CN104272062B - Z-axis electrode structure of microelectromechanical system (MEMS) multi-axis gyroscope - Google Patents
Z-axis electrode structure of microelectromechanical system (MEMS) multi-axis gyroscope Download PDFInfo
- Publication number
- CN104272062B CN104272062B CN201380007615.0A CN201380007615A CN104272062B CN 104272062 B CN104272062 B CN 104272062B CN 201380007615 A CN201380007615 A CN 201380007615A CN 104272062 B CN104272062 B CN 104272062B
- Authority
- CN
- China
- Prior art keywords
- mass
- electrode
- stator
- proof
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5705—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
- G01C19/5712—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
- Micromachines (AREA)
Abstract
Description
要求优先权claim priority
本申请要求2012年2月1日提交的名称为“MEMSMULTI-AXISGYROSCOPEWITHCENTRALSUSPENSIONANDGIMBALSTRUCTURE”(具有中心悬吊件和环架结构的MEMS多轴陀螺仪)的美国临时专利申请序列号61/593,691的优先权的权益,该专利申请全文以引用方式并入本文。This application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 61/593,691, filed February 1, 2012, entitled "MEMSMULTI-AXISGYROSCOPE WITH CENTRALSUSPENSIONANDGIMBALSTRUCTURE" (MEMS Multi-Axis Gyroscope with Central Suspension and Ring Frame Structure) , which is incorporated herein by reference in its entirety.
背景技术Background technique
正交误差是限制微机械传感器(诸如陀螺仪)的性能的主要因素之一。考虑到驱动振荡和感应振荡的相对大小,即使极小部分驱动运动耦合进感应模式都可能支配科里奥利(Coriolis)响应。Quadrature error is one of the main factors limiting the performance of micromechanical sensors such as gyroscopes. Given the relative magnitudes of the driven and induced oscillations, even a tiny fraction of the driven motion coupled into the induced mode may dominate the Coriolis response.
实际上,制造缺陷可以导致诸如陀螺仪结构的结构中的欠理想几何尺寸。欠理想几何形状可能致使驱动振荡部分地耦合进感应模式。即使存在若干种交叉耦合途径,诸如弹性、粘性和静电耦合途径,但在某些情况下,由于悬吊元件中的非等弹性,弹性耦合增加幅度超出所需的标准。In fact, manufacturing imperfections can lead to suboptimal geometries in structures such as gyroscope structures. Suboptimal geometries may cause driven oscillations to partially couple into the inductive mode. Even though there are several cross-coupling pathways such as elastic, viscous and electrostatic coupling pathways, in some cases elastic coupling increases beyond the required criteria due to anisoelasticity in the suspension elements.
在诸如陀螺仪系统的具有面外操作模式的传感器系统中,面内方向与面外方向之间的非等弹性是正交误差的主要来源。深反应离子刻蚀(“DRIE”)中的偏斜或倾斜可导致挠曲支承部的横截面从矩形偏离成平行四边形,进而使悬吊挠曲支承部的主弹性轴偏离平行于器件表面(的方向),或偏离正交于器件表面(的方向)。在一个例子中,诸如陀螺仪结构的单轴或多轴微机械传感器结构可经受至少部分地由DRIE倾斜引起的高正交误差。In sensor systems with an out-of-plane mode of operation, such as gyroscope systems, the anisotropy between in-plane and out-of-plane directions is a major source of quadrature error. Skew or tilt in deep reactive ion etching ("DRIE") can cause the cross-section of the flexure bearing to deviate from a rectangle to a parallelogram, which in turn causes the principal elastic axis of the suspended flexure bearing to deviate from being parallel to the device surface ( direction), or deviate from normal to the device surface (direction). In one example, single-axis or multi-axis micromachined sensor structures such as gyroscope structures can suffer from high quadrature errors caused at least in part by DRIE tilt.
另外,现有的共振器依赖于简单的直线形挠曲支承部来生成挠曲结构,以允许器件在共振中移位。当刻蚀在挠曲支承部中产生倾斜时,会造成重大问题,引起很大的非期望的移位,并且通常使感应机构致动。In addition, existing resonators rely on simple linear flexure bearings to create a flexure structure that allows the device to shift in resonance. Etching can cause major problems when it creates tilt in the flexure bearing, causing large undesired displacements and often actuating the sensing mechanism.
附图说明Description of drawings
在附图中(这些附图不一定是按照比例绘制的),相同的数字能够描述不同视图中的类似部件。具有不同字母后缀的相同数字能够表示类似部件的不同示例。附图通过示例而非限制的方式概括地示例了本申请中讨论的各个实施例。In the drawings (which are not necessarily drawn to scale), like numerals may describe similar parts in the different views. The same number with different letter suffixes can represent different instances of similar components. The drawings generally illustrate, by way of illustration and not limitation, various embodiments discussed in this application.
图1示出了根据一个例子的包括悬吊结构的传感器结构。Fig. 1 shows a sensor structure including a suspension structure according to an example.
图2A示出了根据一个例子的悬吊件的一部分。Figure 2A shows a portion of a suspension according to one example.
图2B示出了在一个例子中的图8A的处于弯曲状态下的悬吊件,在该弯曲状态下,顶部部分向上弯曲。FIG. 2B shows the suspension of FIG. 8A in an example in a bent state in which the top portion is bent upward.
图2C示出了在一个例子中的图8A的处于弯曲状态下的悬吊件,在该弯曲状态下,顶部部分向下弯曲。FIG. 2C shows the suspension of FIG. 8A in an example in a bent state in which the top portion is bent downward.
图3示出了根据一个例子的悬吊结构的围绕Z轴的扭转运动。Fig. 3 shows the torsional movement about the Z-axis of the suspension structure according to an example.
图4示出了根据一个例子的悬吊结构的围绕X轴的扭转运动。Fig. 4 shows the torsional movement about the X-axis of the suspension structure according to an example.
图5示出了根据一个例子的悬吊结构的围绕Y轴的扭转运动。Fig. 5 shows the torsional movement about the Y-axis of the suspension structure according to an example.
图6示出了根据一个例子的包括低正交误差悬吊件的2轴陀螺仪。Figure 6 shows a 2-axis gyroscope including a low quadrature error suspension, according to an example.
图7示出了根据一个例子的包括低正交误差悬吊件的3轴陀螺仪。FIG. 7 shows a 3-axis gyroscope including a low quadrature error suspension, according to an example.
图8示出了示例性悬吊件的正交误差。Figure 8 shows the quadrature error for an exemplary suspension.
图9示出了根据一个例子的驱动模式。Fig. 9 shows driving modes according to one example.
图10示出了根据一个例子的有四个弯曲部的挠曲支承部。Figure 10 shows a flexure bearing with four bends, according to one example.
图11示出了根据一个例子的挠曲支承部,所述挠曲支承部包括挠曲的挠曲支承部和非挠曲的挠曲支承部。11 illustrates a flexure bearing including a flexure flexure and a non-flexure flexure according to one example.
图12示出了根据一个例子的包括挠曲的挠曲支承部和非挠曲的挠曲支承部的挠曲支承部,该挠曲的挠曲支承部比图11的挠曲支承部短,该非挠曲的挠曲支承部比图11的非挠曲的挠曲支承部短。12 illustrates a flexure bearing comprising a flexure and a non-flexure flexure, the flexure being shorter than the flexure of FIG. 11 , according to one example, The non-flexing flex bearing is shorter than the non-flexing flex bearing of FIG. 11 .
图13A示出了根据一个例子的具有大间隙的悬吊件。Figure 13A shows a suspension with a large gap, according to one example.
图13B示出了与挠曲支承部的挠曲度相关的应力。Figure 13B shows the stresses associated with the degree of deflection of the flexure bearing.
图14A示出了根据一个例子的包括Z字形部的悬吊件。Figure 14A shows a suspension including a zigzag according to one example.
图14B示出了在图14A的14B处截取的截面。Fig. 14B shows a section taken at 14B of Fig. 14A.
图14C示出了在图14A的14C处截取的截面。Fig. 14C shows a section taken at 14C of Fig. 14A.
图14D示出了在图14A的14D处截取的截面。Fig. 14D shows a cross section taken at 14D of Fig. 14A.
图15示出了根据一个例子的围绕Z轴扭转挠曲的图14的悬吊件。15 illustrates the suspension of FIG. 14 torsionally flexed about the Z-axis, according to one example.
图16A示出了根据一个例子的围绕Z轴扭转挠曲的图14的悬吊件。16A shows the suspension of FIG. 14 torsionally flexed about the Z-axis, according to one example.
图16B示出了根据一个例子的围绕Y轴挠曲的图14的悬吊件。16B shows the suspension of FIG. 14 flexed about the Y-axis, according to one example.
图16C示出了根据一个例子的围绕X轴挠曲的图14的悬吊件。16C shows the suspension of FIG. 14 flexed about the X-axis, according to one example.
图16D示出了根据一个例子的沿Y轴移位挠曲的图14的悬吊件。FIG. 16D shows the suspension of FIG. 14 displaced and deflected along the Y-axis, according to one example.
图17示出了根据一个实施例的制作低正交误差悬吊件的方法。Figure 17 illustrates a method of making a low quadrature error suspension, according to one embodiment.
图18示出了根据一个实施例的制作抑振z轴电极的方法。Figure 18 illustrates a method of making a vibration-suppressing z-axis electrode, according to one embodiment.
具体实施方式detailed description
不需要的侧壁挠曲可对支撑微机电系统(“MEMS”)结构(诸如管芯)的一个或多个部分的挠曲支承部(“挠曲部”)(诸如挠曲支承部)的性能产生负面影响。在一个例子中,如果一个或多个侧壁具有角度误差,面内驱动运动便可引起面外运动,诸如在倾斜轴为沿着挠曲支承部或横梁长度时。在一个例子中,当在驱动运动期间倾斜的易曲折或顺应性挠曲支承部或横梁位于相对侧上时,产生的面外偏转可引起或增加了正交误差。在一个例子中,低正交悬吊系统旨在降低或抵消不期望的面外运动。Undesirable sidewall deflection can be damaging to flexure bearings ("flexures"), such as flexure bearings, that support one or more portions of a microelectromechanical systems ("MEMS") structure (such as a die). Performance is negatively affected. In one example, in-plane driving motion can cause out-of-plane motion if one or more sidewalls have an angular error, such as when the tilt axis is along the length of a flexure bearing or beam. In one example, when a slanted pliable or compliant flexure bearing or beam is on the opposite side during drive motion, the resulting out-of-plane deflection can cause or add to quadrature error. In one example, a low-orthogonal suspension system is designed to reduce or counteract undesired out-of-plane motion.
图1示出了根据一个例子的包括悬吊结构的传感器结构。各种例子公开了用于传感器的低正交悬吊系统。在一个例子中,悬吊结构可用在具有质量块(proof-mass),诸如单个质量块104的扭转多轴微机械陀螺仪系统中。在一个例子中,质量块104在其中心处通过单个中心锚106悬吊。在一个例子中,一个或多个挠曲支承部将锚106连接到质量块104,诸如连接到质量块的主框架116。在一个例子中,一个或多个挠曲部允许质量块围绕三个垂直的轴扭转地振荡。在一个例子中,悬吊挠曲支承部或横梁提供面内和面外偏转,从而允许质量块围绕x轴、y轴和z轴扭转地振荡。Fig. 1 shows a sensor structure including a suspension structure according to an example. Various examples disclose low orthogonal suspension systems for sensors. In one example, the suspension structure may be used in a torsion multi-axis micromachined gyroscope system with a proof-mass, such as single-mass 104 . In one example, the mass 104 is suspended at its center by a single central anchor 106 . In one example, one or more flexure bearings connect the anchor 106 to the proof-mass 104 , such as to the main frame 116 of the proof-mass. In one example, the one or more flexures allow the mass to torsionally oscillate about three perpendicular axes. In one example, suspended flexure bearings or beams provide in-plane and out-of-plane deflections, allowing the mass to oscillate torsionally about the x-, y-, and z-axes.
一个例子包括固定部分118,其中锚106耦合至固定部分118。在一个例子中,第一非线性悬吊构件108在锚106的一侧耦合至锚。在一个例子中,第二非线性悬吊构件120在锚的同一侧耦合至锚,所述第二非线性悬吊构件具有与所述第一非线性悬吊构件关于锚二等分面122(诸如x-z面)成镜像关系的形状和位置。各种例子包括平面式质量块104,质量块至少部分地由第一非线性悬吊构件108和第二非线性悬吊构件120悬吊,使得质量块可围绕锚106旋转并且可在平行于固定部分的平面中(诸如在x-y平面中)滑动。One example includes a fixed portion 118 where the anchor 106 is coupled to the fixed portion 118 . In one example, the first nonlinear suspension member 108 is coupled to the anchor on one side of the anchor 106 . In one example, a second nonlinear suspension member 120 is coupled to the anchor on the same side of the anchor, the second nonlinear suspension member having a bisecting plane 122 ( Such as x-z plane) shape and position in a mirror image relationship. Various examples include a planar proof-mass 104 suspended at least in part by a first nonlinear suspension member 108 and a second nonlinear suspension member 120 such that the proof-mass is rotatable about an anchor 106 and can rotate parallel to a fixed sliding in a partial plane, such as in the x-y plane.
在一个例子中,C形挠曲支承部108包括耦合至锚106且朝着锚二等分面122延伸的内部部分110、具有近侧部分和远侧部分的中心部分114,其中近侧部分耦合至内部部分110,远侧部分沿着锚二等分面122延伸远离锚106并且耦合至延伸远离锚二等分面122的外部部分112。在一个例子中,中心部分114垂直于内部部分110和外部部分112。在一个例子中,中心部分114平行于锚二等分面122。In one example, the C-shaped flexure bearing 108 includes an inner portion 110 coupled to the anchor 106 and extending toward the anchor bisecting surface 122, a central portion 114 having a proximal portion and a distal portion, wherein the proximal portion is coupled To inner portion 110 , a distal portion extends away from anchor 106 along anchor bisecting plane 122 and is coupled to outer portion 112 extending away from anchor bisecting plane 122 . In one example, central portion 114 is perpendicular to inner portion 110 and outer portion 112 . In one example, central portion 114 is parallel to anchor bisecting plane 122 .
在一个例子中,锚106、第一非线性悬吊构件108、第二非线性悬吊构件120以及质量块104由单片式材料形成。在一个例子中,固定部分118包括与锚106、第一非线性悬吊构件108、第二非线性悬吊构件120以及质量块104的单片式材料不同的固定单片式材料。在一个例子中,固定部分118包括与锚106、第一非线性悬吊构件108、第二非线性悬吊构件120以及质量块104的单片式材料相同的固定单片式材料。In one example, anchor 106, first nonlinear suspension member 108, second nonlinear suspension member 120, and proof-mass 104 are formed from a single piece of material. In one example, fixed portion 118 includes a fixed monolithic piece of material that is different from the monolithic material of anchor 106 , first nonlinear suspension member 108 , second nonlinear suspension member 120 , and proof-mass 104 . In one example, fixed portion 118 includes the same fixed piece of material as the single piece of material of anchor 106 , first nonlinear suspension member 108 , second nonlinear suspension member 120 , and proof-mass 104 .
在一个例子中,挠曲支承部设置在中心锚的每一侧上,诸如所述锚的相反侧上。在一个例子中,由一侧上每个C形挠曲支承部引起的面外运动被其对称的挠曲支承部抵消。因此,在一个例子中,局部地降低或抵消在每个挠曲支承部上引起的正交误差。In one example, flexure bearings are provided on each side of a central anchor, such as on opposite sides of the anchor. In one example, the out-of-plane motion induced by each C-shaped flexure bearing on one side is counteracted by its symmetrical flexure bearing. Thus, in one example, quadrature errors induced on each flexure bearing are locally reduced or cancelled.
在一个例子中,中心悬吊结构102被用于传感器中,诸如6自由度(“DOF”)传感器100(诸如由对称挠曲支承部组成的单片式6-DOF传感器)中。在一个例子中,对称的挠曲支承部包括“C形挠曲支承部”108。在一个例子中,每个C形挠曲支承部包括内挠曲支承部110和外挠曲支承部112以及在两个挠曲支承部之间的高刚度连接挠曲支承部114。在一个例子中,内挠曲支承部112在一端连接至锚106,外挠曲支承部112在另一端连接至质量块104。在一个例子中,悬吊系统102共计由八个C形挠曲支承部108形成。在一个例子中,两个对称的C形挠曲支承部位于中心锚结构的四个侧面的每一侧上。In one example, the central suspension structure 102 is used in a sensor, such as a 6-degree-of-freedom ("DOF") sensor 100 (such as a monolithic 6-DOF sensor composed of symmetrical flexure bearings). In one example, the symmetrical flexure bearing includes a “C-shaped flexure bearing” 108 . In one example, each C-shaped flexure bearing includes an inner flexure bearing 110 and an outer flexure bearing 112 with a high stiffness connecting flexure bearing 114 between the two flexure bearings. In one example, the inner flexure bearing 112 is connected to the anchor 106 at one end and the outer flexure bearing 112 is connected to the mass 104 at the other end. In one example, the suspension system 102 is formed from a total of eight C-shaped flexure bearings 108 . In one example, two symmetrical C-shaped flexure bearings are located on each of the four sides of the central anchor structure.
在一个例子中,悬吊系统提供三种陀螺仪工作模式:围绕Z轴的面内扭转,用于驱动运动;围绕X轴的面外扭转,用于Y轴陀螺仪感应运动;以及围绕Y轴的面外扭转,用于X轴陀螺仪感应运动。在一个例子中,振荡模式能够彼此之间互相切换。In one example, the suspension provides three modes of gyroscope operation: in-plane twist around the Z axis for driving motion; out-of-plane twist around the X axis for Y-axis gyroscope-sensed motion; and around the Y-axis The out-of-plane twist for the X-axis gyroscope to sense motion. In one example, the oscillation modes can be switched between each other.
图2A示出了根据一个例子的悬吊件的一部分。图2B示出了在一个例子中的图2A的处于弯曲状态下的悬吊件,在该弯曲状态下,顶部部分向上弯曲。图2C示出了在一个例子中的图2A的处于弯曲状态下的悬吊件,在该弯曲状态下,顶部部分向下弯曲。所示的例子示出了在悬吊机构在各个方向的变形轮廓。在一个例子中,在图2B和图2C所示的两种变形情况中,弯曲等同且相反地发生。在一个例子中,在每个方向上,两个挠曲支承部以相反的方式弯曲。在一个例子中,通过产生相互抵消的相反的面外变形,使得从挠曲部一端到另一端的总体的面外变形最小化。Figure 2A shows a portion of a suspension according to one example. FIG. 2B shows the suspension of FIG. 2A in an example in a bent state in which the top portion is bent upward. FIG. 2C shows the suspension of FIG. 2A in an example in a bent state in which the top portion is bent downward. The example shown shows the deformation profile in all directions of the suspension mechanism. In one example, bending occurs equally and oppositely in the two deformation cases shown in Figures 2B and 2C. In one example, in each direction, the two flexure bearings bend in opposite ways. In one example, the overall out-of-plane deformation from one end of the flexure to the other is minimized by creating opposing out-of-plane deformations that cancel each other out.
图3示出了根据一个例子的悬吊结构的围绕Z轴的扭转运动。在一个例子中,悬吊系统300包括在中心锚结构306的每一侧上的两个对称的C形挠曲支承部302,304。在一个例子中,C形挠曲支承部302,304中的一个或两个由设置在两个挠曲支承部310,312之间的高刚度连接挠曲支承部308形成。在一个例子中,在面内扭转运动(诸如平行于图的平面的运动)期间,由一侧上的每个C形挠曲支承部中的挠曲支承部的偏转引起的面外运动被对称的挠曲支承部310’,312’所抵消。因此,局部地降低或抵消在每个挠曲支承部上引起的正交误差。Fig. 3 shows the torsional movement about the Z-axis of the suspension structure according to an example. In one example, the suspension system 300 includes two symmetrical C-shaped flexure bearings 302 , 304 on each side of a central anchor structure 306 . In one example, one or both of the C-shaped flexure bearings 302 , 304 are formed by a high stiffness connecting flexure bearing 308 disposed between the two flexure bearings 310 , 312 . In one example, during in-plane torsional motion (such as motion parallel to the plane of the figure), the out-of-plane motion caused by the deflection of the flexure bearings in each C-shaped flexure bearing on one side is symmetric The flex bearings 310', 312' are offset. Thus, quadrature errors induced on each flexure bearing are locally reduced or cancelled.
所示实例示出了围绕Z轴(即,延伸进入页面并延伸出页面的轴)的扭转运动。在一个例子中,在面内扭转运动期间,在每个C形挠曲支承部中的内挠曲支承部310和外挠曲支承部312发生面内弯曲。在一个例子中,高刚度连接支承部308不经历显著的弯曲。对于质量块围绕Z轴的逆时针旋转,质量块的顶部部分向左移动,如图所示。在一个例子中,高刚度连接支承部均向左移动。因此,右侧的C形挠曲支承部的内挠曲部和外挠曲部向下弯曲,同时左侧的C形挠曲支承部的内挠曲部和外挠曲部向上弯曲。因此,在一个例子中,所述运动引起对称的C形挠曲支承部的挠曲部沿相反方向的偏转。由于对称的C形挠曲支承部中的挠曲部沿相反方向的偏转,由一侧上的每个C形挠曲支承部中的挠曲支承部的偏转所引起的面外运动被其对称的挠曲支承部抵消。因此,局部地抵消在每个挠曲支承部上引起的正交误差。The example shown shows twisting motion about the Z-axis (ie, the axis extending into the page and out of the page). In one example, the inner flexure bearing 310 and the outer flexure bearing 312 in each C-shaped flexure bearing bend in-plane during in-plane torsional motion. In one example, high stiffness connection support 308 does not experience significant bending. For a counterclockwise rotation of the proof-mass about the Z-axis, the top portion of the proof-mass moves to the left as shown. In one example, the high stiffness link supports are all shifted to the left. Thus, the inner and outer flexures of the right C-shaped flexure bearing are bent downward, while the inner and outer flexures of the left C-shaped flexure bearing are bent upward. Thus, in one example, the movement causes deflection of the flexures of the symmetrical C-shaped flexure bearing in opposite directions. Due to the deflection of the flexures in opposite directions in the symmetrical C-shaped flexure bearings, the out-of-plane motion caused by the deflection of the flexure bearings in each C-shaped flexure bearing on one side is symmetrical by its The deflection bearing part offsets. Thus, the quadrature error induced on each flexure bearing is locally cancelled.
图4示出了根据一个例子的悬吊结构的围绕X轴的扭转运动。在一个例子中,悬吊结构可用在具有质量块,诸如单个质量块404的扭转多轴微机械陀螺仪系统中。在一个例子中,质量块404在其中心处通过单个中心锚406悬吊。在一个例子中,一个或多个挠曲支承部402将锚406连接到质量块404。在一个例子中,在围绕X轴的面外扭转运动期间,主要是Y轴侧的C形悬吊件对412,412’偏转。在一个例子中,这些C形悬吊件中的内挠曲支承部410,410’围绕X轴扭转地弯曲,起到扭转铰链的作用。Fig. 4 shows the torsional movement about the X-axis of the suspension structure according to an example. In one example, the suspension structure may be used in a torsion multi-axis micromachined gyroscope system with a mass, such as single mass 404 . In one example, the mass 404 is suspended at its center by a single central anchor 406 . In one example, one or more flexure bearings 402 connect anchor 406 to proof-mass 404 . In one example, during out-of-plane torsional motion about the X-axis, it is primarily the Y-axis side C-suspension pair 412, 412' that deflects. In one example, the inner flexure bearings 410, 410' in these C-suspension members are torsionally bent about the X-axis, acting as torsional hinges.
在一个例子中,管芯为薄片形(wafershaped),第一非线性悬吊构件408和第二非线性悬吊构件412各自具有大体上矩形的横截面,所述横截面的高度小于宽度。In one example, the die is wafer shaped and the first nonlinear suspension member 408 and the second nonlinear suspension member 412 each have a generally rectangular cross-section with a height smaller than a width.
图5示出了根据一个例子的悬吊结构的围绕Y轴的扭转运动。在一个例子中,悬吊结构可用在具有质量块,诸如单个质量块404的扭转多轴微机械陀螺仪系统中。在一个例子中,质量块404在其中心处通过单个中心锚406悬吊。在一个例子中,一个或多个挠曲支承部402将锚406连接到质量块404。在一个例子中,在围绕Y轴的面外扭转运动期间,主要是X轴侧的C形悬吊件对412,412’偏转。这些C形挠曲支承部414,414’中的内挠曲支承部围绕Y轴扭转地弯曲,起到扭转铰链的作用。Fig. 5 shows the torsional movement about the Y-axis of the suspension structure according to an example. In one example, the suspension structure may be used in a torsion multi-axis micromachined gyroscope system with a mass, such as single mass 404 . In one example, the mass 404 is suspended at its center by a single central anchor 406 . In one example, one or more flexure bearings 402 connect anchor 406 to proof-mass 404 . In one example, during out-of-plane torsional motion about the Y-axis, it is primarily the X-axis side C-suspension pair 412, 412' that deflects. The inner flexure bearing of these C-shaped flexure bearings 414, 414' is torsionally bent about the Y-axis, acting as a torsion hinge.
图6示出了根据一个例子的包括低正交误差悬吊件的2轴陀螺仪。在一个例子中,结构602可用于各种扭转多轴微机械陀螺仪系统,所述扭转多轴微机械陀螺仪系统具有单个质量块604,所述单个质量块604在其中心处通过单个中心锚606悬吊。挠曲部608将所述锚连接到质量块604,并允许所述质量块围绕所有三个轴扭转地振荡。所示的例子检测围绕X轴和Y轴各自的运动,并证明三种陀螺仪工作模式:围绕Z轴的面内扭转,用于驱动运动;围绕X轴的面外扭转,用于Y轴陀螺仪感应运动;以及围绕Y轴的面外扭转,用于X轴陀螺仪感应运动。在一个例子中,一个或多个梳状电极616耦合到所述器件的固定部分,并感应耦合到质量块604的梳状电极618的运动。在一个例子中,梳状电极618的梳齿沿着二等分X轴与X轴之间的角的轴而设置。Figure 6 shows a 2-axis gyroscope including a low quadrature error suspension, according to an example. In one example, structure 602 may be used in various torsional multi-axis micromachined gyroscope systems having a single mass 604 at its center via a single central anchor 606 suspension. Flexures 608 connect the anchors to the mass 604 and allow the mass to torsionally oscillate about all three axes. The example shown detects motion about each of the X and Y axes and demonstrates three gyroscope modes of operation: in-plane twist about the Z axis for driving motion, and out-of-plane twist about the X axis for a Y-axis gyro gyroscope-induced motion; and out-of-plane twist around the Y-axis for X-axis gyroscope-induced motion. In one example, one or more comb electrodes 616 are coupled to a fixed portion of the device and are inductively coupled to the movement of comb electrodes 618 of proof mass 604 . In one example, the comb teeth of the comb electrode 618 are arranged along an axis that bisects the angle between the X axis and the X axis.
图7示出了根据一个例子的包括低正交误差悬吊件的3轴陀螺仪。在一个例子中,结构702可用于各种扭转多轴微机械陀螺仪系统,所述扭转多轴微机械陀螺仪系统具有单个质量块704,所述单个质量块704在其中心处通过单个中心锚706悬吊。挠曲部708将所述锚连接到质量块704,并允许所述质量块围绕所有三个轴扭转地振荡。在一个例子中,器件起到三轴(“X/Y/Z”)陀螺仪的功能。在一个例子中,悬吊系统702提供与图6中所示的器件相似的陀螺仪工作模式。在一个例子中,图7所示的器件包括提供用于Z轴感应模式的附加的挠曲部720。在一个例子中,一个或多个梳状电极716耦合到所述器件的固定部分,并感应耦合到质量块704的梳状电极718的运动。在一个例子中,梳状电极718的梳齿沿着二等分X轴与X轴之间的角的轴而设置。FIG. 7 shows a 3-axis gyroscope including a low quadrature error suspension, according to an example. In one example, structure 702 may be used in various torsional multi-axis micromachined gyroscope systems having a single mass 704 at its center via a single central anchor 706 suspension. A flexure 708 connects the anchor to the mass 704 and allows the mass to torsionally oscillate about all three axes. In one example, the device functions as a three-axis ("X/Y/Z") gyroscope. In one example, the suspension system 702 provides a gyroscope mode of operation similar to that shown in FIG. 6 . In one example, the device shown in FIG. 7 includes an additional flexure 720 provided for the Z-axis sensing mode. In one example, one or more comb electrodes 716 are coupled to a fixed portion of the device and are inductively coupled to the movement of comb electrodes 718 of proof mass 704 . In one example, the comb teeth of the comb electrode 718 are arranged along an axis that bisects the angle between the X axis and the X axis.
图8示出了示例性悬吊件的正交误差。在一个例子中,挠曲支承部的角度对正交具有显著影响。在一个例子中,对于每个设计,能够选择角度以优化由共振器挠曲支承部的挠曲部的倾斜所产生的正交误差。在一个例子中,对于所期望的悬吊系统的具体实施,最佳角度为15度。在一个例子中,最佳角度取决于结构形状,并基于相应器件的结构而选择。在一个例子中,对于所期望的结构,两个挠曲支承部设置为相同的角位移,但两个挠曲支承部可以容易地设置为不同的角度。Figure 8 shows the quadrature error for an exemplary suspension. In one example, the angle of the flexure bearing has a significant effect on orthogonality. In one example, for each design, the angle can be chosen to optimize the quadrature error produced by the tilt of the flexure of the resonator flexure bearing. In one example, the optimal angle for the desired suspension system implementation is 15 degrees. In one example, the optimal angle depends on the shape of the structure and is selected based on the structure of the corresponding device. In one example, the two flexure bearings are arranged at the same angular displacement for the desired configuration, but the two flexure bearings could easily be arranged at different angles.
图9示出了根据一个例子的驱动模式。发明人认识到,在包括锚906的悬吊配置中,倾斜的效果引起正交误差,并且它们可通过在同一挠曲部902或挠曲部对904上产生相反的倾斜而将上述影响最小化。相应地,存在由框架隔开的两个挠曲的挠曲支承部,每个挠曲支承部在驱动工作模式中在相反方向上变形。相反方向的变形导致产生相反方向的面外变形的倾斜,在最终连接到移动部件时,所述相反方向的面外变形互相抵消。这可用于取代仅包括一个挠曲支承部的现有机构,所述现有机构的一个挠曲支承部的倾斜仅在一个方向上产生变形,从而引起无任何抵消的大量的面外运动。Fig. 9 shows driving modes according to one example. The inventors have realized that in a suspension configuration including anchor 906, the effects of tilt cause quadrature errors and that they can minimize this effect by creating opposite tilts on the same flexure 902 or pair of flexures 904 . Accordingly, there are two flexing flexure bearings separated by the frame, each flexure bearing being deformed in opposite directions in the driving mode of operation. Deformations in opposite directions result in tilts that produce opposite out-of-plane deformations that cancel each other out at the eventual connection to the moving part. This can be used to replace existing mechanisms that include only one flexure bearing, the tilting of which produces deformation in only one direction, causing a large amount of out-of-plane motion without any cancellation.
然而,在一些例子中,内挠曲支承部910,910’和外挠曲支承部912,912’旋转,从而在驱动模式致动期间,变形使得一个挠曲支承部向上弯曲且一个挠曲支承部向下弯曲。在一个例子中,驱动模式为围绕中心锚的旋转模式。在一个例子中,对于四个悬吊件对404中的每一对,驱动模式使得一个在一个方向上变形且另一个在另一方向上变形。However, in some examples, the inner flexure bearings 910, 910' and outer flexure bearings 912, 912' rotate such that during drive mode actuation, deformation causes one flexure bearing to bend upward and one flexure bearing downward . In one example, the drive pattern is a rotational pattern about a central anchor. In one example, for each of the four suspension pairs 404, the drive pattern is such that one deforms in one direction and the other deforms in the other direction.
图10示出了根据一个例子的有四个弯曲部的挠曲支承部。在一个例子中,挠曲部1002可包括一个以上的弯曲部。在一个例子中,这可允许产生被更严格地控制的面外运动。在一个例子中,包括多个Z字形部1004。在一个例子中,Z字形部限定了从锚1006延伸至质量块1005的锯齿形线路(zigzag)。在一个例子中,锯齿形线路包括沿着从锚1006延伸至质量块1005的图案(patter)的规则幅度的Z字形部。在另外的实施例中,所述幅度是变化的。在一个例子中,所述Z字形部为C形,具有互相平行但不平行于高刚度部分1016的顶部构件1008和底部构件1014。Figure 10 shows a flexure bearing with four bends, according to one example. In one example, flexure 1002 may include more than one bend. In one example, this may allow for more tightly controlled out-of-plane motion. In one example, a plurality of zigzags 1004 are included. In one example, the zigzag defines a zigzag extending from anchor 1006 to proof proof 1005 . In one example, the zigzag line includes zigzags of regular magnitude along a pattern extending from anchor 1006 to proof proof 1005 . In other embodiments, the amplitude varies. In one example, the zigzag portion is C-shaped with top member 1008 and bottom member 1014 parallel to each other but non-parallel to high stiffness portion 1016 .
图11示出了根据一个例子的挠曲支承部,所述挠曲支承部包括挠曲的挠曲支承部和非挠曲的挠曲支承部。在一个例子中,还可通过延长或缩短挠曲的挠曲支承部1110,1114或非挠曲的挠曲支承部1112来确定挠曲部1102的参数。在图12中所示的例子中,缩短了外部挠曲的挠曲支承部1110和非挠曲的挠曲支承部1112。11 illustrates a flexure bearing including a flexure flexure and a non-flexure flexure according to one example. In one example, the parameters of the flexure 1102 may also be determined by lengthening or shortening the flexure bearings 1110 , 1114 or the non-flexure flexure bearing 1112 . In the example shown in FIG. 12, the outer flexure flexure bearing 1110 and the non-flexure flexure bearing 1112 are shortened.
图12示出了根据一个例子的包括挠曲的挠曲支承部和非挠曲的挠曲支承部的挠曲支承部,该挠曲的挠曲支承部比图11的挠曲支承部短,该非挠曲的挠曲支承部比图11的非挠曲的挠曲支承部短。与图11的部件相比,缩短了外部挠曲的挠曲支承部1210和非挠曲的挠曲支承部1212。12 illustrates a flexure bearing comprising a flexure and a non-flexure flexure, the flexure being shorter than the flexure of FIG. 11 , according to one example, The non-flexing flex bearing is shorter than the non-flexing flex bearing of FIG. 11 . The outer deflected flexure bearing 1210 and the non-flexure flexure bearing 1212 are shortened compared to the components of FIG. 11 .
图13A示出了根据一个例子的具有大间隙的悬吊件。图13B示出了与挠曲支承部的挠曲度相关的应力。在实例中,在挠曲支承部1304和质量块1306之间设置有空隙1302。Figure 13A shows a suspension with a large gap, according to one example. Figure 13B shows the stresses associated with the degree of deflection of the flexure bearing. In an example, a gap 1302 is provided between the flexure bearing 1304 and the mass 1306 .
图14A-D例示出根据一个例子的包括各种特征的管芯1400。这些特征可单独或组合使用。一个特征是Z字形部1402。Z字形部1402在非线性悬吊构件(如,C形挠曲支承部1406)与质量块1408之间延伸。添加Z字形部1402可以进一步减小正交误差,这至少是由于其减小了面外挠曲,所述面外挠曲至少部分是由DRIE刻蚀造成的。就像通过弯曲跨过平面(诸如平面1422)一边的另一个支承部,来抵消一个支承部的弯曲。可通过弯曲第二挠曲支承部1407来抵消面外弯曲,所述第二挠曲支承部1407可设置在平面1423的另一边。14A-D illustrate a die 1400 including various features, according to one example. These features can be used alone or in combination. One feature is the zigzag 1402 . Zigzag 1402 extends between a nonlinear suspension member (eg, C-shaped flexure bearing 1406 ) and proof-mass 1408 . Adding zigzags 1402 can further reduce quadrature error at least because it reduces out-of-plane deflection that is at least partially caused by DRIE etching. Like counteracting the bending of one support by bending the other support across one side of a plane such as plane 1422 . The out-of-plane bending may be counteracted by bending the second flexure bearing 1407 , which may be disposed on the other side of the plane 1423 .
此类抵消在图15中示出。在图15中,第一支承部1502弯曲远离质量块1508,而设置在水平参考平面1510另一边的支承部朝着质量块弯曲。在垂直参考平面1512的另一边且在水平参考平面1510的另一边的支承部1506也以与1506大体上相同的方式弯曲远离质量块1508,这就可通过恢复挠曲支承部悬吊件的平衡来抵消正交误差。Such cancellation is shown in FIG. 15 . In Fig. 15, the first support portion 1502 is bent away from the mass 1508, while the support portion disposed on the other side of the horizontal reference plane 1510 is bent towards the mass. The support 1506 on the other side of the vertical reference plane 1512 and on the other side of the horizontal reference plane 1510 also bends away from the mass 1508 in substantially the same way as 1506, which restores the balance of the suspension by flexing the support. to offset the quadrature error.
回到图14A以及对Z字形部1402的描述,非线性悬吊构件1406(如,C形挠曲支承部)包括第一或内部部分1410、第二或中心部分1420,以及第三或外部部分1412。在一个例子中,外部部分1412具有耦合至中心部分1420的近侧部分。在一个例子中,外部部分1412的远侧部分延伸远离锚二等分面1422。在一个例子中,外部部分1412与第一非线性悬吊构件1406的第四部分1402(如,Z字形部的一部分)耦合。在一个例子中,第四部分1402在第四部分1402的近侧部分处耦合至外部部分1412的远侧部分。在一个例子中,第四部分1402从其近侧部分朝着锚1404延伸至其远侧部分。在一个例子中,第四部分1402的远侧部分耦合至第一非线性悬吊构件1406的第五部分1424。在一个例子中,第五部分1424朝着锚二等分面1422延伸。在一个例子中,内部部分1410和外部部分1412是线性且平行的。总的说来,相对于不具有Z字形部1402的悬吊件,Z字形部1402例子提供另外的挠曲,以及对该挠曲的抵消。14A and the description of the zigzag 1402, the nonlinear suspension member 1406 (e.g., a C-shaped flexure bearing) includes a first or inner portion 1410, a second or central portion 1420, and a third or outer portion 1412. In one example, outer portion 1412 has a proximal portion coupled to central portion 1420 . In one example, a distal portion of outer portion 1412 extends away from anchor bisecting plane 1422 . In one example, the outer portion 1412 is coupled with the fourth portion 1402 (eg, a portion of the zigzag) of the first nonlinear suspension member 1406 . In one example, fourth portion 1402 is coupled to a distal portion of outer portion 1412 at a proximal portion of fourth portion 1402 . In one example, fourth portion 1402 extends from a proximal portion thereof toward anchor 1404 to a distal portion thereof. In one example, a distal portion of fourth portion 1402 is coupled to fifth portion 1424 of first nonlinear suspension member 1406 . In one example, fifth portion 1424 extends toward anchor bisecting plane 1422 . In one example, inner portion 1410 and outer portion 1412 are linear and parallel. Overall, the zigzag 1402 example provides additional flex, and counteracts that flex, relative to a suspension that does not have the zigzag 1402 .
第二个特征是不对称定子指状电极,如在图14C-D中特别地例示。图14C和14D中部分地例示的电极结构被配置为用于具有反相线性Z轴旋转感应模式的MEMS多轴陀螺仪中。在一些例子中,两个质量块1454和1456可在相反方向上移动。此类运动的例子在图16D中例示。在一个例子中,定子1430,1431通过相应侧的锚1428,1429锚固。在各个例子中,中心锚1404相反侧上的电极应当对质量块的并发的向外运动或向内运动敏感,以实现对该运动的差动拾取。因此,不应使用关于Y-Z轴对称的定子电极,因为这种设计不会对差分运动进行感应,且因为差分运动感应依赖在器件的两侧之间提供电容差分,并且如果定子电极是对称的,则电容将在Y-Z轴的两侧类似地改变。The second feature is the asymmetric stator finger electrodes, as particularly exemplified in Figures 14C-D. The electrode structures partially illustrated in Figures 14C and 14D are configured for use in a MEMS multi-axis gyroscope with an inverse linear Z-axis rotation sensing mode. In some examples, the two masses 1454 and 1456 can move in opposite directions. An example of such motion is illustrated in Figure 16D. In one example, the stators 1430, 1431 are anchored by respective side anchors 1428, 1429. In various examples, the electrodes on opposite sides of the central anchor 1404 should be sensitive to concurrent outward or inward motion of the proof-mass to enable differential pickup of that motion. Therefore, stator poles that are symmetrical about the Y-Z axis should not be used because this design will not sense differential motion, and because differential motion sensing relies on providing a capacitive difference between the two sides of the device, and if the stator poles are symmetrical, The capacitance will then vary similarly on both sides of the Y-Z axis.
所示的Z轴旋转感应电极结构对差分运动进行感应。该结构提供对反相感应运动的差分检测,其中质量块指状物关于Y-Z平面1422对称,而定子电极不关于Y-Z平面对称。对称的电极配置是抑振所需的。所公开的电极提供了在Y-Z平面对面对称的质量块电极。相对于不对称设计,对称的质量块电极实现了改进的抑振效果。The Z-axis rotating sensing electrode structure shown senses differential motion. This configuration provides differential detection of anti-phase induced motion where the proof-mass fingers are symmetric about the Y-Z plane 1422 and the stator electrodes are not. A symmetrical electrode configuration is required for vibration suppression. The disclosed electrodes provide a symmetrical proof-mass electrode across the Y-Z plane. The symmetrical proof-mass electrodes achieve improved vibration suppression relative to asymmetrical designs.
图14C-D的剖视图示出了根据一个例子的管芯的相反侧上的交错接合细节。尽管电极在外观上是像素化的,但可以构想平滑连续的电极,如展现DRIE的特征的那些电极。在图14C中,左定子1430具有在质量块1446指状物1452外部(如,进一步远离中心锚1404)的定子指状物1450,而图14D中示出的右定子1430’具有在质量块1446’指状物1452’内部的定子指状物1452’。应当注意,在图14C和14D的两种电极中,小电容间隙位于定子指状物的左侧,并且质量块指状物是完全对称的。当图14C的质量块1454向左移时,该图中的电极的电容增加。当图14D的质量块1456向右移时,该图中的电极的电容降低。因此,产生了可被检测到的差分电容。14C-D are cross-sectional views showing staggered bonding details on opposite sides of a die according to one example. Although the electrodes are pixelated in appearance, smoothly continuous electrodes, such as those exhibiting the characteristics of DRIE, are conceivable. In FIG. 14C , left stator 1430 has stator fingers 1450 outside (eg, further away from center anchor 1404 ) of proof-mass 1446 fingers 1452 , while right stator 1430 ′ is shown in FIG. The stator fingers 1452' inside the 'fingers 1452'. It should be noted that in both electrodes of Figures 14C and 14D, the small capacitive gap is located to the left of the stator fingers, and the proof-mass fingers are completely symmetrical. As the proof-mass 1454 of Figure 14C moves to the left, the capacitance of the electrodes in this figure increases. As the proof-mass 1456 of Figure 14D moves to the right, the capacitance of the electrodes in this figure decreases. Thus, a detectable differential capacitance is created.
在一个例子中,Z轴陀螺仪感应运动经由差分质量块感应来感应,而同相运动(即,质量块在相同方向上的运动)被拒绝。在各个例子中,驱动运动(图14B中的1448)围绕Z轴扭转(参见图15和图16A)。Z轴陀螺仪感应运动基于在相反方向上振荡的质量块1454和1456。图16D示出了此类运动。Z轴感应运动是线性的面内运动(如,X-Y平面内)和反相运动(如,质量块1454和1456在相反方向上振荡)。In one example, Z-axis gyro sensed motion is sensed via differential mass sensing, while in-phase motion (ie, motion of the masses in the same direction) is rejected. In various examples, the drive motion (1448 in Figure 14B) is twisted about the Z-axis (see Figures 15 and 16A). The Z-axis gyroscope senses motion based on masses 1454 and 1456 oscillating in opposite directions. Figure 16D illustrates such a movement. Z-axis induced motion is linear in-plane motion (eg, in the X-Y plane) and anti-phase motion (eg, masses 1454 and 1456 oscillate in opposite directions).
第三个特征包括垂直挠曲部1426,在图14A和14B中示出。在一个例子中,垂直挠曲部1426允许质量块框架比管芯的其他部分(诸如内环架1458)偏转更多,并且可用于调节Y轴感应共振频率。所示出的环架结构提供仅针对陀螺仪的Y轴感应模式而偏转的挠曲部1426,在该Y轴感应模式中,质量块1408围绕X轴旋转,如图16C中所示。因此,它允许设计师独立于驱动频率和X轴感应频率来调节Y轴感应共振频率。这使得中心悬吊件能够改进,以同时将X轴和Y轴中的正交误差降至最低。The third feature includes a vertical flexure 1426, shown in Figures 14A and 14B. In one example, the vertical flexure 1426 allows the proof-mass frame to deflect more than other parts of the die, such as the inner gimbal 1458, and can be used to adjust the Y-axis induced resonant frequency. The illustrated gimbal structure provides flexures 1426 that deflect only for the Y-axis sensing mode of the gyroscope, in which the mass 1408 rotates about the X-axis, as shown in Figure 16C. Thus, it allows the designer to tune the Y-axis sensed resonant frequency independently of the drive frequency and the X-axis sensed frequency. This enables the center suspension to be modified to minimize quadrature errors in both the X and Y axes.
例如,固定部分或基板可耦合至锚1404。固定部分包括例如封装基板。第一非线性悬吊构件1406可在锚1404的一侧耦合至锚1404。第二非线性悬吊构件1407在锚1404的同一侧耦合至锚1404。第二非线性悬吊构件可具有与第一非线性悬吊构件关于锚1404二等分面成镜像关系的形状和位置,但本发明的主题并不限于此。第一非线性悬吊构件和第二非线性悬吊构件中的一者或两者可形成微机电管芯1400的内环架1458的一部分。For example, a fixed portion or substrate may be coupled to anchor 1404 . The fixed portion includes, for example, a packaging substrate. First nonlinear suspension member 1406 can be coupled to anchor 1404 on one side of anchor 1404 . A second nonlinear suspension member 1407 is coupled to the anchor 1404 on the same side of the anchor 1404 . The second nonlinear suspension member may have a shape and position that is a mirror image of the first nonlinear suspension member about the anchor 1404 bisecting plane, although the inventive subject matter is not so limited. One or both of the first nonlinear suspension member and the second nonlinear suspension member may form part of the inner gimbal 1458 of the microelectromechanical die 1400 .
平面式的质量块1408可耦合至内环架1458。质量块可通过设置在锚1404的第一侧上的第一悬吊构件1460悬吊。质量块可通过设置在锚1404的第二侧上的第二悬吊构件1462悬吊。第一悬吊构件1460可以与锚的第一侧相对地耦合。Planar mass 1408 may be coupled to inner gimbal 1458 . The mass may be suspended by a first suspension member 1460 disposed on a first side of the anchor 1404 . The mass may be suspended by a second suspension member 1462 disposed on a second side of the anchor 1404 . A first suspension member 1460 can be coupled opposite a first side of the anchor.
管芯1400可限定第一间隙1464。间隙1464可沿锚1404的第一侧1466延伸。第二间隙1468可沿锚1404的第二侧1470延伸。第二间隙1468可与第一侧1466相对。第一间隙1464和第二间隙1468中的每一者可在内环架1458与质量块1408之间延伸。Die 1400 may define a first gap 1464 . The gap 1464 can extend along the first side 1466 of the anchor 1404 . Second gap 1468 may extend along second side 1470 of anchor 1404 . The second gap 1468 may be opposite the first side 1466 . Each of first gap 1464 and second gap 1468 may extend between inner gimbal 1458 and proof-mass 1408 .
第一间隙1464可从第一悬吊构件1460延伸至第二悬吊构件1462。第二间隙1468可从第一悬吊构件1460延伸至第二悬吊构件1462。第一间隙和第二间隙中的一者或多者可为C形。第一C形可限定第一开口1472,该第一开口1472朝第二间隙1468的第二C形的第二开口1474敞开。The first gap 1464 may extend from the first suspension member 1460 to the second suspension member 1462 . The second gap 1468 may extend from the first suspension member 1460 to the second suspension member 1462 . One or more of the first gap and the second gap may be C-shaped. The first C-shape can define a first opening 1472 that opens toward a second opening 1474 of the second C-shape of the second gap 1468 .
第一C形可包括第一端部分1482和第二端部分1484,其中中心部分1486在第一端部分与第二端部分之间延伸。第一端部分和第二端部分可垂直于中心部分。第一倾斜部分1488可在第一端部分1482与中心部分之间延伸,并且第二倾斜部分1490可在第二端部分1484与中心部分之间延伸。第一间隙可为第二间隙的镜像形状,并且第一间隙可沿锚二等分面成镜像。The first C-shape can include a first end portion 1482 and a second end portion 1484, with a central portion 1486 extending between the first end portion and the second end portion. The first end portion and the second end portion may be perpendicular to the central portion. The first sloped portion 1488 can extend between the first end portion 1482 and the central portion, and the second sloped portion 1490 can extend between the second end portion 1484 and the central portion. The first gap may be a mirror image shape of the second gap, and the first gap may be mirrored along the anchor bisecting plane.
第一间隙可限定第一垂直挠曲部1476和第二垂直挠曲部1478。第二间隙可限定第三垂直挠曲部1426和第四垂直挠曲部1480。第一、第二、第三和第四垂直挠曲部中的每一者可以是细长的,并且长度比宽度长。每个相应的长度可延伸远离相应的悬吊构件。每个相应的长度可延伸远离锚二等分面1422。The first gap can define a first vertical flexure 1476 and a second vertical flexure 1478 . The second gap can define a third vertical flexure 1426 and a fourth vertical flexure 1480 . Each of the first, second, third and fourth vertical flexures may be elongated and have a length greater than a width. Each respective length may extend away from a respective suspension member. Each respective length may extend away from the anchor bisecting plane 1422 .
在一个例子中,实心质量块框架结构(诸如图7中示出的结构)依靠中心悬吊系统来设置驱动频率和X/Y感应频率。因此,两个轴上的全部三种频率和正交误差可同时得到改进。In one example, a solid-mass frame structure such as that shown in FIG. 7 relies on a central suspension system to set the drive frequency and X/Y sensing frequency. Thus, all three frequencies and quadrature errors in both axes can be improved simultaneously.
图14A-D中示出的环架结构提供额外的自由度以调节Y轴感应模式。在一个例子中,中心挠曲部1426沿Y轴延伸远离内环架1458。这些挠曲部可垂直地挠曲。图16C示出了挠曲部的使质量块能够围绕X轴旋转的挠曲。在一个例子中,一个或多个挠曲部1426可将内环架1458连接至质量块1408框架。在一个例子中,这些挠曲部1426仅针对陀螺仪的Y轴感应模式而偏转。增设的面外挠曲部允许独立于驱动频率和X轴感应频率而调节Y轴感应共振频率。The gimbal structure shown in Figures 14A-D provides an additional degree of freedom to adjust the Y-axis sensing mode. In one example, central flexure 1426 extends away from inner gimbal 1458 along the Y-axis. These flexures can flex vertically. Figure 16C shows the flexure of the flexure enabling rotation of the proof-mass about the X-axis. In one example, one or more flexures 1426 can connect the inner gimbal 1458 to the proof-mass 1408 frame. In one example, the flexures 1426 deflect only for the Y-axis sensing mode of the gyroscope. The addition of out-of-plane flexures allows tuning of the Y-axis induced resonant frequency independently of the drive frequency and the X-axis induced frequency.
在各个例子中,驱动运动(图14B中的1448)围绕Z轴(诸如围绕中心锚1404)扭转。图15示出了根据一个例子的围绕Z轴扭转挠曲的图14的悬吊件,并且图16A也示出了根据一个例子的围绕Z轴扭转挠曲的图14的悬吊件。图16B示出了根据一个例子的围绕Y轴挠曲的图14的悬吊件。在这些例子中,挠曲部1426展现有限的挠曲。然而,图16C示出了根据一个例子的围绕X轴挠曲以使挠曲部1426挠曲的图14的悬吊件。在一个例子中,Y轴感应运动是围绕X轴的面外扭转。In various examples, the drive motion ( 1448 in FIG. 14B ) is twisted about the Z-axis, such as about the central anchor 1404 . FIG. 15 shows the suspension of FIG. 14 torsionally flexed about the Z-axis, according to one example, and FIG. 16A also shows the suspension of FIG. 14 torsionally flexed about the Z-axis, according to one example. 16B shows the suspension of FIG. 14 flexed about the Y-axis, according to one example. In these examples, flexure 1426 exhibits limited flex. However, FIG. 16C shows the suspension of FIG. 14 flexed about the X-axis to flex flexure 1426 according to one example. In one example, the Y-axis induced motion is an out-of-plane twist about the X-axis.
图14A-D的另外特征包括弯曲的指状电极。这些电极可能对旋转驱动运动不敏感。各个例子可包括围绕与电极在其中设置的平面正交的轴弯曲的电极。弯曲的指状电极(如,指状物1450和1452)可能对旋转驱动运动(诸如图16A中示出的运动)不太敏感。在一个例子中,虽然质量块电极正相对于定子电极旋转,但所述电极之间的间隙距离保持相似或相同。在一些例子中,这可以维持类似的电容。然而,在一些例子中,一个电极面对其他电极的面积发生改变,这可提供差分电容,从而允许围绕Z轴的感应或旋转。因此,假如管芯围绕与电极在其中暴露的平面正交的轴旋转时,弯曲的电极保持与质量块电极和定子电极之间的间隙距离,(就)可以任选地不改变电容或较低地改变电容,或可感应到所需的电容改变以检测旋转。Additional features of Figures 14A-D include curved finger electrodes. These electrodes may not be sensitive to rotationally driven motion. Various examples can include electrodes that are bent about an axis that is normal to the plane in which the electrodes are disposed. Curved finger electrodes (eg, fingers 1450 and 1452) may be less sensitive to rotational drive motion, such as that shown in Figure 16A. In one example, while the proof-mass electrodes are rotating relative to the stator electrodes, the gap distance between the electrodes remains similar or the same. In some examples, this can maintain similar capacitance. However, in some examples, the area of one electrode facing the other varies, which can provide differential capacitance, allowing sensing or rotation about the Z-axis. Thus, provided that the curved electrodes maintain the gap distance between the proof-mass electrodes and the stator electrodes when the die is rotated about an axis normal to the plane in which the electrodes are exposed, there may optionally be no change in capacitance or a lower Capacitance can be changed locally, or the required change in capacitance can be sensed to detect rotation.
微机电管芯1400可与诸如封装的基板耦合以形成封装的集成电路。质量块1408可在锚1404处耦合至基板。质量块可包括能够相对于锚1404移动的第一部分1454。第一部分可包括第一质量块电极1452。质量块1408的相对于锚1404与第一部分1454相对的第二部分1456可以是能够相对于锚1404和第一部分1454移动的。第二部分1456可包括第二质量块电极1452’。质量块1408可在锚1404的第一侧上(诸如在平面1423的第一侧上)限定第一开口1492。质量块的第一部分1454能够可移动地耦合在开口1492中直达基板。The microelectromechanical die 1400 may be coupled to a substrate such as a package to form a packaged integrated circuit. Proof 1408 may be coupled to the substrate at anchor 1404 . The proof-mass may include a first portion 1454 that is movable relative to the anchor 1404 . The first portion may include a first proof-mass electrode 1452 . A second portion 1456 of the proof-mass 1408 opposite the first portion 1454 relative to the anchor 1404 may be movable relative to the anchor 1404 and the first portion 1454 . The second portion 1456 may include a second proof-mass electrode 1452'. Proof 1408 may define a first opening 1492 on a first side of anchor 1404 , such as on a first side of plane 1423 . The first portion 1454 of the proof-mass can be movably coupled in the opening 1492 to the substrate.
第一质量块电极1452可以是延伸进开口1492中的第一多个质量块电极中的一个。所述多个质量块电极可彼此间隔开。质量块1408可在锚的第二侧上(诸如在平面1423的第一侧上)限定第二开口1494。第二部分1456可耦合在第二开口1494内侧。第二质量块电极1452’可以是延伸进开口1494中的彼此间隔开的第二多个质量块电极中的一个。First proof-mass electrode 1452 may be one of a first plurality of proof-mass electrodes extending into opening 1492 . The plurality of proof-mass electrodes may be spaced apart from each other. Proof 1408 may define a second opening 1494 on a second side of the anchor, such as on the first side of plane 1423 . The second portion 1456 can be coupled inside the second opening 1494 . The second proof-mass electrode 1452' can be one of a second plurality of spaced-apart proof-mass electrodes extending into the opening 1494.
第一定子1430可耦合至基板,诸如经由锚1428,并且可包括第一定子电极1450。第一定子电极1450可在质量块的第一质量块电极1452旁边延伸以形成第一电极对。第二定子1431可耦合至基板并且可包括与第一定子电极1450相对的第二定子电极1451。第二定子电极1451可在质量块1408的第二部分1456的第二质量块电极1452’旁边延伸以形成第二电极对。第一电极对可形成第一电容器。第二电极对可形成第二电容器。First stator 1430 may be coupled to the substrate, such as via anchor 1428 , and may include first stator electrode 1450 . The first stator electrode 1450 may extend alongside the first proof-mass electrode 1452 of the proof-mass to form a first electrode pair. The second stator 1431 may be coupled to the substrate and may include a second stator electrode 1451 opposite to the first stator electrode 1450 . The second stator electrode 1451 may extend alongside the second proof-mass electrode 1452' of the second portion 1456 of the proof-mass 1408 to form a second pair of electrodes. The first pair of electrodes may form a first capacitor. The second pair of electrodes may form a second capacitor.
质量块的第一质量块电极可在锚的另一边与质量块的第二质量块电极相对,并且其中第一定子电极可在锚的另一边与第二锚固电极相对而耦合至基板。The first proof-mass electrode of the proof-mass may be opposite the second proof-mass electrode on the other side of the anchor, and wherein the first stator electrode may be coupled to the substrate on the other side of the anchor opposite the second anchoring electrode.
第一定子电极1450可以是第一多个定子电极中的一个,所述第一多个定子电极与所述第一多个质量块电极中的相应电极交错接合且成对以形成第一电极对。第二定子可以是第二多个定子电极中的一个,所述第二多个定子电极与所述第二多个定子电极中的相应电极交错接合且成对以形成第二电极对。The first stator electrode 1450 may be one of a first plurality of stator electrodes that are interleaved and paired with corresponding electrodes of the first plurality of mass electrodes to form a first electrode right. The second stator may be one of a second plurality of stator poles interleaved and paired with corresponding ones of the second plurality of stator poles to form a second pole pair.
在管芯1400的第一振动模式中,质量块的第一部分1454可能即将移动远离质量块的第二部分1456。第一定子电极1450和第二定子电极1451可被布置为使得第一电极对的电极之间的距离可与第二电极对的电极之间的距离成反比。质量块的第一部分1454可以在锚1404的另一边与质量块的第二部分1456对称。第一定子1430可以在锚1404的另一边相对于第二定子1431不对称。In the first mode of vibration of the die 1400, the first portion 1454 of the proof-mass may be about to move away from the second portion 1456 of the proof-mass. The first stator electrode 1450 and the second stator electrode 1451 may be arranged such that a distance between electrodes of the first electrode pair may be inversely proportional to a distance between electrodes of the second electrode pair. The first portion 1454 of the proof-mass may be symmetrical to the second portion 1456 of the proof-mass on the other side of the anchor 1404 . The first stator 1430 may be asymmetrical with respect to the second stator 1431 on the other side of the anchor 1404 .
图18示出了根据一个实施例的制作抑振z轴电极的方法。在1802处,例子包括形成质量块。该例子可包括形成用于将质量块耦合至基板的锚。该例子可包括在锚的第一侧上形成第一部分,该第一部分可相对于锚移动并且包括第一质量块电极。该例子可包括在锚的与第一侧相对的第二侧上形成第二部分,该第二部分包括第二质量块电极。在1804处,该例子可包括形成用于耦合至基板的第一定子,包括形成用于在质量块的第一质量块电极旁边延伸以形成第一电极对的第一定子电极。在1806处,该例子可包括形成用于耦合至基板的第二定子,包括形成用于在质量块的第二质量块电极旁边延伸以形成第二电极对的第二定子电极。根据例子,在1808处,质量块、第一定子和第二定子被形成为使得在质量块的第一振动模式中,第一对的电极之间的距离与第二电极对的电极之间的距离成反比。Figure 18 illustrates a method of making a vibration-suppressing z-axis electrode, according to one embodiment. At 1802, the instance includes forming a proof-mass. This example may include forming an anchor for coupling the proof-mass to the substrate. This example may include forming a first portion on a first side of the anchor, the first portion being movable relative to the anchor and including a first proof-mass electrode. This example may include forming a second portion on a second side of the anchor opposite the first side, the second portion including the second proof-mass electrode. At 1804, the example can include forming a first stator for coupling to the substrate, including forming a first stator electrode for extending alongside a first proof-mass electrode of the proof-proof to form a first electrode pair. At 1806, the example can include forming a second stator for coupling to the substrate, including forming a second stator electrode to extend alongside a second proof-mass electrode of the proof-proof to form a second electrode pair. According to an example, at 1808, the proof-mass, the first stator, and the second stator are formed such that in the first mode of vibration of the proof-mass, the distance between electrodes of the first pair is equal to the distance between electrodes of the second pair of electrodes. is inversely proportional to the distance.
在第一振动模式中,所述第一多个定子电极可被配置为移动远离所述第一多个定子电极并移动远离锚,而所述第二多个定子电极可被配置为朝着所述第二多个定子电极并朝着锚移动。In the first mode of vibration, the first plurality of stator electrodes may be configured to move away from the first plurality of stator electrodes and to move away from the anchor, while the second plurality of stator electrodes may be configured to move toward the the second plurality of stator electrodes and move toward the anchor.
质量块可被配置为相对于基板振动以使所述第一多个定子电极与所述第一多个定子电极之间的距离变化,以及使所述第二多个定子电极与所述第二多个定子电极之间的距离变化。The mass may be configured to vibrate relative to the base plate to vary the distance between the first plurality of stator electrodes and the first plurality of stator electrodes, and to vary the distance between the second plurality of stator electrodes and the second plurality of stator electrodes. The distance between the plurality of stator poles varies.
当所述第二多个定子电极中最靠近锚的一个(如,1451)可与所述第二多个定子电极中最靠近锚的一个(如,1452’)相距更大距离时,所述第一多个定子电极中最靠近锚的一个(如,1452)与所述第一多个定子电极中最靠近锚的一个(如,1450)隔开一定距离。When the one of the second plurality of stator electrodes closest to the anchor (eg, 1451 ) can be separated by a greater distance from the one of the second plurality of stator electrodes (eg, 1452') closest to the anchor, the The one of the first plurality of stator electrodes (eg, 1452 ) closest to the anchor is spaced a distance from the one of the first plurality of stator electrodes (eg, 1450 ) that is closest to the anchor.
第一质量块电极1452和第一定子电极1450中的每一者可以是细长的。第一质量块电极与第一定子电极之间的距离D14沿着每一者的长度L14可以是基本上恒定的。第二质量块电极1452’和第二定子电极1451中的每一者可以是细长的。第二质量块电极与第二定子电极之间的距离沿着每一者的长度是基本上恒定的。Each of the first proof-mass electrode 1452 and the first stator electrode 1450 may be elongated. The distance D14 between the first-mass electrode and the first stator electrode may be substantially constant along the length L14 of each. Each of the second proof-mass electrode 1452' and the second stator electrode 1451 may be elongated. The distance between the second-mass electrode and the second stator electrode is substantially constant along the length of each.
第一质量块电极、第二质量块电极、第一定子电极以及第二定子电极中的一者或多者可以是弯曲的。所述电极中的每一者可围绕一个轴弯曲,质量块可被配置为在第二振动模式中围绕该轴旋转。该轴可以是平面1422与平面1423之间的相交处。可通过从晶片移除材料(诸如通过切割材料,诸如通过刻蚀)来将质量块成型为形状。所述成型可包括深反应离子刻蚀。One or more of the first-mass electrode, the second-mass electrode, the first stator electrode and the second stator electrode may be curved. Each of the electrodes may be bent about an axis about which the mass may be configured to rotate in the second mode of vibration. The axis may be the intersection between plane 1422 and plane 1423 . The mass may be formed into shape by removing material from the wafer, such as by cutting material, such as by etching. The shaping may include deep reactive ion etching.
管芯1400可用于对运动进行感应。质量块的第一部分以及质量块的第二部分的振动可被激发,使得第一部分和第二部分朝着相应的第一定子和第二定子一起移动并同步地间隔开。可通过测量第一定子和第二定子的相应电容值的差分,来对管芯沿着一方向的运动进行感应,该方向在质量块的第一部分与质量块的第二部分之间延伸。第一质量块电极1452可朝着第一定子1430的第一定子电极1450移动,而第二部分1456可包括移动远离第二定子的第二定子电极1451的第二质量块电极1452’。对运动进行感应可包括对包括第一质量块电极和第一定子电极的第一电极对的第一电容与包括第二质量块电极和第二定子电极的第二电极对之间的差分进行感应。可将质量块在质量块的平面(如,与平面1422和1423平行的平面)内旋转,而不改变第一定子和第二定子的相应电容值的测得差分。旋转可在不改变第一电极对的电极之间的距离以及在不改变第二电极对的电极之间的距离的情况下发生。Die 1400 may be used to sense motion. Vibrations of the first portion of the mass and the second portion of the mass may be excited such that the first and second portions move together and are spaced apart synchronously towards respective first and second stators. Movement of the die along a direction extending between the first portion of the proof-mass and the second portion of the proof-mass may be sensed by measuring the difference in respective capacitance values of the first stator and the second stator. The first-mass electrode 1452 may move towards the first stator electrode 1450 of the first stator 1430, while the second portion 1456 may include a second-mass electrode 1452' moving away from the second stator electrode 1451 of the second stator. Sensing the motion may include sensing a difference between a first capacitance of a first electrode pair comprising the first proof-mass electrode and the first stator electrode and a second electrode pair comprising the second proof-mass electrode and the second stator electrode. induction. The proof-mass may be rotated within the plane of the proof-mass (eg, a plane parallel to planes 1422 and 1423 ) without changing the measured difference in the respective capacitance values of the first and second stators. The rotation may occur without changing the distance between the electrodes of the first electrode pair and without changing the distance between the electrodes of the second electrode pair.
图17示出了根据一个实施例的制作低正交误差悬吊件的方法。在1702处,所述方法包括刻蚀材料以限定锚。在1704处,所述方法包括刻蚀所述材料以限定在所述锚的一侧耦合到锚的第一非线性悬吊构件。在1706处,所述方法包括刻蚀所述材料以限定第二非线性悬吊构件,所述第二非线性悬吊构件在所述锚的相同的侧耦合到锚,所述第二非线性悬吊构件具有与所述第一非线性悬吊构件关于锚二等分面成镜像关系的形状和位置。在1708处,所述方法包括刻蚀所述材料以限定平面式的质量块,所述质量块至少部分地由所述第一非线性悬吊构件和所述第二非线性悬吊构件悬吊,使得所述质量块能够围绕所述锚旋转并能够在平行于基板的平面中滑动。Figure 17 illustrates a method of making a low quadrature error suspension, according to one embodiment. At 1702, the method includes etching material to define an anchor. At 1704, the method includes etching the material to define a first nonlinear suspension member coupled to an anchor on a side of the anchor. At 1706, the method includes etching the material to define a second nonlinear suspension member coupled to the anchor on the same side of the anchor, the second nonlinear suspension member The suspension member has a shape and position in mirror image relation to said first nonlinear suspension member with respect to the anchor bisecting plane. At 1708, the method includes etching the material to define a planar proof-mass at least partially suspended by the first nonlinear suspension member and the second nonlinear suspension member. , such that the proof-mass can rotate around the anchor and slide in a plane parallel to the substrate.
可能存在可选的方法,包括在其中刻蚀包括深反应离子刻蚀的方法。在一些可选的方法中,第一非线性悬吊构件和第二非线性悬吊构件为第一组部件,包括刻蚀所述材料以限定与所述第一组相反的第二组非线性悬吊构件。一些可选的方法包括:刻蚀用于将锚耦合到质量块的第三组非线性悬吊构件,以及刻蚀用于将锚耦合到质量块的第四组非线性悬吊构件,其中所述第三组和第四组具有与所述第一组和第二组相似的要素且由垂直于第一锚二等分面的第二锚二等分面二等分。Alternative methods may exist, including methods in which the etching includes deep reactive ion etching. In some optional methods, the first nonlinear suspension member and the second nonlinear suspension member are components of a first set comprising etching the material to define a second set of nonlinear suspensions opposite to the first set Suspension components. Some optional methods include etching a third set of nonlinear suspension members for coupling the anchors to the proof-mass, and etching a fourth set of nonlinear suspension members for coupling the anchors to the proof-mass, wherein the The third and fourth groups have similar elements to the first and second groups and are bisected by a second anchor bisecting plane perpendicular to the first anchor bisecting plane.
附加说明Additional information
本文档的主题能够使用若干实例来描述。实例1包括一种用于对运动进行感应的微机电管芯,包括:固定部分;耦合到所述固定部分的锚;在所述锚的一侧耦合到所述锚的第一非线性悬吊构件;在所述锚的同一侧耦合到所述锚的第二非线性悬吊构件,所述第二非线性悬吊构件具有与所述第一非线性悬吊构件关于锚二等分面成镜像关系的形状和位置;以及平面式的质量块,所述质量块至少部分地由所述第一非线性悬吊构件和所述第二非线性悬吊构件悬吊,使得所述质量块能够围绕所述锚旋转并能够在平行于所述固定部分的平面中滑动。The subject matter of this document can be described using several examples. Example 1 includes a microelectromechanical die for sensing motion comprising: a fixed portion; an anchor coupled to the fixed portion; a first nonlinear suspension coupled to the anchor on one side of the anchor member; a second nonlinear suspension member coupled to the anchor on the same side of the anchor, the second nonlinear suspension member having a bisecting plane about the anchor bisecting the first nonlinear suspension member a shape and position in a mirror image relationship; and a planar mass suspended at least in part by the first nonlinear suspension member and the second nonlinear suspension member such that the mass can Rotates about the anchor and is able to slide in a plane parallel to the fixed portion.
实例2包括实例1的主题,其中第一非线性悬吊构件为C形。Example 2 includes the subject matter of Example 1, wherein the first nonlinear suspension member is C-shaped.
实例3包括实例2的主题,其中所述C形包括耦合到所述锚并且朝向所述锚二等分面延伸的内部部分,以及具有近侧部分和远侧部分的中心部分,其中所述近侧部分耦合到所述内部部分,所述远侧部分沿所述锚二等分面延伸远离所述锚,且耦合到延伸远离所述锚二等分面的外部部分。Example 3 includes the subject matter of Example 2, wherein the C-shape includes an inner portion coupled to the anchor and extending toward the anchor bisecting plane, and a central portion having a proximal portion and a distal portion, wherein the proximal A side portion is coupled to the inner portion, the distal portion extends away from the anchor along the anchor bisecting plane, and is coupled to an outer portion extending away from the anchor bisecting plane.
实例4包括实例3的主题,其中所述第一非线性悬吊构件的所述外部部分具有耦合到所述第一非线性悬吊构件的所述中心部分的近侧部分,以及延伸远离所述锚二等分面的远侧部分;所述第一非线性悬吊构件的第四部分,在其近侧部分处耦合到所述外部部分的所述远侧部分,并朝向所述锚延伸至所述第四部分的远侧部分,所述第四部分的远侧部分耦合到所述第一非线性悬吊构件的朝向所述锚二等分面延伸的第五部分。Example 4 includes the subject matter of Example 3, wherein said outer portion of said first nonlinear suspension member has a proximal portion coupled to said central portion of said first nonlinear suspension member, and extends away from said a distal portion of an anchor bisector; a fourth portion of said first nonlinear suspension member coupled at a proximal portion thereof to said distal portion of said outer portion and extending toward said anchor to A distal portion of the fourth portion coupled to a fifth portion of the first nonlinear suspension member extending toward the anchor bisecting plane.
实例5包括实例3-4中任一者的主题,其中内部部分和外部部分是线性且平行的。Example 5 includes the subject matter of any of Examples 3-4, wherein the inner portion and the outer portion are linear and parallel.
实例6包括实例5的主题,其中中心部分垂直于内部部分和外部部分。Example 6 includes the subject matter of Example 5, wherein the central section is perpendicular to the inner and outer sections.
实例7包括实例3-6中任一者的主题,其中中心部分平行于锚二等分面。Example 7 includes the subject matter of any of Examples 3-6, wherein the central portion is parallel to the anchor bisecting plane.
实例8包括实例1-7中任一者的主题,其中锚、第一非线性悬吊构件、第二非线性悬吊构件以及质量块由单片式材料形成。Example 8 includes the subject matter of any of Examples 1-7, wherein the anchor, the first nonlinear suspension member, the second nonlinear suspension member, and the mass are formed from a single piece of material.
实例9包括实例8的主题,其中固定部分包括与锚、第一非线性悬吊构件、第二非线性悬吊构件以及质量块的单片式材料不同的固定单片式材料。Example 9 includes the subject matter of Example 8, wherein the fixed portion comprises a fixed monolithic material different from the monolithic material of the anchor, the first nonlinear suspension member, the second nonlinear suspension member, and the mass.
实例10包括实例1-9中任一者的主题,其中固定部分包括与锚、第一非线性悬吊构件、第二非线性悬吊构件以及质量块的单片式材料相同的固定单片式材料。Example 10 includes the subject matter of any of Examples 1-9, wherein the fixed portion comprises the same fixed monolithic material as the anchor, the first nonlinear suspension member, the second nonlinear suspension member, and the monolithic material of the mass. Material.
实例11包括实例1-10中任一者的主题,其中管芯为薄片形,第一非线性悬吊构件和第二非线性悬吊构件中的每一者均具有大体上矩形的横截面,该横截面的高度小于宽度。Example 11 includes the subject matter of any of Examples 1-10, wherein the die is sheet-shaped, each of the first nonlinear suspension member and the second nonlinear suspension member has a substantially rectangular cross-section, The height of the cross section is smaller than the width.
实例12包括一种方法,包括:刻蚀材料以限定锚;刻蚀所述材料以限定在所述锚的一侧耦合到锚的第一非线性悬吊构件;刻蚀所述材料以限定在所述锚的同一侧耦合到所述锚的第二非线性悬吊构件,所述第二非线性悬吊构件具有与所述第一非线性悬吊构件关于锚二等分面成镜像关系的形状和位置;以及刻蚀所述材料以限定平面式的质量块,所述质量块至少部分地由所述第一非线性悬吊构件和所述第二非线性悬吊构件悬吊,使得所述质量块能够围绕所述锚旋转并能够在平行于基板的平面中滑动。Example 12 includes a method comprising: etching a material to define an anchor; etching the material to define a first nonlinear suspension member coupled to the anchor on one side of the anchor; etching the material to define a The same side of the anchor is coupled to a second nonlinear suspension member of the anchor, the second nonlinear suspension member having a mirror image relationship with the first nonlinear suspension member about the anchor bisecting plane shape and location; and etching the material to define a planar mass suspended at least in part by the first nonlinear suspension member and the second nonlinear suspension member such that the The proof-mass is rotatable about the anchor and slidable in a plane parallel to the substrate.
实例13包括实例12的主题,其中刻蚀包括深反应离子刻蚀。Example 13 includes the subject matter of Example 12, wherein the etching comprises deep reactive ion etching.
实例14包括实例12-13中任一者的主题,其中第一非线性悬吊构件和第二非线性悬吊构件为第一组部件,包括刻蚀所述材料以限定与所述第一组相反的第二组非线性悬吊构件。Example 14 includes the subject matter of any of Examples 12-13, wherein the first nonlinear suspension member and the second nonlinear suspension member are a first set of components, comprising etching the material to define a The opposite second set of nonlinear suspension members.
实例15包括实例14的主题,包括刻蚀用于将锚耦合到质量块的第三组非线性悬吊构件,以及刻蚀用于将锚耦合到质量块的第四组非线性悬吊构件,其中所述第三组和第四组具有与所述第一组和第二组相似的要素且由垂直于第一锚二等分面的第二锚二等分面二等分。Example 15 includes the subject matter of Example 14, including etching a third set of nonlinear suspension members for coupling the anchor to the proof-mass, and etching a fourth set of nonlinear suspension members for coupling the anchor to the proof-mass, Wherein the third and fourth groups have similar elements to the first and second groups and are bisected by a second anchor bisecting plane perpendicular to the first anchor bisecting plane.
实例16可包括前述实例的任一者,其中微机电管芯对运动进行感应。该实例可包括基板。该实例可包括在锚处耦合至基板的质量块。质量块可包括能够相对于锚移动的第一部分,该第一部分包括第一质量块电极。该实例可包括质量块的相对于锚与第一部分相对的第二部分,所述第二部分能够相对于锚和第一部分移动,第二部分包括第二质量块电极。该实例可包括耦合至基板并包括第一定子电极的第一定子,所述第一定子电极在质量块的第一部分的第一质量块电极旁边延伸以形成第一电极对。该实例可包括耦合至基板并包括第二定子电极的第二定子,所述第二定子电极与第一定子电极相对并且在质量块的第二部分的第二质量块电极旁边延伸以形成第二电极对。根据这些实例,在第一振动模式中,其中质量块的第一部分移动远离质量块的第二部分,质量块、第一定子电极和第二定子电极被布置为使得第一电极对的电极之间的距离与第二电极对的电极之间的距离成反比。Example 16 can include any of the preceding examples, wherein the microelectromechanical die senses motion. The instance may include a substrate. The example may include a proof-mass coupled to the substrate at anchors. The proof-mass may include a first portion movable relative to the anchor, the first portion including a first proof-mass electrode. The example may include a second portion of the proof-mass opposite the first portion relative to the anchor, the second portion being movable relative to the anchor and the first portion, the second portion comprising a second proof-mass electrode. The example can include a first stator coupled to the substrate and including a first stator electrode extending alongside the first-mass electrode of the first portion of the proof-mass to form a first electrode pair. The example may include a second stator coupled to the substrate and including a second stator electrode opposite the first stator electrode and extending alongside the second proof-mass electrode of the second portion of the proof-mass to form a second stator electrode. Two electrode pairs. According to these examples, in the first mode of vibration, in which the first part of the mass moves away from the second part of the mass, the mass, the first stator electrode and the second stator electrode are arranged such that between the electrodes of the first electrode pair The distance between them is inversely proportional to the distance between the electrodes of the second electrode pair.
实例17可包括前述实例的任一者,其中质量块的第一质量块电极在锚的另一边与质量块的第二质量块电极相对,并且其中第一定子电极在锚的另一边与第二锚固电极相对而耦合至基板。Example 17 may include any of the preceding examples, wherein the first stator electrode of the proof-mass is opposite the second proof-mass electrode on the other side of the anchor, and wherein the first stator electrode is opposite the second proof-mass electrode on the other side of the anchor. The two anchor electrodes are opposite and coupled to the substrate.
实例18可包括前述实例的任一者,其中质量块的第一部分在锚的另一边与质量块的第二部分对称,并且第一定子在锚的另一边相对于第二定子不对称。Example 18 may include any of the preceding examples, wherein the first portion of the proof-mass is symmetrical to the second portion of the proof-mass on the other side of the anchor, and the first stator is asymmetrical to the second stator on the other side of the anchor.
实例19可包括前述实例的任一者,其中第一电极对包括第一电容器,并且第二电极对包括第二电容器。Example 19 can include any of the preceding examples, wherein the first pair of electrodes includes a first capacitor and the second pair of electrodes includes a second capacitor.
实例20可包括前述实例的任一者,其中第一质量块电极和第一定子电极中的每一者是细长的,并且第一质量块电极与第一定子电极之间的距离沿着每一者的长度基本上恒定。Example 20 can include any of the preceding examples, wherein each of the first-mass electrode and the first stator electrode is elongated, and the distance between the first-mass electrode and the first stator electrode is along Each has a substantially constant length.
实例21可包括前述实例的任一者,其中第二质量块电极和第二定子电极中的每一者是细长的,并且第二质量块电极与第二定子电极之间的距离沿着每一者的长度基本上恒定。Example 21 can include any of the preceding examples, wherein each of the second-mass electrode and the second stator electrode is elongated, and the distance between the second-mass electrode and the second stator electrode is along each The length of one is substantially constant.
实例22可包括前述实例的任一者,其中质量块在锚的第一侧上限定第一开口,质量块的第一部分可移动地耦合在第一开口中,包括第一质量块电极的第一多个质量块电极延伸进所述开口中且彼此间隔开。在该实例中,质量块可在锚的第二侧上限定第二开口,第二部分耦合在第二开口中,包括第二质量块电极的第二多个质量块电极延伸进所述开口中且彼此间隔开。Example 22 may include any of the preceding examples, wherein the proof-mass defines a first opening on the first side of the anchor, a first portion of the proof-mass is movably coupled in the first opening, including a first portion of the first proof-mass electrode. A plurality of proof-mass electrodes extend into the opening and are spaced apart from each other. In this example, the proof-mass may define a second opening on the second side of the anchor, the second portion is coupled into the second opening, and a second plurality of proof-mass electrodes including the second proof-mass electrodes extend into the opening. and spaced apart from each other.
实例23可包括前述实例的任一者,其中第一定子电极是第一多个定子电极中的一个,所述第一多个定子电极与所述第一多个质量块电极中的相应电极交错接合且成对以形成第一电极对;并且其中第二定子电极是第二多个定子电极中的一个,所述第二多个定子电极与所述第二多个定子电极中的相应电极交错接合且成对以形成第二电极对。Example 23 may include any of the preceding examples, wherein the first stator electrode is one of a first plurality of stator electrodes, the first plurality of stator electrodes being connected to a corresponding electrode of the first plurality of mass electrodes interleaved and paired to form a first pair of poles; and wherein the second stator pole is one of a second plurality of stator poles, the second plurality of stator poles and a corresponding pole of the second plurality of stator poles interleaved and paired to form a second electrode pair.
实例24可包括前述实例的任一者,其中,在第一振动模式中,所述第一多个定子电极被构造为移动远离所述第一多个定子电极以及远离锚,而所述第二多个定子电极被构造为朝着所述第二多个定子电极以及朝着锚移动。Example 24 may include any of the preceding examples, wherein, in the first vibration mode, the first plurality of stator electrodes is configured to move away from the first plurality of stator electrodes and away from the anchor, and the second The plurality of stator electrodes is configured to move toward the second plurality of stator electrodes and toward the anchor.
实例25可包括前述实例的任一者,其中质量块被构造为相对于基板振动以使所述第一多个定子电极与所述第一多个定子电极之间的距离变化以及使所述第二多个定子电极与所述第二多个定子电极之间的距离变化,在所述第二多个定子电极中最接近锚的一者与所述第二多个定子电极中最接近锚的一者相距更大距离时,所述第一多个定子电极中最接近锚的一者与所述第一多个定子电极中最接近锚的一者相距某个距离。Example 25 may include any of the preceding examples, wherein the proof-mass is configured to vibrate relative to a substrate to vary a distance between the first plurality of stator electrodes and to cause the first plurality of stator electrodes to vary. The distance between the two plurality of stator electrodes and the second plurality of stator electrodes varies between the one of the second plurality of stator electrodes closest to the anchor and the one of the second plurality of stator electrodes closest to the anchor The one of the first plurality of stator electrodes that is closest to the anchor is at a distance from the one of the first plurality of stator electrodes that is closest to the anchor when one is a greater distance apart.
实例26可包括前述实例的任一者,其中第一质量块电极、第二质量块电极、第一定子电极以及第二定子电极是弯曲的,其中电极中的每一者围绕某个轴弯曲,质量块被构造为在第二振动模式中围绕该轴旋转。Example 26 can include any of the preceding examples, wherein the first-mass electrode, the second-mass electrode, the first stator electrode, and the second stator electrode are curved, wherein each of the electrodes is curved about an axis , the mass is configured to rotate about the axis in the second mode of vibration.
实例27可包括前述实例的任一者并且可包括形成质量块,包括形成用于将质量块耦合至基板的锚。该实例可包括在锚的第一侧上形成第一部分,该第一部分可相对于锚移动并且包括第一质量块电极。该实例可包括在锚的与第一侧相对的第二侧上形成第二部分,该第二部分包括第二质量块电极。该实例可包括形成用于耦合至基板的第一定子,包括形成用于在质量块的第一质量块电极旁边延伸以形成第一电极对的第一定子电极。该实例可包括形成用于耦合至基板的第二定子,包括形成用于在质量块的第二质量块电极旁边延伸以形成第二电极对的第二定子电极。根据该实例,质量块、第一定子和第二定子被形成为使得在质量块的第一振动模式中,第一对的电极之间的距离与第二电极对的电极之间的距离成反比。Example 27 can include any of the preceding examples and can include forming the proof-mass, including forming an anchor for coupling the proof-mass to the substrate. The example can include forming a first portion on a first side of the anchor, the first portion being movable relative to the anchor and including a first proof-mass electrode. The example may include forming a second portion on a second side of the anchor opposite the first side, the second portion including the second proof-mass electrode. The example may include forming a first stator for coupling to the substrate, including forming a first stator electrode for extending alongside a first proof-mass electrode of the proof-mass to form a first electrode pair. The example may include forming a second stator for coupling to the substrate, including forming a second stator electrode to extend alongside a second proof-mass electrode of the proof-mass to form a second electrode pair. According to this example, the mass, the first stator and the second stator are formed such that in the first mode of vibration of the mass the distance between the electrodes of the first pair is proportional to the distance between the electrodes of the second pair of electrodes Inversely.
实例28可包括前述实例的任一者,其中所述形成包括深反应离子刻蚀。Example 28 can include any of the preceding examples, wherein the forming includes deep reactive ion etching.
实例29可包括前述实例的任一者,其中形成第一质量块电极、形成第二质量块电极、形成第一定子电极以及形成第二定子电极包括以一定曲率来形成每一者,其中每一者围绕某个轴弯曲,质量块在第二振动模式中围绕该轴旋转。Example 29 can include any of the preceding examples, wherein forming the first-mass electrode, forming the second-mass electrode, forming the first stator electrode, and forming the second stator electrode includes forming each with a curvature, wherein each One is bent about an axis around which the mass rotates in a second mode of vibration.
实例30可包括前述实例的任一者,包括用第一电极对来形成第一电容器,并且用第二电极对来形成第二电容器。Example 30 can include any of the preceding examples, including forming the first capacitor with the first pair of electrodes and forming the second capacitor with the second pair of electrodes.
实例31可包括前述实例的任一者,其中形成第一质量块电极和第一定子电极包括在它们之间形成沿着第一电极对的长度基本上恒定的第一距离,并且形成第二质量块电极和第二定子电极包括在它们之间形成沿着第二电极对的长度基本上恒定的第二距离。Example 31 may include any of the preceding examples, wherein forming the first-mass electrode and the first stator electrode comprises forming a first distance therebetween that is substantially constant along the length of the first electrode pair, and forming a second distance between them. The proof-mass electrode and the second stator electrode include a second distance formed therebetween that is substantially constant along the length of the second electrode pair.
实例32可包括前述实例的任一者,包括一种使用微机电管芯来对运动进行感应的方法,包括。该实例可包括激发质量块的第一部分以及质量块的第二部分的振动,使得第一部分和第二部分朝着相应的第一定子和第二定子一起移动并同步地间隔开。该实例可包括通过测量第一定子和第二定子的相应电容值的差分,来对管芯沿着一方向的运动进行感应,该方向在质量块的第一部分与质量块的第二部分之间延伸。Example 32 can include any of the preceding examples, including a method of sensing motion using a microelectromechanical die, comprising. The example may include exciting vibrations of the first portion of the mass and the second portion of the mass such that the first and second portions move together and are spaced apart synchronously toward respective first and second stators. The example may include sensing movement of the die along a direction between the first portion of the proof-mass and the second portion of the proof-mass by measuring a difference in respective capacitance values of the first stator and the second stator. extended.
实例33可包括前述实例的任一者,其中第一部分包括朝着第一定子的第一定子电极移动的第一质量块电极,而第二部分包括移动远离第二定子的第二定子电极的第二质量块电极。Example 33 may include any of the preceding examples, wherein the first portion includes a first stator electrode moving towards a first stator electrode of the first stator and the second portion includes a second stator electrode moving away from a second stator The second mass electrode.
实例34可包括前述实例的任一者,其中对运动进行感应包括对包括第一质量块电极和第一定子电极的第一电极对的第一电容与包括第二质量块电极和第二定子电极的第二电极对之间的差分进行感应。Example 34 may include any of the preceding examples, wherein sensing the motion comprises combining a first capacitance of a first electrode pair comprising a first mass electrode and a first stator electrode with a first capacitance comprising a second mass electrode and a second stator electrode. The difference between the second electrode pair of electrodes is sensed.
实例35可包括前述实例的任一者,包括将质量块在所述质量块的平面内旋转,而不改变第一定子和第二定子的相应电容值的测得差分。Example 35 may include any of the preceding examples, comprising rotating the proof-mass in the plane of the proof-mass without changing the measured difference in the respective capacitance values of the first stator and the second stator.
实例36可包括前述实例的任一者,包括在不改变第一电极对的电极之间的距离以及在不改变第二电极对的电极之间的距离的情况下将质量块在所述质量块的平面内旋转。Example 36 may include any of the preceding examples, comprising placing the proof mass on the proof mass without changing the distance between the electrodes of the first electrode pair and without changing the distance between the electrodes of the second electrode pair. in-plane rotation.
实例37可包括前述实例的任一者,包括对运动进行感应的微机电管芯。该实例可包括固定部分。该实例可包括耦合至固定部分的锚。该实例可包括在锚的第一侧上耦合至锚的第一非线性悬吊构件。该实例可包括在锚的第一侧上耦合至锚的第二非线性悬吊构件,该第二非线性悬吊构件具有与第一非线性悬吊构件关于锚二等分面成镜像关系的形状和位置。根据该实例,第一非线性悬吊构件和第二非线性悬吊构件是微机电管芯的内环架的一部分。该实例可包括平面状的质量块,所述质量块由设置在锚的第一侧上的第一悬吊构件以及设置在锚的与第一侧相对的第二侧上的第二悬吊构件悬吊,管芯限定沿着锚的第一侧延伸的第一间隙以及沿着锚的与第一侧相对的第二侧延伸的第二间隙,第一间隙和第二间隙中的每一者在内环架与质量块之间延伸,其中内环架至少部分地由第一非线性悬吊构件和第二非线性悬吊构件悬吊使得质量块可围绕锚旋转并且可在平行于固定部分的平面中滑动。Example 37 can include any of the preceding examples, including a microelectromechanical die that senses motion. The instance may include a fixed portion. The instance may include an anchor coupled to the fixed portion. The example can include a first nonlinear suspension member coupled to the anchor on a first side of the anchor. The example may include a second nonlinear suspension member coupled to the anchor on a first side of the anchor, the second nonlinear suspension member having a mirror image relationship with the first nonlinear suspension member about the anchor bisecting plane. shape and position. According to this example, the first nonlinear suspension member and the second nonlinear suspension member are part of an inner gimbal of the microelectromechanical die. The example may include a planar mass consisting of a first suspension member disposed on a first side of the anchor and a second suspension member disposed on a second side of the anchor opposite the first side Suspended, the die defines a first gap extending along a first side of the anchor and a second gap extending along a second side of the anchor opposite the first side, each of the first gap and the second gap extending between the inner gimbal and the proof-mass, wherein the inner gimbal is at least partially suspended by the first nonlinear suspension member and the second nonlinear suspension member such that the proof-mass is rotatable about the anchor and can rotate parallel to the fixed portion slide in the plane.
实例38可包括前述实例的任一者,其中第一间隙从第一悬吊构件延伸至第二悬吊构件,并且第二间隙从第一悬吊构件延伸至第二悬吊构件。Example 38 can include any of the preceding examples, wherein the first gap extends from the first suspension member to the second suspension member, and the second gap extends from the first suspension member to the second suspension member.
实例39可包括前述实例的任一者,其中第一间隙和第二间隙为C形,第一C形限定朝着第二C形的第二开口敞开的第一开口。Example 39 can include any of the preceding examples, wherein the first gap and the second gap are C-shaped, the first C-shape defining a first opening that opens toward a second opening of the second C-shape.
实例40可包括前述实例的任一者,其中第一间隙限定第一垂直挠曲部和第二垂直挠曲部,并且第二间隙限定第三垂直挠曲部和第四垂直挠曲部。Example 40 can include any of the preceding examples, wherein the first gap defines a first vertical flexure and a second vertical flexure, and the second gap defines a third vertical flexure and a fourth vertical flexure.
实例41可包括前述实例的任一者,其中第一、第二、第三和第四垂直挠曲部中的每一者是细长的,其长度比宽度长,并且每个相应的长度延伸远离相应的悬吊构件。Example 41 may include any of the preceding examples, wherein each of the first, second, third, and fourth vertical flexures is elongated, having a length longer than it is wide, and each corresponding length extends away from the corresponding suspension member.
实例42可包括前述实例的任一者,其中每个相应的长度延伸远离锚二等分面。Example 42 can include any of the preceding examples, wherein each respective length extends away from the anchor bisecting plane.
实例43可包括前述实例的任一者,其中第一C形包括第一端部分和第二端部分,中心部分在所述第一端部分与所述第二端部分之间延伸。Example 43 can include any of the preceding examples, wherein the first C-shape includes a first end portion and a second end portion, a central portion extending between the first end portion and the second end portion.
实例44可包括前述实例的任一者,其中第一端部分和第二端部分垂直于中心部分。Example 44 can include any of the preceding examples, wherein the first end portion and the second end portion are perpendicular to the central portion.
实例45可包括前述实例的任一者,其中第一倾斜部分在第一端部分与中心部分之间延伸,并且第二倾斜部分在第二端部分与中心部分之间延伸。Example 45 can include any of the preceding examples, wherein the first sloped portion extends between the first end portion and the central portion, and the second sloped portion extends between the second end portion and the central portion.
实例46可包括前述实例的任一者,其中第一间隙为第二间隙的镜像形状,并且第一间隙沿着锚二等分面成镜像。Example 46 can include any of the preceding examples, wherein the first gap is a mirror image shape of the second gap, and the first gap is mirrored along the anchor bisecting plane.
实例47可包括一种方法,包括形成一种材料以限定内环架,该内环架用与锚耦合以锚固至基板上。该实例可包括形成所述材料以限定在所述锚的第一侧上耦合到锚的第一非线性悬吊构件。该实例可包括形成所述材料以限定在所述锚的第一侧上耦合到锚的第二非线性悬吊构件,所述第二非线性悬吊构件具有与所述第一非线性悬吊构件关于锚二等分面成镜像关系的形状和位置。该实例可包括形成所述材料以限定平面式的质量块,所述质量块由设置在锚的第一侧上的第一悬吊构件以及设置在锚的与第一侧相对的第二侧上的第二悬吊构件悬吊,第一间隙沿着锚的第一侧延伸且第二间隙沿着锚的与第一侧相对的第二侧延伸,第一间隙和第二间隙中的每一者在质量块与内环架之间延伸。Example 47 can include a method comprising forming a material to define an inner gimbal for coupling with an anchor for anchoring to a substrate. This example can include forming the material to define a first nonlinear suspension member coupled to an anchor on a first side of the anchor. This example may include forming the material to define a second nonlinear suspension member coupled to the anchor on a first side of the anchor, the second nonlinear suspension member having a The shape and position of the member mirrored about the anchor bisecting plane. The example may include forming the material to define a planar mass consisting of a first suspension member disposed on a first side of the anchor and disposed on a second side of the anchor opposite the first side. Suspended by the second suspension member, the first gap extends along the first side of the anchor and the second gap extends along the second side of the anchor opposite the first side, each of the first gap and the second gap The other extends between the proof mass and the inner gimbal.
实例48可包括前述实例的任一者,其中所述形成包括深反应离子刻蚀。Example 48 can include any of the preceding examples, wherein the forming includes deep reactive ion etching.
实例49可包括前述实例的任一者,其中第一非线性悬吊构件和第二非线性悬吊构件为第一组部件,包括刻蚀所述材料以限定与所述第一组相反的第二组非线性悬吊构件。Example 49 may include any of the preceding examples, wherein the first nonlinear suspension member and the second nonlinear suspension member are a first set of components, comprising etching the material to define a third nonlinear suspension member opposite the first set. Two sets of nonlinear suspension members.
实例50可包括刻蚀用于将锚耦合到质量块的第三组非线性悬吊构件,以及刻蚀用于将锚耦合到质量块的第四组非线性悬吊构件,其中所述第三组和第四组具有与所述第一组和第二组相似的要素且由垂直于第一锚二等分面的第二锚二等分面二等分。Example 50 can include etching a third set of nonlinear suspension members for coupling the anchor to the proof-mass, and etching a fourth set of nonlinear suspension members for coupling the anchor to the proof-mass, wherein the third set The first and fourth sets have similar elements to the first and second sets and are bisected by a second anchor bisecting plane perpendicular to the first anchor bisecting plane.
实例51可包括前述实例的任一者,其中刻蚀第一间隙和第二间隙包括将每一者成型为C形,并且第一间隙的第一C形朝着第二间隙的第二C形敞开。Example 51 can include any of the preceding examples, wherein etching the first gap and the second gap includes forming each into a C-shape, with the first C-shape of the first gap toward the second C-shape of the second gap wide open.
实例52可包括一种使用微机电管芯对运动进行感应的方法,包括将质量块相对于经由锚耦合至基板的内环架旋转。该实例可包括使第一非线性悬吊构件变形,该第一非线性悬吊构件在质量块平面的面外、在质量块上方将所述质量块耦合至锚的第一侧。该实例可包括使第二非线性悬吊构件变形,该第二非线性悬吊构件在质量块平面的面外在所述质量块平面的相对的第一侧上、在质量块下方将所述质量块耦合至锚的第一侧。该实例可包括使支撑质量块且设置在锚的第一侧上的第一悬吊构件变形,以及使设置在锚的与第一侧相对的第二侧上的第二悬吊构件变形,管芯限定沿着锚的第一侧延伸的第一间隙以及沿着锚的与第一侧相对的第二侧延伸的第二间隙,第一间隙和第二间隙中的每一者在内环架与质量块之间延伸。Example 52 can include a method of sensing motion using a microelectromechanical die comprising rotating a mass relative to an inner gimbal coupled to a substrate via an anchor. The example may include deforming a first nonlinear suspension member that couples the proof-mass to the first side of the anchor above the proof-mass out-of-plane to the plane of the proof-mass. This example may include deforming a second nonlinear suspension member that draws the A mass is coupled to the first side of the anchor. The example may include deforming a first suspension member supporting the mass and disposed on a first side of the anchor, and deforming a second suspension member disposed on a second side of the anchor opposite the first side, tube The core defines a first gap extending along a first side of the anchor and a second gap extending along a second side of the anchor opposite the first side, each of the first and second gaps being in the inner gimbal Extends between the block of mass.
实例53可包括前述权利要求的任一者,其中使支撑质量块且设置在锚的第一侧上的第一悬吊构件变形,以及使设置在锚的与第一侧相对的第二侧上的第二悬吊构件变形,包括使各自均由第一间隙限定的第一垂直挠曲部和第二垂直挠曲部以及各自均由第二间隙限定的第三垂直挠曲部和第四垂直挠曲部变形。Example 53 may include any of the preceding claims, wherein a first suspension member supporting the mass and disposed on a first side of the anchor is deformed, and a second suspension member disposed on a second side of the anchor opposite the first side is deformed. Deformation of the second suspension member includes causing a first vertical flexure and a second vertical flexure each defined by a first gap and a third vertical flexure and a fourth vertical flexure each defined by a second gap Flexure deformation.
实例54可包括前述权利要求的任一者,其中在旋转循环的第一半期间,使第一垂直挠曲部和第二垂直挠曲部变形远离锚,且使第三垂直挠曲部和第四垂直挠曲部朝着锚变形,并且在旋转循环的第二半期间,使第一垂直挠曲部和第二垂直挠曲部朝着锚变形,且使第三垂直挠曲部和第四垂直挠曲部变形远离锚。Example 54 may include any of the preceding claims, wherein during the first half of the rotation cycle, the first and second vertical flexures are deformed away from the anchor, and the third and second vertical flexures are deformed. The four vertical flexures deform toward the anchor, and during the second half of the rotation cycle, the first and second vertical flexures deform toward the anchor, and the third and fourth vertical flexures deform toward the anchor. The vertical flexure deforms away from the anchor.
实例55可包括前述权利要求的任一者,其中挠曲部的变形包括弯曲。Example 55 may include any of the preceding claims, wherein the deformation of the flexure includes bending.
实例56可包括前述权利要求的任一者,其中锚二等分面将锚垂直地二等分,并且在第一非线性悬吊构件与第二非线性悬吊构件之间及第一悬吊构件与第二悬吊构件之间通过。Example 56 may include any of the preceding claims, wherein the anchor bisects the anchor vertically, and between the first nonlinear suspension member and the second nonlinear suspension member and the first suspension between the member and the second suspension member.
上述详细说明书参照了附图,附图也是所述详细说明书的一部分。附图以图解的方式显示了可应用本发明的具体实施例。这些实施例在本文中被称作“示例”。本文所涉及的所有出版物、专利及专利文件全部作为本文的参考内容,尽管它们是分别加以参考的。如果本文与参考文件之间存在用途差异,则将参考文件的用途视作本文的用途的补充,若两者之间存在不可调和的差异,则以本文的用途为准。The above detailed description refers to the accompanying drawings, which form a part hereof. The drawings show by way of diagrams specific embodiments to which the invention may be applied. These embodiments are referred to herein as "examples." All publications, patents, and patent documents mentioned herein are hereby incorporated by reference in their entirety, although individually incorporated. If there is a discrepancy between the purposes of this document and the reference document, the purpose of the reference document is considered to be supplementary to the purpose of this document, and if there is an irreconcilable difference between the two, the purpose of this document shall prevail.
在本文中,与专利文件通常使用的一样,术语“一”或“某一”表示包括一个或多个,但其他情况或在使用“至少一个”或“一个或多个”时应除外。在本文中,除非另外指明,否则使用术语“或”指无排他性的或者,使得“A或B”包括:“A但不是B”、“B但不是A”以及“A和B”。在所附权利要求中,术语“包含”和“在其中”等同于各个术语“包括”和“其中”的通俗英语。同样,在本文中,术语“包含”和“包括”是开放性的,即,系统、设备、物品或步骤包括除了权利要求中这种术语之后所列出的那些部件以外的部件的,依然视为落在该条权利要求的范围之内。而且,在下面的权利要求中,术语“第一”、“第二”和“第三”等仅仅用作标签,并非对对象有数量要求。上述说明的作用在于解说而非限制。在其他实例中,可以相互结合地使用上述实例(或其一个或多个方面)。可以在理解上述说明书的基础上,利用现有技术的某种常规技术来执行其他实施例。Herein, as commonly used in patent documents, the term "a" or "an" means to include one or more, but should be excluded in other cases or when "at least one" or "one or more" is used. Herein, unless otherwise indicated, the term "or" is used to mean a non-exclusive alternative such that "A or B" includes: "A but not B", "B but not A" and "A and B". In the appended claims, the terms "comprising" and "in which" are equivalent to the plain English equivalents of the respective terms "comprising" and "in which". Also, in this document, the terms "comprising" and "comprising" are open-ended, i.e., a system, device, article or step that includes elements other than those listed after such term in a claim is still considered fall within the scope of this claim. Moreover, in the following claims, the terms "first", "second", and "third", etc. are merely used as labels and do not place quantitative requirements on the objects. The foregoing description is by way of illustration and not limitation. In other examples, the above examples (or one or more aspects thereof) may be used in conjunction with each other. Other embodiments may be implemented using certain conventional techniques of the prior art on the basis of understanding the above description.
根据专利实施细则37C.F.R.§1.72(b)提供说明书摘要从而允许读者快速确定技术公开的实质。说明书摘要的提交不旨在用于解释或限制权利要求的范围和含义。同样,在上面的具体实施方式中,各种特征可归类成将本公开合理化。这不应理解成未要求的公开特征对任何权利要求必不可少。相反,本发明的主题可在于的特征少于特定公开的实施例的所有特征。因此,下面的权利要求据此并入具体实施方式中,每个权利要求均作为一个单独的实施例,并且可设想到这些实施例可以在各种组合或排列中彼此结合。应参看所附的权利要求,以及这些权利要求所享有的等同物的所有范围,来确定本申请的范围。The Abstract of the Specification is provided under 37 C.F.R. §1.72(b) of the Patent Regulations to allow the reader to quickly ascertain the substance of the technical disclosure. The Abstract of the Specification is submitted not to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped to rationalize the disclosure. This should not be interpreted as indicating that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing as a separate embodiment, and it is contemplated that these embodiments can be combined with each other in various combinations and permutations. The scope of the application should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
Claims (13)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261593691P | 2012-02-01 | 2012-02-01 | |
| US61/593,691 | 2012-02-01 | ||
| PCT/US2013/024149 WO2013116522A1 (en) | 2012-02-01 | 2013-01-31 | Mems multi-axis gyroscope z-axis electrode structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104272062A CN104272062A (en) | 2015-01-07 |
| CN104272062B true CN104272062B (en) | 2016-05-18 |
Family
ID=48905829
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380007588.7A Active CN104220840B (en) | 2012-02-01 | 2013-01-31 | MEMS Multi-Axis Gyroscope with Central Suspension and Ring Frame Structure |
| CN201380007615.0A Active CN104272062B (en) | 2012-02-01 | 2013-01-31 | Z-axis electrode structure of microelectromechanical system (MEMS) multi-axis gyroscope |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380007588.7A Active CN104220840B (en) | 2012-02-01 | 2013-01-31 | MEMS Multi-Axis Gyroscope with Central Suspension and Ring Frame Structure |
Country Status (2)
| Country | Link |
|---|---|
| CN (2) | CN104220840B (en) |
| WO (2) | WO2013116514A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9618361B2 (en) | 2012-04-05 | 2017-04-11 | Fairchild Semiconductor Corporation | MEMS device automatic-gain control loop for mechanical amplitude drive |
| US9625272B2 (en) | 2012-04-12 | 2017-04-18 | Fairchild Semiconductor Corporation | MEMS quadrature cancellation and signal demodulation |
| US9802814B2 (en) | 2012-09-12 | 2017-10-31 | Fairchild Semiconductor Corporation | Through silicon via including multi-material fill |
| US9856132B2 (en) | 2010-09-18 | 2018-01-02 | Fairchild Semiconductor Corporation | Sealed packaging for microelectromechanical systems |
| US10050155B2 (en) | 2010-09-18 | 2018-08-14 | Fairchild Semiconductor Corporation | Micromachined monolithic 3-axis gyroscope with single drive |
| US10060757B2 (en) | 2012-04-05 | 2018-08-28 | Fairchild Semiconductor Corporation | MEMS device quadrature shift cancellation |
| US10065851B2 (en) | 2010-09-20 | 2018-09-04 | Fairchild Semiconductor Corporation | Microelectromechanical pressure sensor including reference capacitor |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8710599B2 (en) | 2009-08-04 | 2014-04-29 | Fairchild Semiconductor Corporation | Micromachined devices and fabricating the same |
| US8813564B2 (en) | 2010-09-18 | 2014-08-26 | Fairchild Semiconductor Corporation | MEMS multi-axis gyroscope with central suspension and gimbal structure |
| CN103221779B (en) | 2010-09-18 | 2017-05-31 | 快捷半导体公司 | The axle inertial sensor of micromechanics monoblock type six |
| EP2616389B1 (en) | 2010-09-18 | 2017-04-05 | Fairchild Semiconductor Corporation | Multi-die mems package |
| DE112011103124T5 (en) | 2010-09-18 | 2013-12-19 | Fairchild Semiconductor Corporation | Bearing for reducing quadrature for resonant micromechanical devices |
| CN103209922B (en) | 2010-09-20 | 2014-09-17 | 快捷半导体公司 | Through silicon via with reduced shunt capacitance |
| US9062972B2 (en) | 2012-01-31 | 2015-06-23 | Fairchild Semiconductor Corporation | MEMS multi-axis accelerometer electrode structure |
| US8978475B2 (en) | 2012-02-01 | 2015-03-17 | Fairchild Semiconductor Corporation | MEMS proof mass with split z-axis portions |
| US8754694B2 (en) | 2012-04-03 | 2014-06-17 | Fairchild Semiconductor Corporation | Accurate ninety-degree phase shifter |
| US9488693B2 (en) | 2012-04-04 | 2016-11-08 | Fairchild Semiconductor Corporation | Self test of MEMS accelerometer with ASICS integrated capacitors |
| US8742964B2 (en) | 2012-04-04 | 2014-06-03 | Fairchild Semiconductor Corporation | Noise reduction method with chopping for a merged MEMS accelerometer sensor |
| US9069006B2 (en) | 2012-04-05 | 2015-06-30 | Fairchild Semiconductor Corporation | Self test of MEMS gyroscope with ASICs integrated capacitors |
| EP2648334B1 (en) | 2012-04-05 | 2020-06-10 | Fairchild Semiconductor Corporation | Mems device front-end charge amplifier |
| US9094027B2 (en) | 2012-04-12 | 2015-07-28 | Fairchild Semiconductor Corporation | Micro-electro-mechanical-system (MEMS) driver |
| JP2018517898A (en) * | 2015-05-08 | 2018-07-05 | サイモン フレーザー 大学Simon Fraser University | Vibration gyroscope using non-linear modal interaction |
| JP6640176B2 (en) * | 2016-12-19 | 2020-02-05 | アナログ ディヴァイスィズ インク | Synchronous mass gyroscope |
| US10697994B2 (en) | 2017-02-22 | 2020-06-30 | Semiconductor Components Industries, Llc | Accelerometer techniques to compensate package stress |
| CN107356240B (en) * | 2017-07-21 | 2023-04-07 | 安徽芯动联科微系统股份有限公司 | MEMS gyroscope with driving frequency adjusting structure |
| US11692825B2 (en) | 2020-06-08 | 2023-07-04 | Analog Devices, Inc. | Drive and sense stress relief apparatus |
| WO2021252364A1 (en) | 2020-06-08 | 2021-12-16 | Analog Devices, Inc. | Stress-relief mems gyroscope |
| US11698257B2 (en) | 2020-08-24 | 2023-07-11 | Analog Devices, Inc. | Isotropic attenuated motion gyroscope |
| CN111998840B (en) * | 2020-08-28 | 2022-08-12 | 中电科技集团重庆声光电有限公司 | MEMS multi-axis vibration sensor structure |
| CN112113553B (en) * | 2020-09-15 | 2022-06-21 | 浙江大学 | Gyro full-matching tuning electrode |
| US11932531B2 (en) * | 2022-01-13 | 2024-03-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Curved cantilever design to reduce stress in MEMS actuator |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1818552A (en) * | 2006-03-09 | 2006-08-16 | 上海交通大学 | Micro-rotation top with double-stator electromagnetic suspension rotor |
| CN101055180A (en) * | 2007-05-31 | 2007-10-17 | 上海交通大学 | Flexible static compensation type coil moment-increasing fluid gyroscope |
| CN101561275A (en) * | 2009-05-27 | 2009-10-21 | 上海交通大学 | Suspension rotor micro gyro by utilizing electromagnetism and charge relaxation to work |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0547742B1 (en) * | 1991-12-19 | 1995-12-13 | Motorola, Inc. | Triaxial accelerometer |
| US6988408B2 (en) * | 2000-07-13 | 2006-01-24 | Dong-Il Cho | Surface/bulk micromachined single-crystalline silicon micro-gyroscope |
| JP4433747B2 (en) * | 2003-09-29 | 2010-03-17 | 株式会社村田製作所 | Angular velocity detector |
| US7231824B2 (en) * | 2005-03-22 | 2007-06-19 | Honeywell International Inc. | Use of electrodes to cancel lift effects in inertial sensors |
| JP2007024864A (en) * | 2005-06-16 | 2007-02-01 | Mitsubishi Electric Corp | Vibrating gyro |
| US7726188B2 (en) * | 2006-04-24 | 2010-06-01 | Millisensor Systems + Actuators | Scale factor measurement for mems gyroscopes and accelerometers |
| US7461552B2 (en) * | 2006-10-23 | 2008-12-09 | Custom Sensors & Technologies, Inc. | Dual axis rate sensor |
| US8256290B2 (en) * | 2009-03-17 | 2012-09-04 | Minyao Mao | Tri-axis angular rate sensor |
| US8266961B2 (en) * | 2009-08-04 | 2012-09-18 | Analog Devices, Inc. | Inertial sensors with reduced sensitivity to quadrature errors and micromachining inaccuracies |
| US8710599B2 (en) * | 2009-08-04 | 2014-04-29 | Fairchild Semiconductor Corporation | Micromachined devices and fabricating the same |
| CN101634662B (en) * | 2009-08-07 | 2011-01-26 | 北京大学 | Micro accelerometer and its preparation method |
-
2013
- 2013-01-31 WO PCT/US2013/024138 patent/WO2013116514A1/en active Application Filing
- 2013-01-31 CN CN201380007588.7A patent/CN104220840B/en active Active
- 2013-01-31 WO PCT/US2013/024149 patent/WO2013116522A1/en active Application Filing
- 2013-01-31 CN CN201380007615.0A patent/CN104272062B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1818552A (en) * | 2006-03-09 | 2006-08-16 | 上海交通大学 | Micro-rotation top with double-stator electromagnetic suspension rotor |
| CN101055180A (en) * | 2007-05-31 | 2007-10-17 | 上海交通大学 | Flexible static compensation type coil moment-increasing fluid gyroscope |
| CN101561275A (en) * | 2009-05-27 | 2009-10-21 | 上海交通大学 | Suspension rotor micro gyro by utilizing electromagnetism and charge relaxation to work |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9856132B2 (en) | 2010-09-18 | 2018-01-02 | Fairchild Semiconductor Corporation | Sealed packaging for microelectromechanical systems |
| US10050155B2 (en) | 2010-09-18 | 2018-08-14 | Fairchild Semiconductor Corporation | Micromachined monolithic 3-axis gyroscope with single drive |
| US10065851B2 (en) | 2010-09-20 | 2018-09-04 | Fairchild Semiconductor Corporation | Microelectromechanical pressure sensor including reference capacitor |
| US9618361B2 (en) | 2012-04-05 | 2017-04-11 | Fairchild Semiconductor Corporation | MEMS device automatic-gain control loop for mechanical amplitude drive |
| US10060757B2 (en) | 2012-04-05 | 2018-08-28 | Fairchild Semiconductor Corporation | MEMS device quadrature shift cancellation |
| US9625272B2 (en) | 2012-04-12 | 2017-04-18 | Fairchild Semiconductor Corporation | MEMS quadrature cancellation and signal demodulation |
| US9802814B2 (en) | 2012-09-12 | 2017-10-31 | Fairchild Semiconductor Corporation | Through silicon via including multi-material fill |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104220840B (en) | 2016-06-01 |
| CN104220840A (en) | 2014-12-17 |
| CN104272062A (en) | 2015-01-07 |
| WO2013116514A1 (en) | 2013-08-08 |
| WO2013116522A1 (en) | 2013-08-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104272062B (en) | Z-axis electrode structure of microelectromechanical system (MEMS) multi-axis gyroscope | |
| US9278845B2 (en) | MEMS multi-axis gyroscope Z-axis electrode structure | |
| KR101443730B1 (en) | A microelectromechanical die, and a method for making a low-quadrature-error suspension | |
| CN110617809B (en) | MEMS angular velocity sensor with in-phase drive and sense motion suppression | |
| EP3407014A1 (en) | Piezoelectric rotational mems resonator | |
| JP6973522B2 (en) | Multi-axis gyroscope resistant to vibration | |
| US10775172B2 (en) | Piezoelectric gyroscope with transversal drive transducer | |
| EP3428576B1 (en) | Angular rate sensor with in-phase motion suppression structure | |
| JP6933240B2 (en) | Synchronous multi-axis gyroscope | |
| US6860151B2 (en) | Methods and systems for controlling movement within MEMS structures | |
| JP6027029B2 (en) | Spring structure, resonator, resonator array and sensor | |
| US10884018B2 (en) | Piezoelectric rotational MEMS resonator | |
| KR20150110492A (en) | Micromechanical z-axis gyroscope | |
| JP6627883B2 (en) | Structure and device of microelectromechanical capacitance sensor | |
| CN104094084A (en) | Microelectromechanical system (MEMS) mass with split z-axis sections | |
| JP2010534848A (en) | Micromechanics Coriolis rotation speed sensor | |
| KR20160013887A (en) | MEMS-Sensor | |
| EP3407015B1 (en) | Concatenated suspension in a piezoelectric gyroscope | |
| JP6832934B2 (en) | Movable mass suspension system with means to connect movable masses with optimized linearity | |
| US20190112181A1 (en) | Stabile micromechanical devices | |
| CN103403495B (en) | Reduction for the microfabrication device that resonates turns to poor flexure support |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CP02 | Change in the address of a patent holder | ||
| CP02 | Change in the address of a patent holder |
Address after: Arizona, USA Patentee after: Fairchild Semiconductor Corp. Address before: American California Patentee before: Fairchild Semiconductor Corp. |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20190723 Address after: Floor 1, Building 2, 235 Chengbei Road, Jiading District, Shanghai Patentee after: Shanghai Xirui Technology Co., Ltd. Address before: Arizona, USA Patentee before: Fairchild Semiconductor Corp. |
|
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: Room 307, 3rd floor, 1328 Dingxi Road, Changning District, Shanghai 200050 Patentee after: Shanghai Sirui Technology Co.,Ltd. Address before: Floor 1, building 2, No. 235, Chengbei Road, Jiading District, Shanghai, 201800 Patentee before: Shanghai Silicon Technology Co.,Ltd. |