[go: up one dir, main page]

CN104090372B - Waveguide type integration imaging three-dimensional display system based on diffraction optical element - Google Patents

Waveguide type integration imaging three-dimensional display system based on diffraction optical element Download PDF

Info

Publication number
CN104090372B
CN104090372B CN201410330611.2A CN201410330611A CN104090372B CN 104090372 B CN104090372 B CN 104090372B CN 201410330611 A CN201410330611 A CN 201410330611A CN 104090372 B CN104090372 B CN 104090372B
Authority
CN
China
Prior art keywords
waveguide
optical element
diffractive optical
holographic
holographic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410330611.2A
Other languages
Chinese (zh)
Other versions
CN104090372A (en
Inventor
刘娟
韩剑
王涌天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201410330611.2A priority Critical patent/CN104090372B/en
Publication of CN104090372A publication Critical patent/CN104090372A/en
Application granted granted Critical
Publication of CN104090372B publication Critical patent/CN104090372B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明涉及一种基于衍射光学元件的波导式集成成像三维显示系统,将微显示器(1)放置于波导(3)输入端表面的全息微透镜阵列的焦距处,二维基元图像经过全息微透镜阵列后成像,得到包含深度与视差信息的图像,所得图像被波导(3)输入端表面的全息透镜耦合进入透明的波导(3)中,经过全反射传播后,又被设于波导(3)输出端表面的全息透镜耦合输出,为人眼所观察。本发明通过引入衍射光学元件克服技术背景中所述的体积大、重量大、结构复杂等缺点,实现一体化的单目立体三维显示;同时引入波导(3)这一光学元件,实现离轴、高透过率、大系统光瞳的视透型单目立体三维显示。可广泛应用于集成成像三维显示系统当中。

The invention relates to a waveguide integrated imaging three-dimensional display system based on a diffractive optical element. A microdisplay (1) is placed at the focal length of a holographic microlens array on the input end surface of a waveguide (3), and a two-dimensional primitive image passes through the holographic microlens. After imaging in the array, an image containing depth and parallax information is obtained. The obtained image is coupled into the transparent waveguide (3) by the holographic lens on the surface of the input end of the waveguide (3). The holographic lens on the surface of the output end couples the output, which is observed by human eyes. The present invention overcomes the shortcomings of large volume, heavy weight, and complex structure described in the technical background by introducing a diffractive optical element, and realizes an integrated monocular three-dimensional display; at the same time, the optical element waveguide (3) is introduced to realize off-axis, See-through monocular stereoscopic 3D display with high transmittance and large system pupil. The invention can be widely used in integrated imaging three-dimensional display systems.

Description

基于衍射光学元件的波导式集成成像三维显示系统Waveguide Integrated Imaging 3D Display System Based on Diffractive Optical Elements

技术领域technical field

本发明涉及集成成像三维显示领域,尤其涉及一种基于衍射光学元件的波导式集成成像三维显示系统。The invention relates to the field of integrated imaging three-dimensional display, in particular to a waveguide integrated imaging three-dimensional display system based on diffractive optical elements.

背景技术Background technique

集成成像系统是利用微透镜阵列来记录和再现物空间三维信息的一种真三维显示系统,可实现单目立体成像显示。但是现有集成成像系统存在体积大、重量大、结构复杂,很难实现一体化的缺点;同时,现有集成成像系统不能同时实现高透过率、大系统光瞳的视透型三维显示。The integrated imaging system is a true three-dimensional display system that uses a microlens array to record and reproduce three-dimensional information in object space, and can realize monocular stereoscopic imaging display. However, the existing integrated imaging system has the disadvantages of large volume, heavy weight, and complex structure, and it is difficult to realize integration; at the same time, the existing integrated imaging system cannot simultaneously realize see-through 3D display with high transmittance and large system pupil.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

本发明要解决的技术问题就是如何提供一种高透过率、大系统光瞳的视透型集成成像三维显示系统,同时避免传统系统存在的体积大、重量大、结构复杂,很难实现一体化的缺点。The technical problem to be solved by the present invention is how to provide a see-through integrated imaging three-dimensional display system with high transmittance and large system pupils, while avoiding the large volume, heavy weight, and complex structure of the traditional system, which is difficult to achieve integrated disadvantages of .

(二)技术方案(2) Technical solutions

为了解决上述技术问题,本发明提供了一种基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,包括微显示器,输入端衍射光学元件、波导、输出端衍射光学元件;In order to solve the above technical problems, the present invention provides a waveguide integrated imaging three-dimensional display system based on a diffractive optical element, which is characterized in that it includes a microdisplay, an input diffractive optical element, a waveguide, and an output diffractive optical element;

所述微显示器用于加载二维基元图像,所述二维基元图像通过输入端衍射光学元件进入波导中;在波导中经过全反射传播后,进入输出端衍射光学元件耦合输出后进入人眼,观察者可用单眼观察到三维立体图像;The microdisplay is used to load a two-dimensional primitive image, and the two-dimensional primitive image enters the waveguide through the diffractive optical element at the input end; after being propagated through total reflection in the waveguide, it enters the human eye after being coupled and output by the diffractive optical element at the output end, The observer can observe the three-dimensional stereoscopic image with one eye;

其中,所述输入端衍射光学元件包括全息微透镜阵列与全息透镜;所述全息微透镜阵列起到产生视差图像的作用,所述全息透镜产生光焦度并校正除色差外的其他像差,起到耦合图像的作用以及提供目视成像功能;Wherein, the diffractive optical element at the input end includes a holographic microlens array and a holographic lens; the holographic microlens array plays a role in generating a parallax image, and the holographic lens generates optical power and corrects other aberrations except chromatic aberration, Play the role of coupling image and provide visual imaging function;

所述输出端衍射光学元件包括全息透镜;The diffractive optical element at the output end includes a holographic lens;

所述微显示器放置于波导输入端表面的全息微透镜阵列的焦距处;The microdisplay is placed at the focal length of the holographic microlens array on the surface of the input end of the waveguide;

所述输入端衍射光学元件位于波导的输入端表面;The input diffractive optical element is located on the input surface of the waveguide;

所述输出端衍射光学元件位于波导的输出端的表面。The output diffractive optical element is located on the surface of the output end of the waveguide.

优选地,所述输入端衍射光学元件中的全息微透镜阵列为反射型全息微透镜阵列或透射型全息微透镜阵列,全息透镜为反射型全息透镜或透射型全息透镜;Preferably, the holographic microlens array in the diffractive optical element at the input end is a reflective holographic microlens array or a transmissive holographic microlens array, and the holographic lens is a reflective holographic lens or a transmissive holographic lens;

所述输出端衍射光学元件为反射型全息透镜或透射型全息透镜。The diffractive optical element at the output end is a reflective holographic lens or a transmissive holographic lens.

优选地,所述输入端衍射光学元件中,全息微透镜阵列和全息透镜分别设于波导的输入端的上表面或下表面;Preferably, in the diffractive optical element at the input end, the holographic microlens array and the holographic lens are respectively arranged on the upper surface or the lower surface of the input end of the waveguide;

所述输出端衍射光学元件中,全息透镜位于波导的输出端的上表面或下表面;In the diffractive optical element at the output end, the holographic lens is located on the upper or lower surface of the output end of the waveguide;

二维基元图像经过微透镜阵列生成包含深度与视差信息的图像后,被全息透镜耦合后进入波导;在波导中经过全反射传播后,进入全息透镜耦合输出后进入人眼。After the two-dimensional primitive image generates an image containing depth and parallax information through the microlens array, it is coupled by the holographic lens and then enters the waveguide; after being propagated through total reflection in the waveguide, it enters the holographic lens and is coupled and output to enter the human eye.

优选地,所述输入端衍射光学元件中,全息微透镜阵列和全息透镜组合在一起,位于波导的输入端的上表面或下表面;Preferably, in the diffractive optical element at the input end, the holographic microlens array and the holographic lens are combined together and located on the upper or lower surface of the input end of the waveguide;

所述输出端衍射光学元件中,全息透镜位于波导的输出端的上表面或下表面;In the diffractive optical element at the output end, the holographic lens is located on the upper or lower surface of the output end of the waveguide;

二维基元图像经过微透镜阵列生成包含深度与视差信息的图像后,被全息透镜耦合后进入波导;在波导中经过全反射传播后,进入全息透镜耦合输出后进入人眼。After the two-dimensional primitive image generates an image containing depth and parallax information through the microlens array, it is coupled by the holographic lens and then enters the waveguide; after being propagated through total reflection in the waveguide, it enters the holographic lens and is coupled and output to enter the human eye.

优选地,所述波导为平板波导。Preferably, the waveguide is a slab waveguide.

优选地,所述波导厚度为1mm-10mm,材料为透明的光学玻璃或光学塑料。Preferably, the thickness of the waveguide is 1mm-10mm, and the material is transparent optical glass or optical plastic.

优选地,所述输入端衍射光学元件、输出端衍射光学元件的厚度为1μm-100μm,材料为卤化银、重铬酸盐明胶、光致聚合物、光致抗蚀剂、光导热塑或光折变晶体,光透过率大于50%。Preferably, the diffractive optical element at the input end and the diffractive optical element at the output end have a thickness of 1 μm-100 μm, and the material is silver halide, dichromated gelatin, photopolymer, photoresist, photoconductive thermoplastic or optical Refractive crystal, light transmittance greater than 50%.

本发明的基于衍射光学元件的波导式集成成像三维显示系统的光瞳直径大于8mm。The pupil diameter of the waveguide integrated imaging three-dimensional display system based on the diffractive optical element of the present invention is larger than 8mm.

(三)有益效果(3) Beneficial effects

本发明的基于衍射光学元件的波导式集成成像三维显示系统,通过引入衍射光学元件克服技术背景中所述的体积大、重量大、结构复杂等缺点,实现一体化的单目立体三维显示;同时引入波导这一光学元件,实现离轴、高透过率、大系统光瞳的视透型单目立体三维显示。The waveguide integrated imaging three-dimensional display system based on diffractive optical elements of the present invention overcomes the shortcomings of large volume, heavy weight, and complex structure described in the technical background by introducing diffractive optical elements, and realizes integrated monocular three-dimensional three-dimensional display; at the same time The waveguide, an optical component, is introduced to realize a see-through monocular stereoscopic three-dimensional display with off-axis, high transmittance, and large system pupil.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1:本发明提供的一种基于衍射光学元件的波导式集成成像三维显示系统的结构原理示意图:Figure 1: Schematic diagram of the structure and principle of a waveguide integrated imaging 3D display system based on diffractive optical elements provided by the present invention:

图2:实施例1提供的方案对应的结构示意图;Fig. 2: the structural representation corresponding to the scheme that embodiment 1 provides;

图3:实施例2提供的方案对应的结构示意图;Fig. 3: the structural representation corresponding to the scheme that embodiment 2 provides;

图4:实施例3提供的方案对应的结构示意图;Fig. 4: the structural representation corresponding to the scheme that embodiment 3 provides;

图5:实施例4提供的方案对应的结构示意图;Fig. 5: the structural representation corresponding to the scheme that embodiment 4 provides;

图6:实施例5提供的方案对应的结构示意图;Fig. 6: the structural representation corresponding to the scheme that embodiment 5 provides;

图7:实施例6提供的方案对应的结构示意图。Figure 7: Schematic diagram of the structure corresponding to the scheme provided by Example 6.

附图标记:1、微显示器;2、输入端衍射光学元件;3、波导;4、输出端衍射光学元件;5、系统光瞳。Reference signs: 1. microdisplay; 2. input diffractive optical element; 3. waveguide; 4. output diffractive optical element; 5. system pupil.

具体实施方式detailed description

下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。Embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings and examples. The following examples are used to illustrate the present invention, but should not be used to limit the scope of the present invention.

如图1所示,本发明提供一种基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,包括微显示器1,输入端衍射光学元件2、平板波导、输出端衍射光学元件4;As shown in Figure 1, the present invention provides a waveguide integrated imaging three-dimensional display system based on diffractive optical elements, which is characterized in that it includes a microdisplay 1, an input end diffractive optical element 2, a flat plate waveguide, and an output end diffractive optical element 4;

其中,所述输入端衍射光学元件2包括全息微透镜阵列与全息透镜;所述全息微透镜阵列起到产生视差图像的作用,所述全息透镜产生光焦度并校正除色差外的其他像差,起到耦合图像的作用以及提供目视成像功能;Wherein, the input-end diffractive optical element 2 includes a holographic microlens array and a holographic lens; the holographic microlens array plays a role in generating parallax images, and the holographic lens produces optical power and corrects other aberrations except chromatic aberration , play the role of coupling image and provide visual imaging function;

所述输出端衍射光学元件4包括全息透镜;The output diffractive optical element 4 includes a holographic lens;

所述微显示器1放置于平板波导输入端表面的全息微透镜阵列的焦距处。The microdisplay 1 is placed at the focal length of the holographic microlens array on the surface of the input end of the flat waveguide.

所述平板波导厚度为1mm-10mm,材料为透明的光学玻璃或光学塑料。The thickness of the slab waveguide is 1mm-10mm, and the material is transparent optical glass or optical plastic.

所述输入端衍射光学元件2、输出端衍射光学元件4的厚度为1μm-100μm,材料为卤化银、重铬酸盐明胶、光致聚合物、光致抗蚀剂、光导热塑或光折变晶体,光透过率大于50%。The thickness of the input diffractive optical element 2 and the output diffractive optical element 4 is 1 μm-100 μm, and the material is silver halide, dichromated gelatin, photopolymer, photoresist, photoconductive thermoplastic or photorefractive Change crystal, the light transmittance is greater than 50%.

实施1中,如图2所示,所述微显示器1用于加载二维基元图像,所述二维基元图像经过设于平板波导输入端下表面的透射型全息微透镜阵列后成像,得到的包含深度与视差信息的图像,被设于平板波导输入端上表面的反射型全息透镜耦合进入透明的平板波导中;经过全反射传播后,又被设于平板波导输出端上表面的反射型全息透镜耦合输出,为人眼所观察。In implementation 1, as shown in FIG. 2, the microdisplay 1 is used to load a two-dimensional primitive image, and the two-dimensional primitive image is imaged after passing through a transmission-type holographic microlens array arranged on the lower surface of the input end of the slab waveguide, and the obtained The image containing depth and parallax information is coupled into the transparent slab waveguide by the reflective holographic lens set on the upper surface of the input end of the slab waveguide; The lens couples the output and is observed by the human eye.

实施2中,如图3所示,所述微显示器1用于加载二维基元图像,所述二维基元图像经过设于平板波导输入端下表面的透射型全息微透镜阵列后成像,得到的包含深度与视差信息的图像,被设于平板波导输入端上表面的反射型全息透镜耦合进入透明的平板波导中;经过全反射传播后,又被设于平板波导输出端下表面的透射型全息透镜耦合输出,为人眼所观察。In implementation 2, as shown in FIG. 3, the microdisplay 1 is used to load a two-dimensional primitive image, and the two-dimensional primitive image is imaged after passing through a transmission-type holographic microlens array arranged on the lower surface of the input end of the slab waveguide, and the obtained The image containing depth and parallax information is coupled into the transparent slab waveguide by a reflective holographic lens located on the upper surface of the input end of the slab waveguide; The lens couples the output and is observed by the human eye.

实施例3中,如图4所示,所述输入端衍射光学元件2为透射型全息微透镜阵列与透射型全息透镜组合,位于平板波导输入端的下表面,所述输出端衍射光学元件4为反射型全息透镜,位于平板波导输出端的上表面。所述透射型全息微透镜阵列与透射型全息透镜组合兼具上述全息微透镜阵列和全息透镜的功能。In Embodiment 3, as shown in FIG. 4, the input diffractive optical element 2 is a combination of a transmission type holographic microlens array and a transmission type holographic lens, and is located on the lower surface of the input end of the slab waveguide, and the output end diffractive optical element 4 is The reflective holographic lens is located on the upper surface of the output end of the slab waveguide. The combination of the transmissive holographic microlens array and the transmissive holographic lens has the functions of the holographic microlens array and the holographic lens.

实施例4中,如图5所示,所述输入端衍射光学元件2为透射型全息微透镜阵列与透射型全息透镜组合,位于平板波导输入端的下表面,所述输出端衍射光学元件4为透射型全息透镜,位于平板波导输出端的下表面。所述透射型全息微透镜阵列与透射型全息透镜组合兼具上述全息微透镜阵列和全息透镜的功能。In Embodiment 4, as shown in FIG. 5 , the input diffractive optical element 2 is a combination of a transmission holographic microlens array and a transmission holographic lens, and is located on the lower surface of the input end of the slab waveguide, and the output diffractive optical element 4 is The transmission holographic lens is located on the lower surface of the output end of the slab waveguide. The combination of the transmissive holographic microlens array and the transmissive holographic lens has the functions of the holographic microlens array and the holographic lens.

实施例5中,如图6所示,所述输入端衍射光学元件2为反射型全息微透镜阵列与反射型全息透镜组合,位于平板波导输入端的上表面,所述输出端衍射光学元件4为反射型全息透镜,位于平板波导输出端的上表面。所述反射型全息微透镜阵列与反射型全息透镜组合兼具上述全息微透镜阵列和全息透镜的功能。In Embodiment 5, as shown in FIG. 6, the diffractive optical element 2 at the input end is a combination of a reflective holographic microlens array and a reflective holographic lens, and is located on the upper surface of the input end of the slab waveguide, and the diffractive optical element 4 at the output end is The reflective holographic lens is located on the upper surface of the output end of the slab waveguide. The combination of the reflective holographic microlens array and the reflective holographic lens has the functions of the holographic microlens array and the holographic lens.

实施例6中,如图7所示,所述输入端衍射光学元件2为反射型全息微透镜阵列与反射型全息透镜组合,位于平板波导输入端的上表面,所述输出端衍射光学元件4为透射型全息透镜,位于平板波导输出端的下表面。所述反射型全息微透镜阵列与反射型全息透镜组合兼具上述全息微透镜阵列和全息透镜的功能。In Embodiment 6, as shown in FIG. 7, the input diffractive optical element 2 is a combination of reflective holographic microlens array and reflective holographic lens, located on the upper surface of the input end of the slab waveguide, and the output diffractive optical element 4 is The transmission holographic lens is located on the lower surface of the output end of the slab waveguide. The combination of the reflective holographic microlens array and the reflective holographic lens has the functions of the holographic microlens array and the holographic lens.

实施例3至实施例7中的工作原理同实施例1和实施例2中是一样的,因此不再一一赘述。The working principles in Embodiment 3 to Embodiment 7 are the same as those in Embodiment 1 and Embodiment 2, so they will not be repeated one by one.

上述实施例的基于衍射光学元件的波导式集成成像三维显示系统,具有高透过率,相对较大的系统光瞳5,以及单目立体三维显示的效果。The waveguide integrated imaging 3D display system based on diffractive optical elements in the above embodiments has high transmittance, relatively large system pupil 5, and the effect of monocular stereoscopic 3D display.

上述实施例中,全息透镜、全息微透镜阵列采用反射型还是透射型并非固定,而要结合人眼和微显示器1所在的方位对应于平板波导的位置来确定。In the above embodiments, whether the holographic lens or the holographic microlens array adopts the reflective type or the transmissive type is not fixed, but should be determined in conjunction with the location of the human eye and the orientation of the microdisplay 1 corresponding to the position of the flat waveguide.

以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that various combinations, modifications or equivalent replacements of the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all should cover Within the scope of the claims of the present invention.

Claims (4)

1.一种基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,包括微显示器(1),输入端衍射光学元件(2)、波导(3)、输出端衍射光学元件(4);1. A waveguide integrated imaging three-dimensional display system based on a diffractive optical element, characterized in that it comprises a microdisplay (1), an input end diffractive optical element (2), a waveguide (3), an output end diffractive optical element (4) ; 所述微显示器(1)用于加载二维基元图像,所述二维基元图像通过输入端衍射光学元件(2)进入波导(3)中;在波导(3)中经过全反射传播后,进入输出端衍射光学元件(4)耦合输出后进入人眼;The microdisplay (1) is used to load a two-dimensional primitive image, and the two-dimensional primitive image enters the waveguide (3) through the input diffractive optical element (2); The diffractive optical element (4) at the output end is coupled out and enters the human eye; 其中,所述输入端衍射光学元件(2)包括全息微透镜阵列与全息透镜;所述全息微透镜阵列起到产生视差图像的作用,所述全息透镜产生光焦度并校正除色差外的其他像差,起到耦合图像的作用以及提供目视成像功能;Wherein, the input-end diffractive optical element (2) includes a holographic microlens array and a holographic lens; the holographic microlens array plays a role in generating parallax images, and the holographic lens produces optical power and corrects other parameters except chromatic aberration. Aberration, which plays the role of coupling image and provides visual imaging function; 所述输出端衍射光学元件(4)包括全息透镜;The diffractive optical element (4) at the output end includes a holographic lens; 所述微显示器(1)放置于波导(3)输入端表面的全息微透镜阵列的焦距处;The microdisplay (1) is placed at the focal length of the holographic microlens array on the input end surface of the waveguide (3); 所述输入端衍射光学元件(2)位于波导(3)的输入端表面;The input end diffractive optical element (2) is located on the input end surface of the waveguide (3); 所述输出端衍射光学元件(4)位于波导(3)的输出端表面;所述输入端衍射光学元件(2)中,全息微透镜阵列和全息透镜组合在一起,位于波导(3)的输入端的上表面或下表面;The output end diffractive optical element (4) is located on the output end surface of the waveguide (3); in the input end diffractive optical element (2), the holographic microlens array and the holographic lens are combined together and located at the input end of the waveguide (3). the upper or lower surface of the end; 所述输出端衍射光学元件(4)中,全息透镜位于波导(3)的输出端的上表面或下表面;In the diffractive optical element (4) at the output end, the holographic lens is located on the upper or lower surface of the output end of the waveguide (3); 二维基元图像经过微透镜阵列生成包含深度与视差信息的图像后,被全息透镜耦合后进入波导(3);在波导(3)中经过全反射传播后,进入全息透镜耦合输出后进入人眼;After the two-dimensional primitive image generates an image containing depth and parallax information through the microlens array, it is coupled by the holographic lens and then enters the waveguide (3); after being propagated through total reflection in the waveguide (3), it enters the holographic lens to couple and then enters the human eye ; 所述输入端衍射光学元件(2)中的全息微透镜阵列为反射型全息微透镜阵列或透射型全息微透镜阵列,全息透镜为反射型全息透镜或透射型全息透镜;The holographic microlens array in the diffractive optical element (2) at the input end is a reflective holographic microlens array or a transmissive holographic microlens array, and the holographic lens is a reflective holographic lens or a transmissive holographic lens; 所述输出端衍射光学元件为反射型全息透镜或透射型全息透镜。The diffractive optical element at the output end is a reflective holographic lens or a transmissive holographic lens. 2.根据权利要求1所述的基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,所述波导(3)为平板波导。2 . The waveguide integrated imaging three-dimensional display system based on diffractive optical elements according to claim 1 , wherein the waveguide ( 3 ) is a slab waveguide. 3 . 3.根据权利要求1所述的基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,所述波导(3)厚度为1mm-10mm,材料为透明的光学玻璃或光学塑料。3. The waveguide integrated imaging three-dimensional display system based on diffractive optical elements according to claim 1, characterized in that, the thickness of the waveguide (3) is 1mm-10mm, and the material is transparent optical glass or optical plastic. 4.根据权利要求1所述的基于衍射光学元件的波导式集成成像三维显示系统,其特征在于,所述输入端衍射光学元件(2)、输出端衍射光学元件(4)的厚度为1μm-100μm,材料为卤化银、重铬酸盐明胶、光致聚合物、光致抗蚀剂、光导热塑或光折变晶体,光透过率大于50%。4. The waveguide integrated imaging three-dimensional display system based on diffractive optical elements according to claim 1, wherein the thickness of the input end diffractive optical element (2) and the output end diffractive optical element (4) is 1 μm- 100μm, the material is silver halide, dichromate gelatin, photopolymer, photoresist, photoconductive thermoplastic or photorefractive crystal, and the light transmittance is greater than 50%.
CN201410330611.2A 2014-07-11 2014-07-11 Waveguide type integration imaging three-dimensional display system based on diffraction optical element Active CN104090372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410330611.2A CN104090372B (en) 2014-07-11 2014-07-11 Waveguide type integration imaging three-dimensional display system based on diffraction optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410330611.2A CN104090372B (en) 2014-07-11 2014-07-11 Waveguide type integration imaging three-dimensional display system based on diffraction optical element

Publications (2)

Publication Number Publication Date
CN104090372A CN104090372A (en) 2014-10-08
CN104090372B true CN104090372B (en) 2017-04-05

Family

ID=51638099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410330611.2A Active CN104090372B (en) 2014-07-11 2014-07-11 Waveguide type integration imaging three-dimensional display system based on diffraction optical element

Country Status (1)

Country Link
CN (1) CN104090372B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407440A (en) * 2014-11-19 2015-03-11 东南大学 Holographic display device with sight tracking function
GB2539166A (en) * 2015-03-10 2016-12-14 Colour Holographic Ltd Holographically-projected virtual retinal display
KR102630754B1 (en) * 2015-03-16 2024-01-26 매직 립, 인코포레이티드 Augmented Reality Pulse Oximetry
JP6923552B2 (en) 2016-04-08 2021-08-18 マジック リープ, インコーポレイテッドMagic Leap,Inc. Augmented reality systems and methods with varifocal lens elements
CN105898276A (en) * 2016-05-10 2016-08-24 北京理工大学 Near-to-eye three-dimensional display system based on non-periodic holographic microlens array
CN105938252A (en) * 2016-07-04 2016-09-14 北京理工大学 Augmented reality display system
CN105954876A (en) * 2016-07-04 2016-09-21 北京理工大学 Large-view-field near-to-eye display eyepiece system
AU2017296074B2 (en) * 2016-07-15 2020-03-26 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
CN106383406B (en) * 2016-11-29 2020-02-04 北京理工大学 Large-view-field monocular 3D head-mounted display system and method imitating insect compound eyes
JP6992251B2 (en) * 2016-11-30 2022-01-13 セイコーエプソン株式会社 Video display device and light guide device
CN106814461B (en) * 2016-12-20 2020-02-04 北京理工大学 Three-dimensional display system and display method thereof
EP3586176B1 (en) 2017-02-23 2024-01-10 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
CN106707518B (en) * 2017-02-28 2020-07-28 华为技术有限公司 Information display device and information display method
US11119263B2 (en) * 2017-06-22 2021-09-14 Xerox Corporation System and method for image specific illumination of image printed on optical waveguide
CN107505717A (en) * 2017-09-19 2017-12-22 四川大学 Integration imaging Head Mounted 3D display device based on holographic optical elements (HOE)
CN107807417A (en) * 2017-12-09 2018-03-16 安徽省东超科技有限公司 Single-row multiple rows of equivalent negative refractive index flat plate lens
CN108227072B (en) * 2017-12-15 2019-08-27 北京理工大学 A compact nanostructure waveguide display method and system with enlarged exit pupil
FI129586B (en) * 2017-12-22 2022-05-13 Dispelix Oy Multipupil waveguide display element and display device
CN108490756B (en) * 2018-03-01 2022-03-25 北京理工大学 Holographic display based on waveguide transmission
CN112764159B (en) * 2019-10-21 2023-06-16 杭州光粒科技有限公司 Optical waveguide element, method of manufacturing the same, and holographic optical waveguide display device
CN112946893B (en) * 2019-12-10 2024-03-08 拾斛科技(南京)有限公司 Near field display device
CN111221126B (en) * 2020-01-17 2022-01-14 歌尔股份有限公司 Imaging system, imaging method and virtual reality equipment
CN111175976B (en) * 2020-01-17 2022-02-22 歌尔股份有限公司 Optical waveguide component, display system, augmented reality device and display method
JP7307031B2 (en) * 2020-05-29 2023-07-11 株式会社日立エルジーデータストレージ Virtual image projection device
CN112305777B (en) * 2020-11-09 2022-01-11 北京理工大学 Two-dimensional and three-dimensional switchable display method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240854B2 (en) * 2006-12-19 2012-08-14 Koninlijke Philips Electronics N.V. Autostereoscopic display device and a system using the same
JP5515396B2 (en) * 2009-05-08 2014-06-11 ソニー株式会社 Imaging device
CN102033319B (en) * 2010-10-25 2015-07-15 北京理工大学 Oxyopter type display device using holographic elements

Also Published As

Publication number Publication date
CN104090372A (en) 2014-10-08

Similar Documents

Publication Publication Date Title
CN104090372B (en) Waveguide type integration imaging three-dimensional display system based on diffraction optical element
US11726325B2 (en) Near-eye optical imaging system, near-eye display device and head-mounted display device
CN107015368B (en) A near-eye binocular display device
CN108700697B (en) Polarizing beam splitter with low light leakage
Kress et al. Optical architecture of HoloLens mixed reality headset
Yoo et al. Retinal projection type lightguide-based near-eye display with switchable viewpoints
JP6852896B2 (en) 3D display panel, 3D display device including it, and its manufacturing method
CN106291958B (en) A display device and image display method
EP3451041A2 (en) Optical window system and see-through type display apparatus including the same
CN115053165B (en) Optical system and display device
CN107247333B (en) Display system with switchable display mode
CN107203043A (en) Clairvoyant type display device
CN101702057B (en) Free three-dimensional display with condensing cylindrical grating
CN110806645A (en) A grating waveguide for augmented reality
CN105898276A (en) Near-to-eye three-dimensional display system based on non-periodic holographic microlens array
CN106371218A (en) Head-mounted three-dimensional display device
CN104035157A (en) Waveguide display based on diffractive optical element
CN105938252A (en) Augmented reality display system
CN106383406B (en) Large-view-field monocular 3D head-mounted display system and method imitating insect compound eyes
CN109407326B (en) An augmented reality display system based on a diffraction integrator and a manufacturing method thereof
CN208367337U (en) A kind of AR display equipment
CN104199196A (en) Waveguide-type integrated imaging three-dimensional display system with eye-movement tracking function
CN105700145B (en) Head-mounted image display device
CN112602045A (en) Optical waveguide light emitter and touch screen
CN110133801B (en) Double-depth imaging method based on polarization photosensitive grating AR (augmented reality) glasses waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant