CN104174252B - A device for eliminating alkali metal vapor in hyperpolarized gas - Google Patents
A device for eliminating alkali metal vapor in hyperpolarized gas Download PDFInfo
- Publication number
- CN104174252B CN104174252B CN201410438496.0A CN201410438496A CN104174252B CN 104174252 B CN104174252 B CN 104174252B CN 201410438496 A CN201410438496 A CN 201410438496A CN 104174252 B CN104174252 B CN 104174252B
- Authority
- CN
- China
- Prior art keywords
- valve
- gas
- pfa
- alkali metal
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 65
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 65
- 239000011521 glass Substances 0.000 claims abstract description 125
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 18
- 238000003466 welding Methods 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 abstract description 160
- 238000002595 magnetic resonance imaging Methods 0.000 abstract description 14
- 238000009833 condensation Methods 0.000 abstract description 7
- 230000005494 condensation Effects 0.000 abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 38
- 238000000746 purification Methods 0.000 description 21
- 229910052724 xenon Inorganic materials 0.000 description 20
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 229910052734 helium Inorganic materials 0.000 description 14
- 239000001307 helium Substances 0.000 description 14
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000008022 sublimation Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000000859 sublimation Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 230000010287 polarization Effects 0.000 description 6
- 229910052701 rubidium Inorganic materials 0.000 description 6
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- 230000002102 hyperpolarization Effects 0.000 description 4
- 239000005457 ice water Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 4
- 239000005297 pyrex Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000005092 sublimation method Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000005351 kimble Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域 technical field
本发明专利涉及自旋交换光泵及超极化气体核磁成像领域,更具体涉及用于小动物及人体成像的超极化气体收集及呼吸介入系统,适用于消除超极化气体中碱金属蒸气的装置系统。 The patent of the present invention relates to the field of spin exchange optical pump and hyperpolarized gas nuclear magnetic imaging, more specifically to a hyperpolarized gas collection and respiratory intervention system for imaging of small animals and human bodies, which is suitable for eliminating alkali metal vapor in hyperpolarized gas device system.
背景技术 Background technique
自旋交换光泵技术能够产生高度非热平衡极化的惰性气体,其核自旋极化度比相同条件下热极化的值大4~5个量级,因此,被称之为超极化气体。其作为一种气体造影剂,可以使磁共振信号得到极大地提高,并且弥补了传统磁共振成像不能获得生物体肺部信息的遗憾。 Spin-exchange optical pumping technology can produce highly non-thermal equilibrium polarized inert gases, whose nuclear spin polarization is 4 to 5 orders of magnitude larger than that of thermal polarization under the same conditions, so it is called hyperpolarization gas. As a gas contrast agent, it can greatly improve the magnetic resonance signal, and make up for the regret that traditional magnetic resonance imaging cannot obtain information about the lungs of living organisms.
超极化气体磁共振成像技术基于自旋交换光泵的物理基础,它主要包括两个部分:超极化气体(例如,超极化的惰性气体氙)的产生和收集存储,以及超高灵敏度的气体磁共振成像。超极化气体的产生是通过工作气体(通常为氙+氮+氦的混合气体)中的氙与光泵至高度极化(极化度~100%)的碱金属原子自旋交换碰撞过程获得;磁共振成像主要是通过将超极化气体通过气体介入系统导入/吸入被测生物体内进行成像。 Hyperpolarized gas magnetic resonance imaging technology is based on the physical basis of spin-exchange optical pumping, which mainly includes two parts: generation and storage of hyperpolarized gas (for example, hyperpolarized noble gas xenon), and ultra-high sensitivity gas magnetic resonance imaging. The generation of hyperpolarized gas is obtained by the process of spin exchange collision between xenon in the working gas (usually a mixture of xenon + nitrogen + helium) and an alkali metal atom that is optically pumped to a high degree of polarization (polarization ~100%) The magnetic resonance imaging is mainly performed by introducing/inhaling the hyperpolarized gas into the body of the measured organism through the gas intervention system.
在高效率的自旋交换光泵过程中,要求使用工作气体与碱金属蒸气充分的混合。而在生物体超极化气体磁共振成像中,需要使用不含碱金属蒸气的完全纯净的超极化气体。超极化系统里,通常采用玻璃管道+室温、或者U形管+冰水杜瓦的方式,极大地减少了超极化气体中的碱金属蒸气含量,但是,超极化气体中仍然有微量残余的碱金属蒸气,其技术详情及存在问题的原因为: In the high-efficiency spin-exchange optical pumping process, it is required to use a working gas that is fully mixed with the alkali metal vapor. In biological hyperpolarized gas magnetic resonance imaging, it is necessary to use completely pure hyperpolarized gas without alkali metal vapor. In the hyperpolarized system, the method of glass tube + room temperature, or U-shaped tube + ice water Dewar is usually used, which greatly reduces the content of alkali metal vapor in the hyperpolarized gas, but there are still trace amounts of alkali metal vapor in the hyperpolarized gas. Residual alkali metal vapor, its technical details and causes of problems are:
玻璃管道+室温技术,通常在光泵泡的出口连接一段较长的玻璃管道,利用玻璃管道位于远低于光泵泡工作温度的室温环境,使得流动的工作气体中的碱金属蒸气冷却、吸附到玻璃管道内壁上。但是,因为在超极化系统中使用玻璃管道的长度限制,以及室温通常不足够低,超极化气体中含有的碱金属蒸气不可能完全冷凝到玻璃内壁上; Glass tube + room temperature technology, usually a long glass tube is connected to the outlet of the optical pump cell, and the glass tube is located in a room temperature environment far below the working temperature of the optical pump cell, so that the alkali metal vapor in the flowing working gas is cooled and adsorbed to the inner wall of the glass pipe. However, due to the limitation of the length of the glass pipe used in the hyperpolarized system, and the room temperature is usually not low enough, the alkali metal vapor contained in the hyperpolarized gas cannot be completely condensed on the inner wall of the glass;
U形管+冰水杜瓦技术,是技术(1)的一个改进。将一个U形玻璃管放置于冰水杜瓦里,利用弯曲的U形玻璃管和冰水~273K的温度环境,使得更多的碱金属蒸气脱离工作气体而冷凝在U形玻璃管内壁。但是,较高流速的工作气体仍然带走了少量的碱金属蒸气; U-shaped tube + ice water Dewar technology is an improvement of technology (1). Place a U-shaped glass tube in the ice water Dewar, and use the curved U-shaped glass tube and the temperature environment of ice water ~273K to make more alkali metal vapor detach from the working gas and condense on the inner wall of the U-shaped glass tube. However, the working gas with a higher flow rate still took a small amount of alkali metal vapor;
之后,少量的碱金属蒸气会随工作气体一起流入收集存储装置中,尽管超极化气体的收集存储装置通常工作于超低温的液氮温度,但是,存储的固态超极化氙在升华过程中还是会有一些碱金属蒸气混合在超极化气体中。 After that, a small amount of alkali metal vapor will flow into the collection and storage device together with the working gas. Although the collection and storage device of hyperpolarized gas usually works at the ultra-low temperature of liquid nitrogen, the stored solid hyperpolarized xenon is still in the sublimation process. There will be some alkali metal vapor mixed in the hyperpolarized gas.
由于碱金属与水会剧烈反应放出热量,所以,即使非常地微量,其也可能会对被测生物体造成一定伤害。因此,从至关重要的保护生物体安全角度来讲,尽可能降低进入被测生物体的超极化气体中碱金属蒸气的含有量(一般低于0.5ng)需要更加有效的方法和技术。 Since alkali metal reacts violently with water to release heat, even a very small amount may cause some damage to the organism being tested. Therefore, from the crucial point of protecting the safety of organisms, it is necessary to reduce the content of alkali metal vapor in the hyperpolarized gas entering the measured organisms (generally less than 0.5ng) as much as possible, and more effective methods and technologies are needed.
本发明提出一种消除超极化气体中碱金属蒸气的装置,其具体的技术为: The present invention proposes a device for eliminating alkali metal vapor in hyperpolarized gas, and its specific technology is:
使用螺旋玻璃管,增加了玻璃内壁的表面积,让随超极化气体流动的碱金属蒸气更多地接触到玻璃容器内壁; Using a spiral glass tube increases the surface area of the glass inner wall, allowing the alkali metal vapor flowing with the hyperpolarized gas to more contact with the inner wall of the glass container;
利用超低温恒温槽(例如243K)的温度,使得更加有效地冷凝碱金属蒸气; Utilize the temperature of ultra-low temperature constant temperature bath (such as 243K) to condense alkali metal vapor more effectively;
使用循环二级冷凝碱金属蒸气的方法,二次纯化超极化气体。 The hyperpolarized gas is purified for the second time by circulating the secondary condensation of the alkali metal vapor.
由此,达到消除流动超极化气体中残余微量碱金属蒸气目的。 In this way, the purpose of eliminating residual traces of alkali metal vapor in the flowing hyperpolarized gas is achieved.
发明内容 Contents of the invention
针对以上问题,本发明的目的在于提供一种消除超极化气体中碱金属蒸气的装置,其结构简单、操作方便。能够为生物体的气体磁共振成像提供作为造影剂的高纯度超极化气体。 In view of the above problems, the object of the present invention is to provide a device for eliminating alkali metal vapor in hyperpolarized gas, which has a simple structure and is easy to operate. It can provide high-purity hyperpolarized gas as a contrast agent for gas magnetic resonance imaging of living organisms.
为实现上述目的,本发明采用如下技术措施: To achieve the above object, the present invention adopts following technical measures:
其技术构思为:当包含微量碱金属蒸气的混合气体(例如超极化氙气+氮气+氦气)流经本发明装置时,由于本发明装置工作点在设置的超低温度(243K),碱金属蒸气会冷凝在螺旋玻璃管内壁上,而其温度并不能冷凝混合气体中氙、氮和氦任一气体,从而达到碱金属蒸气与混合气体分离的目的。本发明装置中螺旋玻璃管与混合气体具有大的接触总面积,因此,能够使混合气体内含的碱金属蒸气有更多机会冷凝到处于超低温的螺旋玻璃管内壁上。然后,经过一级纯化的混合气体流出本发明装置,进入超极化氙收集系统,在液氮温度条件下,超极化氙气与混合气体中的氮气、氦气分离,并固化。当收集完成后,需对固态超极化氙进行升华,在此过程之后,升华的超极化气体再次通过本发明装置进行循环二级冷凝碱金属蒸气过程,进一步地纯化超极化气体,然后将不含碱金属蒸气、高度纯化的超极化气体输出本发明装置,进入收集气袋、并应用于生物体磁共振成像。 Its technical concept is: when the mixed gas (such as hyperpolarized xenon + nitrogen + helium) containing a trace amount of alkali metal vapor flows through the device of the present invention, since the working point of the device of the present invention is at the set ultra-low temperature (243K), the alkali metal The vapor will condense on the inner wall of the spiral glass tube, but its temperature cannot condense any gas such as xenon, nitrogen and helium in the mixed gas, so as to achieve the purpose of separating the alkali metal vapor from the mixed gas. In the device of the present invention, the spiral glass tube has a large total contact area with the mixed gas, so the alkali metal vapor contained in the mixed gas can have more chances to condense on the inner wall of the spiral glass tube at ultra-low temperature. Then, the primary purified mixed gas flows out of the device of the present invention and enters the hyperpolarized xenon collection system. Under the condition of liquid nitrogen temperature, the hyperpolarized xenon gas is separated from nitrogen and helium in the mixed gas and solidified. After the collection is completed, it is necessary to sublimate the solid hyperpolarized xenon. After this process, the sublimated hyperpolarized gas passes through the device of the present invention to carry out the secondary condensation process of alkali metal vapor to further purify the hyperpolarized gas, and then The highly purified hyperpolarized gas that does not contain alkali metal vapor is output from the device of the present invention, enters a collection air bag, and is applied to biological magnetic resonance imaging.
一种消除超极化气体中碱金属蒸气的装置,包括超低温恒温槽,超低温恒温槽内设置有螺旋玻璃管,螺旋玻璃管一端与设置在超低温恒温槽上的第一真空玻璃阀门的一端连通,螺旋玻璃管另一端与设置在超低温恒温槽上的第二真空玻璃阀门的一端连通,第一真空玻璃阀门的另一端通过第一PFA管道与第一PFA三通的第二连接端连通,第一PFA三通的第一连接端设置有第一气动阀门,第一PFA三通的第三连接端设置有第三气动阀门,第二真空玻璃阀门的另一端通过第二PFA管道与第二PFA三通的第一连接端连通,第二PFA三通的第二连接端设置有第二气动阀门,第二PFA三通的第三连接端设置有第四气动阀门。 A device for eliminating alkali metal vapor in hyperpolarized gas, comprising an ultra-low temperature constant temperature tank, a spiral glass tube is arranged in the ultra low temperature constant temperature tank, and one end of the spiral glass tube communicates with one end of a first vacuum glass valve arranged on the ultra low temperature constant temperature tank, The other end of the spiral glass tube communicates with one end of the second vacuum glass valve set on the ultra-low temperature constant temperature tank, and the other end of the first vacuum glass valve communicates with the second connection end of the first PFA tee through the first PFA pipe. The first connection end of the PFA tee is provided with a first pneumatic valve, the third connection end of the first PFA tee is provided with a third pneumatic valve, and the other end of the second vacuum glass valve is connected to the second PFA three-way through the second PFA pipe. The first connecting end of the second PFA tee is connected with the second connecting end of the second PFA tee, and the third connecting end of the second PFA tee is provided with the fourth pneumatic valve.
一种消除超极化气体中碱金属蒸气的装置,还包括气瓶,还包括由计算机控制开关的第一电磁阀门、第二电磁阀门、第三电磁阀门和第四电磁阀门,第一电磁阀门控制气瓶与第一气动阀门的通断,第二电磁阀门控制气瓶与第三气动阀门的通断,第三电磁阀门控制气瓶与第四气动阀门的通断,第四电磁阀门控制气瓶与第二气动阀门的通断。 A device for eliminating alkali metal vapor in hyperpolarized gas, which also includes a gas cylinder, and a first electromagnetic valve, a second electromagnetic valve, a third electromagnetic valve and a fourth electromagnetic valve controlled by a computer, the first electromagnetic valve Control the connection between the cylinder and the first pneumatic valve, the second solenoid valve controls the connection between the cylinder and the third pneumatic valve, the third solenoid valve controls the connection between the cylinder and the fourth pneumatic valve, and the fourth solenoid valve controls the connection between the gas cylinder and the fourth pneumatic valve. The on-off of the bottle and the second pneumatic valve.
如上所述的第一真空玻璃阀门和第二真空玻璃阀门与螺旋玻璃管连接方式为熔接。 The above-mentioned first vacuum glass valve and the second vacuum glass valve are connected to the spiral glass tube by welding.
如上所述的第一真空玻璃阀门一端伸入到超低温恒温槽内并通过第一铝合金固定架固定在超低温恒温槽的内壁,第二真空玻璃阀门一端伸入到超低温恒温槽内并通过第二铝合金固定架固定在超低温恒温槽的内壁。 As mentioned above, one end of the first vacuum glass valve extends into the ultra-low temperature constant temperature tank and is fixed on the inner wall of the ultra low temperature constant temperature tank through the first aluminum alloy fixing frame, and one end of the second vacuum glass valve extends into the ultra low temperature constant temperature tank and passes through the second The aluminum alloy fixing frame is fixed on the inner wall of the ultra-low temperature constant temperature tank.
本发明装置采用以下技术方案与措施: The device of the present invention adopts the following technical solutions and measures:
(1)将螺旋玻璃管放置在超低温恒温槽中使其工作在超低温环境,能够有效地冷凝流经气体中的碱金属蒸气; (1) Place the spiral glass tube in an ultra-low temperature constant temperature tank to make it work in an ultra-low temperature environment, which can effectively condense the alkali metal vapor flowing through the gas;
(2)采用螺旋玻璃管,使得在较小的空间内增大了气体与玻璃容器内壁的接触面积,提高了冷凝气体中碱金属蒸气的效率; (2) The spiral glass tube is used to increase the contact area between the gas and the inner wall of the glass container in a small space, and improve the efficiency of the alkali metal vapor in the condensed gas;
(3)通过计算机指令电磁阀门导通高压气体去开关气动阀门,控制超极化气体流动的通道,实现远程操作、并对超极化气体中碱金属蒸气进行二级冷凝,从而获得超极化气体的二级纯化。 (3) Through the computer command electromagnetic valve to conduct high-pressure gas to switch the pneumatic valve, control the flow channel of hyperpolarized gas, realize remote operation, and perform secondary condensation of alkali metal vapor in hyperpolarized gas to obtain hyperpolarization Secondary purification of gases.
该装置的工作流程为:先将两个真空玻璃阀门按照标准玻璃加工方式分别熔接到螺旋玻璃容器上;再将两个真空玻璃阀门的另外一端分别通过PFA管道与PFA三通连接;然后,每个PFA三通上的两个空置管道与气动阀门连接;每个气动阀门的控制接口通过管道与电磁阀门相连,并通过电磁阀门导通高压气体来控制气动阀门的开关。本发明装置工作时,将螺旋玻璃管通过铝合金固定架固定在超低温恒温槽(243K)中,再将超极化气体产生系统的光泵泡出口与气动阀门相连,然后,开启螺旋玻璃容器的两个真空玻璃阀门,通过控制电磁阀门导通高压气体来控制气动阀门的开关,进而构成超极化气体的纯化流经通道。当本发明装置处于收集纯化过程时,由本发明装置中的一组电磁阀门导通高压气体控制相应的一组气动阀门开启,混合气体(例如,超极化氙气+氮气+氦气)与碱金属蒸气一同流经处于超低温环境的螺旋玻璃管,从而实现碱金属蒸气的一级冷凝。然后,一级纯化的混合气体流出本发明装置,进入超极化气体收集系统,在那里,由于液氮温度的作用,氮气和氦气被分离,仅仅超极化气体被固态收集;当本发明用于升华纯化时,由另外一组电磁阀门导通高压气体驱动相应的气动阀门开启,超极化气体再次流经螺旋玻璃管,超极化气体中残余微量碱金属蒸气被二级冷凝,使得超极化气体进行了二次纯化。 The working process of the device is as follows: first, two vacuum glass valves are respectively welded to the spiral glass container according to the standard glass processing method; then the other ends of the two vacuum glass valves are respectively connected to the PFA tee through the PFA pipe; then, each Two vacant pipes on a PFA tee are connected to the pneumatic valve; the control interface of each pneumatic valve is connected to the electromagnetic valve through the pipeline, and the high-pressure gas is conducted through the electromagnetic valve to control the switch of the pneumatic valve. When the device of the present invention is working, the spiral glass tube is fixed in the ultra-low temperature constant temperature tank (243K) through the aluminum alloy fixing frame, and then the optical pump bubble outlet of the hyperpolarized gas generation system is connected with the pneumatic valve, and then the spiral glass container is opened. Two vacuum glass valves control the switch of the pneumatic valve by controlling the high-pressure gas through the electromagnetic valve, and then constitute the purified flow channel of the hyperpolarized gas. When the device of the present invention is in the process of collecting and purifying, a group of electromagnetic valves in the device of the present invention conduct high-pressure gas to control a corresponding group of pneumatic valves to open, and the mixed gas (for example, hyperpolarized xenon + nitrogen + helium) and alkali metal The steam flows together through the spiral glass tube in an ultra-low temperature environment, thereby realizing the primary condensation of the alkali metal vapor. Then, the mixed gas of primary purification flows out of the device of the present invention and enters the hyperpolarized gas collection system, where, due to the effect of liquid nitrogen temperature, nitrogen and helium are separated, and only the hyperpolarized gas is collected in solid state; when the present invention When used for sublimation purification, another set of electromagnetic valves conducts high-pressure gas to drive the corresponding pneumatic valve to open, and the hyperpolarized gas flows through the spiral glass tube again, and the residual traces of alkali metal vapor in the hyperpolarized gas are condensed by the second stage, making The hyperpolarized gas underwent secondary purification.
本发明具有以下优点及效果: The present invention has the following advantages and effects:
结构简单、操作方便、纯化收集一体化的特点。本发明提供的消除超极化气体中碱金属蒸气的装置,对于生物体磁共振成像具有重要意义,特别地,对于人体的肺部和脑部磁共振成像,具有非常重要的应用前景和实用价值。其也可以满足例如多孔材料、表面等其它需要使用超极化气体的进行磁共振波谱测量和成像研究的要求。具体的体现为以下几点: It has the characteristics of simple structure, convenient operation, and integration of purification and collection. The device provided by the present invention for eliminating alkali metal vapor in hyperpolarized gas is of great significance for biological magnetic resonance imaging, especially for human lung and brain magnetic resonance imaging, which has very important application prospects and practical value . It can also meet the requirements of magnetic resonance spectroscopy and imaging studies such as porous materials, surfaces, etc. that require the use of hyperpolarized gases. Specifically reflected in the following points:
本发明装置结构简单,一体化设计,利用一个工作于超低温下的螺旋玻璃管,对超极化气体中的碱金属蒸气进行循环二级冷凝,从而,实现超极化气体的二次纯化功能; The device of the present invention has a simple structure and an integrated design, and utilizes a spiral glass tube working at ultra-low temperature to carry out circulating secondary condensation on the alkali metal vapor in the hyperpolarized gas, thereby realizing the secondary purification function of the hyperpolarized gas;
本发明装置通过计算机指令电磁阀门导通高压气体、驱动开关气动阀门,实现收集纯化、升华纯化操作的自动化和程序化; The device of the present invention realizes the automation and programming of collection and purification, sublimation and purification operations through computer-instructed electromagnetic valves to conduct high-pressure gas and drive and switch pneumatic valves;
本发明装置与超极化气体产生系统、收集系统、升华系统联合工作时,能够提供不含碱金属蒸气的高纯度超极化气体,为超极化气体用于生物体磁共振成像提供了安全的保证。 When the device of the present invention works in conjunction with the hyperpolarized gas generation system, collection system, and sublimation system, it can provide high-purity hyperpolarized gas without alkali metal vapor, which provides a safe way for hyperpolarized gas to be used in biological magnetic resonance imaging. guarantee.
附图说明 Description of drawings
图1为一种消除超极化气体中碱金属蒸气的装置示意图。 Fig. 1 is a schematic diagram of a device for eliminating alkali metal vapor in hyperpolarized gas.
其中:1-第一气动阀门、2-第一PFA三通、3-第一PFA管道、4-第一真空玻璃阀门、5-第一铝合金固定架、6-超低温恒温槽、7-螺旋玻璃管、8-第二铝合金固定架、9-第二真空玻璃阀门、10-第二PFA管道、11-第二PFA三通、12-第二气动阀门、13-第三气动阀门、14-第四气动阀门、15-第一电磁阀门、16-第二电磁阀门、17-电缆线、18-计算机、19-第三电磁阀门、20-第四电磁阀门、21-管道、22-压力计、23-气瓶。 Among them: 1-the first pneumatic valve, 2-the first PFA tee, 3-the first PFA pipe, 4-the first vacuum glass valve, 5-the first aluminum alloy fixing frame, 6-ultra-low temperature constant temperature bath, 7-helix Glass tube, 8-the second aluminum alloy fixing frame, 9-the second vacuum glass valve, 10-the second PFA pipe, 11-the second PFA tee, 12-the second pneumatic valve, 13-the third pneumatic valve, 14 -The fourth pneumatic valve, 15-the first electromagnetic valve, 16-the second electromagnetic valve, 17-cable wire, 18-computer, 19-the third electromagnetic valve, 20-the fourth electromagnetic valve, 21-pipeline, 22-pressure Gauge, 23-gas cylinders.
图2为本发明装置实施图例。 Fig. 2 is a diagram illustrating the implementation of the device of the present invention.
G1-来自超极化气体产生系统的混合气体(超极化气体+氮气+氦气)、G2-一级纯化后的混合气体(超极化气体+氮气+氦气)、G3-经过收集系统和升华系统之后的超极化气体、G4-二级纯化后的超极化气体。 G1- mixed gas from hyperpolarized gas generation system (hyperpolarized gas + nitrogen + helium), G2- primary purified mixed gas (hyperpolarized gas + nitrogen + helium), G3- through the collection system And hyperpolarized gas after sublimation system, G4- hyperpolarized gas after secondary purification.
具体实施方式 detailed description
实施例1: Example 1:
下面结合图1和图2对本发明做进一步的详细描述: Below in conjunction with Fig. 1 and Fig. 2 the present invention is described in further detail:
首先,描述一种用于消除超极化气体中残余碱金属蒸气的装置各部件的材料、形状和结构: First, the materials, shape and construction of the components of a device for eliminating residual alkali metal vapors in hyperpolarized gases are described:
本发明一种用于消除超极化气体中残余碱金属蒸气的装置,包括第一气动阀门1、第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4、第一铝合金固定架5、超低温恒温槽6、螺旋玻璃管7、第二铝合金固定架8、第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11、第二气动阀门12、第三气动阀门13、第四气动阀门14、第一电磁阀门15、第二电磁阀门16、电缆线17、计算机18、第三电磁阀门19、第四电磁阀门20、管道21、压力计22、气瓶23。 The present invention is a device for eliminating residual alkali metal vapor in hyperpolarized gas, comprising a first pneumatic valve 1, a first PFA tee 2, a first PFA pipeline 3, a first vacuum glass valve 4, and a first aluminum alloy Fixing frame 5, ultra-low temperature constant temperature tank 6, spiral glass tube 7, second aluminum alloy fixing frame 8, second vacuum glass valve 9, second PFA pipeline 10, second PFA tee 11, second pneumatic valve 12, third Pneumatic valve 13, fourth pneumatic valve 14, first electromagnetic valve 15, second electromagnetic valve 16, cable 17, computer 18, third electromagnetic valve 19, fourth electromagnetic valve 20, pipeline 21, pressure gauge 22, gas cylinder twenty three.
第一气动阀门1依次连接第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4、超低温恒温槽6、第一铝合金固定架5、螺旋玻璃管7、第二铝合金固定架8、第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11、第二气动阀门12;其中第一PFA三通2的另外一端与第三气动阀门13连接,第二PFA三通11的另外一端与第四气动阀门14连接;将第一真空玻璃阀门4和第二真空玻璃阀门9与螺旋玻璃管7熔接到一起;第一铝合金固定架5和第二铝合金固定架8将第一真空玻璃阀门4与第二真空玻璃阀门9以及连接的螺旋玻璃管7固定在超低温恒温槽6内;第一气动阀门1、第二气动阀门12、第三气动阀门13、第四气动阀门14分别通过管道21连接第一电磁阀门15、第四电磁阀门20、第二电磁阀门16、第三电磁阀门19,并与压力计22、气瓶23连接; The first pneumatic valve 1 is sequentially connected to the first PFA tee 2, the first PFA pipe 3, the first vacuum glass valve 4, the ultra-low temperature constant temperature tank 6, the first aluminum alloy fixing frame 5, the spiral glass tube 7, and the second aluminum alloy fixing frame 8, the second vacuum glass valve 9, the second PFA pipe 10, the second PFA tee 11, and the second pneumatic valve 12; wherein the other end of the first PFA tee 2 is connected with the third pneumatic valve 13, and the second PFA The other end of the tee 11 is connected to the fourth pneumatic valve 14; the first vacuum glass valve 4 and the second vacuum glass valve 9 are welded together with the spiral glass tube 7; the first aluminum alloy fixing frame 5 and the second aluminum alloy are fixed Frame 8 fixes the first vacuum glass valve 4, the second vacuum glass valve 9 and the connected spiral glass tube 7 in the ultra-low temperature constant temperature tank 6; the first pneumatic valve 1, the second pneumatic valve 12, the third pneumatic valve 13, the The four pneumatic valves 14 are respectively connected to the first electromagnetic valve 15, the fourth electromagnetic valve 20, the second electromagnetic valve 16, and the third electromagnetic valve 19 through the pipeline 21, and are connected with the pressure gauge 22 and the gas cylinder 23;
螺旋玻璃管7安装在超低温恒温槽6里,当含有微量碱金属蒸气的超极化气体流动通过螺旋玻璃管7时,碱金属蒸气会凝结在螺旋玻璃管7的玻璃内壁上,从而达到消除残余碱金属蒸气的目的。 The spiral glass tube 7 is installed in the ultra-low temperature constant temperature bath 6. When the hyperpolarized gas containing a trace amount of alkali metal vapor flows through the spiral glass tube 7, the alkali metal vapor will condense on the glass inner wall of the spiral glass tube 7, thereby eliminating residual The purpose of alkali metal vapor.
超极化气体流动的通道是通过计算机18指令第一、第四、第二、第三电磁阀门(15、20、16、19)导通高压气体分别驱动第一、第二、第三、第四气动阀门(1、12、13、14)的开关来实现,无铁磁性物质的气动阀门不会造成超极化气体的非平衡核自旋极化度的衰减,实现了一种无损极化度的自动化消除碱金属蒸气的操作。 The passage of the hyperpolarized gas flow is through the computer 18 instructing the first, fourth, second, and third electromagnetic valves (15, 20, 16, 19) to conduct high-pressure gas to drive the first, second, third, and third electromagnetic valves respectively. The switch of four pneumatic valves (1, 12, 13, 14) is realized. The pneumatic valve without ferromagnetic material will not cause the attenuation of the non-equilibrium nuclear spin polarization of hyperpolarized gas, and realizes a non-destructive polarization. A degree of automation for the removal of alkali metal vapors.
通过电缆线17将计算机18与第一、第二、第三、第四电磁阀门(15、16、19、20)相连接,工作时,由控制第一、第四、第二、第三电磁阀门(15、20、16、19)导通高压气体分别开关第一、第二、第三、第四气动阀门(1、12、13、14)来引导超极化气体流入位于超低温恒温槽6里的螺旋玻璃管7,超极化气体流经螺旋玻璃管7时,内含的残余碱金属蒸气凝结在螺旋玻璃管7的玻璃内壁上,从而达到消除的目的。 The computer 18 is connected with the first, second, third and fourth electromagnetic valves (15, 16, 19, 20) through the cable 17. During work, the first, fourth, second and third electromagnetic valves are controlled The valves (15, 20, 16, 19) conduct high-pressure gas and respectively switch the first, second, third, and fourth pneumatic valves (1, 12, 13, 14) to guide the hyperpolarized gas to flow into the ultra-low temperature constant temperature tank 6 In the spiral glass tube 7, when the hyperpolarized gas flows through the spiral glass tube 7, the residual alkali metal vapor contained in it condenses on the glass inner wall of the spiral glass tube 7, so as to achieve the purpose of elimination.
其各部件的详细描述如下: The detailed description of each component is as follows:
第一气动阀门1的型号为PMDP-2K-1/4UG,无磁性,材质为PEEK,作为超极化气体产生系统的混合气体G1流入本发明装置的入口端; The model of the first pneumatic valve 1 is PMDP-2K-1/4UG, non-magnetic, and the material is PEEK, as the mixed gas G1 of the hyperpolarized gas generation system flows into the inlet port of the device of the present invention;
第一PFA三通2,型号为SwagelokPFA-420-3,材质为聚四氟乙烯塑料,用于连接第一、第三气动阀门(1、13),以及第一PFA管道3,也作为气体流动双通的通道。 The first PFA tee 2, the model is SwagelokPFA-420-3, made of polytetrafluoroethylene plastic, used to connect the first and third pneumatic valves (1, 13), and the first PFA pipe 3, also used as gas flow Two-way channel.
第一PFA管道3,型号为SwagelokPFA-T4-047,材质为聚四氟乙烯塑料,其端口经刻槽处理,两端分别能够与第一PFA三通2、第一真空玻璃阀门4密封连接; The first PFA pipeline 3, the model is SwagelokPFA-T4-047, the material is polytetrafluoroethylene plastic, its port is grooved, and the two ends can be connected with the first PFA tee 2 and the first vacuum glass valve 4 respectively;
第一真空玻璃阀门4的材质为Pyrex玻璃,型号为Kimble/kontesHI-VAC826651,其作用为精密控制流入螺旋玻璃管7内的气流; The material of the first vacuum glass valve 4 is Pyrex glass, the model is Kimble/kontesHI-VAC826651, and its function is to precisely control the airflow flowing into the spiral glass tube 7;
第一铝合金固定架5的作用为固定螺旋玻璃管7使其处于超低温恒温槽6的环境内,并保证该区域气路管道的稳定,其为自制; The function of the first aluminum alloy fixing frame 5 is to fix the spiral glass tube 7 so that it is in the environment of the ultra-low temperature constant temperature tank 6, and ensure the stability of the gas pipeline in this area, which is self-made;
超低温恒温槽6的作用是为螺旋玻璃管7提供超低温工作环境,通常超低温工作范围为200—265K。本发明实施中,使用的超低温恒温槽型号为XC-100B(工作温度范围为243—373K),并使用其工作在243K的最低温度; The function of the ultra-low temperature constant temperature bath 6 is to provide an ultra-low temperature working environment for the spiral glass tube 7, usually the ultra-low temperature working range is 200-265K. In the implementation of the present invention, the model of the ultra-low temperature constant temperature bath used is XC-100B (the working temperature range is 243-373K), and the lowest temperature of 243K is used;
螺旋玻璃管7用作激光预极化气体中消除残余微量碱金属蒸气的冷凝管道,材质为Pyrex玻璃,使用的玻璃管径、直径、长度、圈数取决于所使用的超低温恒温槽6的容量。在本发明实施例中,螺旋玻璃管7使用直经10mm的Pyrex玻璃管制作,螺旋玻璃管7的外直径为100mm,长度为200mm,螺旋圈数为8。; The spiral glass tube 7 is used as a condensation pipe for eliminating residual traces of alkali metal vapor in the laser prepolarized gas. The material is Pyrex glass. The diameter, diameter, length, and number of turns of the glass tube used depend on the capacity of the ultra-low temperature constant temperature bath 6 used . In the embodiment of the present invention, the spiral glass tube 7 is made of a Pyrex glass tube with a diameter of 10 mm. The outer diameter of the spiral glass tube 7 is 100 mm, the length is 200 mm, and the number of spiral turns is 8. ;
第二铝合金固定架8与第一铝合金固定架5的作用相同,两者成对使用; The second aluminum alloy fixing frame 8 has the same effect as the first aluminum alloy fixing frame 5, and the two are used in pairs;
第二真空玻璃阀门9与第一真空玻璃阀门4的材质、型号相同,用于控制流出螺旋玻璃管7的气体流量; The second vacuum glass valve 9 is identical with the material and model of the first vacuum glass valve 4, and is used to control the flow of gas flowing out of the spiral glass tube 7;
第二PFA管道10的作用、材质、型号与第一PFA管道3相同,分别与第二真空玻璃阀门9、第二PFA三通11密封连接; The second PFA pipeline 10 has the same function, material and model as the first PFA pipeline 3, and is sealed and connected with the second vacuum glass valve 9 and the second PFA tee 11 respectively;
第二PFA三通11与第一PFA三通2型号相同,用于连接第二、第四气动阀门12、14,以及第二PFA管道10, The second PFA tee 11 is the same model as the first PFA tee 2, and is used to connect the second and fourth pneumatic valves 12, 14, and the second PFA pipeline 10,
第二、第三、第四气动阀门(12、13、14)与第一气动阀门1的型号、作用同,分别由第四、第二、第三电磁阀门(20、16、19)导通高压气体对应控制开启或者关闭,引导超极化气体的流经路线; The second, third, and fourth pneumatic valves (12, 13, 14) are the same type and function as the first pneumatic valve 1, and are respectively connected by the fourth, second, and third electromagnetic valves (20, 16, 19). The high-pressure gas is correspondingly controlled to open or close to guide the flow route of the hyperpolarized gas;
第一、第二、第三、第四电磁阀门(15、16、19、20)同为精密电磁阀门,型号为Airtec4V210-08,用于导通高压气体去控制气动阀门的开启和关闭。 The first, second, third and fourth electromagnetic valves (15, 16, 19, 20) are all precision electromagnetic valves, the model is Airtec4V210-08, which are used to conduct high-pressure gas to control the opening and closing of pneumatic valves.
电缆线17,连接电磁阀门与计算机18,使得计算机18能够驱动电磁阀门工作、导通高压气体去驱动气动阀门开关; The cable 17 is connected to the electromagnetic valve and the computer 18, so that the computer 18 can drive the electromagnetic valve to work, conduct high-pressure gas to drive the pneumatic valve switch;
计算机18的作用为编程和硬件双控制、实现对四个电磁阀的操作,导通高压气体去开关相应的气动阀门; The function of the computer 18 is dual control of programming and hardware, realizing the operation of four solenoid valves, conducting high-pressure gas to switch corresponding pneumatic valves;
管道21作为高压气体流动通道,材质为不锈钢,也可以使用铜管或者特氟龙管替代; The pipeline 21 is used as a high-pressure gas flow channel, and the material is stainless steel, and copper tubes or Teflon tubes can also be used instead;
压力计22监测高压气体压力,使用常用的氮气压力计; Manometer 22 monitors the high-pressure gas pressure, using a commonly used nitrogen manometer;
气瓶23提供气动阀门开关所需的高压气体,使用完之后可拆卸,更换新的气瓶,这里使用氮气瓶,也可以使用高压空气; The gas cylinder 23 provides the high-pressure gas needed for the pneumatic valve switch. It can be disassembled after use and replaced with a new gas cylinder. A nitrogen cylinder or high-pressure air can also be used here;
碱金属可以是钾、钠、铷、或者铯。 The alkali metal may be potassium, sodium, rubidium, or cesium.
本发明装置的连接:先将第一真空玻璃阀门4、第二真空玻璃阀门9分别熔接到螺旋玻璃管7;再将螺旋玻璃管7通过第一、第二铝合金固定架(5、8)固定在超低温恒温槽6(工作温度为243K)中;将第一真空玻璃阀门4、第二真空玻璃阀门9的另外一端分别与第一PFA管道3、第二PFA管道10连接;第一PFA三通2的三个端口分别连接第一气动阀门1、第三气动阀门13和第一PFA管道3;第二PFA三通11的三个端口分别连接第二PFA管道10、第四气动阀门14、第二气动阀门12;第一、第二、第三、第四气动阀门(1、2、13、14)的控制接口经由管道21分别与第一、第四、第二、第三电磁阀门(15、20、16、19)相连,以及连接到压力计22、气瓶23。本发明装置工作时,先将螺旋玻璃管7的第一真空玻璃阀门4、第二真空玻璃阀门9开启,再通过计算机18的指令开关电磁阀门导通高压气体来控制对应的气动阀门开启或者关闭、进而实现超极化气体的流经路线。 The connection of the device of the present invention: firstly weld the first vacuum glass valve 4 and the second vacuum glass valve 9 to the spiral glass tube 7 respectively; then pass the spiral glass tube 7 through the first and second aluminum alloy fixing frames (5, 8) Fix in the ultra-low temperature constant temperature tank 6 (working temperature is 243K); connect the other ends of the first vacuum glass valve 4 and the second vacuum glass valve 9 to the first PFA pipeline 3 and the second PFA pipeline 10 respectively; the first PFA three The three ports of the pass 2 are respectively connected to the first pneumatic valve 1, the third pneumatic valve 13 and the first PFA pipeline 3; the three ports of the second PFA tee 11 are respectively connected to the second PFA pipeline 10, the fourth pneumatic valve 14, The second pneumatic valve 12; the control interfaces of the first, second, third and fourth pneumatic valves (1, 2, 13, 14) are respectively connected with the first, fourth, second and third electromagnetic valves ( 15, 20, 16, 19), and connected to the pressure gauge 22, gas cylinder 23. When the device of the present invention is working, the first vacuum glass valve 4 and the second vacuum glass valve 9 of the spiral glass tube 7 are opened first, and then the corresponding pneumatic valve is controlled to open or close by switching the electromagnetic valve through the command switch electromagnetic valve of the computer 18 to conduct high-pressure gas. , and then realize the flow route of the hyperpolarized gas.
本发明一种消除超极化气体中碱金属蒸气的装置,其的工作流程描述如下: The present invention is a device for eliminating alkali metal vapor in hyperpolarized gas, and its working process is described as follows:
当本发明装置处于收集纯化工作状态时,来自超极化气体产生系统的混合气体G1(超极化气体+氮气+氦气)连通到本发明装置入口端的第一气动阀门1。当第一电磁阀门15控制导通高压气体去开启第一气动阀门1时,使得G1能够进入本发明装置,同时,第二气动阀门12开启,第三、第四气动阀门13、14处于关闭状态。G1经由第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4流入处于超低温恒温槽6内的螺旋玻璃管7内,G1内的碱金属蒸气被一级冷凝,G1被一级纯化;一级纯化后的混合气体G2经由第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11、第二气动阀门12流出本发明装置进出,进入本发明装置外后续的超极化气体收集系统和升华系统。在本实施例中,螺旋玻璃管7使用直经10mm的Pyrex玻璃管制作,螺旋玻璃管7的外直径为100mm,长度为200mm,螺旋圈数为8。当其处于升华气体纯化工作模式时,第一、第二气动阀门(1、12)处于关闭状态,第三、第四气动阀门(13、14)被开启,升华的超极化气体G3经由第三气动阀门13再次进入本发明装置,并且依次经过第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4流入处于超低温恒温槽6内的螺旋玻璃管7内,G3内的碱金属蒸气被冷凝,G3被纯化得到高度纯化的超极化气体G4;高度纯化的超极化气体G4再经由第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11、第四气动阀门14流出本发明装置,进入后续的收集气袋内,然后直接用于生物体磁共振成像研究。 When the device of the present invention is in the working state of collection and purification, the mixed gas G1 (hyperpolarized gas + nitrogen + helium) from the hyperpolarized gas generation system is connected to the first pneumatic valve 1 at the inlet end of the device of the present invention. When the first electromagnetic valve 15 controls the conduction of high-pressure gas to open the first pneumatic valve 1, G1 can enter the device of the present invention, and at the same time, the second pneumatic valve 12 is opened, and the third and fourth pneumatic valves 13 and 14 are in the closed state . G1 flows into the spiral glass tube 7 in the ultra-low temperature constant temperature tank 6 through the first PFA tee 2, the first PFA pipe 3, and the first vacuum glass valve 4. The alkali metal vapor in G1 is condensed by the first stage, and G1 is condensed by the first stage. Purification; the mixed gas G2 after the primary purification flows out of the device of the present invention through the second vacuum glass valve 9, the second PFA pipeline 10, the second PFA tee 11, and the second pneumatic valve 12, and enters the subsequent super Polarized gas collection system and sublimation system. In this embodiment, the spiral glass tube 7 is made of a Pyrex glass tube with a diameter of 10 mm. The outer diameter of the spiral glass tube 7 is 100 mm, the length is 200 mm, and the number of spiral turns is 8. When it is in the working mode of sublimation gas purification, the first and second pneumatic valves (1, 12) are closed, the third and fourth pneumatic valves (13, 14) are opened, and the sublimated hyperpolarized gas G3 passes through the first Three pneumatic valves 13 enter the device of the present invention again, and flow through the first PFA tee 2, the first PFA pipeline 3, and the first vacuum glass valve 4 in the spiral glass tube 7 in the ultra-low temperature constant temperature tank 6 successively, and the alkali in G3 The metal vapor is condensed, and G3 is purified to obtain highly purified hyperpolarized gas G4; the highly purified hyperpolarized gas G4 passes through the second vacuum glass valve 9, the second PFA pipeline 10, the second PFA tee 11, the fourth The pneumatic valve 14 flows out of the device of the present invention, enters the subsequent air bag for collection, and is then directly used in biological magnetic resonance imaging research.
下面结合附图1和图2,以超极化系统使用光泵碱金属铷蒸气、工作气体为氙气(1%)、氦气(90%)、氮气(9%)的混合气体(5atm)为例,对本发明装置一种消除超极化气体中碱金属蒸气的装置、实施过程作进一步的详细描述: In conjunction with Figure 1 and Figure 2 below, the hyperpolarization system uses an optically pumped alkali metal rubidium vapor, and the working gas is a mixed gas (5 atm) of xenon (1%), helium (90%), and nitrogen (9%). For example, a kind of device of eliminating the alkali metal vapor in the hyperpolarized gas of the present invention, implementation process are described in further detail:
首先,将本发明装置的第一气动阀门1与超极化气体产生系统连接,将第二气动阀门12与后续的超极化气体收集系统连接,并开启第一真空玻璃阀门4、第二真空玻璃阀门9。当超极化气体氙产生装置连续工作时,产生混合气体G1(超极化氙气+氮气+氦气),同时,在流动的气体G1里包含有碱金属铷蒸气。计算机18控制第一电磁阀门15、第四电磁阀门20导通高压气体分别驱动第一气动阀门1、第二气动阀门12开启。使得第一气动阀门1、第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4、超低温(243K)工作环境下的螺旋玻璃管7、第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11、第二气动阀门12构成一个气体流动通道。 First, the first pneumatic valve 1 of the device of the present invention is connected with the hyperpolarized gas generation system, the second pneumatic valve 12 is connected with the subsequent hyperpolarized gas collection system, and the first vacuum glass valve 4 and the second vacuum glass valve 4 are opened. Glass valve9. When the hyperpolarized gas xenon generating device works continuously, a mixed gas G1 (hyperpolarized xenon + nitrogen + helium) is generated, and at the same time, the flowing gas G1 contains alkali metal rubidium vapor. The computer 18 controls the first electromagnetic valve 15 and the fourth electromagnetic valve 20 to conduct high-pressure gas to respectively drive the first pneumatic valve 1 and the second pneumatic valve 12 to open. Make the first pneumatic valve 1, the first PFA tee 2, the first PFA pipe 3, the first vacuum glass valve 4, the spiral glass tube 7 under the ultra-low temperature (243K) working environment, the second vacuum glass valve 9, and the second PFA The pipeline 10, the second PFA tee 11 and the second pneumatic valve 12 form a gas flow channel.
在收集纯化过程中,混合气体G1经过第一气动阀门1流入本发明装置,并且流经这个通道。由于螺旋玻璃管7处于243K的超低温度,而碱金属铷的凝固温度远高于此温度,则可以将混合气体G1中的碱金属铷蒸气进行冷凝,混合气体中的超极化氙气、氮气、氦气不可能被凝固,因此实现了混合气体G1的纯化。一级纯化后的气体被标记为混合气体G2(超极化氙气+氮气+氦气),最后经过由第四电磁阀门20控制的第二气动阀门12流出本发明装置,进入到后续的超极化气体收集系统。在收集系统里,混合气体G2中的氮气和氦气被分离,仅仅存留固态超极化氙。 During the collection and purification process, the mixed gas G1 flows into the device of the present invention through the first pneumatic valve 1 and flows through this channel. Since the spiral glass tube 7 is at an ultra-low temperature of 243K, and the solidification temperature of alkali metal rubidium is much higher than this temperature, the alkali metal rubidium vapor in the mixed gas G1 can be condensed, and the hyperpolarized xenon, nitrogen, and It is impossible for helium to be solidified, so the purification of the mixed gas G1 is realized. The gas after primary purification is marked as mixed gas G2 (hyperpolarized xenon + nitrogen + helium), and finally flows out of the device of the present invention through the second pneumatic valve 12 controlled by the fourth electromagnetic valve 20, and enters the subsequent hyperpolarized gas gas collection system. In the collection system, the nitrogen and helium in the gas mixture G2 are separated, leaving only solid hyperpolarized xenon.
在升华纯化过程中,超极化气体升华系统通过管道直接与第三气动阀门13连接,超极化气体收集气袋通过管道与第四气动阀门14连接。由计算机18控制第一电磁阀门15、第四电磁阀门20关闭第一气动阀门1、第二气动阀门12,同时,计算机18控制第二电磁阀16、第三电磁阀门19导通高压气体分别去开启第三气动阀门13、第四气动阀门14。升华后的超极化氙气G3从第三气动阀门13流入本发明装置,然后再次流动经过第一PFA三通2、第一PFA管道3、第一真空玻璃阀门4、超低温度(243K)工作环境下的螺旋玻璃管7,在螺旋玻璃管7对超极化氙气G3中的残留微量碱金属铷蒸气进行冷凝,纯化G3后的超极化氙气标记为G4,其流动通过第二真空玻璃阀门9、第二PFA管道10、第二PFA三通11,最后经由第四气动阀门14流出本发明装置、进入到超极化氙气收集袋,循环二次纯化的超极化气体G4将直接用于生物体(小动物,人体肺部和脑部等)的磁共振成像。本申请的技术方案在243K温度进行二次纯化后的气体基本消除了碱金属蒸汽,可以直接作用于生物体。 During the sublimation and purification process, the hyperpolarized gas sublimation system is directly connected to the third pneumatic valve 13 through a pipeline, and the hyperpolarized gas collection bag is connected to the fourth pneumatic valve 14 through a pipeline. The computer 18 controls the first electromagnetic valve 15 and the fourth electromagnetic valve 20 to close the first pneumatic valve 1 and the second pneumatic valve 12. At the same time, the computer 18 controls the second electromagnetic valve 16 and the third electromagnetic valve 19 to conduct high-pressure gas respectively The third pneumatic valve 13 and the fourth pneumatic valve 14 are opened. The sublimated hyperpolarized xenon gas G3 flows into the device of the present invention from the third pneumatic valve 13, and then flows through the first PFA tee 2, the first PFA pipeline 3, the first vacuum glass valve 4, and the ultra-low temperature (243K) working environment The spiral glass tube 7 below, in the spiral glass tube 7, the residual trace alkali metal rubidium vapor in the hyperpolarized xenon gas G3 is condensed, and the hyperpolarized xenon gas after the purification of G3 is marked as G4, which flows through the second vacuum glass valve 9 , the second PFA pipeline 10, the second PFA tee 11, and finally flow out of the device of the present invention through the fourth pneumatic valve 14 and enter the hyperpolarized xenon gas collection bag, and the hyperpolarized gas G4 of the secondary purification will be directly used in biological Magnetic resonance imaging of the body (small animals, human lungs and brain, etc.). In the technical solution of the present application, the gas after secondary purification at a temperature of 243K basically eliminates alkali metal vapor, and can directly act on organisms.
本发明装置为总的超极化系统中的一个部件,前后连接了多个不同的部件通道,可以实现在纯化过程和升华过程中连通或者断开,两个过程能够利用同一个超低温恒温槽。 The device of the present invention is a part of the overall hyperpolarization system, and a plurality of different component channels are connected front and back, which can realize connection or disconnection in the purification process and the sublimation process, and the same ultra-low temperature constant temperature bath can be used in the two processes.
本发明装置与超极化气体产生系统、收集系统、升华系统联合使用,能够满足生物体磁共振成像(例如,人体肺部和脑部的成像研究)对于超极化气体的高度纯化(这里特别针对的是:不含有碱金属)的要求,因此,具有非常重要的实用价值和潜在应用的前景。 The device of the present invention is used in conjunction with a hyperpolarized gas generation system, a collection system, and a sublimation system, which can meet the requirements of high purification of hyperpolarized gas for biological magnetic resonance imaging (for example, imaging research on human lungs and brains) (here, especially Aiming at the requirement of not containing alkali metal), therefore, it has very important practical value and potential application prospect.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。 The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410438496.0A CN104174252B (en) | 2014-08-29 | 2014-08-29 | A device for eliminating alkali metal vapor in hyperpolarized gas |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410438496.0A CN104174252B (en) | 2014-08-29 | 2014-08-29 | A device for eliminating alkali metal vapor in hyperpolarized gas |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104174252A CN104174252A (en) | 2014-12-03 |
| CN104174252B true CN104174252B (en) | 2016-03-23 |
Family
ID=51955764
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410438496.0A Active CN104174252B (en) | 2014-08-29 | 2014-08-29 | A device for eliminating alkali metal vapor in hyperpolarized gas |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104174252B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110609055B (en) * | 2018-06-15 | 2024-07-26 | 中国科学院大连化学物理研究所 | Hyperpolarized rare inert gas generating device |
| CN114408266B (en) * | 2022-01-24 | 2023-11-21 | 散裂中子源科学中心 | Glass pipeline device for preparing helium three-neutron polarized glass air chamber and application thereof |
| CN116817177A (en) * | 2023-05-23 | 2023-09-29 | 北京航天控制仪器研究所 | An atomic gas chamber filling preparation system and method for realizing raw material recovery |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003245263A (en) * | 2002-02-26 | 2003-09-02 | National Institute Of Advanced Industrial & Technology | Apparatus for producing nuclear spin polarized rare gas and method for producing polarized rare gas using the same |
| CN102818116A (en) * | 2012-08-29 | 2012-12-12 | 上海磊诺工业气体有限公司 | Purification system and purification process of high-pressure high-flow and high-purity gas filling equipment |
| CN103301741A (en) * | 2013-05-13 | 2013-09-18 | 中国科学院武汉物理与数学研究所 | Method and device for highly purifying gas |
| WO2013172148A1 (en) * | 2012-05-14 | 2013-11-21 | 株式会社 日立メディコ | Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device |
-
2014
- 2014-08-29 CN CN201410438496.0A patent/CN104174252B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003245263A (en) * | 2002-02-26 | 2003-09-02 | National Institute Of Advanced Industrial & Technology | Apparatus for producing nuclear spin polarized rare gas and method for producing polarized rare gas using the same |
| WO2013172148A1 (en) * | 2012-05-14 | 2013-11-21 | 株式会社 日立メディコ | Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device |
| CN102818116A (en) * | 2012-08-29 | 2012-12-12 | 上海磊诺工业气体有限公司 | Purification system and purification process of high-pressure high-flow and high-purity gas filling equipment |
| CN103301741A (en) * | 2013-05-13 | 2013-09-18 | 中国科学院武汉物理与数学研究所 | Method and device for highly purifying gas |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104174252A (en) | 2014-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103245743B (en) | Expiratory air on-line preconcentration gas chromatography method for quick | |
| CN104174252B (en) | A device for eliminating alkali metal vapor in hyperpolarized gas | |
| CN104826840B (en) | A kind of device interior pipeline cleaning system and control method thereof | |
| CN107202815B (en) | A continuous flow high temperature and high pressure experimental device | |
| CN110171805A (en) | A kind of detection method of hydrogen purification apparatus and its purifying hydrogen efficiency | |
| CN101144657A (en) | Method and device for producing liquid helium with G-M refrigerator | |
| CN107469628A (en) | The device and method of gaseous state tritium and its isotope in a kind of removal fused salt | |
| CN116351339A (en) | A kind of production equipment of liquid composition and its preparation method and application | |
| CN112557157B (en) | A method for the separation, purification and collection of xenon in air samples based on a specific device | |
| CN105050353B (en) | A kind of testboard pure water cooling circulatory system | |
| CN105561728A (en) | Cryogenic air-separation superconducting magnetic separator, separating device and separating method | |
| CN106896065A (en) | A kind of polarization cavity systems and its application method based on hyperpolarized gas | |
| CN205538356U (en) | Sampling device of medical liquid oxygen | |
| CN108776189A (en) | The concentrating instrument of auto-activation continuous sampling | |
| CN208383817U (en) | The concentrating instrument of auto-activation continuous sampling | |
| CN103301741B (en) | Method and device for highly purifying gas | |
| CN114931840B (en) | A helium three gas purification system | |
| CN117398801A (en) | The method comprises the following steps of 3 He gas purifying and recycling device and method | |
| CN116768405A (en) | High-salt low-radioactivity wastewater treatment equipment and method and application | |
| JP7645078B2 (en) | Method and device for collecting sample water | |
| CN107473192A (en) | A kind of helium purification devices of efficient energy-saving | |
| CN205762767U (en) | Aging equipment for thermal desorption adsorption tube | |
| CN206960160U (en) | A kind of hydrogen isotope cryogenic rectification sampling system | |
| CN110609055B (en) | Hyperpolarized rare inert gas generating device | |
| Bhushan | Helium purification by gas adsorption method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20180515 Address after: 430000 318 Friendship Avenue, Wuchang District, Wuhan, Hubei. Patentee after: Wuhan Zhongke polarization Medical Technology Co., Ltd. Address before: 430071 Xiaohong Shanxi No. 30, Wuchang District, Wuhan, Hubei Patentee before: Wuhan Inst. of Physics and Mathematics, Chinese Academy of Sciences |