoding result of the second-stage pipeline MDAC:
在校准工作模式下,将本级与上级MDAC断开,这时上级MDAC不工作,本级的输入端接入固定值。这时控制信号Vcorrect2与时钟信号clk2_p同相,使得NMOS晶体管M91在始终信号为高电平时导通;控制信号Vnormal2始终为高电平,使得PMOS晶体管M90始终关断。首先进行级间增益的校准,首先将输入接在参考电平Vinp2-Vinn2=-19/64·Vref,这时可控比较器的输出Coc33至可控比较器的输出Coc49的输出都为0,得到一个相应的输出编码,再将将输入接在参考电平Vinp1-Vinn1=-17/64·Vref,得到另一个相应的输出编码。当本级级间增益是8倍时,前后的输出码的差值应该为-1/4·Vref。前后码的差值偏离了这个值时,可调控级间增益增减控制信号VCmdac2_gain1_n至级间增益增减控制信号VCmdac2_gain4_n的值来实现级间增益的增减调整,级间增益增减控制信号VCmdac2_gain1_p为级间增益增减控制信号VCmdac2_gain1_n的反。级间增益增减控制信号VCmdac2_gain_n为高电平,使得CMOS传输门T64和CMOS传输门T65导通,使得负反馈电容增加,实现级间增益的减小;级间增益增减控制信号VCmdac2_gain_n为低电平,使得CMOS传输门T63和CMOS传输门T66导通,使得正反馈电容增加,实现级间增益的增加。可调控级间增益大小控制信号VCmdac2_gain1_n、VCmdac2_gain2_n、VCmdac2_gain3_n、VCmdac2_gain4_n来实现级间增益的改变量。级间增益大小控制信号VCmdac2_gain1_p、VCmdac2_gain2_p、VCmdac2_gain3_p、VCmdac2_gain4_p分别为级间增益大小控制信号VCmdac2_gain1_n、VCmdac2_gain2_n、VCmdac2_gain3_n、VCmdac2_gain4_n的反。级间增益大小控制信号VCmdac2_gain1_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac2_gain1_n为低电平,则相应的级间增益的大小变为(C176+C177+…+C196)/(C196±C197)。级间增益大小控制信号VCmdac2_gain2_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac2_gain2_n为低电平,则相应的级间增益的大小变为(C176+C177+…+C196)/(C196±C198)。级间增益大小控制信号VCmdac2_gain3_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac2_gain3_n为低电平,则相应的级间增益的大小变为(C176+C177+…+C196)/(C196±C199)。级间增益大小控制信号VCmdac2_gain4_n为高电平时,不影响级间增益的大小,级间增益大小控制信号VCmdac2_gain4_n为低电平,则相应的级间增益的大小变为(C176+C177+…+C196)/(C196±C200)。通过调控级间增益增减控制信号VCmdac2_gain_n,和级间增益大小控制信号Cmdac2_gain1_n、VCmdac2_gain2_n、VCmdac2_gain3_n、VCmdac2_gain4_n来实现级间增益的校准。当电路正常工作时,控制信号根据校准后的值直接加入电路中。在校准子DAC时,输入端接参考电平Vinp1-Vinn1=-31/64·Vref,控制输出可控比较器的控制信号VC2_1到VC2_17其中的一个为高电平,使得相应的输出可控比较器的输出被置为1,其它的输出可控比较器输出实际值,根据输入的值可得其它的输出可控比较器的输出都为0。通过比较输出可控比较器被置1前后的输出码的差值是否为1/4·Vref来判断与被置1的输出可控比较器所控制的开关相连的电容失配所引起的误差的大小,并通过调控流水线第三级MDAC中相应的校准误差存储电路来消除这一误差。最终,通过这样的方法将子DAC的输出进行相应的校准。在正常工作时,如果可控比较器的输出为1,那么流水线第三级MDAC中与其相应的校准误差存储电路将把在校准时产生的误差加到流水线第三级MDAC的输出信号中。如果可控比较器的输出为0,那么流水线第三级MDAC中与其相应的校准误差存储电路将不会把在校准时产生的误差加到流水线第三级MDAC的输出信号中。In the calibration mode, the current stage is disconnected from the upper-level MDAC. At this time, the upper-level MDAC does not work, and the input terminal of the current level is connected to a fixed value. At this time, the control signal Vcorrect2 is in phase with the clock signal clk2_p, so that the NMOS transistor M91 is turned on when the signal is always at a high level; the control signal Vnormal2 is always at a high level, so that the PMOS transistor M90 is always turned off. At first the calibration of the interstage gain is carried out, first the input is connected to the reference level Vinp2-Vinn2=-19/64 Vref, at this moment the outputs from the output Coc33 of the controllable comparator to the output Coc49 of the controllable comparator are all 0, A corresponding output code is obtained, and then the input is connected to the reference level Vinp1-Vinn1=-17/64·Vref to obtain another corresponding output code. When the inter-stage gain of this stage is 8 times, the difference between the output codes before and after should be -1/4·Vref. When the difference between the front and rear codes deviates from this value, the value of the inter-stage gain increase and decrease control signal VCmdac2_gain1_n to the inter-stage gain increase and decrease control signal VCmdac2_gain4_n can be adjusted to realize the increase and decrease adjustment of the inter-stage gain. The inter-stage gain increase and decrease control signal VCmdac2_gain1_p It is the inverse of the inter-stage gain increase/decrease control signal VCmdac2_gain1_n. The inter-stage gain increase/decrease control signal VCmdac2_gain_n is at a high level, so that the CMOS transmission gate T64 and the CMOS transmission gate T65 are turned on, so that the negative feedback capacitance is increased to realize the reduction of the inter-stage gain; the inter-stage gain increase/decrease control signal VCmdac2_gain_n is low Level, so that the CMOS transmission gate T63 and the CMOS transmission gate T66 are turned on, so that the positive feedback capacitance is increased, and the inter-stage gain is increased. The inter-stage gain control signals VCmdac2_gain1_n, VCmdac2_gain2_n, VCmdac2_gain3_n, VCmdac2_gain4_n can be adjusted to realize the change amount of the inter-stage gain. The inter-stage gain control signals VCmdac2_gain1_p, VCmdac2_gain2_p, VCmdac2_gain3_p, and VCmdac2_gain4_p are the inverses of the inter-stage gain control signals VCmdac2_gain1_n, VCmdac2_gain2_n, VCmdac2_gain3_n, and VCmdac2_gain4_n, respectively. When the inter-stage gain control signal VCmdac2_gain1_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac2_gain1_n is at a low level, the corresponding inter-stage gain becomes (C176+C177+…+C196) /(C196±C197). When the inter-stage gain control signal VCmdac2_gain2_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac2_gain2_n is at a low level, the corresponding inter-stage gain becomes (C176+C177+…+C196) /(C196±C198). When the inter-stage gain control signal VCmdac2_gain3_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac2_gain3_n is at a low level, the corresponding inter-stage gain becomes (C176+C177+…+C196) /(C196±C199). When the inter-stage gain control signal VCmdac2_gain4_n is at a high level, it does not affect the inter-stage gain. If the inter-stage gain control signal VCmdac2_gain4_n is at a low level, the corresponding inter-stage gain becomes (C176+C177+…+C196) /(C196±C200). Calibration of the inter-stage gain is realized by adjusting the inter-stage gain increase/decrease control signal VCmdac2_gain_n, and the inter-stage gain control signals Cmdac2_gain1_n, VCmdac2_gain2_n, VCmdac2_gain3_n, VCmdac2_gain4_n. When the circuit is working normally, the control signal is directly added to the circuit according to the calibrated value. When calibrating the sub-DAC, the input terminal is connected to the reference level Vinp1-Vinn1=-31/64 Vref, and one of the control signals VC2_1 to VC2_17 of the output controllable comparator is controlled to be high level, so that the corresponding output controllable comparison The output of the controllable comparator is set to 1, and the other output controllable comparators output the actual value. According to the input value, the output of the other output controllable comparators are all 0. By comparing whether the output code difference before and after the output controllable comparator is set to 1 is 1/4 Vref, the error caused by the mismatch of the capacitance connected to the switch controlled by the output controllable comparator that is set to 1 is judged. Size, and eliminate this error by regulating the corresponding calibration error storage circuit in the third stage MDAC of the pipeline. Finally, through such a method, the output of the sub-DAC is calibrated accordingly. In normal operation, if the output of the controllable comparator is 1, then the corresponding calibration error storage circuit in the third-stage MDAC of the pipeline will add the error generated during calibration to the output signal of the third-stage MDAC of the pipeline. If the output of the controllable comparator is 0, the corresponding calibration error storage circuit in the third-stage MDAC of the pipeline will not add the error generated during calibration to the output signal of the third-stage MDAC of the pipeline.
参见图5,流水线第三级MDAC,采用全差分电荷翻转式的电路结构,在正常工作情况下,将流水线第二级MDAC的输出进行三位的量化,输出五位数字码,再将量化的剩余差值进行8倍的放大。同样将本级中比较器的量化范围扩展一倍。从原来的-1/8·Vref到1/8·Vref扩展为现在的-1/4·Vref到1/4·Vref。这个主要是用来消除由于上级的比较器的阈值的失调,导致上级的输出结果超过了本级的量化区间所引起的误差。在这里将本级的量化范围进行了扩展之后,使得上级的输出得到合适的编码,最后在数字校正电路中得到正确的结果。所以这么做可以使电路能够容忍上级的比较器具有±1/64·Vref的阈值失调。另外本级中加入相应的校准误差存储电路来消除上级中子DAC的误差。本级的传输函数表达式:See Figure 5. The third-stage MDAC of the pipeline adopts a fully differential charge-reversal circuit structure. Under normal operating conditions, the output of the second-stage MDAC of the pipeline is quantized to three bits, and a five-digit digital code is output, and then the quantized The remaining difference is magnified by 8 times. Also doubles the quantization range of the comparators in this stage. Expand from the original -1/8·Vref to 1/8·Vref to the current -1/4·Vref to 1/4·Vref. This is mainly used to eliminate the error caused by the output result of the upper stage exceeding the quantization interval of the current stage due to the offset of the threshold value of the upper-stage comparator. After expanding the quantization range of this stage, the output of the upper stage can be properly coded, and finally the correct result can be obtained in the digital correction circuit. So doing so can make the circuit tolerant to the threshold offset of ±1/64·Vref in the upper comparator. In addition, a corresponding calibration error storage circuit is added in this stage to eliminate the error of the neutron DAC in the upper stage. The transfer function expression of this stage:
其中,Voutp3为本级的正端输出,Voutn3为本级的负端输出,Voutp2为本级的正端输入,同时也就是上级的正端输出,Voutn2为本级的负端输入,同时也就是上级的负端输出,Verr1为上级中与输出为1的输出可控比较器相关联的电容失配所引起的误差值,这个值可正可负。i3为相应的整数,它的范围为-8≤i3≤8。Among them, Voutp3 is the positive terminal output of the current stage, Voutn3 is the negative terminal output of the current stage, Voutp2 is the positive terminal input of the current stage, which is also the positive terminal output of the upper stage, and Voutn2 is the negative terminal input of the current stage. The negative terminal output of the upper stage, Verr1 is the error value caused by the capacitance mismatch associated with the output controllable comparator whose output is 1 in the upper stage, and this value can be positive or negative. i3 is a corresponding integer, and its range is -8≤i 3 ≤8.
由于本级的剩余差值的输出只需要达到7位的精度要求,电容的失配可以满足这个精度,所以本级就没有进行校准的要求了。Since the output of the remaining difference value of this stage only needs to meet the accuracy requirement of 7 bits, the mismatch of the capacitance can meet this accuracy, so there is no requirement for calibration at this stage.
参见图5,由图中可知电路工作时,当时钟为高电平时,时钟信号clk3_p、时钟信号clk3_p1、时钟信号clk3_p2和时钟信号clk3_p3为高电平,时钟信号clk3_n和时钟信号clk3_n3为低电平。这时MDAC中的运算放大器A3的正负输入端由NMOS晶体管M124短接在一起,并通过NMOS晶体管M122和NMOS晶体管M123加入输入共模参考电压Vcom3,正负输出端通过NMOS晶体管M128短接在一起,对MDAC中的运算放大器A3的输出起着复位的作用。这时本级的比较器Com1至输出可控比较器Com17的正输出和负输出都为1,正输出的反和负输出的反都为0,所以本级中的开关阵列Sr99至开关阵列Sr118中与参考电压Vref相连的PMOS晶体管和与地相连的NMOS晶体管都处于关断状态,只有与正输入信号和负输入信号相连的NMOS晶体管导通,另外这时NMOS晶体管M113、NMOS晶体管M114、NMOS晶体管M116、NMOS晶体管M118、NMOS晶体管M199、NMOS晶体管M125导通,从而实现电容C239至电容C264对输入信号的采样。同时比较器Com1至比较器Com17也实现对输入信号的采样。这时的正校准误差存储电路Ep17至正校准误差存储电路Ep25将第二级MDAC中的输出可控比较器Coc33至输出可控比较器Coc41的负输出存储起来,同时负校准误差存储电路En17至负校准误差存储电路En24将第二级MDAC中的输出可控比较器Coc42至输出可控比较器Coc49的负输出存储起来,为了匹配第三级MDAC的正负输入端,需要加入PMOS晶体管M107、NMOS晶体管M108、PMOS晶体管M109、NMOS晶体管M110、PMOS晶体管M111和NMOS晶体管M112。同时将正校准误差存储电路Ep17至正校准误差存储电路Ep25和负校准误差存储电路En17至负校准误差存储电路En24的输出置于相应的定值,PMOS晶体管107、PMOS晶体管M109和PMOS晶体管M111导通,从对电容C209至电容C228进行充电。电容C229至电容C238将分别与电容C209至电容C228串联,从而调节误差校准电路的输出加入到本级MDAC的输出端的值。这时的编码电路E3的输出全为0。当时钟为低电平时,时钟信号clk3_p、clk3_p1、clk3_p2和clk3_p3为低电平,时钟信号clk3_n和clk3_n3为高电平,这时MDAC中的运算放大器A3正常工作,自举开关S9和自举开关S10输出有效控制信号,使电容C239和电容C264的下极板分别接入MDAC中的运算放大器A3的正负输出端。开关阵列Sr99至开关阵列Sr118的输出将由比较器Com1至比较器Com17的输出来决定。比较器根据比较输入信号与阈值的大小来得到相应的输出,流水线第三级MDAC中的比较器的阈值分别为:8/32·Vref、7/32·Vref、6/32·Vref、5/32·Vref、4/32·Vref、3/32·Vref、2/32·Vref、1/32·Vref、0/32·Vref、-1/32·Vref、-2/32·Vref、-3/32·Vref、-4/32·Vref、-5/32·Vref、-6/32·Vref、-7/32·Vref、-8/32·Vref。另外这时PMOS晶体管M115、NMOS晶体管M117、PMOS晶体管M120和PMOS晶体管M121导通。从而实现对电容C240至电容C263的再次充电。同时正校准误差存储电路Ep17至正校准误差存储电路Ep25和负校准误差存储电路En17至负校准误差存储电路En24将输出由流水线第二级MDAC中输出可控比较器Coc33至输出可控比较器Coc49的负输出所决定的固定值,实现对电容C112至电容C127的再次充电,从而使得流水线第二级MDAC中子DAC的误差能加入到本级的输出信号中。电容C239至电容C251这13个电容总的电容大小和C252至电容C264这13个电容总的电容大小相同,都为32个单位电容C0_3,其中电容C239和电容C264的大小都为4个单位电容C0_3,电容C250和电容C253的大小都为6个单位电容C0_3,电容C251和电容C252的大小为12个单位电容C0_3,剩下的电容大小都为单位电容C0_3。电容C209至电容C238这30个电容同样大,都为C0_3。根据电荷守恒定理,流水线第三级MDAC实现将输入信号进行三位的量化,并将剩余差值放大8倍。编码电路3将比较器的输出进行编码。由于比较器的输出的是温度计码,所以需要编码电路3将其转化成的二进制码。首先利用异或逻辑将温度计码转化为单1码,再利用或门将单1码转化为二进制码。第三级流水线MDAC的编码结果:Referring to Figure 5, it can be seen from the figure that when the circuit is working, when the clock is at high level, the clock signal clk3_p, clock signal clk3_p1, clock signal clk3_p2 and clock signal clk3_p3 are at high level, and the clock signal clk3_n and clock signal clk3_n3 are at low level . At this time, the positive and negative input terminals of the operational amplifier A3 in the MDAC are short-circuited together by the NMOS transistor M124, and the input common-mode reference voltage Vcom3 is added through the NMOS transistor M122 and the NMOS transistor M123, and the positive and negative output terminals are short-circuited by the NMOS transistor M128. Together, it plays a role in resetting the output of the operational amplifier A3 in MDAC. At this time, the positive output and the negative output of the comparator Com1 to the output controllable comparator Com17 of this stage are both 1, and the inversion of the positive output and the inversion of the negative output are both 0, so the switch array Sr99 to the switch array Sr118 in this stage The PMOS transistors connected to the reference voltage Vref and the NMOS transistors connected to the ground are in the off state, and only the NMOS transistors connected to the positive input signal and the negative input signal are turned on. In addition, the NMOS transistor M113, NMOS transistor M114, and NMOS transistor The transistor M116, the NMOS transistor M118, the NMOS transistor M199, and the NMOS transistor M125 are turned on, so as to implement the sampling of the input signal by the capacitor C239 to the capacitor C264. At the same time, the comparators Com1 to Com17 also implement sampling of the input signal. At this time, the positive calibration error storage circuit Ep17 to the positive calibration error storage circuit Ep25 store the negative outputs of the output controllable comparator Coc33 to the output controllable comparator Coc41 in the second-stage MDAC, and the negative calibration error storage circuit En17 to The negative calibration error storage circuit En24 stores the negative output from the output controllable comparator Coc42 to the output controllable comparator Coc49 in the second-stage MDAC. In order to match the positive and negative input terminals of the third-stage MDAC, PMOS transistors M107, NMOS transistor M108, PMOS transistor M109, NMOS transistor M110, PMOS transistor M111, and NMOS transistor M112. At the same time, the outputs of the positive calibration error storage circuit Ep17 to the positive calibration error storage circuit Ep25 and the negative calibration error storage circuit En17 to the negative calibration error storage circuit En24 are placed at corresponding constant values, and the PMOS transistor 107, the PMOS transistor M109 and the PMOS transistor M111 conduct Through, charge from the capacitor C209 to the capacitor C228. Capacitors C229 to C238 are connected in series with capacitors C209 to C228 respectively, so as to adjust the value that the output of the error calibration circuit adds to the output terminal of the MDAC of the current stage. At this time, the output of the encoding circuit E3 is all 0. When the clock is at a low level, the clock signals clk3_p, clk3_p1, clk3_p2 and clk3_p3 are at a low level, and the clock signals clk3_n and clk3_n3 are at a high level. At this time, the operational amplifier A3 in the MDAC works normally, and the bootstrap switch S9 and the bootstrap switch S10 outputs an effective control signal, so that the lower plates of the capacitor C239 and the capacitor C264 are respectively connected to the positive and negative output terminals of the operational amplifier A3 in the MDAC. The output of the switch array Sr99 to the switch array Sr118 will be determined by the output of the comparator Com1 to the comparator Com17. The comparator obtains the corresponding output by comparing the input signal with the threshold. The thresholds of the comparators in the third-stage MDAC of the pipeline are: 8/32 Vref, 7/32 Vref, 6/32 Vref, 5/ 32·Vref, 4/32·Vref, 3/32·Vref, 2/32·Vref, 1/32·Vref, 0/32·Vref, -1/32·Vref, -2/32·Vref, -3 /32·Vref, -4/32·Vref, -5/32·Vref, -6/32·Vref, -7/32·Vref, -8/32·Vref. In addition, at this time, the PMOS transistor M115 , the NMOS transistor M117 , the PMOS transistor M120 and the PMOS transistor M121 are turned on. In this way, recharging of the capacitors C240 to C263 is realized. At the same time, the positive calibration error storage circuit Ep17 to the positive calibration error storage circuit Ep25 and the negative calibration error storage circuit En17 to the negative calibration error storage circuit En24 will output the controllable comparator Coc33 to the output controllable comparator Coc49 in the second stage MDAC of the pipeline. The fixed value determined by the negative output of the capacitor realizes the recharging of the capacitor C112 to the capacitor C127, so that the error of the sub-DAC of the second stage MDAC of the pipeline can be added to the output signal of this stage. The total capacitance of the 13 capacitors from capacitor C239 to capacitor C251 is the same as the total capacitance of the 13 capacitors from C252 to capacitor C264, both of which are 32 unit capacitors C0_3, and the size of capacitor C239 and capacitor C264 are both 4 unit capacitors The size of C0_3, capacitor C250 and capacitor C253 is 6 unit capacitors C0_3, the size of capacitor C251 and capacitor C252 is 12 unit capacitors C0_3, and the size of the remaining capacitors are all unit capacitors C0_3. The 30 capacitors from capacitor C209 to capacitor C238 are equally large, and they are all C0_3. According to the principle of charge conservation, the third-stage MDAC in the pipeline realizes three-bit quantization of the input signal and amplifies the remaining difference by 8 times. The encoding circuit 3 encodes the output of the comparator. Since the output of the comparator is a thermometer code, the encoding circuit 3 is needed to convert it into a binary code. Firstly, use XOR logic to convert the thermometer code into single 1 code, and then use OR gate to convert single 1 code into binary code. The encoding result of the third-stage pipeline MDAC:
参见图6,流水线第四级MDAC,采用全差分电荷翻转式的电路结构,本级对上级MDAC的输出进行三位的量化,输出五位数字码,并将量化的差值进行8倍放大。同样将本级比较器的量化范围扩展一倍。从原来的-1/8·Vref到1/8·Vref扩展为现在的-1/4·Vref到1/4·Vref。这个主要是用来消除由于上级的比较器的阈值的失调,导致上级的输出结果超过了本级的量化区间所引起的误差。在这里将本级的量化范围进行了扩展之后,使得上级的输出得到合适的编码,最后在数字校正电路中得到正确的结果。所以这么做可以使电路能够容忍上级的比较器具有±1/64·Vref的阈值失调。本级的传输函数的表达式:See Figure 6. The fourth-stage MDAC in the pipeline adopts a fully differential charge-reversal circuit structure. This stage performs three-bit quantization on the output of the upper-stage MDAC, outputs a five-digit digital code, and amplifies the quantized difference by 8 times. Similarly, the quantization range of the comparator at this stage is doubled. Expand from the original -1/8·Vref to 1/8·Vref to the current -1/4·Vref to 1/4·Vref. This is mainly used to eliminate the error caused by the output result of the upper stage exceeding the quantization interval of the current stage due to the offset of the threshold value of the upper-stage comparator. After expanding the quantization range of this stage, the output of the upper stage can be properly coded, and finally the correct result can be obtained in the digital correction circuit. So doing so can make the circuit tolerant to the threshold offset of ±1/64·Vref in the upper comparator. The expression of the transfer function of this stage:
其中,Voutp4为本级的正端输出,Voutn4为本级的负端输出,Voutp3为本级的正端输入,同时也就是上级的正端输出,Voutn3为本级的负端输入,同时也就是上级的负端输出,i4为相应的整数,它的范围为-8≤i4≤8。Among them, Voutp4 is the positive terminal output of the current stage, Voutn4 is the negative terminal output of the current stage, Voutp3 is the positive terminal input of the current stage, which is also the positive terminal output of the upper stage, and Voutn3 is the negative terminal input of the current stage. The negative terminal output of the upper stage, i4 is the corresponding integer, and its range is -8≤i 4 ≤8.
参见图6,由图中可知,电路工作时,当时钟为低电平时,时钟信号clk4_n、时钟信号clk4_n1、时钟信号clk4_n2和时钟信号clk4_n3为高电平,时钟信号clk4_p和时钟信号clk4_p3为低电平。这时MDAC中的运算放大器A4的正负输入端由NMOS晶体管M144短接在一起,并通过NMOS晶体管M142和NMOS晶体管M143加入输入共模参考电压Vcom4,正负输出端通过NMOS晶体管M152短接在一起,对MDAC中的运算放大器A4的输出起着复位的作用。这时本级的比较器Com18至输出可控比较器Com34的正输出和负输出都为1,正输出的反和负输出的反都为0,所以本级中的开关阵列Sr119至开关阵列Sr138中与参考电压Vref相连的PMOS晶体管和与地相连的NMOS晶体管都处于关断状态,只有与正输入信号和负输入信号相连的NMOS晶体管导通,另外这时NMOS晶体管M135、NMOS晶体管M136、NMOS晶体管M138、NMOS晶体管M140、NMOS晶体管M145、NMOS晶体管M147导通,从而实现电容C273至电容C298对输入信号的采样。这时编码电路E4的输出全为0。时钟为高电平时,时钟信号clk4_n、时钟信号clk4_n1、时钟信号clk4_n2和时钟信号clk4_n3为低电平,时钟信号clk4_p和时钟信号clk4_p3为高电平,这时MDAC中的运算放大器A4正常工作,NMOS晶体管M148、NMOS晶体管M50和PMOS晶体管M149、PMOS晶体管M151导通,使电容C273和电容C298的下极板分别接入MDAC中的运算放大器A4的正负输出端。开关阵列Sr119至开关阵列Sr138的输出将由比较器Com18至比较器Cmo34的输出来决定。比较器根据比较输入信号与阈值的大小来得到相应的输出,流水线第四级MDAC中的比较器的阈值分别为:8/32·Vref、7/32·Vref、6/32·Vref、5/32·Vref、4/32·Vref、3/32·Vref、2/32·Vref、1/32·Vref、0/32·Vref、-1/32·Vref、-2/32·Vref、-3/32·Vref、-4/32·Vref、-5/32·Vref、-6/32·Vref、-7/32·Vref、-8/32·Vref。另外这时PMOS晶体管M137、NMOS晶体管M139、PMOS晶体管M141和PMOS晶体管M146导通。从而实现对电容C274至电容C294的再次充电。电容C273至电容C285这13个电容总的电容大小和C286至电容C298这13个电容总的电容大小相同,都为32个单位电容C0_4,其中电容C273和电容C285的大小都为4个单位电容C0_4,电容C284和电容C287的大小都为6个单位电容C0_4,电容C285和电容C286的大小为12个单位电容C0_4,剩下的电容大小都为单位电容C0_4。根据电荷守恒定理,流水线第四级MDAC实现将输入信号进行三位的量化,并将剩余差值放大8倍。编码电路4将比较器的输出进行编码。由于比较器的输出的是温度计码,所以需要编码电路4将其转化成的二进制码。首先利用异或逻辑将温度计码转化为单1码,再利用或门将单1码转化为二进制码。第四级流水线MDAC的编码结果:Referring to Figure 6, it can be seen from the figure that when the circuit is working, when the clock is at low level, the clock signal clk4_n, clock signal clk4_n1, clock signal clk4_n2 and clock signal clk4_n3 are at high level, and the clock signal clk4_p and clock signal clk4_p3 are at low level flat. At this time, the positive and negative input terminals of the operational amplifier A4 in the MDAC are short-circuited together by the NMOS transistor M144, and the input common-mode reference voltage Vcom4 is added through the NMOS transistor M142 and the NMOS transistor M143, and the positive and negative output terminals are short-circuited by the NMOS transistor M152. Together, it plays a role in resetting the output of the operational amplifier A4 in the MDAC. At this time, the positive output and the negative output of the comparator Com18 to the output controllable comparator Com34 of this stage are both 1, and the inversion of the positive output and the inversion of the negative output are both 0, so the switch array Sr119 to the switch array Sr138 in this stage The PMOS transistor connected to the reference voltage Vref and the NMOS transistor connected to the ground are in the off state, and only the NMOS transistor connected to the positive input signal and the negative input signal is turned on. In addition, the NMOS transistor M135, NMOS transistor M136, and NMOS transistor The transistor M138 , the NMOS transistor M140 , the NMOS transistor M145 , and the NMOS transistor M147 are turned on, so as to realize the sampling of the input signal by the capacitor C273 to the capacitor C298 . At this time, the output of the encoding circuit E4 is all 0. When the clock is at high level, the clock signal clk4_n, clock signal clk4_n1, clock signal clk4_n2 and clock signal clk4_n3 are at low level, and the clock signal clk4_p and clock signal clk4_p3 are at high level. At this time, the operational amplifier A4 in MDAC works normally, and the NMOS The transistor M148, the NMOS transistor M50, the PMOS transistor M149, and the PMOS transistor M151 are turned on, so that the lower plates of the capacitor C273 and the capacitor C298 are respectively connected to the positive and negative output terminals of the operational amplifier A4 in the MDAC. The output of the switch array Sr119 to the switch array Sr138 will be determined by the output of the comparator Com18 to the comparator Cmo34. The comparator obtains the corresponding output by comparing the input signal with the threshold. The thresholds of the comparators in the fourth-stage MDAC of the pipeline are: 8/32 Vref, 7/32 Vref, 6/32 Vref, 5/ 32·Vref, 4/32·Vref, 3/32·Vref, 2/32·Vref, 1/32·Vref, 0/32·Vref, -1/32·Vref, -2/32·Vref, -3 /32·Vref, -4/32·Vref, -5/32·Vref, -6/32·Vref, -7/32·Vref, -8/32·Vref. In addition, at this time, the PMOS transistor M137 , the NMOS transistor M139 , the PMOS transistor M141 and the PMOS transistor M146 are turned on. In this way, recharging of the capacitors C274 to C294 is realized. The total capacitance of the 13 capacitors from capacitor C273 to capacitor C285 is the same as the total capacitance of the 13 capacitors from C286 to capacitor C298, which are 32 unit capacitors C0_4, and the size of capacitor C273 and capacitor C285 are both 4 unit capacitors The size of C0_4, capacitor C284 and capacitor C287 is 6 unit capacitors C0_4, the size of capacitor C285 and capacitor C286 is 12 unit capacitors C0_4, and the size of the remaining capacitors are all unit capacitors C0_4. According to the principle of charge conservation, the fourth-stage MDAC in the pipeline realizes three-bit quantization of the input signal and amplifies the remaining difference by 8 times. The encoding circuit 4 encodes the output of the comparator. Since the output of the comparator is a thermometer code, it needs to be converted into a binary code by the encoding circuit 4 . Firstly, use XOR logic to convert the thermometer code into single 1 code, and then use OR gate to convert single 1 code into binary code. The encoding result of the fourth-stage pipeline MDAC:
参见图7,流水线第五级快闪ADC,将流水线第四级MDAC的输出进行两位的量化,输出四位数字码,同样将比较器的量化范围从原来的-1/8·Vref到1/8·Vref扩展为-6/32·Vref到6/32·Vref。这个主要是用来消除由于上级的比较器的阈值的失调,导致上级的输出结果超过了本级的量化区间所引起的误差。在这里将本级的量化范围进行了扩展之后,使得上级的输出得到合适的编码,最后在数字校正电路中得到正确的结果。所以这么做可以使电路能够容忍上级的比较器具有±1/64·Vref的阈值失调。See Figure 7, the fifth-stage flash ADC of the pipeline, quantizes the output of the fourth-stage MDAC of the pipeline by two digits, and outputs a four-digit digital code, and also changes the quantization range of the comparator from the original -1/8·Vref to 1 /8 Vref expands from -6/32 Vref to 6/32 Vref. This is mainly used to eliminate the error caused by the output result of the upper stage exceeding the quantization interval of the current stage due to the offset of the threshold value of the upper-stage comparator. After expanding the quantization range of this stage, the output of the upper stage can be properly coded, and finally the correct result can be obtained in the digital correction circuit. So doing so can make the circuit tolerant to the threshold offset of ±1/64·Vref in the upper comparator.
参见图7,由图中可知,电路工作时,时钟为高电平时,比较器Com35至比较器Com41对输入信号进行采样,且这时比较器Com35至比较器Com41的正输出和负输出都为1,正输出的反和负输出的反都为0。编码电路E5的输出全为0。当时钟为低电平时,比较器根据比较输入信号与阈值的大小来得到相应的输出。本级比较器的阈值分别为:3/16·Vref、2/16·Vref、1/16·Vref、0/16·Vref、-1/16·Vref、-2/16·Vref、-3/16·Vref。编码电路5将比较器的输出进行编码。由于比较器的输出为温度计码,所以需要编码电路E5将其转化成的二进制码。首先利用异或逻辑将温度计码转化为单1码,再利用或门将单1码转化为二进制码。第五级流水线快闪ADC的编码结果:Referring to Figure 7, it can be seen from the figure that when the circuit is working, when the clock is at a high level, the comparator Com35 to the comparator Com41 sample the input signal, and at this time the positive output and the negative output of the comparator Com35 to the comparator Com41 are both 1. Both the inverse of positive output and the inverse of negative output are 0. The output of the encoding circuit E5 is all 0s. When the clock is at a low level, the comparator obtains a corresponding output according to comparing the input signal with the threshold. The thresholds of the comparator at this level are: 3/16 Vref, 2/16 Vref, 1/16 Vref, 0/16 Vref, -1/16 Vref, -2/16 Vref, -3/ 16 Vref. The encoding circuit 5 encodes the output of the comparator. Since the output of the comparator is a thermometer code, it needs the encoding circuit E5 to convert it into a binary code. Firstly, use XOR logic to convert the thermometer code into single 1 code, and then use OR gate to convert single 1 code into binary code. The encoding result of the fifth-stage pipeline flash ADC:
参见图8,数字校正电路,由于流水线第一级MDAC的剩余差值的放大倍数压缩了4倍,流水线第二级MDAC、流水线第三极MDAC、流水线第4级MDAC和流水线第五级快闪ADC的输入量化区间都被相应的扩大。这样处理是为了使在比较器的阈值失调在±1/64·Vref范围内而不影响ADC的性能。那么每级的编码将会根据每级的输入值来产生相应的输出码。另外在采样保持电路中加入的随机值也需要在输出结果中减去。所以需要将每级的输出码和采样保持电路中加入的随机值进行相应的逻辑加减运算来得到ADC最终正确的16位输出二进制码。See Figure 8, the digital correction circuit, because the magnification of the remaining difference of the first stage MDAC of the pipeline is compressed by 4 times, the second stage MDAC of the pipeline, the third stage MDAC of the pipeline, the fourth stage MDAC of the pipeline and the fifth stage of the pipeline flash The input quantization interval of the ADC is expanded accordingly. This is done in order to make the threshold offset in the comparator within the range of ±1/64·Vref without affecting the performance of the ADC. Then the encoding of each level will generate the corresponding output code according to the input value of each level. In addition, the random value added in the sample and hold circuit also needs to be subtracted from the output result. Therefore, it is necessary to perform corresponding logic addition and subtraction operations on the output code of each stage and the random value added in the sample-and-hold circuit to obtain the final correct 16-bit output binary code of the ADC.
参见图8,由图中可知,数字校正电路,将流水线第五级快闪ADC的输出码D52和D51直接输出,流水线第五级快闪ADC的输出码D53将与流水线第四级MDAC的输出码D41相加,流水线第四级的输出码D42将与流水线第五级快闪ADC的输出码D54相减。这样做的原理是当流水线第四级MDAC中有一个比较器的阈值偏离理论值,其它都正常的情况下,如果阈值偏大,当输入值为与理论阈值和实际阈值之间时,流水线第四级MDAC的输出信号将高于1/8·Vref,其输出编码比理论阈值时小1,流水线第五级快闪ADC的输出码D52和D51与理论阈值一样,而流水线第五级快闪ADC的输出码D53为1,需要加入流水线第四级MDAC的输出码D41中,使得最终阈值偏大的编码结果与理论阈值编码的结果一样。如果阈值偏小,当输入值为与理论阈值和实际阈值之间时,流水线第四级MDAC的输出信号将低于-1/8·Vref,其输出编码比理论阈值时大1,流水线第五级快闪ADC的输出码D52和D51与理论阈值一样,而流水线第五级快闪ADC的输出码D53为1,需要加入到流水线第四级MDAC的输出码D41中,流水线第五级快闪ADC的输出码D54为1,需要从流水线第四级MDAC的输出码D42中减去,其实际是将流水线第四级MDAC的输出码D41减1,使得最终阈值偏小的编码结果与理论阈值编码的结果一样。同理,流水线第三级MDAC的输出码D31需要加上流水线第四级MDAC的输出码D44,流水线第三级MDAC的输出码D32需要减去流水线第四级MDAC的输出码D45;流水线第二级MDAC的输出码D21需要加上流水线第三级MDAC的输出码D34,流水线第二级MDAC的输出码D22需要减去流水线第三级MDAC的输出码D35,流水线第一级MDAC的输出码D11需要加上流水线第二级MDAC的输出码D24,流水线第一级MDAC的输出码D12需要减去流水线第二级MDAC的输出码D25。另外需要减去加入采样保持电路输出信号的随机信号控制信号dith1_n、dith2_n、dith3_n、dith4_n、dith5_n、dith6_n,最后得到实际输入值的16位二进制编码。当输入高于最大的正输入值时,输入信号溢出量化范围指示信号OF为1,其它16位输出全为1,当输入低于最小的负输入值时,输入信号溢出量化范围指示信号OF同样为1,其它16为输出全为0。输入信号位于正常的量化范围时,输入信号溢出量化范围指示信号OF为0。Referring to Figure 8, it can be seen from the figure that the digital correction circuit directly outputs the output codes D52 and D51 of the fifth-stage flash ADC of the pipeline, and the output code D53 of the fifth-stage flash ADC of the pipeline will be the same as the output of the fourth-stage MDAC of the pipeline The code D41 is added, and the output code D42 of the fourth stage of the pipeline will be subtracted from the output code D54 of the flash ADC of the fifth stage of the pipeline. The principle of this is that when the threshold value of a comparator in the fourth-stage MDAC of the pipeline deviates from the theoretical value, and everything else is normal, if the threshold value is too large, when the input value is between the theoretical threshold value and the actual threshold value, the first stage of the pipeline The output signal of the four-stage MDAC will be higher than 1/8 Vref, and its output code is 1 smaller than the theoretical threshold value. The output codes D52 and D51 of the fifth-stage flash ADC of the pipeline are the same as the theoretical threshold, while the fifth-stage flash ADC of the pipeline The output code D53 of the ADC is 1, which needs to be added to the output code D41 of the fourth-stage MDAC in the pipeline, so that the final encoding result with a larger threshold is the same as the theoretical threshold encoding result. If the threshold is too small, when the input value is between the theoretical threshold and the actual threshold, the output signal of the fourth-stage MDAC in the pipeline will be lower than -1/8·Vref, and its output code is 1 larger than the theoretical threshold, and the fifth in the pipeline The output codes D52 and D51 of the first-stage flash ADC are the same as the theoretical threshold, while the output code D53 of the fifth-stage flash ADC of the pipeline is 1, which needs to be added to the output code D41 of the fourth-stage MDAC of the pipeline, and the fifth-stage flash ADC of the pipeline The output code D54 of the ADC is 1, which needs to be subtracted from the output code D42 of the fourth-stage MDAC of the pipeline. In fact, the output code D41 of the fourth-stage MDAC of the pipeline is subtracted by 1, so that the encoding result with a smaller final threshold and the theoretical threshold The result of encoding is the same. Similarly, the output code D31 of the third-stage MDAC of the pipeline needs to be added with the output code D44 of the fourth-stage MDAC of the pipeline, and the output code D32 of the third-stage MDAC of the pipeline needs to be subtracted from the output code D45 of the fourth-stage MDAC of the pipeline; The output code D21 of the first-stage MDAC needs to be added with the output code D34 of the third-stage MDAC of the pipeline, the output code D22 of the second-stage MDAC of the pipeline needs to be subtracted from the output code D35 of the third-stage MDAC of the pipeline, and the output code D11 of the first-stage MDAC of the pipeline The output code D24 of the second-stage MDAC of the pipeline needs to be added, and the output code D12 of the first-stage MDAC of the pipeline needs to be subtracted from the output code D25 of the second-stage MDAC of the pipeline. In addition, it is necessary to subtract the random signal control signals dith1_n, dith2_n, dith3_n, dith4_n, dith5_n, dith6_n added to the output signal of the sample and hold circuit, and finally obtain the 16-bit binary code of the actual input value. When the input is higher than the maximum positive input value, the input signal overflow quantization range indication signal OF is 1, and the other 16-bit outputs are all 1. When the input is lower than the minimum negative input value, the input signal overflow quantization range indication signal OF is the same is 1, and the other 16 are all 0 for output. When the input signal is in the normal quantization range, the input signal overflows the quantization range indicating signal OF is 0.
由上述结构可知,在正常工作时,当时钟信号为低电平时,采样保持电路对输入信号进行采样;在时钟为高电平时,流水线第一级MDAC对采样保持电路的输出进行采样,并且流水线第一级MDAC中的比较器也同时采样这个值。当时钟再为低电平时,流水线第一级MDAC的输出可控比较器产生的输出值将控制子DAC的输出,并将量化剩余差值放大8倍输出,流水线第二级MDAC采样这个输出值,同时实现对本级输出可控比较器的输出值的编码。同样,流水线第二级MDAC在时钟为高电平时,输出可控比较器产生的输出值将控制子DAC的输出,并将量化剩余差值放大8倍输出,流水线第三级MDAC采样这个输出值,同时完成对本级输出可控比较器的输出值的编码。流水线第三级MDAC和流水线第五级快闪ADC与流水线第一级的时序相同。流水线第四级MDAC与流水线第二级MDAC的时序相同。It can be seen from the above structure that during normal operation, when the clock signal is at low level, the sample-and-hold circuit samples the input signal; when the clock is at high level, the first-stage MDAC of the pipeline samples the output of the sample-and-hold circuit, and the pipeline The comparator in the first stage MDAC also samples this value at the same time. When the clock is low again, the output value generated by the output controllable comparator of the first-stage MDAC of the pipeline will control the output of the sub-DAC, and amplify the quantized residual difference by 8 times for output, and the second-stage MDAC of the pipeline will sample this output value , and at the same time realize the encoding of the output value of the output controllable comparator of the current stage. Similarly, when the clock of the second-stage MDAC of the pipeline is at a high level, the output value generated by the output controllable comparator will control the output of the sub-DAC, and amplify the quantized residual difference by 8 times for output, and the third-stage MDAC of the pipeline samples this output value , and at the same time complete the coding of the output value of the output controllable comparator of the current stage. The timing of the third-stage MDAC and the fifth-stage flash ADC of the pipeline is the same as that of the first-stage pipeline. The timing of the fourth-stage MDAC of the pipeline is the same as that of the second-stage MDAC of the pipeline.
参见图9,由图中可知,该正校准误差存储电路包括:CMOS传输门T70、CMOS传输门T71、反向器I1、反向器I2、反向器I3、反向器I4、与非门Nand1、同或门Sor1、电流调节电路Ic1、电阻R1、电阻R2、NMOS晶体管M155、NMOS晶体管M156。在校准时,首先,时钟信号clk6_p为低电平,clk6_n为高电平,与非门Nand1的输出始终为1,当校准误差正负控制信号Vcdac_updown_1为高时,同或门输出为1,这时NMOS晶体管M156导通,校准误差存储电路的输出端为晶体管M156漏极的电压。之后时钟信号clk6_p为高电平,时钟信号clk6_n为低电平,输入信号Vin_cn为低时,也就是相应的比较器的负输出为0,这时与非门Nand1的输出为0,同或门Sor1的输出为0,这时NMOS晶体管M155导通,校准误差存储电路的输出端为晶体管M155漏极的电压。如果该校准误差存储电路与相应的MDAC中的运算放大器的正输入端相关,也就是正校准误差存储电路,那么将在相应的MDAC的输出信号中将减去一个误差值。这个误差信号的大小将由1倍基准电流调整信号Vcdac_c1_1、2倍基准电流调整信号Vcdac_c1_2、4倍基准电流调整信号Vcdac_c1_3、8倍基准电流调整信号Vcdac_c1_4来决定。当校准误差正负控制信号Vcdac_updown_1为低时,那么将在相应的MDAC的输出信号中将增加一个误差值。如果输入信号Vin_cn为高时,校准误差存储电路的输出在时钟信号clk6_p由低电平向高电平改变中不发生变化,所以校准误差存储电路不对相应的MDAC的输出信号产生影响。为了使得校准误差正负控制信号Vcdac_updown_1为高时总是指示在相应的MDAC的输出信号中将减去一个误差值。当校准误差存储电路与相应的MDAC中的运算放大器的负输入端相关,也就是负校准误差存储电路,校准误差存储电路中的NMOS晶体管M155和NMOS晶体管M156的栅信号要互换下。Referring to FIG. 9, it can be seen from the figure that the positive calibration error storage circuit includes: CMOS transmission gate T70, CMOS transmission gate T71, inverter I1, inverter I2, inverter I3, inverter I4, and a NAND gate Nand1, NOR gate Sor1, current regulation circuit Ic1, resistor R1, resistor R2, NMOS transistor M155, NMOS transistor M156. When calibrating, first, the clock signal clk6_p is low level, clk6_n is high level, the output of the NAND gate Nand1 is always 1, when the positive and negative control signal Vcdac_updown_1 of the calibration error is high, the output of the NOR gate is 1, which means At this time, the NMOS transistor M156 is turned on, and the output terminal of the calibration error storage circuit is the voltage of the drain of the transistor M156. After that, the clock signal clk6_p is high level, the clock signal clk6_n is low level, and when the input signal Vin_cn is low, that is, the negative output of the corresponding comparator is 0. At this time, the output of the NAND gate Nand1 is 0, and the NOR gate The output of Sor1 is 0, at this time the NMOS transistor M155 is turned on, and the output terminal of the calibration error storage circuit is the voltage of the drain of the transistor M155. If the calibration error storage circuit is associated with the positive input of the operational amplifier in the corresponding MDAC, ie positive calibration error storage circuit, then an error value will be subtracted from the output signal of the corresponding MDAC. The magnitude of this error signal will be determined by the 1-fold reference current adjustment signal Vcdac_c1_1, the 2-fold reference current adjustment signal Vcdac_c1_2, the 4-fold reference current adjustment signal Vcdac_c1_3, and the 8-fold reference current adjustment signal Vcdac_c1_4. When the calibration error positive and negative control signal Vcdac_updown_1 is low, an error value will be added to the output signal of the corresponding MDAC. If the input signal Vin_cn is high, the output of the calibration error storage circuit does not change when the clock signal clk6_p changes from low level to high level, so the calibration error storage circuit does not affect the corresponding output signal of MDAC. In order to make the calibration error positive and negative control signal Vcdac_updown_1 high always indicates that an error value will be subtracted in the output signal of the corresponding MDAC. When the calibration error storage circuit is related to the negative input terminal of the operational amplifier in the corresponding MDAC, that is, the negative calibration error storage circuit, the gate signals of the NMOS transistor M155 and the NMOS transistor M156 in the calibration error storage circuit are interchanged.
在正常工作时,校准误差存储电路中的调整信号,校准误差正负控制信号Vcdac_updown_1、1倍基准电流调整信号Vcdac_c1_1、2倍基准电流调整信号Vcdac_c1_2、4倍基准电流调整信号Vcdac_c1_3、8倍基准电流调整信号Vcdac_c1_4,将按着校准时的值载入电路中。从而实现因电容的失配所引起的误差的校准。In normal operation, the adjustment signal in the calibration error storage circuit, the calibration error positive and negative control signal Vcdac_updown_1, 1 times the reference current adjustment signal Vcdac_c1_1, 2 times the reference current adjustment signal Vcdac_c1_2, 4 times the reference current adjustment signal Vcdac_c1_3, 8 times the reference current The adjustment signal Vcdac_c1_4 will be loaded into the circuit according to the value during calibration. In this way, the calibration of errors caused by capacitance mismatch is realized.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310070652.8A CN104038220B (en) | 2013-03-06 | 2013-03-06 | A kind of 16 flow-line modulus converters |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310070652.8A CN104038220B (en) | 2013-03-06 | 2013-03-06 | A kind of 16 flow-line modulus converters |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104038220A true CN104038220A (en) | 2014-09-10 |
| CN104038220B CN104038220B (en) | 2017-12-22 |
Family
ID=51468834
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310070652.8A Active CN104038220B (en) | 2013-03-06 | 2013-03-06 | A kind of 16 flow-line modulus converters |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104038220B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104363019A (en) * | 2014-09-18 | 2015-02-18 | 电子科技大学 | Pipeline analog-to-digital converter and capacitance mismatch error calibration method thereof |
| CN104702282A (en) * | 2015-04-03 | 2015-06-10 | 中国电子科技集团公司第十四研究所 | Digital calibration method and circuit for multi-stage multi-bit sub circuit in analog-digital converters |
| CN104796146A (en) * | 2015-04-27 | 2015-07-22 | 西安电子科技大学 | Memory effect eliminable low-power analog-digital converter |
| CN106921392A (en) * | 2017-03-29 | 2017-07-04 | 中国电子科技集团公司第二十四研究所 | Compare the production line analog-digital converter with charge redistribution in advance with input signal |
| CN107147393A (en) * | 2017-05-09 | 2017-09-08 | 中国电子科技集团公司第二十四研究所 | ADC Self-calibration Circuit Based on Successive Approximation Algorithm |
| CN110504966A (en) * | 2019-08-19 | 2019-11-26 | 苏州迅芯微电子有限公司 | A kind of calibration system and method for analog-digital converter |
| CN111490784A (en) * | 2020-04-23 | 2020-08-04 | 全球能源互联网研究院有限公司 | A kind of analog-to-digital converter and analog-to-digital conversion method |
| CN116015293A (en) * | 2023-02-01 | 2023-04-25 | 昆腾微电子股份有限公司 | Method and device for calibrating switched capacitors in a pipelined ADC |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101222230A (en) * | 2008-01-24 | 2008-07-16 | 上海萌芯电子科技有限公司 | Assembly line type D/A convertor capable of calibrating capacitance mismatch and finite gain error |
| US7595748B2 (en) * | 2007-07-23 | 2009-09-29 | Mediatek Inc. | Method of gain error calibration in a pipelined analog-to-digital converter or a cyclic analog-to-digital converter |
| CN101777917A (en) * | 2010-01-14 | 2010-07-14 | 上海迦美信芯通讯技术有限公司 | Pipeline analog-to-digital converter and quick calibration method of capacitance mismatch thereof |
| CN102386921A (en) * | 2011-11-15 | 2012-03-21 | 北京时代民芯科技有限公司 | Mismatch calibration method for streamline ADC (Analog-to-Digital Converter) multi-bit sub DAC (Digital-to0Analog Converter) capacitor |
-
2013
- 2013-03-06 CN CN201310070652.8A patent/CN104038220B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7595748B2 (en) * | 2007-07-23 | 2009-09-29 | Mediatek Inc. | Method of gain error calibration in a pipelined analog-to-digital converter or a cyclic analog-to-digital converter |
| CN101222230A (en) * | 2008-01-24 | 2008-07-16 | 上海萌芯电子科技有限公司 | Assembly line type D/A convertor capable of calibrating capacitance mismatch and finite gain error |
| CN101777917A (en) * | 2010-01-14 | 2010-07-14 | 上海迦美信芯通讯技术有限公司 | Pipeline analog-to-digital converter and quick calibration method of capacitance mismatch thereof |
| CN102386921A (en) * | 2011-11-15 | 2012-03-21 | 北京时代民芯科技有限公司 | Mismatch calibration method for streamline ADC (Analog-to-Digital Converter) multi-bit sub DAC (Digital-to0Analog Converter) capacitor |
Non-Patent Citations (2)
| Title |
|---|
| YINGPING SU ET AL.: ""A novel 2.5bit SHA-less MDAC design for 10bit 100Ms pipeline ADC"", 《COMPUTATIONAL PROBLEM-SOLVING(ICCP),2011 INTERNATIONAL CONFERENCE ON》 * |
| 王怡心: ""16位100MSPS流水线A/D转换器系统结构设计"", 《万方数据》 * |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104363019B (en) * | 2014-09-18 | 2017-11-21 | 电子科技大学 | A kind of production line analog-digital converter and its capacitor mismatch error calibration method |
| CN104363019A (en) * | 2014-09-18 | 2015-02-18 | 电子科技大学 | Pipeline analog-to-digital converter and capacitance mismatch error calibration method thereof |
| CN104702282A (en) * | 2015-04-03 | 2015-06-10 | 中国电子科技集团公司第十四研究所 | Digital calibration method and circuit for multi-stage multi-bit sub circuit in analog-digital converters |
| CN104702282B (en) * | 2015-04-03 | 2017-10-24 | 中国电子科技集团公司第十四研究所 | The digital calibrating method and circuit of multistage many bit sub-circuits in analog-digital converter |
| CN104796146A (en) * | 2015-04-27 | 2015-07-22 | 西安电子科技大学 | Memory effect eliminable low-power analog-digital converter |
| CN104796146B (en) * | 2015-04-27 | 2018-06-26 | 西安电子科技大学 | A kind of memory effect eliminates low-power consumption analog-digital converter |
| US10979066B1 (en) | 2017-03-29 | 2021-04-13 | No. 24 Research Institute of China Electronics Technology Group Corporation | Pipelined analog-to-digital converter having input signal pre-comparison and charge redistribution |
| WO2018176739A1 (en) * | 2017-03-29 | 2018-10-04 | 中国电子科技集团公司第二十四研究所 | Pipelined analog-to-digital converter having input signal pre-comparison and charge redistribution |
| CN106921392A (en) * | 2017-03-29 | 2017-07-04 | 中国电子科技集团公司第二十四研究所 | Compare the production line analog-digital converter with charge redistribution in advance with input signal |
| CN107147393A (en) * | 2017-05-09 | 2017-09-08 | 中国电子科技集团公司第二十四研究所 | ADC Self-calibration Circuit Based on Successive Approximation Algorithm |
| CN107147393B (en) * | 2017-05-09 | 2019-06-25 | 中国电子科技集团公司第二十四研究所 | ADC self-correcting positive circuit based on successive approximation algorithm |
| CN110504966A (en) * | 2019-08-19 | 2019-11-26 | 苏州迅芯微电子有限公司 | A kind of calibration system and method for analog-digital converter |
| CN110504966B (en) * | 2019-08-19 | 2022-12-09 | 苏州迅芯微电子有限公司 | Calibration system and method of analog-to-digital converter |
| CN111490784A (en) * | 2020-04-23 | 2020-08-04 | 全球能源互联网研究院有限公司 | A kind of analog-to-digital converter and analog-to-digital conversion method |
| CN111490784B (en) * | 2020-04-23 | 2023-05-02 | 全球能源互联网研究院有限公司 | Analog-to-digital converter and analog-to-digital conversion method |
| CN116015293A (en) * | 2023-02-01 | 2023-04-25 | 昆腾微电子股份有限公司 | Method and device for calibrating switched capacitors in a pipelined ADC |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104038220B (en) | 2017-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104038220B (en) | A kind of 16 flow-line modulus converters | |
| US7612700B2 (en) | Pipeline type A/D converter apparatus provided with precharge circuit for precharging sampling capacitor | |
| Verbruggen et al. | A 2.6 mW 6 bit 2.2 GS/s fully dynamic pipeline ADC in 40 nm digital CMOS | |
| CN101977058B (en) | Sequential approximation analog to digital converter with digital correction and processing method thereof | |
| WO2017091928A1 (en) | High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier | |
| TWI467924B (en) | Successive approximation register analog to digital converter and conversion method thereof | |
| CN106817131B (en) | High-speed assembly line-successive approximation type ADC based on dynamic ringing operational amplifier | |
| CN107359878B (en) | A Front-End Calibration Method for Pipeline ADC Based on Minimum Quantization Error | |
| Zhang et al. | A high area-efficiency 14-bit SAR ADC with hybrid capacitor DAC for array sensors | |
| CN105322966B (en) | Improve the capacitors exchange and averaging method of the gradually-appoximant analog-digital converter linearity | |
| CN107453756B (en) | Front-end calibration method for pipeline ADC | |
| US20220224350A1 (en) | Multi-bit resolution sub-pipeline structure for measuring jump magnitude of transmission curve | |
| Chan et al. | The Race for the Extra Pico Second without Losing the Decibel: A Partial-Review of Single-Channel Energy-Efficient High-Speed Nyquist ADCs | |
| CN105245231B (en) | A kind of front stage exchange method of pipeline-type gradually-appoximant analog-digital converter | |
| Yu et al. | A 12-bit 250-MS/s charge-domain pipelined analog-to-digital converter with feed-forward common-mode charge control | |
| Mulder et al. | A 21mW 8b 125MS/s ADC occupying 0.09 mm/sup 2/in 0.13/spl mu/m CMOS | |
| Murshed et al. | A 10-bit high speed pipelined ADC | |
| Pelgrom | Nyquist analog-to-digital conversion | |
| CN112398475A (en) | Cyclic ADC structure with CDS function | |
| Megha et al. | Design and VLSI implementation of SAR Analog to Digital Converter Using Analog Mixed Signal | |
| TWI777464B (en) | Signal converting apparatus and signal converting method | |
| CN115733496A (en) | Input sectional type assembly line successive approximation type analog-to-digital converter | |
| EP2629427A1 (en) | Device, system and method for analogue-to-digital conversion using a current integrating circuit | |
| CN114614822A (en) | Interstage gain nonlinear calibration method of pipeline-SAR ADC | |
| CN106506005A (en) | Background Calibration Circuit and Method for Eliminating Breakpoints in Transmission Curve of Pipeline Analog-to-Digital Converter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |