CN104228067A - Solution-curing quick-molding manufacturing method - Google Patents
Solution-curing quick-molding manufacturing method Download PDFInfo
- Publication number
- CN104228067A CN104228067A CN201410352390.9A CN201410352390A CN104228067A CN 104228067 A CN104228067 A CN 104228067A CN 201410352390 A CN201410352390 A CN 201410352390A CN 104228067 A CN104228067 A CN 104228067A
- Authority
- CN
- China
- Prior art keywords
- solution
- coagulating bath
- materials
- raw material
- quick forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 238000000465 moulding Methods 0.000 title claims description 10
- 239000002994 raw material Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000007639 printing Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 4
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000011083 cement mortar Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 239000012778 molding material Substances 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229920002530 polyetherether ketone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 230000001112 coagulating effect Effects 0.000 claims 10
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 239000008240 homogeneous mixture Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 230000015271 coagulation Effects 0.000 abstract description 30
- 238000005345 coagulation Methods 0.000 abstract description 30
- 238000005516 engineering process Methods 0.000 abstract description 16
- 239000000654 additive Substances 0.000 abstract description 13
- 230000000996 additive effect Effects 0.000 abstract description 13
- 238000007711 solidification Methods 0.000 abstract description 13
- 230000008023 solidification Effects 0.000 abstract description 13
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Abstract
本发明公开了一种溶液固化快速成型制造方法,包括步骤:配制溶液原料;利用计算机对所要形成的产品进行程序切割分层;通过计算机控制泵的启停、泵的流量和打印喷头的运动轨迹,使溶液原料在与凝固浴接触过程中发生化学或/和物理变化而固化成型;在打印完成一层实体层后控制可升降工作台下降一与虚拟层厚度相等的高度;重复前述直至打印出与各虚拟层相对应的所有实体层。本发明溶液原料作为快速增材制造的原材料,拓展了快速增材制造的原料范围,丰富了快速增材制造技术的生产方式;同时本溶液固化快速成型制造方法在生产制造过程中,不需要高能量激光等加热设备,生产过程能耗低,设备形式较简单,生产过程容易控制,易于大规模应用。
The invention discloses a solution solidification rapid prototyping manufacturing method, which comprises the steps of: preparing solution raw materials; using a computer to program cutting and layering the product to be formed; controlling the start and stop of the pump, the flow rate of the pump and the movement track of the printing nozzle through the computer , so that the solution raw material undergoes chemical or/and physical changes in the process of contacting the coagulation bath to solidify and form; after printing a solid layer, control the liftable workbench to descend to a height equal to the thickness of the virtual layer; repeat the above until the printed All physical layers corresponding to each virtual layer. The solution raw material of the present invention is used as a raw material for rapid additive manufacturing, which expands the range of raw materials for rapid additive manufacturing and enriches the production mode of rapid additive manufacturing technology; at the same time, the solution solidification rapid prototyping manufacturing method does not require high Heating equipment such as energy laser has low energy consumption in the production process, the equipment form is relatively simple, the production process is easy to control, and it is easy to apply on a large scale.
Description
技术领域technical field
本发明涉及一种快速增材制造方法,特别涉及一种溶液固化快速成型制造方法。The invention relates to a rapid additive manufacturing method, in particular to a solution solidification rapid prototyping manufacturing method.
背景技术Background technique
快速增材制造技术(又叫3D打印技术)是近年来受到广泛关注的一项技术,就是利用三维CAD的数据,通过各种手段将一层层的材料堆积成实体原型。其主要方式有熔融沉积技术(FDM)、选择性激光熔化(SLM)或选择性激光烧结(SLS)、石膏3DP打印技术等,其打印用的原材料一般是丝状、粉末状的金属或非金属、光固化的液体树脂等。Rapid additive manufacturing technology (also known as 3D printing technology) is a technology that has received widespread attention in recent years. It uses 3D CAD data to accumulate layers of materials into solid prototypes by various means. The main methods are fused deposition technology (FDM), selective laser melting (SLM) or selective laser sintering (SLS), gypsum 3DP printing technology, etc. The raw materials for printing are generally filamentous, powdery metal or non-metallic , light-cured liquid resin, etc.
光固化立体成型技术(SL)是一种以光敏树脂的聚合反应为基础,以计算机控制下的紫外激光,沿着部件各分层截面轮廓,对液态树脂进行逐点扫描,使被扫描的树脂薄层产生聚合反应,由点逐渐形成线,最终形成部件的一个薄层的固化截面,而未被扫描到的树脂保持原来的液态。当一层固化完毕,升降工作台移动一个层片厚度的距离,在上一层已经固化的树脂表面再覆盖一层新的液态树脂,用以进行再一次的扫描固化。新固化的一层牢固地粘合在前一层上,如此循环往复,直到整个部件原型制造完毕。SL工艺的优点是精度较高,一般尺寸精度可控制在0.01mm,表面质量好,原料利用率接近100%,能制造形状特别复杂、精细的零件。Stereolithography (SL) technology is based on the polymerization reaction of photosensitive resin, and the ultraviolet laser under computer control scans the liquid resin point by point along the outline of each layered section of the component, so that the scanned resin The thin layer polymerizes, gradually forming lines from dots, and finally forming a cured cross-section of a thin layer of the part, while the unscanned resin remains in its original liquid state. When one layer is cured, the lifting table moves a distance of one layer thickness, and a new layer of liquid resin is covered on the surface of the previous layer of cured resin for scanning and curing again. The newly cured layer is firmly bonded to the previous layer, and the cycle repeats until the entire part is prototyped. The advantages of the SL process are high precision, the general dimensional accuracy can be controlled at 0.01mm, the surface quality is good, the utilization rate of raw materials is close to 100%, and it can manufacture parts with particularly complex and fine shapes.
熔融沉积技术(FDM)技术是通过将丝状的材料如热塑性塑料、蜡或金属的熔丝从加热喷嘴中挤出,按照零件每层的预定轨迹,以固定的速率进行熔体沉积,叠加一层,工作台下降一个层厚进行叠加沉积新的一层,如此反复最终实现零件的沉积成型。Fused deposition technology (FDM) technology is to extrude filamentous materials such as thermoplastics, wax or metal fuses from heating nozzles, and perform melt deposition at a fixed rate according to the predetermined trajectory of each layer of the part, superimposing a Layer, the workbench descends a layer thickness to superimpose and deposit a new layer, and so on to finally realize the deposition and molding of the part.
由于现有的快速增材制造技术中所采用的材料一般是丝状、粉末状的金属或非金属、光固化的液体树脂等,这些材料在固化成型过程中一般需要激光或其它设备进行加热,因此在现有增材制造技术存在能耗较大,设备结构较复杂,控制难度较高等缺点;同时现有技术中还没有采用溶液作原材料的快速增材制造技术,增材制造技术方式还不够全面。Since the materials used in the existing rapid additive manufacturing technology are generally filamentous, powdery metal or non-metal, light-cured liquid resin, etc., these materials generally require laser or other equipment to be heated during the curing molding process. Therefore, the existing additive manufacturing technology has disadvantages such as large energy consumption, complex equipment structure, and high difficulty in control; at the same time, there is no rapid additive manufacturing technology using solution as raw material in the existing technology, and the additive manufacturing technology method is not enough. comprehensive.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种溶液固化快速成型制造方法,以进一步丰富快速增材制造技术的方式。In view of this, the purpose of the present invention is to provide a solution solidification rapid prototyping manufacturing method to further enrich the way of rapid additive manufacturing technology.
本发明溶液固化快速成型制造方法,包括步骤:The solution curing rapid prototyping manufacturing method of the present invention comprises steps:
(1)配制作为打印原材料的溶液原料,并将溶液原料装入保持其稳定性和均匀性的存储容器中;(1) Prepare the solution raw material as the printing raw material, and put the solution raw material into a storage container that maintains its stability and uniformity;
(2)利用计算机对所要形成的产品进行程序切割分层,形成组成产品的各个虚拟层;(2) Use a computer to perform program cutting and layering on the product to be formed to form each virtual layer that composes the product;
(3)采用泵将存储容器中的溶液原料经打印喷头喷入凝固浴中,所述凝固浴中设置有承载产品的可升降工作台,通过计算机控制泵的启停、泵的流量和打印喷头的运动轨迹,使溶液原料在与凝固浴接触过程中发生化学或/和物理变化而固化成型,固化成型材料在凝固浴的界面处堆积形成一层与步骤(2)中虚拟层形状一致的实体层;(3) Use a pump to spray the solution raw material in the storage container into the coagulation bath through the printing nozzle. The coagulation bath is provided with a liftable workbench for carrying the product, and the computer controls the start and stop of the pump, the flow rate of the pump and the printing nozzle. The movement trajectory of the raw material of the solution causes chemical or/and physical changes to occur in the contact process with the coagulation bath to solidify and form, and the solidified molding material accumulates at the interface of the coagulation bath to form a layer of entities consistent with the shape of the virtual layer in step (2). layer;
(4)在打印完成一层实体层后控制可升降工作台下降与虚拟层厚度相等的高度;(4) Control the liftable workbench to descend to a height equal to the thickness of the virtual layer after printing a solid layer;
(5)依次重复步骤(3)和步骤(4),直至打印出与步骤(2)各虚拟层相对应的所有实体层。(5) Step (3) and step (4) are repeated in sequence until all physical layers corresponding to the virtual layers in step (2) are printed out.
进一步,在步骤(3)中,所述溶液原料在与凝固浴接触过程中发生反相沉淀而固化成型。Further, in step (3), the raw material of the solution undergoes reverse phase precipitation during contact with the coagulation bath to solidify and form.
进一步,所述溶液原料是聚合物以分子状态分散在溶剂中所形成的均相混合体系。Further, the raw material of the solution is a homogeneous mixed system formed by dispersing polymers in a solvent in a molecular state.
进一步,所述聚合物包括聚酰亚胺、聚醚醚酮、聚醚砜、聚丙烯腈、聚苯乙烯、ABS、聚乙烯、聚丙烯、聚乳酸和聚丙烯酰胺中的至少一种;所述溶剂包括环丁砜、DMAc、DMSO、DMF和NMP中的至少一种;所述凝固浴包括水、环丁砜、DMAc、DMF和NMP中的至少一种。Further, the polymer includes at least one of polyimide, polyetheretherketone, polyethersulfone, polyacrylonitrile, polystyrene, ABS, polyethylene, polypropylene, polylactic acid and polyacrylamide; The solvent includes at least one of sulfolane, DMAc, DMSO, DMF and NMP; the coagulation bath includes at least one of water, sulfolane, DMAc, DMF and NMP.
进一步,在步骤(3)中,所述溶液原料在与凝固浴接触过程中发生化学反应而固化成型,所述溶液原料包括环氧树脂乳化液、水泥砂浆或厌氧胶,所述凝固浴包括水、水蒸气、空气或氮气。Further, in step (3), the raw material of the solution reacts chemically during contact with the coagulation bath and is solidified and formed. The raw material of the solution includes epoxy resin emulsion, cement mortar or anaerobic adhesive, and the coagulation bath includes Water, steam, air or nitrogen.
进一步,在步骤(3)中,所述溶液原料在与凝固浴接触过程中发生结晶反应而固化成型。Further, in step (3), the raw material of the solution undergoes a crystallization reaction during contact with the coagulation bath to solidify and form.
进一步,所述溶液原料包括木质纤维素乳液或壳聚糖溶液,所述凝固浴为水。Further, the solution raw material includes lignocellulose emulsion or chitosan solution, and the coagulation bath is water.
进一步,在步骤(1)中,采用加热和搅拌方式保持溶液原料在存储容器中的稳定性和均匀性。Further, in step (1), the stability and uniformity of the solution raw materials in the storage container are maintained by means of heating and stirring.
进一步,在步骤(3)中,采用加热或冷却方式以保持溶液原料固化成型所需的温度。Further, in step (3), heating or cooling is used to maintain the temperature required for the solution raw materials to solidify and form.
本发明的有益效果:本发明一种溶液固化快速成型制造方法,其利用溶液原料作为快速增材制造的原材料,拓展了快速增材制造的原料范围,丰富了快速增材制造技术的生产方式;同时本溶液固化快速成型制造方法在生产制造过程中,不需要高能量激光等加热设备,生产过程能耗低,设备形式较简单,生产过程容易控制,易于大规模应用。Beneficial effects of the present invention: the present invention is a solution solidification rapid prototyping manufacturing method, which uses solution raw materials as raw materials for rapid additive manufacturing, expands the range of raw materials for rapid additive manufacturing, and enriches the production methods of rapid additive manufacturing technology; At the same time, the solution solidification rapid prototyping manufacturing method does not need heating equipment such as high-energy lasers in the manufacturing process, the energy consumption of the production process is low, the equipment form is relatively simple, the production process is easy to control, and it is easy to apply on a large scale.
附图说明Description of drawings
图1为实施本发明溶液固化快速成型制造方法的设备结构示意图。Fig. 1 is a schematic diagram of the equipment structure for implementing the solution curing rapid prototyping manufacturing method of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例一,如图所示,本实施例溶液固化快速成型制造方法,包括步骤:Embodiment 1, as shown in the figure, the solution curing rapid prototyping manufacturing method of this embodiment includes steps:
(1)配制作为打印原材料的溶液原料,并将溶液原料装入保持其稳定性和均匀性的存储容器1中;(1) Prepare the solution raw material as the printing raw material, and put the solution raw material into the storage container 1 to maintain its stability and uniformity;
(2)利用计算机2对所要形成的产品进行程序切割分层,形成组成产品的各个虚拟层,利用程序切割分层产品属现有技术,可利用现有cad设计软件完成;(2) Utilize computer 2 to carry out program cutting and layering to the product to be formed, form each virtual layer that forms product, utilize program cutting and layering product to belong to prior art, can utilize existing cad design software to finish;
(3)采用泵3将存储容器1中的溶液原料经打印喷头4喷入凝固浴5中,所述凝固浴5中设置有承载产品6的可升降工作台7,通过计算机2控制泵3的启停、泵的流量和打印喷头的运动轨迹,使溶液原料在与凝固浴5接触过程中发生化学或/和物理变化而固化成型,固化成型材料在凝固浴5的界面处堆积形成一层与步骤(2)中虚拟层形状一致的实体层;(3) Adopt the pump 3 to spray the solution raw material in the storage container 1 into the coagulation bath 5 through the print nozzle 4, the coagulation bath 5 is provided with a liftable workbench 7 carrying the product 6, and the pump 3 is controlled by the computer 2 The starting and stopping, the flow rate of the pump and the movement trajectory of the printing nozzle make the raw material of the solution undergo chemical or/and physical changes during the contact process with the coagulation bath 5 and solidify and form, and the solidified molding material accumulates at the interface of the coagulation bath 5 to form a layer and The physical layer with the same virtual layer shape in step (2);
(4)在打印完成一层实体层后控制可升降工作台7下降与虚拟层厚度相等的高度;(4) Control the liftable workbench 7 to descend to a height equal to the thickness of the virtual layer after printing one layer of the physical layer;
(5)依次重复步骤(3)和步骤(4),直至打印出与步骤(2)各虚拟层相对应的所有实体层;(5) Step (3) and step (4) are repeated successively until printing out all physical layers corresponding to each virtual layer of step (2);
(6)将打印所得产品从凝固浴5中取出,再经过后期精整等处理,即可得到最终的合格产品。(6) The printed product is taken out from the coagulation bath 5, and then processed in the later stage to obtain the final qualified product.
本实施例溶液固化快速成型制造方法,在步骤(3)中,所述溶液原料在与凝固浴5接触过程中发生反相沉淀而固化成型,所述溶液原料是聚合物以分子状态分散在溶剂中所形成的均相混合体系。In the solution solidification rapid prototyping manufacturing method of this embodiment, in step (3), the solution raw material undergoes reverse phase precipitation and solidification molding during contact with the coagulation bath 5, and the solution raw material is a polymer dispersed in a solvent in a molecular state A homogeneous mixed system formed in
本实施例中,所述溶液原料为聚酰亚胺溶解在DMAc溶剂中形成的均相混合体系,所述凝固浴5为水、环丁砜、DMF或NMP等。当然在不同实施例中,所述溶液原料还可为聚醚砜溶解在砜溶剂中形成的均相混合体系,所述凝固浴为水、DMAc、DMF或NMP等;所述溶液原料还可为聚醚醚酮溶解在二苯砜中形成的均相混合体系,凝固浴为水、DMAc、DMF或NMP;所述所述溶液原料还可为聚丙烯腈溶解在DMF中形成的均相混合体系,所述凝固浴为为水、环丁砜、DMAc或NMP;本实施例中只是列举了部分能发生反相沉淀反应的溶液原料和凝固浴5,本领域技术人员应当理解采用了其他溶液原料和凝固浴,但与本溶液固化快速成型制造方法实质相同的溶液固化快速成型制造方法也应包含在本发明保护范围之中。In this embodiment, the solution raw material is a homogeneous mixed system formed by dissolving polyimide in DMAc solvent, and the coagulation bath 5 is water, sulfolane, DMF or NMP, etc. Of course, in different embodiments, the solution raw material can also be a homogeneous mixed system formed by dissolving polyethersulfone in a sulfone solvent, and the coagulation bath is water, DMAc, DMF or NMP, etc.; the solution raw material can also be A homogeneous mixed system formed by dissolving polyether ether ketone in diphenyl sulfone, the coagulation bath is water, DMAc, DMF or NMP; the raw material of the solution can also be a homogeneous mixed system formed by dissolving polyacrylonitrile in DMF , the coagulation bath is water, sulfolane, DMAc or NMP; the solution raw materials and the coagulation bath 5 that partly can take place in the reverse precipitation reaction are only enumerated in the present embodiment, and those skilled in the art should understand that other solution raw materials and coagulation baths have been used. bath, but the solution-curing rapid prototyping manufacturing method substantially the same as this solution-curing rapid prototyping manufacturing method should also be included in the protection scope of the present invention.
本实施例溶液固化快速成型制造方法,在步骤(1)中,采用加热和搅拌方式来保持溶液原料在存储容器1中的稳定性和均匀性。In the solution solidification rapid prototyping manufacturing method of this embodiment, in step (1), heating and stirring are used to maintain the stability and uniformity of the solution raw materials in the storage container 1 .
本实施例溶液固化快速成型制造方法,在步骤(3)中,还采用了加热或冷却方式来保持溶液原料固化成型所需的温度。In the solution solidification rapid prototyping manufacturing method of this embodiment, in step (3), heating or cooling is also used to maintain the temperature required for the solidification and molding of the solution raw materials.
实施例二:本实施例溶液固化快速成型制造方法与实施例一的区别在于:在步骤(3)中,所述溶液原料在与凝固浴接触过程中发生化学反应而固化成型,所述溶液原料为环氧树脂乳化液,所述凝固浴为水、水蒸气、空气或氮气;当然在不同实施例中,所述溶液原料还可为水泥砂浆,所述凝固浴为水、水蒸气、空气或氮气;所述溶液原料还可为厌氧胶,所述凝固浴包括水、水蒸气、空气或氮气。本实施例溶液固化快速成型制造方法的其它步骤与实施例一相同,在此不再一一赘述。Embodiment 2: The difference between the solution solidification rapid prototyping manufacturing method of this embodiment and Embodiment 1 is that: in step (3), the solution raw material undergoes a chemical reaction during contact with the coagulation bath to solidify and form, and the solution raw material It is an epoxy resin emulsion, and the coagulation bath is water, water vapor, air or nitrogen; certainly in different embodiments, the raw material of the solution can also be cement mortar, and the coagulation bath is water, water vapor, air or nitrogen. Nitrogen: The solution raw material can also be anaerobic glue, and the coagulation bath includes water, water vapor, air or nitrogen. Other steps of the solution curing rapid prototyping manufacturing method in this embodiment are the same as those in Embodiment 1, and will not be repeated here.
实施例三:本实施例溶液固化快速成型制造方法与实施例一的区别在于:在步骤(3)中,所述溶液原料在与凝固浴接触过程中发生结晶反应而固化成型,所述溶液原料包括木质纤维素乳液,所述凝固浴为水;当然在不同实施例中,所述溶液原料还可为壳聚糖溶液,所述凝固浴为水。本实施例溶液固化快速成型制造方法的其它步骤与实施例一相同,在此不再一一赘述。Embodiment three: the difference between the solution solidification rapid prototyping manufacturing method of this embodiment and embodiment one is that: in step (3), the solution raw material undergoes a crystallization reaction during contact with the coagulation bath to solidify and form, and the solution raw material Including lignocellulose emulsion, the coagulation bath is water; of course, in different embodiments, the solution raw material can also be chitosan solution, and the coagulation bath is water. Other steps of the solution curing rapid prototyping manufacturing method in this embodiment are the same as those in Embodiment 1, and will not be repeated here.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,但是不脱离本发明技术方案的宗旨和范围的其它技术方案,均应涵盖在本发明的权利要求范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements, but other technical solutions that do not deviate from the spirit and scope of the technical solutions of the present invention, shall be covered by the claims of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410352390.9A CN104228067A (en) | 2014-07-23 | 2014-07-23 | Solution-curing quick-molding manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410352390.9A CN104228067A (en) | 2014-07-23 | 2014-07-23 | Solution-curing quick-molding manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN104228067A true CN104228067A (en) | 2014-12-24 |
Family
ID=52217386
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410352390.9A Pending CN104228067A (en) | 2014-07-23 | 2014-07-23 | Solution-curing quick-molding manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104228067A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104877297A (en) * | 2015-05-26 | 2015-09-02 | 江苏浩宇电子科技有限公司 | Preparation method for easy-to-color 3D printing supplies |
| CN105082544A (en) * | 2015-09-08 | 2015-11-25 | 电子科技大学 | 3D printer and method for printing object through 3D printer |
| CN105500716A (en) * | 2016-01-20 | 2016-04-20 | 吉林大学 | Method of three-dimensional molding in liquid |
| CN105711101A (en) * | 2016-04-14 | 2016-06-29 | 浙江理工大学 | Production device and preparation method for short-fiber reinforced 3D composite material |
| CN107438513A (en) * | 2015-02-05 | 2017-12-05 | 卡本有限公司 | Pass through the increasing material manufacturing method of intermittent exposure |
| CN107523899A (en) * | 2016-06-17 | 2017-12-29 | 芬欧汇川集团 | A kind of composite of increasing material manufacturing for three-dimensional joint product |
| CN107848197A (en) * | 2015-06-03 | 2018-03-27 | 沙特基础工业全球技术有限公司 | The material extrusion increasing material manufacturing of polyimide precursor |
| CN108312492A (en) * | 2018-01-17 | 2018-07-24 | 华南理工大学 | A kind of 3D printing apparatus and method based on chemical reaction deposit |
| WO2019140969A1 (en) * | 2018-01-17 | 2019-07-25 | 华南理工大学 | Liquid-solid chemical reaction deposition-based 3d printer and operating method thereof |
| CN110142957A (en) * | 2019-06-03 | 2019-08-20 | 北京化工大学 | A polymer 3D printing molding method based on solid phase precipitation separation process |
| US10391711B2 (en) | 2015-03-05 | 2019-08-27 | Carbon, Inc. | Fabrication of three dimensional objects with multiple operating modes |
| CN110240799A (en) * | 2018-03-09 | 2019-09-17 | 中国石油化工股份有限公司 | 3D printing composition and its preparation method and application |
| CN110330697A (en) * | 2019-07-30 | 2019-10-15 | 中国医学科学院生物医学工程研究所 | Using ionic liquid as 3D printing chitosan material of medium and preparation method thereof |
| CN110420351A (en) * | 2019-07-11 | 2019-11-08 | 中国科学院长春应用化学研究所 | A kind of 3D printing flexible, porous timbering material and preparation method thereof |
| CN111469400A (en) * | 2020-04-17 | 2020-07-31 | 中国科学院兰州化学物理研究所 | A kind of preparation method of 3D printing polyimide parts |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1270883A (en) * | 1999-08-18 | 2000-10-25 | 仲伟虹 | Equipment and process for layer manufacture |
| US6391245B1 (en) * | 1999-04-13 | 2002-05-21 | Eom Technologies, L.L.C. | Method for creating three-dimensional objects by cross-sectional lithography |
-
2014
- 2014-07-23 CN CN201410352390.9A patent/CN104228067A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6391245B1 (en) * | 1999-04-13 | 2002-05-21 | Eom Technologies, L.L.C. | Method for creating three-dimensional objects by cross-sectional lithography |
| CN1270883A (en) * | 1999-08-18 | 2000-10-25 | 仲伟虹 | Equipment and process for layer manufacture |
Non-Patent Citations (1)
| Title |
|---|
| T.H.ANG等: "《Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system》", 《MATERIALS SCIENCE AND ENGINEERING:C》 * |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107438513A (en) * | 2015-02-05 | 2017-12-05 | 卡本有限公司 | Pass through the increasing material manufacturing method of intermittent exposure |
| US10974445B2 (en) | 2015-02-05 | 2021-04-13 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
| US10792855B2 (en) | 2015-02-05 | 2020-10-06 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
| US10391711B2 (en) | 2015-03-05 | 2019-08-27 | Carbon, Inc. | Fabrication of three dimensional objects with multiple operating modes |
| US10828826B2 (en) | 2015-03-05 | 2020-11-10 | Carbon, Inc. | Fabrication of three dimensional objects with multiple operating modes |
| CN104877297A (en) * | 2015-05-26 | 2015-09-02 | 江苏浩宇电子科技有限公司 | Preparation method for easy-to-color 3D printing supplies |
| CN107848197A (en) * | 2015-06-03 | 2018-03-27 | 沙特基础工业全球技术有限公司 | The material extrusion increasing material manufacturing of polyimide precursor |
| CN105082544A (en) * | 2015-09-08 | 2015-11-25 | 电子科技大学 | 3D printer and method for printing object through 3D printer |
| CN105500716A (en) * | 2016-01-20 | 2016-04-20 | 吉林大学 | Method of three-dimensional molding in liquid |
| CN105711101A (en) * | 2016-04-14 | 2016-06-29 | 浙江理工大学 | Production device and preparation method for short-fiber reinforced 3D composite material |
| CN107523899A (en) * | 2016-06-17 | 2017-12-29 | 芬欧汇川集团 | A kind of composite of increasing material manufacturing for three-dimensional joint product |
| CN107523899B (en) * | 2016-06-17 | 2021-09-07 | 芬欧汇川集团 | A composite material for additive manufacturing of three-dimensional composite products |
| WO2019140969A1 (en) * | 2018-01-17 | 2019-07-25 | 华南理工大学 | Liquid-solid chemical reaction deposition-based 3d printer and operating method thereof |
| CN108312492A (en) * | 2018-01-17 | 2018-07-24 | 华南理工大学 | A kind of 3D printing apparatus and method based on chemical reaction deposit |
| US11969944B2 (en) | 2018-01-17 | 2024-04-30 | South China University Of Technology | 3D printer based on liquid-solid chemical reaction deposition and operating methods thereof |
| CN110240799A (en) * | 2018-03-09 | 2019-09-17 | 中国石油化工股份有限公司 | 3D printing composition and its preparation method and application |
| CN110142957A (en) * | 2019-06-03 | 2019-08-20 | 北京化工大学 | A polymer 3D printing molding method based on solid phase precipitation separation process |
| CN110420351A (en) * | 2019-07-11 | 2019-11-08 | 中国科学院长春应用化学研究所 | A kind of 3D printing flexible, porous timbering material and preparation method thereof |
| CN110330697A (en) * | 2019-07-30 | 2019-10-15 | 中国医学科学院生物医学工程研究所 | Using ionic liquid as 3D printing chitosan material of medium and preparation method thereof |
| CN110330697B (en) * | 2019-07-30 | 2022-07-01 | 中国医学科学院生物医学工程研究所 | 3D printing chitosan material taking ionic liquid as medium and preparation method thereof |
| CN111469400A (en) * | 2020-04-17 | 2020-07-31 | 中国科学院兰州化学物理研究所 | A kind of preparation method of 3D printing polyimide parts |
| CN111469400B (en) * | 2020-04-17 | 2021-04-23 | 中国科学院兰州化学物理研究所 | A kind of preparation method of 3D printing polyimide parts |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104228067A (en) | Solution-curing quick-molding manufacturing method | |
| AU2018262560B2 (en) | Molding method and apparatus, particularly applicable to metal and/or ceramics | |
| KR101526827B1 (en) | 3D printing apparatus and method of constructing a steel frame structure using the same | |
| KR101479900B1 (en) | 3D printing apparatus and method, and manufacturing method of breakwater unit using the same | |
| Hajash et al. | Large-scale rapid liquid printing | |
| JP6030185B2 (en) | 3D printing apparatus and method, and construction method of steel concrete structure using the same | |
| JP6390108B2 (en) | Sintered modeling material, sintered modeling method, sintered model and sintered modeling apparatus | |
| US12280535B2 (en) | Methods and apparatuses for freeform additive manufacturing of engineering polymers | |
| JP2015231741A (en) | Additive manufacturing system and additive manufacturing method | |
| CN105082544A (en) | 3D printer and method for printing object through 3D printer | |
| CN104908325A (en) | UV curing process based building printing forming method | |
| CN107963892A (en) | A kind of ink silicon-nitride-based ceramic powder 3D printing base substrate method and its forming method | |
| Dudek et al. | Rapid prototyping: Technologies, materials and advances | |
| JP2003001368A (en) | Additive manufacturing method and additive manufacturing product | |
| CN106832885B (en) | Polymer composite material containing polydopamine particles and application thereof | |
| Kumar | Process and classification | |
| WO2022198221A1 (en) | High-viscosity resins in mask projection stereolithography | |
| CN104526836A (en) | Solid inorganic powder 3D printing method based on selective laser melting technology | |
| CN204640811U (en) | A kind of supercritical carbon dioxide that utilizes is as the 3D printing equipment of solvent | |
| Haghighi | Material Extrusion | |
| CN108044110A (en) | A kind of ink WC base cemented carbides 3D printing green body method and its forming method | |
| US20210162671A1 (en) | Method of manufacturing three-dimensionally shaped object, and additive manufacturing apparatus | |
| Hoelzel | Additive manufacturing of HDPE using selective laser sintering | |
| Murr | Rapid Prototyping Technologies: Solid Freeform Fabrication | |
| Kumar | Liquid based additive layer manufacturing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141224 |
|
| RJ01 | Rejection of invention patent application after publication |