CN104270810A - A kind of LTE-A system uplink synchronization method - Google Patents
A kind of LTE-A system uplink synchronization method Download PDFInfo
- Publication number
- CN104270810A CN104270810A CN201410549188.5A CN201410549188A CN104270810A CN 104270810 A CN104270810 A CN 104270810A CN 201410549188 A CN201410549188 A CN 201410549188A CN 104270810 A CN104270810 A CN 104270810A
- Authority
- CN
- China
- Prior art keywords
- enodeb
- uplink
- value
- timing adjustment
- timer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005259 measurement Methods 0.000 claims description 10
- 230000008054 signal transmission Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0005—Synchronisation arrangements synchronizing of arrival of multiple uplinks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种LTE-A系统上行同步方法,包括步骤:1)eNodeB根据上行链路信号中的参考信号获得TA,并根据TA值产生定时调整命令;2)eNodeB将定时调整命令发送给UE,然后eNodeB定时器开始计时;3)UE获取定时调整命令,并根据TA值调整UE上行TA值NTA,new,然后重启UE定时器;4)eNodeB获得新的TA值,并根据新的TA值产生定时调整命令,然后重启eNodeB定时器,重复步骤2)~步骤3);5)eNodeB定时器超时且没有产生定时调整命令,重启eNodeB定时器,重复步骤2)~步骤3)。本发明克服了因基站在上行信道质量很好、时偏很小的情况下长期没有定时调整命令发送而错误判断上行出现了失步情况的缺陷,保持基站与用户设备的正常通信。
The present invention discloses an uplink synchronization method of an LTE-A system, comprising steps: 1) eNodeB obtains TA according to a reference signal in an uplink signal, and generates a timing adjustment command according to the TA value; 2) eNodeB sends the timing adjustment command to UE, then the eNodeB timer starts counting; 3) UE obtains the timing adjustment command, and adjusts the UE uplink TA value N TA,new according to the TA value, and then restarts the UE timer; 4) eNodeB obtains the new TA value, and according to the new The TA value generates a timing adjustment command, then restarts the eNodeB timer, repeats steps 2) to 3); 5) the eNodeB timer times out and does not generate a timing adjustment command, restarts the eNodeB timer, and repeats steps 2) to 3). The invention overcomes the defect that the base station misjudges that the uplink is out of sync because the base station has not sent a timing adjustment command for a long time when the uplink channel quality is good and the time deviation is small, and maintains normal communication between the base station and user equipment.
Description
技术领域technical field
本发明属于LTE-A(Long Term Evolution Advance移动通信长期演进)系统技术领域,具体地指一种LTE-A系统上行同步方法。The invention belongs to the technical field of LTE-A (Long Term Evolution Advance mobile communication long-term evolution) system, and specifically refers to an uplink synchronization method of an LTE-A system.
背景技术Background technique
在移动通信系统中,同步是一个非常关键的过程。通过该过程,用户终端与基站在下行链路和上行链路实现时频同步,UE(用户设备)能够获取本小区更详细的信息以及邻近小区的信息,才可以监听寻呼或发起呼叫,eNodeB(LTE中基站名称)才能正确解调出UE发送来的信息。In mobile communication systems, synchronization is a very critical process. Through this process, the user terminal and the base station realize time-frequency synchronization on the downlink and uplink, and the UE (user equipment) can obtain more detailed information of the current cell and information of neighboring cells before it can monitor paging or initiate a call. eNodeB (the name of the base station in LTE) can correctly demodulate the information sent by the UE.
由于LTE/LTE-Advanced中采用了以OFDM(正交频分复用)为基础的多址复用技术,故而对时间偏移非常的敏感,为了保持UE上行信号之间的正交性,必须要保证UE和eNodeB同步——即各UE的上行信号到达eNodeB端时的接收时钟一致。如果不同的UE发送的信号到达eNodeB端的时间不齐,不同的SC-FDMA符号在时域上混叠在一起,进而使eNodeB接收端产生严重的ISI(符号间干扰)和ICI(载波间干扰),导致eNodeB无法正确解调出UE发送的数据,造成UE和eNodeB间无法正常通信。Since LTE/LTE-Advanced adopts multiple access multiplexing technology based on OFDM (Orthogonal Frequency Division Multiplexing), it is very sensitive to time offset. In order to maintain the orthogonality between UE uplink signals, it is necessary to It is necessary to ensure that the UE and the eNodeB are synchronized—that is, when the uplink signals of each UE arrive at the eNodeB, the reception clocks are consistent. If the signals sent by different UEs arrive at the eNodeB at different times, different SC-FDMA symbols will be aliased together in the time domain, which will cause serious ISI (inter-symbol interference) and ICI (inter-carrier interference) at the eNodeB receiving end. , causing the eNodeB to fail to correctly demodulate the data sent by the UE, resulting in failure of normal communication between the UE and the eNodeB.
UE定时器timeAlignmentTimer是否正常运行是UE侧判定同步的依据。该定时器处于工作状态时认为该UE上行同步,定时器未开启或超时则认为UE上行失步。UE处于同步状态时,eNodeB通过发送定时调整命令维护上行同步,UE定时器timeAlignmentTimer在接收到来自基站eNodeB侧的定时调整命令后会重启。但是当上行信道质量很好,时偏很小时,因eNodeB长期没有定时调整命令发送,UE定时器会因长期未接收到定时调整命令出现超时,从而导致UE侧在同步的情况下错误判定上行出现失步。Whether the UE timer timeAlignmentTimer is running normally is the basis for judging synchronization at the UE side. When the timer is in the working state, the UE is considered to be uplink synchronized, and if the timer is not started or expires, the UE is considered to be out of uplink synchronization. When the UE is in the synchronization state, the eNodeB maintains uplink synchronization by sending a timing adjustment command, and the UE timer timeAlignmentTimer will restart after receiving the timing adjustment command from the eNodeB side of the base station. However, when the uplink channel quality is very good and the time deviation is small, because the eNodeB has not sent a timing adjustment command for a long time, the UE timer will time out due to the long-term failure to receive the timing adjustment command, which will cause the UE to wrongly determine that the uplink has occurred in the case of synchronization. out of step.
发明内容Contents of the invention
本发明的目的是针对在上行信道质量很好、时偏很小的情况下,因eNodeB长期没有定时调整命令发送导致UE侧定时器超时而错误判断上行出现了失步情况的问题,而提出的一种LTE-A系统上行同步的方法。The purpose of the present invention is to solve the problem that when the uplink channel quality is very good and the time deviation is very small, the UE side timer times out due to eNodeB not sending a timing adjustment command for a long time, and it is wrongly judged that there is an out-of-sync situation in the uplink. A method for uplink synchronization of an LTE-A system.
为实现上述目的,本发明所设计的一种LTE-A系统上行同步方法,其特殊之处在于,所述方法包括如下步骤:In order to achieve the above object, a kind of LTE-A system uplink synchronization method designed by the present invention is special in that the method includes the following steps:
1)eNodeB根据对上行链路信号中的参考信号的测量获得TA值,并根据TA值产生定时调整命令;1) The eNodeB obtains the TA value according to the measurement of the reference signal in the uplink signal, and generates a timing adjustment command according to the TA value;
2)所述eNodeB将定时调整命令通过MAC控制元发送给UE,然后所述eNodeB侧的eNodeB定时器开始计时;2) The eNodeB sends the timing adjustment command to the UE through the MAC control element, and then the eNodeB timer on the eNodeB side starts timing;
3)所述UE获取定时调整命令,并根据定时调整命令中的TA值调整UE上行TA值NTA,new,然后重启UE定时器;3) The UE acquires a timing adjustment command, and adjusts the UE uplink TA value N TA,new according to the TA value in the timing adjustment command, and then restarts the UE timer;
4)所述eNodeB根据对上行链路信号中的参考信号的测量获得新的TA值,并根据新的TA值产生定时调整命令,然后重启所述eNodeB定时器,重复步骤2)~步骤3);4) The eNodeB obtains a new TA value according to the measurement of the reference signal in the uplink signal, and generates a timing adjustment command according to the new TA value, then restarts the eNodeB timer, and repeats steps 2) to 3) ;
5)所述eNodeB定时器超时且eNodeB没有产生定时调整命令,重启所述eNodeB定时器,重复步骤2)~步骤3);5) The eNodeB timer expires and the eNodeB does not generate a timing adjustment command, restart the eNodeB timer, and repeat steps 2) to 3);
所述eNodeB为基站,TA为上行时间提前量,UE为用户设备。The eNodeB is a base station, TA is an uplink timing advance, and UE is a user equipment.
优选地,所述eNodeB定时器的配置周期小于UE定时器的配置周期。考虑到UE不一定能顺利的一次性解调出eNodeB发送的TA,可能需要重传,因此两个定时器的周期差值要保证超过一定阈值。所述eNodeB定时器的配置周期为450ms-10000ms。配置周期太小会增加系统的开销,占用系统的频带资源,配置周期太大会导致系统的灵敏度下降,都会导致系统性能的下降。Preferably, the configuration period of the eNodeB timer is shorter than the configuration period of the UE timer. Considering that the UE may not be able to successfully demodulate the TA sent by the eNodeB at one time, retransmission may be required, so the period difference between the two timers must exceed a certain threshold. The configuration period of the eNodeB timer is 450ms-10000ms. If the configuration period is too small, it will increase the overhead of the system and occupy the frequency band resources of the system. If the configuration period is too large, the sensitivity of the system will decrease, which will lead to the decline of system performance.
优选地,在所述步骤1)之前还包括初同步阶段,具体步骤包括:Preferably, an initial synchronization stage is also included before the step 1), and the specific steps include:
0.1)所述eNodeB根据对上行链路信号中的参考信号的测量获得下行同步信号所在的时刻位置,推算出接收到的下行信号的帧边界,并以此帧边界作为下行链路同步定时;0.1) The eNodeB obtains the time position of the downlink synchronization signal according to the measurement of the reference signal in the uplink signal, calculates the frame boundary of the received downlink signal, and uses the frame boundary as the downlink synchronization timing;
0.2)所述UE以下行链路同步定时作为上行信号发射帧边界,并在边界时刻发射随机接入前导序列;0.2) The UE uses downlink synchronization timing as an uplink signal transmission frame boundary, and transmits a random access preamble sequence at the boundary time;
0.3)所述eNodeB接收到随机接入前导序列后,测量出随机接入前导序列的定时和下行信号帧边界的差值,从而得到初始TA值,并根据初始TA值产生定时调整命令;0.3) After receiving the random access preamble, the eNodeB measures the difference between the timing of the random access preamble and the frame boundary of the downlink signal, thereby obtaining an initial TA value, and generates a timing adjustment command according to the initial TA value;
0.4)所述eNodeB将定时调整命令通过随机接入响应消息发送给UE;0.4) The eNodeB sends the timing adjustment command to the UE through a random access response message;
0.5)所述UE根据定时调整命令中的初始TA值对上行信号发射时间边界进行定时提前调整,实现上行同步。0.5) The UE adjusts the timing ahead of time for the uplink signal transmission time boundary according to the initial TA value in the timing adjustment command, so as to realize uplink synchronization.
优选地,所述步骤1)中eNodeB根据对上行链路信号中的参考信号的测量获得TA值的具体步骤为:Preferably, in the step 1), the specific steps for the eNodeB to obtain the TA value according to the measurement of the reference signal in the uplink signal are:
1.1)所述eNodeB的物理层根据上行链路信号中的参考信号算出时偏值并上报给eNodeB的MAC层,所述eNodeB的MAC层算出TA值,1.1) The physical layer of the eNodeB calculates the time offset value according to the reference signal in the uplink signal And report to the MAC layer of the eNodeB, the MAC layer of the eNodeB calculates the TA value,
其中TA是6比特长的上行时间提前量,TA=0,1,2,…,63,是时偏值。Where TA is a 6-bit uplink timing advance, TA=0,1,2,...,63, is the time offset.
优选地,所述步骤3)中UE获取定时调整命令,并根据定时调整命令中的TA值调整UE上行TA值NTA,new的具体步骤包括:Preferably, in the step 3), the UE obtains the timing adjustment command, and adjusts the UE uplink TA value N TA,new according to the TA value in the timing adjustment command. The specific steps include:
3.1)所述UE获取定时调整命令,并将接收到的当前TA值累加在前一次调整的UE上行TA值NTA,old上得到调整后的UE上行TA值NTA,new,即:3.1) The UE acquires a timing adjustment command, and adds the received current TA value to the previously adjusted UE uplink TA value N TA,old to obtain an adjusted UE uplink TA value N TA,new , namely:
NTA,new=NTA,old+(TA-31)×16N TA,new =N TA,old +(TA-31)×16
其中:NTA,new是第n个TTI(传输时间间隔)的UE上行TA值,NTA,old是第n-1个TTI的UE上行TA值。Where: N TA,new is the UE uplink TA value of the nth TTI (transmission time interval), N TA,old is the UE uplink TA value of the n-1th TTI.
本发明的原理为:当UE处于同步状态时,eNodeB通过发送定时调整命令维护上行同步,但是当上行信道质量很好,时偏很小的情况下,eNodeB长期没有定时调整命令发送,UE定时器会在上行同步的情况下误判出现失步。本发明在eNodeB端添加一个eNodeB定时器,与UE定时器相对应。UE定时器和eNodeB定时器几乎是同时启动,但eNodeB定时器的配置周期比UE定时器的周期短。这样在eNodeB定时器超时后,eNodeB侧会发送一个定时调整命令给UE,使UE定时器重启,保证UE定时器不会在同步的情况因长时间没有收到定时调整命令而超时,确保UE处于同步状态。The principle of the present invention is: when the UE is in the synchronization state, the eNodeB maintains uplink synchronization by sending a timing adjustment command, but when the quality of the uplink channel is good and the time deviation is small, the eNodeB does not send a timing adjustment command for a long time, and the UE timer In the case of uplink synchronization, it will be misjudged and out-of-synchronization will occur. The present invention adds an eNodeB timer on the eNodeB side, corresponding to the UE timer. The UE timer and the eNodeB timer are started almost at the same time, but the configuration period of the eNodeB timer is shorter than that of the UE timer. In this way, after the eNodeB timer expires, the eNodeB side will send a timing adjustment command to the UE to restart the UE timer, so as to ensure that the UE timer will not time out due to not receiving the timing adjustment command for a long time in the case of synchronization, and ensure that the UE is in sync status.
本发明的优点在于:克服现有技术中因基站在上行信道质量很好、时偏很小的情况下长期没有定时调整命令发送导致UE侧定时器超时而错误判断上行出现了失步情况的缺陷,采用在基站侧增加定时器,且其配置周期比UE定时器短的技术方案,避免了误判失步,保持基站与用户设备的正常通信。The present invention has the advantages of: overcoming the defect in the prior art that the base station has not sent a timing adjustment command for a long time when the uplink channel quality is very good and the time offset is very small, which leads to the timeout of the UE side timer and wrongly judges that there is an out-of-sync situation in the uplink , the technical solution of adding a timer on the base station side, and its configuration period is shorter than the UE timer, avoids misjudgment and out-of-synchronization, and maintains normal communication between the base station and the user equipment.
附图说明Description of drawings
图1 系统处理定时调整命令的整体框图。Figure 1 The overall block diagram of the system processing timing adjustment commands.
图2 eNodeB同步相关处理流程图。Figure 2 eNodeB synchronization-related processing flow chart.
图3 UE侧定时调整命令处理流程图。Figure 3 is a flow chart of timing adjustment command processing on the UE side.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作进一步的详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
LTE-A系统同步流程主要分下行同步和上行同步两部分。下行同步主要是UE通过小区搜索过程识别小区ID并获得小区下行同步,并能读取小区广播信息。此过程在UE初始接入小区和小区间切换中都会用到。上行同步主要是eNodeB通过发送定时调整命令指示不同的UE采用不同的TA(上行时间提前量)来实现各个UE的上行数据基本同时到达eNodeB端,消除ISI(符号间干扰)和ICI(子载波间干扰),如图1所示。建立起下行同步后,UE就能顺利的接收到下行数据,接下来就是上行同步的过程。The LTE-A system synchronization process is mainly divided into two parts: downlink synchronization and uplink synchronization. The downlink synchronization is mainly that the UE identifies the cell ID through the cell search process and obtains the downlink synchronization of the cell, and can read the cell broadcast information. This process is used both when the UE initially accesses a cell and when it is handed over between cells. Uplink synchronization is mainly that the eNodeB sends timing adjustment commands to instruct different UEs to adopt different TA (uplink time advance) to realize that the uplink data of each UE basically arrives at the eNodeB at the same time, and eliminates ISI (inter-symbol interference) and ICI (inter-subcarrier interference). Interference), as shown in Figure 1. After the downlink synchronization is established, the UE can successfully receive the downlink data, and the next step is the uplink synchronization process.
上行同步主要分初同步和同步保持两个阶段,分别在PRACH(物理随机接入信道)、PUSCH(物理上行共享信道)和SRS(探测参考信号)中完成。Uplink synchronization is mainly divided into two stages: initial synchronization and synchronization maintenance, which are respectively completed in PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel) and SRS (Sounding Reference Signal).
初同步阶段的过程包括以下步骤:The process of the initial synchronization phase includes the following steps:
0.1)eNodeB根据对上行链路信号中的参考信号的测量获得下行同步信号所在的时刻位置,推算出接收到的下行信号的帧边界,并以此帧边界作为下行链路同步定时。0.1) The eNodeB obtains the time position of the downlink synchronization signal based on the measurement of the reference signal in the uplink signal, calculates the frame boundary of the received downlink signal, and uses the frame boundary as the downlink synchronization timing.
0.2)UE以下行链路同步定时作为上行信号发射帧边界,并在边界时刻发射随机接入前导序列(RACH Preamble)。0.2) The UE uses the downlink synchronization timing as the frame boundary for uplink signal transmission, and transmits a random access preamble (RACH Preamble) at the boundary time.
0.3)eNodeB接收到随机接入前导序列后,测量出随机接入前导序列的定时和下行信号帧边界的差值,从而得到初始TA值,并根据初始TA值产生定时调整命令(Timing Advance Command)。0.3) After receiving the random access preamble, the eNodeB measures the difference between the timing of the random access preamble and the frame boundary of the downlink signal, thereby obtaining the initial TA value, and generates a timing adjustment command (Timing Advance Command) according to the initial TA value .
0.4)eNodeB将定时调整命令通过随机接入响应消息发送给UE。0.4) The eNodeB sends the timing adjustment command to the UE through a random access response message.
0.5)UE根据定时调整命令中的初始TA值对上行信号发射时间边界进行定时提前调整,即在原发射边界基础上按照初始TA值进行提前调整,从而可以抵消上下行链路传播延时,使得上行信号到达eNodeB侧的时刻和eNodeB的下行信号帧边界是对齐的,从而达到了上行同步。此初始TA值作为UE的上行同步的初始TA,当后续收到小尺度TA后,将其累加在初始TA值上。0.5) The UE adjusts the timing of the uplink signal transmission time boundary in advance according to the initial TA value in the timing adjustment command, that is, adjusts in advance according to the initial TA value on the basis of the original transmission boundary, so that the propagation delay of the uplink and downlink can be offset, so that the uplink The moment when the signal arrives at the eNodeB side is aligned with the frame boundary of the downlink signal of the eNodeB, thereby achieving uplink synchronization. This initial TA value is used as the initial TA for the UE's uplink synchronization, and it is added to the initial TA value when the small-scale TA is subsequently received.
在UE成功完成随机接入后,UE和eNodeB建立连接。After the UE successfully completes the random access, the UE establishes a connection with the eNodeB.
同步保持阶段的过程包括以下步骤:The process of the synchronization hold phase includes the following steps:
1)eNodeB根据对上行链路信号中的参考信号的测量获得6bit的小尺度TA值,并根据TA值产生定时调整命令,如图2所示;1) The eNodeB obtains a 6-bit small-scale TA value based on the measurement of the reference signal in the uplink signal, and generates a timing adjustment command according to the TA value, as shown in Figure 2;
1.1)eNodeB的物理层根据上行链路信号中的参考信号算出(时偏值),并上报给eNodeB的MAC层,所述eNodeB的MAC层算出TA值,1.1) The physical layer of eNodeB is calculated according to the reference signal in the uplink signal (time offset value), and report to the MAC layer of the eNodeB, and the MAC layer of the eNodeB calculates the TA value,
其中TA是6比特长的上行时间提前量,TA的取值范围是[0,63],是时偏值。Where TA is a 6-bit uplink timing advance, and the value range of TA is [0, 63], is the time offset.
2)eNodeB将定时调整命令通过MAC控制元发送给UE,然后所述eNodeB侧的eNodeB定时器开始计时。2) The eNodeB sends the timing adjustment command to the UE through the MAC control element, and then the eNodeB timer on the eNodeB side starts timing.
eNodeB侧的eNodeB定时器与UE定时器相对应。考虑到UE不一定能顺利的一次性解调出eNodeB发送的TA,可能需要重传,两个定时器的周期差值要保证超过一定阈值。eNodeB定时器的周期配置是在UE定时器的基础上减去对应的阀值来得到,配置范围为450ms-10000ms。通过各种实验和尝试,在保证系统性能达到最优的情况下总结出本方案中eNodeB定时器的配置周期与UE定时器周期的配置关系如表1所示。The eNodeB timer on the eNodeB side corresponds to the UE timer. Considering that the UE may not be able to successfully demodulate the TA sent by the eNodeB at one time, retransmission may be required, and the period difference between the two timers must exceed a certain threshold. The periodic configuration of the eNodeB timer is obtained by subtracting the corresponding threshold from the UE timer, and the configuration range is 450ms-10000ms. Through various experiments and attempts, the relationship between the configuration period of the eNodeB timer and the configuration period of the UE timer in this solution is summarized as shown in Table 1 under the condition of ensuring the optimal system performance.
表1 eNodeB定时器周期配置表Table 1 eNodeB timer period configuration table
3)UE获取定时调整命令,并根据定时调整命令中的TA值调整UE上行TA值NTA,new,然后重启UE定时器,如图3所示;3) The UE obtains the timing adjustment command, and adjusts the UE uplink TA value N TA,new according to the TA value in the timing adjustment command, and then restarts the UE timer, as shown in FIG. 3 ;
3.1)UE获取定时调整命令,并将接收到的当前TA值累加在前一次调整的UE上行TA值NTA,old上得到调整后的UE上行TA值NTA,new,即:3.1) The UE obtains the timing adjustment command, and adds the received current TA value to the previously adjusted UE uplink TA value N TA,old to obtain the adjusted UE uplink TA value N TA,new , namely:
NTA,new=NTA,old+(TA-31)×16N TA,new =N TA,old +(TA-31)×16
其中:NTA,new是第n个TTI(传输时间间隔)的UE上行TA值,NTA,old是第n-1个TTI的UE上行TA值,TA的取值范围是[0,63]。Among them: N TA,new is the UE uplink TA value of the nth TTI (transmission time interval), N TA,old is the UE uplink TA value of the n-1th TTI, and the value range of TA is [0, 63] .
4)eNodeB根据对上行链路信号中的参考信号的测量获得新的TA值,并根据新的TA值产生定时调整命令,然后重启eNodeB定时器,重复步骤2)~步骤3);4) The eNodeB obtains a new TA value according to the measurement of the reference signal in the uplink signal, and generates a timing adjustment command according to the new TA value, then restarts the eNodeB timer, and repeats steps 2) to 3);
5)eNodeB定时器超时且eNodeB没有产生定时调整命令,重启eNodeB定时器,重复步骤2)~步骤3)。5) The eNodeB timer expires and the eNodeB does not generate a timing adjustment command, restart the eNodeB timer, and repeat steps 2) to 3).
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410549188.5A CN104270810A (en) | 2014-10-16 | 2014-10-16 | A kind of LTE-A system uplink synchronization method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410549188.5A CN104270810A (en) | 2014-10-16 | 2014-10-16 | A kind of LTE-A system uplink synchronization method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN104270810A true CN104270810A (en) | 2015-01-07 |
Family
ID=52162276
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410549188.5A Pending CN104270810A (en) | 2014-10-16 | 2014-10-16 | A kind of LTE-A system uplink synchronization method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104270810A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105848278A (en) * | 2016-06-21 | 2016-08-10 | 重庆邮电大学 | Method for processing multi-terminal uplink asynchronization of third-party instrument in monitoring LTE-A system |
| WO2017024564A1 (en) * | 2015-08-12 | 2017-02-16 | 华为技术有限公司 | Method and apparatus for sending uplink information |
| CN106804047A (en) * | 2015-11-26 | 2017-06-06 | 北京信威通信技术股份有限公司 | LTE network based on TA receives the method and device with congestion control |
| CN106941717A (en) * | 2016-01-04 | 2017-07-11 | 中兴通讯股份有限公司 | Fault reporting methods and device |
| WO2018028473A1 (en) * | 2016-08-11 | 2018-02-15 | 电信科学技术研究院 | Timing sequence adjustment method, base station, terminal and communication system |
| CN108737056A (en) * | 2018-04-26 | 2018-11-02 | 武汉虹信通信技术有限责任公司 | TA under a kind of polymerization of lte-a system carrier wave determines method |
| WO2018223929A1 (en) * | 2017-06-06 | 2018-12-13 | 华为技术有限公司 | Method and apparatus for sending uplink information |
| CN109474986A (en) * | 2018-12-27 | 2019-03-15 | 西安电子科技大学 | Uplink synchronization method, device, device, storage medium and LTE communication system |
| CN109788543A (en) * | 2017-11-13 | 2019-05-21 | 展讯通信(上海)有限公司 | Determination method and device, storage medium, the terminal of uplink TA |
| CN111526577A (en) * | 2019-02-01 | 2020-08-11 | 华为技术有限公司 | Clock synchronization method and equipment |
| WO2020192653A1 (en) * | 2019-03-28 | 2020-10-01 | 华为技术有限公司 | Downlink transmission timing adjustment method, and communication device |
| CN112867137A (en) * | 2021-01-14 | 2021-05-28 | 江苏亨鑫众联通信技术有限公司 | Uplink synchronization method and device |
| WO2022104602A1 (en) * | 2020-11-18 | 2022-05-27 | Oppo广东移动通信有限公司 | Method and apparatus for reporting timing advance in ntn, method and apparatus for receiving timing advance in ntn, and device |
| WO2024197961A1 (en) * | 2023-03-31 | 2024-10-03 | 北京小米移动软件有限公司 | Communication method, apparatus and device, and storage medium |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101841905A (en) * | 2009-03-18 | 2010-09-22 | 大唐移动通信设备有限公司 | Method and base station for indicating restart of time alignment timer of terminal |
| CN101998614A (en) * | 2009-08-17 | 2011-03-30 | 中兴通讯股份有限公司 | Uplink signal synchronization method and system |
| CN102014476A (en) * | 2009-10-10 | 2011-04-13 | 大唐移动通信设备有限公司 | Uplink synchronization method, system and equipment |
| CN102647757A (en) * | 2011-02-17 | 2012-08-22 | 中兴通讯股份有限公司 | Sending method for TA (Time Advance) regulating command of LTE (Long Term Evolution) and base station |
| WO2013051991A1 (en) * | 2011-10-07 | 2013-04-11 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink synchronization method and user equipment |
-
2014
- 2014-10-16 CN CN201410549188.5A patent/CN104270810A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101841905A (en) * | 2009-03-18 | 2010-09-22 | 大唐移动通信设备有限公司 | Method and base station for indicating restart of time alignment timer of terminal |
| CN101998614A (en) * | 2009-08-17 | 2011-03-30 | 中兴通讯股份有限公司 | Uplink signal synchronization method and system |
| CN102014476A (en) * | 2009-10-10 | 2011-04-13 | 大唐移动通信设备有限公司 | Uplink synchronization method, system and equipment |
| CN102647757A (en) * | 2011-02-17 | 2012-08-22 | 中兴通讯股份有限公司 | Sending method for TA (Time Advance) regulating command of LTE (Long Term Evolution) and base station |
| WO2013051991A1 (en) * | 2011-10-07 | 2013-04-11 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink synchronization method and user equipment |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180167936A1 (en) * | 2015-08-12 | 2018-06-14 | Huawei Technologies Co., Ltd. | Uplink Information Sending Method and Apparatus |
| WO2017024564A1 (en) * | 2015-08-12 | 2017-02-16 | 华为技术有限公司 | Method and apparatus for sending uplink information |
| US10575288B2 (en) | 2015-08-12 | 2020-02-25 | Huawei Technologies Co., Ltd. | Uplink information sending method and apparatus |
| CN107113753A (en) * | 2015-08-12 | 2017-08-29 | 华为技术有限公司 | A kind of method and device for sending uplink information |
| CN106804047A (en) * | 2015-11-26 | 2017-06-06 | 北京信威通信技术股份有限公司 | LTE network based on TA receives the method and device with congestion control |
| CN106941717A (en) * | 2016-01-04 | 2017-07-11 | 中兴通讯股份有限公司 | Fault reporting methods and device |
| CN106941717B (en) * | 2016-01-04 | 2021-02-12 | 中兴通讯股份有限公司 | Fault reporting method and device |
| CN105848278B (en) * | 2016-06-21 | 2019-03-08 | 重庆邮电大学 | Method for handling multi-terminal uplink asynchronous when a third-party meter monitors the LTE-A system |
| CN105848278A (en) * | 2016-06-21 | 2016-08-10 | 重庆邮电大学 | Method for processing multi-terminal uplink asynchronization of third-party instrument in monitoring LTE-A system |
| WO2018028473A1 (en) * | 2016-08-11 | 2018-02-15 | 电信科学技术研究院 | Timing sequence adjustment method, base station, terminal and communication system |
| WO2018223929A1 (en) * | 2017-06-06 | 2018-12-13 | 华为技术有限公司 | Method and apparatus for sending uplink information |
| CN109275185A (en) * | 2017-06-06 | 2019-01-25 | 华为技术有限公司 | Method and device for transmitting uplink information |
| US10602534B2 (en) | 2017-06-06 | 2020-03-24 | Huawei Technologies Co., Ltd. | Uplink information sending method and apparatus |
| CN109275185B (en) * | 2017-06-06 | 2020-03-20 | 华为技术有限公司 | Method and device for sending uplink information |
| CN109788543A (en) * | 2017-11-13 | 2019-05-21 | 展讯通信(上海)有限公司 | Determination method and device, storage medium, the terminal of uplink TA |
| CN109788543B (en) * | 2017-11-13 | 2020-10-09 | 展讯通信(上海)有限公司 | Method and device for determining uplink TA, storage medium and terminal |
| CN108737056A (en) * | 2018-04-26 | 2018-11-02 | 武汉虹信通信技术有限责任公司 | TA under a kind of polymerization of lte-a system carrier wave determines method |
| CN108737056B (en) * | 2018-04-26 | 2021-02-19 | 武汉虹信科技发展有限责任公司 | TA (timing advance) determination method under carrier aggregation of LTE-A (Long term evolution-advanced) system |
| CN109474986A (en) * | 2018-12-27 | 2019-03-15 | 西安电子科技大学 | Uplink synchronization method, device, device, storage medium and LTE communication system |
| CN111526577A (en) * | 2019-02-01 | 2020-08-11 | 华为技术有限公司 | Clock synchronization method and equipment |
| WO2020192653A1 (en) * | 2019-03-28 | 2020-10-01 | 华为技术有限公司 | Downlink transmission timing adjustment method, and communication device |
| CN111757455A (en) * | 2019-03-28 | 2020-10-09 | 华为技术有限公司 | Method and communication device for adjusting downlink transmission timing |
| CN111757455B (en) * | 2019-03-28 | 2022-05-13 | 华为技术有限公司 | Method and communication device for adjusting downlink transmission timing |
| WO2022104602A1 (en) * | 2020-11-18 | 2022-05-27 | Oppo广东移动通信有限公司 | Method and apparatus for reporting timing advance in ntn, method and apparatus for receiving timing advance in ntn, and device |
| CN112867137A (en) * | 2021-01-14 | 2021-05-28 | 江苏亨鑫众联通信技术有限公司 | Uplink synchronization method and device |
| CN112867137B (en) * | 2021-01-14 | 2022-08-19 | 江苏亨鑫众联通信技术有限公司 | Uplink synchronization method and device |
| WO2024197961A1 (en) * | 2023-03-31 | 2024-10-03 | 北京小米移动软件有限公司 | Communication method, apparatus and device, and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104270810A (en) | A kind of LTE-A system uplink synchronization method | |
| US11202285B2 (en) | Method and apparatus of configuring downlink timing and transmitting random access response in mobile communication system using carrier aggregation | |
| US20230120647A1 (en) | Methods and Arrangements in a Telecommunications Network | |
| CN108337728B (en) | Timing advance maintenance method, device and system | |
| JP6653394B2 (en) | Uplink transmission timing control | |
| RU2717553C1 (en) | Autonomous retiming for wireless device | |
| CN110192426B (en) | Terminal device, base station device, communication method, and integrated circuit | |
| US9491778B2 (en) | Method and device for obtaining secondary timing advance | |
| US10959138B2 (en) | Terminal apparatus, base station apparatus, communication method, and control method | |
| EP3826378B1 (en) | Method and apparatus for adjusting uplink timing in a mobile system using carrier aggregation | |
| CN104412676B (en) | The synchronous method and synchronizer of D2D communication in wireless communication system | |
| CN105164950B (en) | Method and device for transmitting uplink data using multiple serving cells | |
| CN109906666B (en) | Network node and wireless communication device for random access in a beam-based system | |
| CN102740443B (en) | Method and device for obtaining auxiliary timing advance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150107 |
|
| RJ01 | Rejection of invention patent application after publication |