[go: up one dir, main page]

CN104371658A - Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material - Google Patents

Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material Download PDF

Info

Publication number
CN104371658A
CN104371658A CN201410590865.8A CN201410590865A CN104371658A CN 104371658 A CN104371658 A CN 104371658A CN 201410590865 A CN201410590865 A CN 201410590865A CN 104371658 A CN104371658 A CN 104371658A
Authority
CN
China
Prior art keywords
hydrated salt
salt phase
inorganic hydrated
phase change
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410590865.8A
Other languages
Chinese (zh)
Inventor
孙立贤
陈娇
张焕芝
徐芬
陈培海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201410590865.8A priority Critical patent/CN104371658A/en
Publication of CN104371658A publication Critical patent/CN104371658A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention provides a packaging shape-stabilizing method of an inorganic hydrated salt phase-change heat storage material, which comprises the following steps: (1) adding a nucleator and deionized water into the inorganic hydrated salt phase-change material, and heating until the inorganic hydrated salt phase-change material achieves the molten state; (2) adding a porous propping material into the molten-state inorganic hydrated salt phase-change material, and stirring sufficiently and uniformly; (3) putting the molten-state mixture obtained in the step (2) in a vacuum environment to enhance the adsorptivity of the porous propping material for the inorganic hydrated salt phase-change material; and (4) moving the molten-state mixture out of the vacuum environment, and immediately putting the molten-state mixture into a low-temperature environment suitable for crystallization to perform recrystallization. The composite shape-stabilized phase-change material obtained by the method has the advantages of stable structure, high latent heat, no toxicity, simple preparation process, short time consumption and low cost.

Description

一种无机水合盐相变储热材料的封装定形方法Encapsulation and shaping method of inorganic hydrated salt phase change heat storage material

技术领域 technical field

本发明涉及材料科学技术领域,具体涉及一种无机水合盐相变储热材料的封装定形方法。 The invention relates to the field of material science and technology, in particular to a packaging and shaping method for an inorganic hydrated salt phase-change heat storage material.

背景技术 Background technique

    相变材料具有储热密度大、储热容器体积小、储热效率高、相变温度恒定和可循环使用等优点,在太阳能储存、空调节能、建筑节能、电力的移峰填谷、废热/余热回收利用等领域有着广泛的应用前景。无机水合盐作为一种重要的常低温相变储能材料,有固定的相变温度,较高的相变潜热,良好的导热性且价格便宜等特点。然而这种固—液相变材料在相变过程会发生固液变化,存在液体流动性、易泄漏的缺陷,并存在一定的过冷、相分离现象,因此,限制了它在生产生活中的广泛应用。 Phase change materials have the advantages of high heat storage density, small volume of heat storage container, high heat storage efficiency, constant phase change temperature and recyclable use. Recycling and other fields have broad application prospects. As an important phase change energy storage material at normal and low temperature, inorganic hydrate salt has the characteristics of fixed phase change temperature, high phase change latent heat, good thermal conductivity and low price. However, this solid-liquid phase change material will undergo solid-liquid changes during the phase change process, and has defects in liquid fluidity and easy leakage, as well as certain supercooling and phase separation phenomena, so its application in production and life is limited. widely used.

    目前,解决相变材料泄露问题的方法主要有多孔材料吸附法和微胶囊包覆法。如中国专利200810048159.5中记载了得到多孔复合无机相变材料的方法。另外,中国专利201210136116中记载了一种无机水合盐相变储能微胶囊及其制备方法,这种微胶囊法可有效解决水合盐相变材料的过冷和相分离问题。上述方法虽然都解决了相变材料的泄露问题,但是制备过程所耗时间较长,且存在吸附不彻底、不均匀的问题。 At present, the methods to solve the leakage problem of phase change materials mainly include porous material adsorption method and microcapsule encapsulation method. For example, Chinese patent 200810048159.5 describes a method for obtaining a porous composite inorganic phase change material. In addition, Chinese patent 201210136116 describes an inorganic hydrated salt phase change energy storage microcapsule and its preparation method. This microcapsule method can effectively solve the problems of supercooling and phase separation of the hydrated salt phase change material. Although the above methods all solve the leakage problem of the phase change material, the preparation process takes a long time, and there are problems of incomplete and uneven adsorption.

发明内容 Contents of the invention

为了提高复合定形相变材料的储能稳定性、防止相变过程中发生泄漏及提高相变材料的导热性能,本发明提供一种无机水合盐相变储热材料的封装定形方法,采用添加成核剂的方式来降低无机水合盐的过冷度,同时利用多孔材料的毛细吸附性能解决其易泄露问题,并采用真空浸渍法加强吸附,从而提高其综合性能。利用本发明得到的复合定形相变材料具有结构稳定、潜热较大、无毒,而且制备过程简单、耗时短、成本低廉。 In order to improve the energy storage stability of the composite shape-setting phase change material, prevent leakage during the phase change process, and improve the thermal conductivity of the phase change material, the present invention provides a packaging and setting method for an inorganic hydrated salt phase change heat storage material. At the same time, the capillary adsorption performance of porous materials is used to solve the problem of its easy leakage, and the vacuum impregnation method is used to strengthen the adsorption, thereby improving its comprehensive performance. The composite shape-setting phase-change material obtained by the invention has stable structure, large latent heat, non-toxicity, simple preparation process, short time consumption and low cost.

    一种无机水合盐相变储热材料的封装定形方法,所述方法包括如下步骤: A method for encapsulating and shaping an inorganic hydrated salt phase-change heat storage material, said method comprising the following steps:

    (1)在无机水合盐相变材料中加入成核剂和去离子水并加热,使无机水合盐相变材料达到熔融状态;(2)将多孔支撑材料加入到熔融状态的无机水合盐相变材料中,充分搅拌均匀;(3)将步骤(2)得到的熔融态混合物置于真空环境下以加强多孔支撑材料对无机水合盐相变材料的吸附;(4)将熔融态混合物从真空环境下移出,立即置于适合结晶的低温环境下进行重结晶。其中,在由无机水合盐相变材料、成核剂和多孔支撑材料组成的混合物中,无机水合盐相变材料所占比例为52-70wt﹪,成核剂所占比例为1-2wt﹪,多孔支撑材料所占比例为28-47wt﹪,三者总和为100﹪。 (1) Add nucleating agent and deionized water to the inorganic hydrated salt phase change material and heat to make the inorganic hydrated salt phase change material reach a molten state; (2) Add porous support materials to the molten inorganic hydrated salt phase change (3) Put the molten mixture obtained in step (2) in a vacuum environment to strengthen the adsorption of the porous support material to the inorganic hydrate salt phase change material; (4) Put the molten mixture from the vacuum environment Remove it, and immediately place it in a low temperature environment suitable for crystallization for recrystallization. Wherein, in the mixture composed of inorganic hydrated salt phase change material, nucleating agent and porous support material, the proportion of inorganic hydrated salt phase change material is 52-70wt%, and the proportion of nucleating agent is 1-2wt%, The proportion of porous support materials is 28-47wt%, and the sum of the three is 100%.

    所述无机水合盐相变材料为Na2SO4·10H2O、 CaCl2·6H2O、 KF·2H2O、KF·4H2O、MgCl2·4H2O、Mg(NO3)2·6H2O、MgSO4·7H2O、Na2HPO4·12H2O、Na2CO3·10H2O、CH3COONa·3H2O、LiNO3·3H2O、 LiClO3·3H2O中的一种或二种以上。 The inorganic hydrated salt phase change material is Na 2 SO 4 ·10H 2 O, CaCl 2 ·6H 2 O, KF·2H 2 O, KF·4H 2 O, MgCl 2 ·4H 2 O, Mg(NO 3 ) 2 6H 2 O, MgSO 4 , 7H 2 O, Na 2 HPO 4 , 12H 2 O, Na 2 CO 3 , 10H 2 O, CH 3 COONa 3H 2 O, LiNO3 3H 2 O, LiClO 3 3H 2 O one or more of them.

    所述成核剂为硼砂、六水氯化锶、六水氯化镁、碳酸钡中的一种或二种以上。 The nucleating agent is one or more of borax, strontium chloride hexahydrate, magnesium chloride hexahydrate, and barium carbonate.

    所述多孔支撑材料为膨胀珍珠岩、膨胀石墨、膨胀蛭石、多孔氧化铝或多孔活性炭。  The porous support material is expanded perlite, expanded graphite, expanded vermiculite, porous alumina or porous activated carbon.

附图说明 Description of drawings

图1a、图1b、图1c、图1d是CaCl2·6H2O多孔氧化铝复合相变材料的SEM照片; Figure 1a, Figure 1b, Figure 1c, and Figure 1d are SEM photos of CaCl 2 ·6H 2 O porous alumina composite phase change materials;

图2a、图2b、图2c、图2d是CaCl2·6H2O多孔氧化铝复合相变材料的DSC曲线。 Figure 2a, Figure 2b, Figure 2c, and Figure 2d are the DSC curves of the CaCl 2 ·6H 2 O porous alumina composite phase change material.

具体实施方式 Detailed ways

    下面利用实施例对本发明作进一步的详细描述。 Below utilize embodiment to further describe the present invention in detail.

实施例1: Example 1:

    (1)取2g CaCl2·6H2O,置于烧杯中,加入0.06的硼砂,混合均匀,补充少量去离子水,用保鲜膜封好,放在50 ℃恒温干燥箱里,加热5 min,使其达到熔融状态;(2)取1.0多孔Al2O3加入到装有熔融态CaCl2·6H2O的烧杯中,并搅拌均匀,将上述样品的烧杯放入真空干燥箱内,抽真空2h,然后放入冰箱5h进行重结晶,即得到吸附均匀的新型CaCl2·6H2O多孔Al2O3复合相变材料;(3)所得复合定形相变储热材料的相变温度为30.71℃,相变潜热值为99.81 J/g;该实施例的SEM照片和DSC测试结果分别如图1a、图2a所示。 (1) Take 2g CaCl 2 6H 2 O, put it in a beaker, add 0.06 borax, mix evenly, add a small amount of deionized water, seal it with plastic wrap, put it in a constant temperature drying oven at 50 ℃, and heat it for 5 minutes. Make it into a molten state; (2) Take 1.0 g of porous Al 2 O 3 and add it to a beaker filled with molten CaCl 2 6H 2 O, and stir evenly, put the beaker of the above sample into a vacuum drying oven, and vacuum 2h, and then placed in the refrigerator for 5h for recrystallization, and a novel CaCl 2 6H 2 O porous Al 2 O 3 composite phase change material with uniform adsorption was obtained; (3) The phase transition temperature of the obtained composite shape-fixed phase change heat storage material was 30.71 °C, the latent heat value of phase transition is 99.81 J/g; the SEM photos and DSC test results of this example are shown in Figure 1a and Figure 2a, respectively.

实施例2: Example 2:

    (1)取2g CaCl2·6H2O,置于烧杯中,加入0.06的硼砂,混合均匀,补充少量去离子水,用保鲜膜封好,放在50 ℃恒温干燥箱里,加热5 min,使其达到熔融状态;(2)取1.2多孔Al2O3加入到装有熔融态CaCl2·6H2O的烧杯中,并搅拌均匀,将上述样品的烧杯放入真空干燥箱内,抽真空2h,然后放入冰箱5h进行重结晶,即得到吸附均匀的新型CaCl2·6H2O多孔Al2O3复合相变材料;(3)所得复合定形相变储热材料的相变温度为29.95℃,相变潜热值为86.42 J/g;该实施例的SEM照片和DSC测试结果分别如图1b、图2b所示。 (1) Take 2g CaCl 2 6H 2 O, put it in a beaker, add 0.06 borax, mix well, add a small amount of deionized water, seal it with plastic wrap, put it in a constant temperature drying oven at 50 ℃, and heat it for 5 minutes. Make it into a molten state; (2) Take 1.2 g of porous Al 2 O 3 and add it to a beaker filled with molten CaCl 2 6H 2 O, and stir evenly, put the beaker of the above sample into a vacuum drying oven, and vacuum 2h, and then placed in the refrigerator for 5h for recrystallization, and a novel CaCl 2 6H 2 O porous Al 2 O 3 composite phase change material with uniform adsorption was obtained; (3) The phase transition temperature of the obtained composite shape-fixed phase change heat storage material was 29.95 °C, the latent heat value of phase transition is 86.42 J/g; the SEM photos and DSC test results of this example are shown in Figure 1b and Figure 2b, respectively.

实施例3: Example 3:

    (1)取2g CaCl2·6H2O,置于烧杯中,加入0.06的硼砂,混合均匀,补充少量去离子水,后用保鲜膜封好,放在50 ℃恒温干燥箱里,加热5 min,使其达到熔融状态;(2) 取1.4多孔Al2O3加入到装有熔融态CaCl2·6H2O的烧杯中,并搅拌均匀,将上述样品的烧杯放入真空干燥箱内,抽真空2h,然后放入冰箱5h进行重结晶,即得到吸附均匀的新型CaCl2·6H2O多孔Al2O3复合相变材料;(3)所得复合定形相变储热材料的相变温度为28.34℃,相变潜热值为70.61J/;该实施例的SEM照片和DSC测试结果分别如图1c、图2c所示。 (1) Take 2g CaCl 2 6H 2 O, put it in a beaker, add 0.06 borax, mix evenly, add a small amount of deionized water, seal it with plastic wrap, put it in a constant temperature drying oven at 50 ℃, and heat it for 5 minutes , so that it reaches a molten state; (2) Take 1.4 porous Al 2 O 3 and add it to a beaker filled with molten CaCl 2 6H 2 O, and stir evenly. Put the beaker of the above sample into a vacuum oven, and pump Vacuum for 2 hours, and then put it in the refrigerator for 5 hours to recrystallize, and obtain a new CaCl 2 ·6H 2 O porous Al 2 O 3 composite phase change material with uniform adsorption; (3) The phase change temperature of the obtained composite shape-fixed phase change heat storage material is 28.34°C, the latent heat value of phase transition is 70.61J/; the SEM photos and DSC test results of this example are shown in Figure 1c and Figure 2c, respectively.

实施例4: Example 4:

    (1)取2g CaCl2·6H2O,置于烧杯中,加入0.06的硼砂,混合均匀,补充少量去离子水,后用保鲜膜封好,放在50 ℃恒温干燥箱里,加热5 min,使其达到熔融状态;(2)取1.6多孔Al2O3加入到装有熔融态CaCl2·6H2O的烧杯中,并搅拌均匀,将上述样品的烧杯放入真空干燥箱内,抽真空2h,然后放入冰箱5h进行重结晶,即得到吸附均匀的新型CaCl2·6H2O多孔Al2O3复合相变材料;(3)所得复合定形相变储热材料的相变温度为27.71℃,相变潜热值为60.58J/g;该实施例的SEM照片和DSC测试结果分别如图1d、图2d所示。 (1) Take 2g CaCl 2 6H 2 O, put it in a beaker, add 0.06 borax, mix well, add a small amount of deionized water, seal it with plastic wrap, put it in a constant temperature drying oven at 50 ℃, and heat it for 5 minutes , so that it reaches a molten state; (2) Take 1.6 porous Al 2 O 3 and add it to a beaker filled with molten CaCl 2 6H 2 O, and stir evenly, put the beaker of the above sample into a vacuum oven, and pump Vacuum for 2 hours, and then put it in the refrigerator for 5 hours to recrystallize, and obtain a new CaCl 2 ·6H 2 O porous Al 2 O 3 composite phase change material with uniform adsorption; (3) The phase change temperature of the obtained composite shape-fixed phase change heat storage material is 27.71°C, the latent heat value of phase transition is 60.58J/g; the SEM photos and DSC test results of this example are shown in Figure 1d and Figure 2d respectively.

以上仅列举了以CaCl2·6H2O作为相变材料、以硼砂作为成核剂、以多孔Al2O3作为支撑材料的实施例,实际上以发明内容中列举的相变材料、成核剂、支撑材料都能实现本发明,并能取得相应的效果。 The above only cites the examples of using CaCl 2 ·6H 2 O as the phase change material, borax as the nucleating agent, and porous Al 2 O 3 as the supporting material. agent, supporting material can realize the present invention, and can obtain corresponding effect.

 the

Claims (7)

1.一种无机水合盐相变储热材料的封装定形方法,所述方法包括如下步骤: 1. A method for encapsulating and shaping an inorganic hydrated salt phase-change heat storage material, said method comprising the steps of: (1)在无机水合盐相变材料中加入成核剂和去离子水并加热,使无机水合盐相变材料达到熔融状态; (1) Adding a nucleating agent and deionized water to the inorganic hydrated salt phase change material and heating, so that the inorganic hydrated salt phase change material reaches a molten state; (2)将多孔支撑材料加入到熔融状态的无机水合盐相变材料中,充分搅拌均匀; (2) Add the porous support material to the molten inorganic hydrated salt phase change material, and stir well; (3)将步骤(2)得到的熔融态混合物置于真空环境下以加强多孔支撑材料对无机水合盐相变材料的吸附; (3) placing the molten mixture obtained in step (2) in a vacuum environment to strengthen the adsorption of the porous support material on the inorganic hydrated salt phase change material; (4)将熔融态混合物从真空环境下移出,立即置于适合结晶的低温环境下进行重结晶。 (4) Remove the molten mixture from the vacuum environment, and immediately place it in a low temperature environment suitable for crystallization for recrystallization. 2.根据权利要求1所述的方法,其中所述无机水合盐相变材料为Na2SO4·10H2O、 CaCl2·6H2O、 KF·2H2O、KF·4H2O、MgCl2·4H2O、Mg(NO3)2·6H2O、MgSO4·7H2O、Na2HPO4·12H2O、Na2CO3·10H2O、CH3COONa·3H2O、LiNO3·3H2O、 LiClO3·3H2O中的一种或二种以上。 2. The method according to claim 1, wherein the inorganic hydrated salt phase change material is Na 2 SO 4 ·10H 2 O, CaCl 2 ·6H 2 O, KF·2H 2 O, KF·4H 2 O, MgCl 2 4H 2 O, Mg(NO 3 ) 2 6H 2 O, MgSO 4 7H 2 O, Na 2 HPO 4 12H 2 O, Na 2 CO 3 10H 2 O, CH 3 COONa 3H 2 O, One or more of LiNO3·3H 2 O and LiClO 3 ·3H 2 O. 3.根据权利要求1所述的方法,其中所述成核剂为硼砂、六水氯化锶、六水氯化镁、碳酸钡中的一种或二种以上。 3. The method according to claim 1, wherein the nucleating agent is one or more of borax, strontium chloride hexahydrate, magnesium chloride hexahydrate, and barium carbonate. 4.根据权利要求1所述的方法,其中所述多孔支撑材料为膨胀珍珠岩、膨胀石墨、膨胀蛭石、多孔氧化铝或多孔活性炭。 4. The method of claim 1, wherein the porous support material is expanded perlite, expanded graphite, expanded vermiculite, porous alumina, or porous activated carbon. 5.根据权利要求1所述的方法,其中,在由无机水合盐相变材料、成核剂和多孔支撑材料组成的混合物中,无机水合盐相变材料所占比例为52-70wt﹪,成核剂所占比例为1-2wt﹪,多孔支撑材料所占比例为28-47wt﹪,三者总和为100﹪。 5. The method according to claim 1, wherein, in the mixture composed of inorganic hydrated salt phase change material, nucleating agent and porous support material, the proportion of inorganic hydrated salt phase change material is 52-70wt%, forming The proportion of the nucleating agent is 1-2wt%, the proportion of the porous support material is 28-47wt%, and the sum of the three is 100%. 6.根据权利要求1-5中的任一项所述的方法,其中所述将熔融态混合物置于真空环境下的时间至少为2小时。 6. The method according to any one of claims 1-5, wherein the time for placing the molten mixture under a vacuum environment is at least 2 hours. 7.根据权利要求1-5中的任一项所述的方法,其中所述置于适合结晶的低温环境下进行重结晶的时间至少为5小时。 7. The method according to any one of claims 1-5, wherein the time for recrystallization under a low temperature environment suitable for crystallization is at least 5 hours.
CN201410590865.8A 2014-10-29 2014-10-29 Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material Pending CN104371658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410590865.8A CN104371658A (en) 2014-10-29 2014-10-29 Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410590865.8A CN104371658A (en) 2014-10-29 2014-10-29 Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material

Publications (1)

Publication Number Publication Date
CN104371658A true CN104371658A (en) 2015-02-25

Family

ID=52550862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410590865.8A Pending CN104371658A (en) 2014-10-29 2014-10-29 Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material

Country Status (1)

Country Link
CN (1) CN104371658A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602531A (en) * 2015-09-17 2016-05-25 西北大学 Modified expanded graphite composite heat storage material and preparation method thereof
CN105950120A (en) * 2016-06-17 2016-09-21 北京宇田相变储能科技有限公司 Phase change material for solar energy storage
WO2017020575A1 (en) * 2015-07-31 2017-02-09 江苏启能新能源材料有限公司 Powder phase change energy storage material and preparation method therefor
CN106543974A (en) * 2016-11-10 2017-03-29 桂林电子科技大学 A kind of composite shape-setting phase-change material and preparation method
CN106867466A (en) * 2017-03-27 2017-06-20 北京科技大学 Method for Synthesizing Inorganic Phase Change Energy Storage Material Using Fly Ash and Hydrated Inorganic Salt
CN106947434A (en) * 2017-04-14 2017-07-14 华南理工大学 A kind of hydrated salt modified expanded graphite composite phase-change material and preparation method thereof
CN107189765A (en) * 2017-07-06 2017-09-22 贺迈新能源科技(上海)有限公司 A kind of deepfreeze hydrous salt phase change material and its preparation method and application
CN107266047A (en) * 2017-06-28 2017-10-20 郑善 A kind of rare-earth ceramic high-temperature phase-change stores exoergic material and preparation method thereof
CN107419819A (en) * 2017-08-29 2017-12-01 华南理工大学 A kind of energy storage construction wall structure containing double-deck phase-change material plate
CN107574982A (en) * 2017-08-11 2018-01-12 华南理工大学 A kind of composite phase-change roofing heat insulating bricks
CN108467711A (en) * 2018-04-26 2018-08-31 浙江科技学院 A kind of inorganic composite phase-change material and preparation method thereof
CN109321208A (en) * 2018-09-29 2019-02-12 西安建筑科技大学 A kind of stereotyped phase change thermal insulation material for building, preparation method and application thereof
CN109609096A (en) * 2018-10-18 2019-04-12 浙江大学山东工业技术研究院 A kind of air conditioning cold storage phase change material and preparation method thereof
CN109679587A (en) * 2018-12-25 2019-04-26 航天科工哈尔滨风华有限公司电站设备分公司 A kind of composite plate and its application having temp regulating function
CN109810675A (en) * 2019-01-28 2019-05-28 华南理工大学 A method for adding inorganic porous material to shape hydrated salt phase change material and adjusting phase change temperature
CN110105924A (en) * 2019-05-13 2019-08-09 中国地质大学(北京) A kind of preparation method of hydrated salt-porous mineral composite phase-change energy storage material
CN110551485A (en) * 2019-07-31 2019-12-10 华南理工大学 hydrated salt phase change energy storage material, preparation method thereof and battery thermal management system
CN110872486A (en) * 2018-08-31 2020-03-10 青海大学 A method for simultaneously suppressing supercooling and enhancing heat transfer performance of hydrated salt phase change materials
CN111040737A (en) * 2019-12-16 2020-04-21 中国科学院青海盐湖研究所 Shaped phase-change energy storage material and preparation method thereof
CN111621264A (en) * 2020-05-21 2020-09-04 国电南瑞科技股份有限公司 Nano modified sodium acetate trihydrate phase change heat storage material and preparation method thereof
CN111849422A (en) * 2020-07-10 2020-10-30 西北农林科技大学 A kind of porous alumina composite stereotyped phase change material and preparation method thereof
CN111978922A (en) * 2020-07-31 2020-11-24 西安交通大学 Hydrated salt-based medium-low temperature chemical heat storage material and preparation method thereof
CN113174805A (en) * 2020-05-22 2021-07-27 中国科学院青海盐湖研究所 Road snow melting device of coupling energy system and use method thereof
CN113433347A (en) * 2021-06-24 2021-09-24 中国科学院青海盐湖研究所 AFM sample for hydrous salt phase change energy storage material and preparation method and application thereof
CN114214039A (en) * 2022-01-07 2022-03-22 中国建筑材料科学研究总院有限公司 A kind of hydrated salt porous material composite phase change sheet and preparation method thereof
CN115648740A (en) * 2022-11-16 2023-01-31 仲恺农业工程学院 A kind of temperature and humidity control material and its preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2347327A1 (en) * 2000-05-15 2001-11-15 Merck Patent Gesellschaft Mit Beschraenkter Haftung Process for producing an accumulator composite for accumulating heat or cold
US6399149B1 (en) * 1997-09-02 2002-06-04 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material
CN1896173A (en) * 2006-06-24 2007-01-17 浙江华特实业集团华特化工有限公司 Production of inorganic-phase variable composite material of membrane-coated porous adsorptive
CN101805591A (en) * 2010-04-19 2010-08-18 中国人民解放军理工大学工程兵工程学院 Inorganic hydrated salt expanded graphite composite phase-changing heat storage material and preparation method thereof
CN102516944A (en) * 2011-12-15 2012-06-27 江南大学 Packaging-type composite phase transition material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399149B1 (en) * 1997-09-02 2002-06-04 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material
CA2347327A1 (en) * 2000-05-15 2001-11-15 Merck Patent Gesellschaft Mit Beschraenkter Haftung Process for producing an accumulator composite for accumulating heat or cold
CN1323870A (en) * 2000-05-15 2001-11-28 默克专利股份有限公司 Method for prepn. of energy-saving composite material used for cold-strage or heat-storage
CN1896173A (en) * 2006-06-24 2007-01-17 浙江华特实业集团华特化工有限公司 Production of inorganic-phase variable composite material of membrane-coated porous adsorptive
CN101805591A (en) * 2010-04-19 2010-08-18 中国人民解放军理工大学工程兵工程学院 Inorganic hydrated salt expanded graphite composite phase-changing heat storage material and preparation method thereof
CN102516944A (en) * 2011-12-15 2012-06-27 江南大学 Packaging-type composite phase transition material and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈娇: "CaCl2•6H2O/多孔Al2O3复合相变材料的制备与热性能", 《应用化工》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020575A1 (en) * 2015-07-31 2017-02-09 江苏启能新能源材料有限公司 Powder phase change energy storage material and preparation method therefor
CN105602531A (en) * 2015-09-17 2016-05-25 西北大学 Modified expanded graphite composite heat storage material and preparation method thereof
CN105950120A (en) * 2016-06-17 2016-09-21 北京宇田相变储能科技有限公司 Phase change material for solar energy storage
CN106543974A (en) * 2016-11-10 2017-03-29 桂林电子科技大学 A kind of composite shape-setting phase-change material and preparation method
CN106543974B (en) * 2016-11-10 2019-08-23 桂林电子科技大学 A kind of composite shape-setting phase-change material and preparation method
CN106867466A (en) * 2017-03-27 2017-06-20 北京科技大学 Method for Synthesizing Inorganic Phase Change Energy Storage Material Using Fly Ash and Hydrated Inorganic Salt
CN106867466B (en) * 2017-03-27 2021-02-12 北京科技大学 Method for synthesizing inorganic phase change energy storage material by using fly ash and hydrated inorganic salt
CN106947434A (en) * 2017-04-14 2017-07-14 华南理工大学 A kind of hydrated salt modified expanded graphite composite phase-change material and preparation method thereof
CN107266047A (en) * 2017-06-28 2017-10-20 郑善 A kind of rare-earth ceramic high-temperature phase-change stores exoergic material and preparation method thereof
CN107189765A (en) * 2017-07-06 2017-09-22 贺迈新能源科技(上海)有限公司 A kind of deepfreeze hydrous salt phase change material and its preparation method and application
CN107574982A (en) * 2017-08-11 2018-01-12 华南理工大学 A kind of composite phase-change roofing heat insulating bricks
CN107419819A (en) * 2017-08-29 2017-12-01 华南理工大学 A kind of energy storage construction wall structure containing double-deck phase-change material plate
CN108467711A (en) * 2018-04-26 2018-08-31 浙江科技学院 A kind of inorganic composite phase-change material and preparation method thereof
CN110872486A (en) * 2018-08-31 2020-03-10 青海大学 A method for simultaneously suppressing supercooling and enhancing heat transfer performance of hydrated salt phase change materials
CN109321208A (en) * 2018-09-29 2019-02-12 西安建筑科技大学 A kind of stereotyped phase change thermal insulation material for building, preparation method and application thereof
CN109609096A (en) * 2018-10-18 2019-04-12 浙江大学山东工业技术研究院 A kind of air conditioning cold storage phase change material and preparation method thereof
CN109679587A (en) * 2018-12-25 2019-04-26 航天科工哈尔滨风华有限公司电站设备分公司 A kind of composite plate and its application having temp regulating function
CN109810675A (en) * 2019-01-28 2019-05-28 华南理工大学 A method for adding inorganic porous material to shape hydrated salt phase change material and adjusting phase change temperature
CN110105924A (en) * 2019-05-13 2019-08-09 中国地质大学(北京) A kind of preparation method of hydrated salt-porous mineral composite phase-change energy storage material
CN110551485A (en) * 2019-07-31 2019-12-10 华南理工大学 hydrated salt phase change energy storage material, preparation method thereof and battery thermal management system
CN111040737A (en) * 2019-12-16 2020-04-21 中国科学院青海盐湖研究所 Shaped phase-change energy storage material and preparation method thereof
CN111621264A (en) * 2020-05-21 2020-09-04 国电南瑞科技股份有限公司 Nano modified sodium acetate trihydrate phase change heat storage material and preparation method thereof
CN113174805A (en) * 2020-05-22 2021-07-27 中国科学院青海盐湖研究所 Road snow melting device of coupling energy system and use method thereof
CN111849422A (en) * 2020-07-10 2020-10-30 西北农林科技大学 A kind of porous alumina composite stereotyped phase change material and preparation method thereof
CN111978922A (en) * 2020-07-31 2020-11-24 西安交通大学 Hydrated salt-based medium-low temperature chemical heat storage material and preparation method thereof
CN111978922B (en) * 2020-07-31 2021-04-23 西安交通大学 Hydrated salt-based medium and low temperature chemical heat storage material and preparation method
CN113433347A (en) * 2021-06-24 2021-09-24 中国科学院青海盐湖研究所 AFM sample for hydrous salt phase change energy storage material and preparation method and application thereof
CN113433347B (en) * 2021-06-24 2022-11-08 中国科学院青海盐湖研究所 AFM sample for hydrous salt phase change energy storage material and preparation method and application thereof
CN114214039A (en) * 2022-01-07 2022-03-22 中国建筑材料科学研究总院有限公司 A kind of hydrated salt porous material composite phase change sheet and preparation method thereof
CN115648740A (en) * 2022-11-16 2023-01-31 仲恺农业工程学院 A kind of temperature and humidity control material and its preparation method and application

Similar Documents

Publication Publication Date Title
CN104371658A (en) Packaging shape-stabilizing method of inorganic hydrated salt phase-change heat storage material
CN104531077A (en) Preparation method of expanded-graphite-base hydrated salt composite solid-solid phase-change energy storage material
CN103194182B (en) A kind of preparation method of step porous heterogeneous composite phase-change material
CN108676550B (en) Inorganic hydrated salt porous carbon composite phase change material and preparation method thereof
CN107586537B (en) Composite phase-change material and preparation method thereof
CN101294064A (en) A kind of preparation method of porous composite inorganic phase change material
CN102286268A (en) Reinforced conductive composite phase-change heat storage material and preparation method thereof
CN102827584A (en) High-phase-change thermoset phase change material and preparation method thereof
CN104893673A (en) Preparation method of supermolecule gel-based composite phase change material
CN104479634A (en) Low-temperature phase-change energy storage material
CN104371659A (en) Attapulgite-base composite phase-change heat storage material and preparation method thereof
CN108690564A (en) A kind of preparation method of the porous carbon-based hydrated inorganic salt composite phase-change material of high heat storage energy
CN110105924A (en) A kind of preparation method of hydrated salt-porous mineral composite phase-change energy storage material
CN102268245B (en) Preparation method of room temperature inorganic phase-change material
CN105505329B (en) A method of reducing supercooling degree of hydrous salt phase change material by adding anti-solvent
CN106242494A (en) Material for storing heat of phase change in low temperature and preparation method thereof in graphene aerogel complex intensifying
CN103275675A (en) Application of ionic liquid material serving as cross-seasonal phase change heat storage material
CN114214039A (en) A kind of hydrated salt porous material composite phase change sheet and preparation method thereof
CN105086947A (en) Calcium chloride hexahydrate phase change energy storage material and preparation method therefor
CN102492398B (en) Preparation method for high-performance room-temperature calcium-based composition phase-change energy storage material
CN103571438A (en) Organic composite phase change material for water tank heat storage
CN103191704B (en) Composite adsorbent and preparation method thereof
CN109135678B (en) A room temperature phase change energy storage material and preparation method thereof
CN105586011A (en) Inorganic hydrated salt phase-change heat-storage material and preparation method thereof
CN105154022A (en) Metal substrate highly heat-conducting heat storage material and preparation method therefor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150225

WD01 Invention patent application deemed withdrawn after publication