[go: up one dir, main page]

CN104388842B - A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof - Google Patents

A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof Download PDF

Info

Publication number
CN104388842B
CN104388842B CN201410720128.5A CN201410720128A CN104388842B CN 104388842 B CN104388842 B CN 104388842B CN 201410720128 A CN201410720128 A CN 201410720128A CN 104388842 B CN104388842 B CN 104388842B
Authority
CN
China
Prior art keywords
alloy
amorphous
amorphous alloy
bulk amorphous
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410720128.5A
Other languages
Chinese (zh)
Other versions
CN104388842A (en
Inventor
惠希东
斯佳佳
吴栋
吴一栋
王坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201410720128.5A priority Critical patent/CN104388842B/en
Publication of CN104388842A publication Critical patent/CN104388842A/en
Application granted granted Critical
Publication of CN104388842B publication Critical patent/CN104388842B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

一种Fe‑Cr‑B系耐腐蚀块体非晶合金及其制备方法,属于非晶合金领域。该非晶合金的化学成分按原子比设计为:FeaCrbMocBdMeRfXg。成分特征为:M为Mn、Co、Ni中的一种或多种;R为Ti、Zr、Nb、Hf、Ta、W中的一种或多种;X为Si、P中的一种或多种元素。其中,20<a≤78,5≤b≤45,0≤c≤20,6≤d≤30,0≤e≤40,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100。本发明合金的特点是成本低廉,可使用工业原料进行熔炼;同时具有较高的硼含量和良好的非晶形成能力,特别适用于核废料储运;合金中高Cr含量而无C则保证了该非晶合金具有优异的耐腐蚀性能;该非晶合金还具有极高的压缩强度和显微硬度。因此,本发明的铁基非晶合金在金属材料防腐蚀、核设施和耐磨部件上具有良好的应用前景。

A Fe-Cr-B series corrosion-resistant bulk amorphous alloy and a preparation method thereof belong to the field of amorphous alloys. The chemical composition of the amorphous alloy is designed according to the atomic ratio: Fe a Cr b Mo c B d M e R f X g . The composition features are: M is one or more of Mn, Co, Ni; R is one or more of Ti, Zr, Nb, Hf, Ta, W; X is one or more of Si, P Various elements. Among them, 20<a≤78, 5≤b≤45, 0≤c≤20, 6≤d≤30, 0≤e≤40, 2≤f≤15, 0≤g≤10, a+b+c+ d+e+f+g=100. The alloy of the present invention is characterized by low cost and can be smelted using industrial raw materials; at the same time, it has high boron content and good amorphous forming ability, and is especially suitable for storage and transportation of nuclear waste; the high Cr content in the alloy without C ensures the Amorphous alloys have excellent corrosion resistance; the amorphous alloys also have extremely high compressive strength and microhardness. Therefore, the iron-based amorphous alloy of the invention has a good application prospect in corrosion protection of metal materials, nuclear facilities and wear-resistant parts.

Description

一种Fe-Cr-B系耐腐蚀块体非晶合金及其制备方法A kind of Fe-Cr-B series corrosion-resistant bulk amorphous alloy and preparation method thereof

技术领域technical field

本发明属于非晶合金领域,具体涉及一种具有高非晶形成能力、高硼含量以及高耐腐蚀性的Fe-Cr-B系非晶合金。The invention belongs to the field of amorphous alloys, in particular to an Fe-Cr-B series amorphous alloy with high amorphous forming ability, high boron content and high corrosion resistance.

背景技术Background technique

铁基非晶合金由于其廉价的成本,较好的玻璃形成能力,良好的软磁性能、高耐磨性能以及高耐腐蚀性能在工业上显示出重要的应用价值。相比其他非晶合金,铁基非晶合金中可以容纳含量很高的B原子,可以作为核废料的中子吸收剂而不会发生晶化,而Cr的添加会显著提升铁基非晶合金的耐腐蚀性能。继铁基非晶软磁合金得到大规模产业化以来,涂层用耐磨耐腐蚀铁基非晶合金的开发与应用已经逐渐展开。Iron-based amorphous alloys have shown important application value in industry due to their low cost, good glass forming ability, good soft magnetic properties, high wear resistance and high corrosion resistance. Compared with other amorphous alloys, iron-based amorphous alloys can accommodate a high content of B atoms, which can be used as neutron absorbers for nuclear waste without crystallization, and the addition of Cr will significantly improve the quality of iron-based amorphous alloys. corrosion resistance performance. Following the large-scale industrialization of iron-based amorphous soft magnetic alloys, the development and application of wear-resistant and corrosion-resistant iron-based amorphous alloys for coatings has gradually begun.

铁基非晶合金的高耐腐蚀性,首先是由于非晶合金具有单相结构,不存在晶界、位错和层错等结构缺陷;其次,非晶态合金表面原子的活性很高,含Cr较高的铁基非晶能够在表面上迅速形成均匀致命的钝化膜,使腐蚀难以发生。The high corrosion resistance of iron-based amorphous alloys is firstly due to the fact that amorphous alloys have a single-phase structure, and there are no structural defects such as grain boundaries, dislocations, and stacking faults; secondly, the activity of atoms on the surface of amorphous alloys is very high. Iron-based amorphous with higher Cr can quickly form a uniform fatal passivation film on the surface, making corrosion difficult to occur.

1974年日本东北大学的増本健课题组发现Fe70Cr10P13C7非晶合金在1mol/L的HCl溶液中的耐腐蚀性能要优于传统的304不锈钢(Fe-18Cr-8Ni)。日本专利JPS58113354公布了一种含P、C或P、Si的Fe-Cr-Mo非晶合金,该非晶合金在热盐酸中表现出优异的耐腐蚀性能。日本专利JP3805601公布了一种含C的Fe-Cr基的块体非晶合金,解决了之前高Cr非晶合金非晶形成能力不足的问题,其中Fe45Cr15Mo15C15B10非晶合金的临界尺寸达到2.5mm,同时具有优异的耐腐蚀性能。In 1974, Masumoto Ken's research group at Tohoku University in Japan found that the corrosion resistance of Fe 70 Cr 10 P 13 C 7 amorphous alloy in 1mol/L HCl solution was better than that of traditional 304 stainless steel (Fe-18Cr-8Ni). Japanese patent JPS58113354 discloses a Fe-Cr-Mo amorphous alloy containing P, C or P, Si, which exhibits excellent corrosion resistance in hot hydrochloric acid. Japanese patent JP3805601 discloses a C-containing Fe-Cr-based bulk amorphous alloy, which solves the problem of insufficient amorphous formation ability of previous high-Cr amorphous alloys, in which Fe 45 Cr 15 Mo 15 C 15 B 10 amorphous The critical size of the alloy reaches 2.5mm, and it also has excellent corrosion resistance.

美国专利US7052561B2公布了一种含Y的非晶钢,稀土元素Y的添加使得含Cr铁基非晶合金的临界尺寸得到了进一步提升,(Fe43Cr16Mo16C15B10)98Y2和(Fe45Co5Cr6Mo13Mn11C16B6)98.5Y1.5块体非晶合金的临界尺寸分别达到7mm和12mm。US Patent US7052561B2 discloses a Y-containing amorphous steel. The addition of rare earth element Y further improves the critical size of the Cr-containing Fe-based amorphous alloy, (Fe 43 Cr 16 Mo 16 C 15 B 10 ) 98 Y 2 and (Fe 45 Co 5 Cr 6 Mo 13 Mn 11 C 16 B 6 ) 98.5 Y 1.5 bulk amorphous alloys have critical dimensions of 7mm and 12mm, respectively.

美国专利US8524053B2公布了临界尺寸为9mm的Fe48Cr15Mo14C15B6Y2和非晶形成能力较差的高硼成分Fe49.7Cr18.1Mn1.9Mo7.4W1.6B15.2C3.8Si2.4非晶合金,合金牌号分别被命名为SAM1651和SAM2X5。SAM2X5合金涂层在各种复杂腐蚀环境中表现出优异的耐腐蚀性能,同时具有比传统中子吸收材料更优秀的中子吸收能力。U.S. Patent US8524053B2 discloses Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 with a critical dimension of 9 mm and high boron composition Fe 49.7 Cr 18.1 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 amorphous Crystal alloys, the alloy grades are named SAM1651 and SAM2X5 respectively. SAM2X5 alloy coating exhibits excellent corrosion resistance in various complex corrosion environments, and has better neutron absorption capacity than traditional neutron absorbing materials.

到目前为止,高Cr耐腐蚀铁基块体非晶合金均依赖于成分中较高的C含量或者稀土元素的添加。C含量过高会增加合金的脆性,C发生富集则会加快材料的腐蚀,是制备非晶合金涂层的不利因素;另一方面,C含量较高时,合金中能容纳的B原子量必然较低,不利于材料的中子吸收能力。添加稀土元素Y等会增加原料成本和熔炼成本,稀土的高活性可能对合金耐腐蚀性能有不利影响。因此开发出高Cr、高B、无C和无稀土的铁基块体非晶合金具有十分重要的现实意义。So far, high-Cr corrosion-resistant iron-based bulk amorphous alloys rely on higher C content or the addition of rare earth elements in the composition. Excessive C content will increase the brittleness of the alloy, and the enrichment of C will accelerate the corrosion of the material, which is an unfavorable factor for the preparation of amorphous alloy coatings; on the other hand, when the C content is high, the amount of B atoms that can be accommodated in the alloy must be Low, which is not conducive to the neutron absorption capacity of the material. The addition of rare earth elements such as Y will increase the cost of raw materials and smelting costs, and the high activity of rare earths may have an adverse effect on the corrosion resistance of the alloy. Therefore, it is of great practical significance to develop iron-based bulk amorphous alloys with high Cr, high B, no C and no rare earth.

迄今为止,高B、无C和无稀土的铁基块体非晶合金的研究主要集中在软磁非晶合金领域。例如日本东北大学井上明九课题组开发的Fe56Co7Ni7Zr10B20(2mm)、[(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4(4mm)、[(Fe0.8Ni0.2)0.75B0.2Si0.05]96Nb4(2mm)等合金成分。这些成分均不含Cr元素,不适用于耐腐蚀用途。So far, the research on high-B, C-free and rare-earth-free Fe-based bulk amorphous alloys has mainly focused on the field of soft magnetic amorphous alloys. For example, Fe 56 Co 7 Ni 7 Zr 10 B 20 (2mm), [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 (4mm), [(Fe 0.8 Ni 0.2 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 (2mm) and other alloy components. None of these components contain Cr element and are not suitable for corrosion-resistant applications.

2009年,王建强等研究了采用超音速火焰喷涂技术制备的Fe48Cr15Mo14C15B6Y2非晶合金涂层的性能,他们发现该涂层具有优异的耐磨耐腐蚀性能。2011年,张诚等采用超音速火焰喷涂技术制备了Fe48Cr15Mo14C15B6Y2非晶合金涂层,并研究了喷涂粉末粒径对涂层结构及其在模拟海水环境中的腐蚀行为的影响。2012年,沈军等采用等离子喷涂技术制备了Fe42.87Cr15.98Mo16.33C15.94B8.88非晶合金涂层并研究了涂层的耐腐蚀性能。 In 2009, Wang Jianqiang and others studied the performance of Fe48Cr15Mo14C15B6Y2 amorphous alloy coating prepared by supersonic flame spraying technology, and they found that the coating has excellent wear resistance and corrosion resistance. In 2011, Zhang Cheng et al. prepared F e48 Cr 15 M o14 C 15 B 6 Y 2 amorphous alloy coating by supersonic flame spraying technology, and studied the effect of spray powder particle size on coating structure and its application in simulated seawater environment. effect on corrosion behavior. In 2012, Shen Jun et al prepared Fe42.87 Cr 15.98 M o16.33 C 15.94 B 8.88 amorphous alloy coating by plasma spraying technology and studied the corrosion resistance of the coating.

可以看出,上述耐磨耐腐蚀铁基非晶合金涂层的制备主要是采用日本和美国的研究者开发的成分。美国依托于液态金属(Liquidmetal)公司已经将耐磨耐腐蚀铁基非晶合金商业化。国内尚无这方面的自主知识产权,因此开发出新型耐磨耐腐蚀铁基非晶合金对填补国内空白具有重要意义。It can be seen that the preparation of the above-mentioned wear-resistant and corrosion-resistant iron-based amorphous alloy coating mainly uses components developed by researchers in Japan and the United States. The United States has commercialized wear-resistant and corrosion-resistant iron-based amorphous alloys relying on Liquidmetal. There is no independent intellectual property rights in this area in China, so the development of new wear-resistant and corrosion-resistant iron-based amorphous alloys is of great significance to fill the domestic gap.

发明内容Contents of the invention

本发明的内容是开发出了一种高硼含量以及具有高耐腐蚀性能的Fe-Cr-B系块体非晶合金。本发明合金的特点是成本低廉,可使用工业原料进行熔炼;同时具有较高的硼含量和良好的非晶形成能力,特别适用于核废料储运;合金中高Cr含量而无C则保证了该非晶合金具有优异的耐腐蚀性能。因此,本发明的Fe-Cr-B系非晶合金在金属材料防腐蚀、核设施和耐磨部件上具有良好的应用前景。The content of the present invention is to develop a Fe-Cr-B series bulk amorphous alloy with high boron content and high corrosion resistance. The alloy of the present invention is characterized by low cost and can be smelted using industrial raw materials; at the same time, it has high boron content and good amorphous forming ability, and is especially suitable for storage and transportation of nuclear waste; the high Cr content in the alloy without C ensures the Amorphous alloys have excellent corrosion resistance. Therefore, the Fe-Cr-B series amorphous alloy of the present invention has a good application prospect in corrosion protection of metal materials, nuclear facilities and wear-resistant parts.

本发明的Fe-Cr-B系非晶合金的化学成分按原子比设计为:FeaCrbMocBdMeRfXg。成分特征为:M为Mn、Co、Ni中的一种或多种;R为Ti、Zr、Nb、Hf、Ta、W中的一种或多种;X为Si、P中的一种或多种元素。其中,20<a≤78,5≤b≤45,0≤c≤20,6≤d≤30,0≤e≤40,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100。The chemical composition of the Fe-Cr-B series amorphous alloy of the present invention is designed according to the atomic ratio: Fe a Cr b Mo c B d M e R f X g . The composition features are: M is one or more of Mn, Co, Ni; R is one or more of Ti, Zr, Nb, Hf, Ta, W; X is one or more of Si, P Various elements. Among them, 20<a≤78, 5≤b≤45, 0≤c≤20, 6≤d≤30, 0≤e≤40, 2≤f≤15, 0≤g≤10, a+b+c+ d+e+f+g=100.

在上述合金中,当c=e=g=0时,所述合金组成可表示为FeaCrbBdRf,其成分范围表示为40≤a≤75,5≤b≤38,10≤d≤25,4≤f≤15,a+b+d+f=100。In the above alloy, when c=e=g=0, the alloy composition can be expressed as Fe a Cr b B d R f , and its composition range is expressed as 40≤a≤75, 5≤b≤38, 10≤ d≤25, 4≤f≤15, a+b+d+f=100.

当e=g=0,R限定为Zr元素时,所述合金组成可表示为FeaCrbMocBdZrf,其成分范围表示为30≤a≤75,5≤b≤40,0<c≤20,7≤d≤28,2≤f≤15,a+b+c+d+f=100。When e=g=0, and R is limited to Zr element, the alloy composition can be expressed as Fe a Cr b Mo c B d Zr f , and its composition range is expressed as 30≤a≤75, 5≤b≤40,0 <c≤20, 7≤d≤28, 2≤f≤15, a+b+c+d+f=100.

在上述FeaCrbMocBdZrf合金中,合金成分可进一步优选,其成分范围表示为52≤a≤66,8≤b≤11,5≤c≤10,15≤d≤19,6≤f≤8,a+b+c+d+f=100,该非晶合金临界尺寸达到3mm。In the above-mentioned Fe a Cr b Mo c B d Zr f alloy, the alloy composition can be further preferred, and its composition range is expressed as 52≤a≤66, 8≤b≤11, 5≤c≤10, 15≤d≤19, 6≤f≤8, a+b+c+d+f=100, the critical dimension of the amorphous alloy reaches 3 mm.

在上述FeaCrbMocBdZrf合金中,合金成分可进一步优选,其成分范围表示为35≤a≤57,25≤b≤40,0<c≤6,11≤d≤16,6≤f≤8,a+b+c+d+f=100,该非晶合金具有极优秀的耐腐蚀性能。In the above-mentioned Fe a Cr b Mo c B d Zr f alloy, the alloy composition can be further preferred, and its composition range is expressed as 35≤a≤57, 25≤b≤40, 0<c≤6, 11≤d≤16, 6≤f≤8, a+b+c+d+f=100, the amorphous alloy has excellent corrosion resistance.

当M限定为Co元素时,所述合金组成可表示为FeaCrbMocBdCoeRfXg,其成分范围表示为20<a≤75,5≤b≤40,0≤c≤20,7≤d≤28,0<e≤40,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100。When M is limited to Co element, the alloy composition can be expressed as Fe a Cr b Mo c B d Co e R f X g , and its composition range is expressed as 20<a≤75, 5≤b≤40, 0≤c ≤20, 7≤d≤28, 0<e≤40, 2≤f≤15, 0≤g≤10, a+b+c+d+e+f+g=100.

在上述FeaCrbMocBdCoeRfXg合金中,合金成分可进一步优选为FeaCrbBdCoeZrfSig,其成分范围表示为21≤a≤35,8≤b≤11,17≤d≤19,30≤e≤40,6≤f≤8,2≤g≤4,a+b+d+e+f+g=100,该非晶合金临界尺寸达到3mm。In the above-mentioned Fe a Cr b Mo c B d Co e R f X g alloy, the alloy composition can be further preferably Fe a Cr b B d Co e Zr f Si g , and its composition range is expressed as 21≤a≤35,8 ≤b≤11, 17≤d≤19, 30≤e≤40, 6≤f≤8, 2≤g≤4, a+b+d+e+f+g=100, the critical size of the amorphous alloy reaches 3mm.

当M限定为Ni元素时,所述合金组成可表示为FeaCrbMocBdNieRfXg,其成分范围表示为30≤a≤75,5≤b≤40,0≤c≤20,7≤d≤28,0<e≤25,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100。When M is limited to Ni element, the alloy composition can be expressed as Fe a Cr b Mo c B d Ni e R f X g , and its composition range is expressed as 30≤a≤75, 5≤b≤40, 0≤c ≤20, 7≤d≤28, 0<e≤25, 2≤f≤15, 0≤g≤10, a+b+c+d+e+f+g=100.

本发明所采用的块体非晶合金制备方法包括:(1)使用的原料Fe、Co或Ni的纯度不低于99.5%,Cr或Si的纯度不低于99%,B或Mo分别以工业硼铁或工业钼铁的形式加入,其余原料的纯度不低于99.9%;(2)使用砂纸和砂轮机去除金属原料的表面氧化皮,按照摩尔比进行精确称量配比并使用乙醇超声波清洗原料;(3)使用真空非自耗钨电极电弧炉熔炼合金,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压;(4)合金熔炼3-5遍,保证熔炼均匀;(5)合金熔炼完成后,用砂轮机打磨去除氧化皮,取合适重量用无水乙醇超声清洗,再使用电弧炉配套的真空吸铸设备和铜模制备圆柱形块体非晶合金。The preparation method of the bulk amorphous alloy adopted in the present invention comprises: (1) the purity of the raw material Fe, Co or Ni used is not less than 99.5%, the purity of Cr or Si is not less than 99%, and the purity of B or Mo is respectively industrial Add in the form of ferroboron or industrial ferromolybdenum, and the purity of the rest of the raw materials is not less than 99.9%; (2) Use sandpaper and a grinder to remove the surface oxide skin of the metal raw materials, accurately weigh and proportion according to the molar ratio, and use ethanol ultrasonic cleaning Raw materials; (3) use a vacuum non-consumable tungsten electrode electric arc furnace to smelt the alloy, evacuate the furnace body to a vacuum degree ≤ 1×10 -2 Pa, and fill it with pure argon until the pressure in the furnace reaches 0.4-0.5 atmospheres; ( 4) The alloy is smelted 3-5 times to ensure uniform smelting; (5) After the alloy smelting is completed, use a grinder to remove the scale, take an appropriate weight and use anhydrous ethanol to clean it ultrasonically, and then use the vacuum suction casting equipment supporting the electric arc furnace and Copper molds were used to prepare cylindrical bulk amorphous alloys.

本发明的铁基块体非晶合金有着优异的力学性能和耐腐蚀性能。Fe57Cr12Mo5Zr8B18块体非晶合金的强度超过4GPa,Fe57Cr18Mo2Zr8B15和Fe43Cr35Mo2Zr8B12块体非晶合金的显微维氏硬度值分别为1161和1226。Fe57Cr18Mo2Zr8B15块体非晶合金在1moL/L的盐酸中的自腐蚀电位为-193.4mV,腐蚀速率为6.3μm/year;Fe43Cr35Mo2Zr8B12块体非晶合金在1moL/L的盐酸中的自腐蚀电位为15.6mV,腐蚀速率为2.6μm/year。非晶合金的耐腐蚀性能随着Cr含量的增加而提高,远优于传统晶态材料316L不锈钢。The iron-based bulk amorphous alloy of the invention has excellent mechanical properties and corrosion resistance. The strength of Fe 57 Cr 12 Mo 5 Zr 8 B 18 bulk amorphous alloy exceeds 4GPa , and the microdimensional The hardness values are 1161 and 1226 respectively. The self-corrosion potential of Fe 57 Cr 18 Mo 2 Zr 8 B 15 bulk amorphous alloy in 1moL/L hydrochloric acid is -193.4mV, and the corrosion rate is 6.3μm/year; Fe 43 Cr 35 Mo 2 Zr 8 B 12 pieces The self-corrosion potential of bulk amorphous alloy in 1moL/L hydrochloric acid is 15.6mV, and the corrosion rate is 2.6μm/year. The corrosion resistance of amorphous alloys increases with the increase of Cr content, which is far superior to the traditional crystalline material 316L stainless steel.

附图说明Description of drawings

图1为本发明的直径3mm的Fe57Cr10Mo7Zr8B18块体非晶合金的X射线衍射图谱(铜靶)。Fig. 1 is the X-ray diffraction pattern (copper target) of the Fe 57 Cr 10 Mo 7 Zr 8 B 18 bulk amorphous alloy with a diameter of 3 mm of the present invention.

图2为本发明的直径1mm的Fe43Cr35Mo2Zr8B12和Fe67Cr10Nb4B16Si3块体非晶合金的X射线衍射图谱(钼靶)。Fig. 2 is the X-ray diffraction pattern (molybdenum target) of Fe 43 Cr 35 Mo 2 Zr 8 B 12 and Fe 67 Cr 10 Nb 4 B 16 Si 3 bulk amorphous alloys of the present invention with a diameter of 1 mm.

图3为本发明的FeCrZrB块体非晶合金临界尺寸随Cr含量增加的变化趋势图。Fig. 3 is a graph showing the variation trend of the critical dimension of the FeCrZrB bulk amorphous alloy of the present invention with the increase of Cr content.

图4为本发明的Fe65Cr10(Zr6-xNbx)B16Si3块体非晶合金临界尺寸随Zr、Nb含量变化的变化趋势图。Fig. 4 is a graph showing the change trend of the critical dimension of the Fe 65 Cr 10 (Zr 6-x Nb x ) B 16 Si 3 bulk amorphous alloy according to the present invention with the change of Zr and Nb content.

图5为本发明的FeCrMoZrB块体非晶合金临界尺寸随Cr含量增加的变化趋势图。Fig. 5 is a graph showing the change trend of the critical dimension of the FeCrMoZrB bulk amorphous alloy of the present invention with the increase of Cr content.

图6为本发明的Fe67-xCrxMo7Zr8B18块体非晶合金临界尺寸随Cr含量增加的变化趋势图。Fig. 6 is a graph showing the change trend of the critical dimension of the Fe 67-x Cr x Mo 7 Zr 8 B 18 bulk amorphous alloy of the present invention with the increase of Cr content.

图7为本发明的Fe64-xCr10MoxZr8B18块体非晶合金临界尺寸随Mo含量增加的变化趋势图。Fig. 7 is a graph showing the change trend of the critical dimension of the Fe 64-x Cr 10 Mo x Zr 8 B 18 bulk amorphous alloy of the present invention with the increase of Mo content.

图8为本发明的Fe65-xCr10Mo7ZrxB18块体非晶合金临界尺寸随Zr含量增加的变化趋势图。Fig. 8 is a graph showing the change trend of the critical dimension of the Fe 65-x Cr 10 Mo 7 Zr x B 18 bulk amorphous alloy of the present invention with the increase of Zr content.

图9为本发明的Fe75-xCr10Mo7Zr8Bx块体非晶合金临界尺寸随B含量增加的变化趋势图。Fig. 9 is a graph showing the change trend of the critical dimension of the Fe 75-x Cr 10 Mo 7 Zr 8 B x bulk amorphous alloy of the present invention with the increase of B content.

图10为本发明的FeCrMoZrBSix块体非晶合金临界尺寸随Si含量增加的变化趋势图。Fig. 10 is a graph showing the change trend of the critical dimension of the FeCrMoZrBSix bulk amorphous alloy of the present invention with the increase of Si content.

图11为本发明的Fe73-xCrxMo2Zr6B16Si3块体非晶合金临界尺寸随Cr含量增加的变化趋势图。Fig. 11 is a graph showing the change trend of the critical dimension of the Fe 73-x Cr x Mo 2 Zr 6 B 16 Si 3 bulk amorphous alloy of the present invention with the increase of Cr content.

图12为本发明的Fe65-xCr10MoxZr6B16Si3块体非晶合金临界尺寸随Mo含量增加的变化趋势图。Fig. 12 is a graph showing the change trend of the critical dimension of the Fe 65-x Cr 10 Mo x Zr 6 B 16 Si 3 bulk amorphous alloy of the present invention with the increase of Mo content.

图13为本发明的Fe65-xCoxCr8Mo2Zr6B16Si3块体非晶合金临界尺寸随Co含量增加的变化趋势图。Fig. 13 is a graph showing the change trend of the critical dimension of the Fe 65-x Co x Cr 8 Mo 2 Zr 6 B 16 Si 3 bulk amorphous alloy of the present invention with the increase of Co content.

图14为本发明的Fe57Cr10Mo7Zr8B18块体非晶合金的DSC曲线图。Fig. 14 is a DSC curve of the Fe 57 Cr 10 Mo 7 Zr 8 B 18 bulk amorphous alloy of the present invention.

图15为本发明的Fe57Cr10Mo7Zr8B18和Fe57Cr12Mo5Zr8B18块体非晶合金的压缩应力-应变曲线图。Fig. 15 is a compressive stress-strain curve of Fe 57 Cr 10 Mo 7 Zr 8 B 18 and Fe 57 Cr 12 Mo 5 Zr 8 B 18 bulk amorphous alloys of the present invention.

图16为本发明的Fe57Cr18Mo2Zr8B15和Fe43Cr35Mo2Zr8B12块体非晶合金在1mol/L盐酸中的循环极化曲线图。Fig. 16 is a cyclic polarization curve of Fe 57 Cr 18 Mo 2 Zr 8 B 15 and Fe 43 Cr 35 Mo 2 Zr 8 B 12 bulk amorphous alloys in 1 mol/L hydrochloric acid of the present invention.

具体实施方式detailed description

下面从成分设计、合金制备和性能测试三个方面具体介绍本发明。The present invention will be specifically introduced from three aspects of composition design, alloy preparation and performance testing.

1、成分设计1. Composition design

设计不同成分的FeaCrbMocBdMeRfXg合金,其成分特征为:M为Mn、Co、Ni中的一种或多种;R为Ti、Zr、Nb、Hf、Ta、W中的一种或多种;X为Si、P中的一种或多种。其中,20<a≤78,5≤b≤45,0≤c≤20,6≤d≤30,0≤e≤40,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100。Design Fe a Cr b Mo c B d M e R f X g alloys with different compositions, the composition characteristics are: M is one or more of Mn, Co, Ni; R is Ti, Zr, Nb, Hf, One or more of Ta and W; X is one or more of Si and P. Among them, 20<a≤78, 5≤b≤45, 0≤c≤20, 6≤d≤30, 0≤e≤40, 2≤f≤15, 0≤g≤10, a+b+c+ d+e+f+g=100.

Fe、Cr为合金体系基本组元,B元素为不可缺少的非晶形成元素;Zr、Nb是与主要组元具有大的负混合热的大原子,可以进一步提高合金的非晶形成能力,Ti、Hf、Ta、W作为近邻元素可部分替换。设计成分FeaCrbBdRfFe and Cr are the basic components of the alloy system, and B elements are indispensable amorphous forming elements; Zr and Nb are large atoms with large negative heat of mixing with the main components, which can further improve the amorphous forming ability of the alloy, and Ti , Hf, Ta, W can be partially replaced as neighbor elements. Design composition Fe a Cr b B d R f .

作为Cr的同族元素,Mo的加入可以进一步提高合金的非晶形成能力和力学性能,同时添加Mo可进一步增强合金的耐腐蚀性能尤其是耐点蚀能力。Zr是大原子,与Fe、Cr、Mo、B之间有较大的负混合热,是提高合金非晶形成能力的关键性元素之一。设计成分FeaCrbMocBdZrfAs a congener element of Cr, the addition of Mo can further improve the amorphous forming ability and mechanical properties of the alloy, and the addition of Mo can further enhance the corrosion resistance of the alloy, especially the pitting corrosion resistance. Zr is a large atom, which has a large negative heat of mixing with Fe, Cr, Mo, and B, and is one of the key elements to improve the ability of alloys to form amorphous. Design composition Fe a Cr b Mo c B d Zr f .

Co是Fe的相似元素,设计成分FeaCrbMocBdCoeRfXg,研究Co的加入对合金非晶形成能力的影响。Co is a similar element to Fe, and the composition of Fe a Cr b Mo c B d Co e R f X g was designed to study the effect of Co addition on the amorphous formation ability of the alloy.

Ni是Fe的相似元素,设计成分FeaCrbMocBdNieRfXg,研究Ni的加入对合金非晶形成能力的影响。Ni is a similar element to Fe, and the design composition Fe a Cr b Mo c B d Ni e R f X g was used to study the effect of Ni addition on the amorphous formation ability of the alloy.

2、合金制备2. Alloy preparation

配料:使用的原料Fe、Co或Ni的纯度不低于99.5%,Cr或Si的纯度不低于99%,B或Mo分别由工业硼铁或工业钼铁提供,其余金属原料的纯度不低于99.9%。根据设定的成分,按照摩尔比进行精确称量配比原料。使用的工业硼铁和工业钼铁主要成分以及杂质见表1。Ingredients: The purity of the raw materials Fe, Co or Ni used is not less than 99.5%, the purity of Cr or Si is not less than 99%, B or Mo are provided by industrial ferroboron or industrial ferromolybdenum respectively, and the purity of other metal raw materials is not low At 99.9%. According to the set ingredients, the raw materials are accurately weighed and proportioned according to the molar ratio. The main components and impurities of industrial ferroboron and industrial ferromolybdenum used are shown in Table 1.

表1实验所采用的工业硼铁和工业钼铁的主要化学成分(wt%)The main chemical composition (wt %) of the industrial ferroboron and industrial molybdenum iron that the experiment of table 1 adopts

合金棒制备:使用真空非自耗钨电极电弧炉熔炼合金,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压。为保证合金充分熔炼均匀,含Nb、W等难熔金属的成分先熔炼Fe-Nb、Fe-W中间合金。母合金需充分熔炼合金3-5遍以至均匀。从熔炼均匀的母合金上取合适质量的合金,在非自耗钨电极电弧炉中熔融后通过真空吸铸设备吸铸进入铜模快冷成型,根据成分的不同,制备直径为1-4mm的合金棒。Preparation of alloy rods: Use a vacuum non-consumable tungsten electrode electric arc furnace to smelt the alloy, evacuate the furnace body to a vacuum degree ≤ 1×10 -2 Pa, and fill it with pure argon until the pressure in the furnace reaches 0.4-0.5 atmospheres. In order to ensure that the alloy is fully smelted and uniform, the ingredients containing refractory metals such as Nb and W are smelted first for Fe-Nb and Fe-W master alloys. The master alloy needs to be fully smelted for 3-5 times until it is uniform. Take a suitable quality alloy from the uniformly smelted master alloy, melt it in a non-consumable tungsten electrode electric arc furnace, and then suck it into a copper mold through vacuum suction casting equipment for rapid cooling and forming. According to the different components, prepare a diameter of 1-4mm. alloy rod.

3、合金性能测试3. Alloy performance test

1)X射线衍射(XRD)测试1) X-ray diffraction (XRD) test

使用X射线衍射仪对样品进行相组成分析,为方便测试,不同直径的样品采用不同的测试设备,直径2mm及以上的样品使用Cu靶XRD设备进行测试,扫描步长0.02s-1,扫描角度2θ的范围从10°到90°;直径1.5mm及以下的样品使用Mo靶XRD设备进行测试。Use an X-ray diffractometer to analyze the phase composition of the sample. For the convenience of testing, different test equipment is used for samples with different diameters. Samples with a diameter of 2mm and above are tested with Cu target XRD equipment, with a scan step of 0.02s -1 and a scan angle The 2θ ranges from 10° to 90°; samples with a diameter of 1.5mm and below are tested using Mo target XRD equipment.

附图1为直径3mm的Fe57Cr10Mo7Zr8B18合金棒的XRD曲线(Cu靶),曲线表现出一个宽泛的馒头峰,无晶体峰,表明测试样品为非晶态。Accompanying drawing 1 is the XRD curve (Cu target) of the Fe 57 Cr 10 Mo 7 Zr 8 B 18 alloy rod with a diameter of 3 mm. The curve shows a broad steamed bread peak and no crystal peak, indicating that the test sample is amorphous.

附图2为直径1mm的Fe43Cr35Mo2Zr8B12和Fe67Cr10Nb4B16Si3合金棒的XRD曲线(Mo靶),两条曲线均表现出宽泛的馒头峰,无晶体峰,表明测试样品为非晶态。Accompanying drawing 2 is the XRD curve (Mo target) of Fe 43 Cr 35 Mo 2 Zr 8 B 12 and Fe 67 Cr 10 Nb 4 B 16 Si 3 alloy rods with a diameter of 1 mm. Both curves show broad steamed bread peaks, without A crystalline peak, indicating that the test sample was amorphous.

附图3显示了Cr含量变化对FeCrZrB合金非晶形成能力的影响,结合表1可以看出,随Cr含量增加,合金的临界尺寸表现出先增大后减小的趋势,当Cr含量超高40%时,无法获得块体非晶合金。从表1可以看出,随着Cr含量的提高,合金成分的B含量是逐渐降低的,这与Fe-Cr-B相图的共晶点变化趋势是一致的。Accompanying drawing 3 shows the influence of the change of Cr content on the amorphous formation ability of FeCrZrB alloy. It can be seen from Table 1 that with the increase of Cr content, the critical size of the alloy shows a trend of first increasing and then decreasing. When the Cr content exceeds 40 %, bulk amorphous alloys cannot be obtained. It can be seen from Table 1 that as the Cr content increases, the B content of the alloy components gradually decreases, which is consistent with the change trend of the eutectic point of the Fe-Cr-B phase diagram.

附图4显示了用Nb替换Zr对Fe65Cr10(Zr6-xNbx)B16Si3合金非晶形成能力的影响。从图中可以看出,随着Nb含量增加,合金的非晶形成能力先增大后减小,Zr和Nb是相似大原子,全Zr或全Nb成分均可以获得块体非晶合金。Figure 4 shows the effect of replacing Zr with Nb on the amorphous formation ability of Fe 65 Cr 10 (Zr 6-x Nb x )B 16 Si 3 alloy. It can be seen from the figure that as the Nb content increases, the amorphous formation ability of the alloy first increases and then decreases. Zr and Nb are similar large atoms, and bulk amorphous alloys can be obtained with all Zr or all Nb components.

表1FeCrZrB合金成分及其非晶形成能力Table 1 FeCrZrB alloy composition and its amorphous forming ability

表2FeCrMoZrB合金成分及其非晶形成能力Table 2 FeCrMoZrB alloy composition and its amorphous formation ability

附图5显示了Cr含量变化对FeCrMoZrB块体非晶合金非晶形成能力的影响,结合表2可以看出,与成分FeCrZrB类似,随Cr含量增加,合金的临界尺寸表现出先增大后减小的趋势,当Cr含量达到45%时,无法获得块体非晶合金。同样,随着Cr含量的提高,合金成分的B含量是逐渐降低的。结合附图1可以发现,Mo的添加极大的提高了合金的块体非晶合金的形成范围和临界尺寸,这是因为Mo的添加降低了合金熔点使其更加接近共晶成分同时增加了合金在液态时的混乱度。Figure 5 shows the influence of Cr content changes on the amorphous formation ability of FeCrMoZrB bulk amorphous alloys. It can be seen from Table 2 that, similar to the composition of FeCrZrB, as the Cr content increases, the critical size of the alloy first increases and then decreases. The tendency is that when the Cr content reaches 45%, the bulk amorphous alloy cannot be obtained. Similarly, as the Cr content increases, the B content of the alloy composition decreases gradually. Combining with Figure 1, it can be found that the addition of Mo greatly improves the formation range and critical size of the bulk amorphous alloy of the alloy, because the addition of Mo reduces the melting point of the alloy and makes it closer to the eutectic composition while increasing the alloy Chaos in liquid state.

附图6显示了Cr含量变化对Fe67-xCrxMo7Zr8B18块体非晶合金非晶形成能力的影响,随Cr含量的增加,合金的临界尺寸表现出先增大后减小的趋势,Cr含量为10时,合金的非晶形成能力较优。Accompanying drawing 6 shows the effect of the change of Cr content on the amorphous formation ability of Fe 67-x Cr x Mo 7 Zr 8 B 18 bulk amorphous alloy. With the increase of Cr content, the critical size of the alloy shows that it first increases and then decreases When the Cr content is 10, the alloy has better amorphous formation ability.

附图7显示了Mo含量变化对Fe64-xCr10MoxZr8B18块体非晶合金非晶形成能力的影响,随Mo含量的增加,合金的临界尺寸表现出先增大后减小的趋势,Mo含量介于5~9时,合金的非晶形成能力较优。Figure 7 shows the effect of Mo content change on the amorphous formation ability of Fe 64-x Cr 10 Mo x Zr 8 B 18 bulk amorphous alloys. With the increase of Mo content, the critical size of the alloy first increases and then decreases When the Mo content is between 5 and 9, the amorphous formation ability of the alloy is better.

附图8显示了Zr含量变化对Fe65-xCr10Mo7ZrxB18块体非晶合金非晶形成能力的影响,随Mo含量的增加,合金的临界尺寸表现出先增大后减小的趋势,Zr含量介于6~8时,合金的非晶形成能力较优。Figure 8 shows the effect of Zr content change on the amorphous formation ability of Fe 65-x Cr 10 Mo 7 Zr x B 18 bulk amorphous alloy. With the increase of Mo content, the critical size of the alloy first increases and then decreases When the Zr content is between 6 and 8, the amorphous formation ability of the alloy is better.

附图9显示了B含量变化对Fe75-xCr10Mo7Zr8Bx块体非晶合金非晶形成能力的影响,随B含量的增加,合金的临界尺寸表现出先增大后减小的趋势。当B含量为8时,仍然可以获得块体非晶,这是目前类金属含量最低的铁基块体非晶合金。当B含量介于14~18时,合金的非晶形成能力较优。Figure 9 shows the effect of B content changes on the amorphous formation ability of Fe 75-x Cr 10 Mo 7 Zr 8 B x bulk amorphous alloys. With the increase of B content, the critical size of the alloy first increases and then decreases the trend of. When the B content is 8, the bulk amorphous alloy can still be obtained, which is currently the iron-based bulk amorphous alloy with the lowest metalloid content. When the B content is between 14 and 18, the alloy has better amorphous forming ability.

附图10显示了Si的添加对FeCrMoZrB块体非晶合金非晶形成能力的影响,Si的添加会导致合金偏离共晶成分,对合金的非晶形成能力是不利的,但总体上影响较小。部分添加Si的合金成分及其非晶形成能力见表3。Figure 10 shows the effect of Si addition on the amorphous formation ability of FeCrMoZrB bulk amorphous alloy. The addition of Si will cause the alloy to deviate from the eutectic composition, which is detrimental to the alloy's amorphous formation ability, but the overall effect is small . Table 3 shows the alloy composition and its amorphous forming ability of some Si additions.

表3FeCrMoZrBSi合金成分及其非晶形成能力Table 3 FeCrMoZrBSi alloy composition and its amorphous formation ability

附图11显示了Cr含量变化对Fe73-xCrxZr6Mo2B16Si3块体非晶合金非晶形成能力的影响,随Cr含量的增加,合金的非晶形成能力逐渐降低。Figure 11 shows the effect of Cr content change on the amorphous formation ability of Fe 73-x Cr x Zr 6 Mo 2 B 16 Si 3 bulk amorphous alloy. With the increase of Cr content, the alloy's amorphous formation ability gradually decreases.

附图12显示了Mo含量变化对Fe65-xCr10MoxZr6B16Si3块体非晶合金非晶形成能力的影响,随Mo含量的增加,合金的临界尺寸表现出先增大后减小的趋势。Figure 12 shows the effect of Mo content change on the amorphous formation ability of Fe 65-x Cr 10 Mo x Zr 6 B 16 Si 3 bulk amorphous alloys. With the increase of Mo content, the critical size of the alloy increases first and then decreasing trend.

Co是Fe的最相似元素,Co在Fe基非晶合金中的替换非常普遍,且往往能够提高合金的非晶形成能力。部分加Co的合金成分及其非晶形成能力见表4,可以看出,Co对Fe的替换对合金的非晶形成能力有明显的有利作用,同时能够提高合金可容纳的B原子含量。Co is the most similar element to Fe, and the substitution of Co in Fe-based amorphous alloys is very common and can often improve the amorphous-forming ability of the alloy. The alloy composition and its amorphous formation ability of partially added Co are shown in Table 4. It can be seen that the replacement of Fe by Co has an obvious beneficial effect on the amorphous formation ability of the alloy, and at the same time can increase the B atom content that the alloy can accommodate.

附图13显示了Co的替换对Fe65-xCoxCr8Mo2Zr6B16Si3块体非晶合金非晶形成能力的影响,随Co含量的增加,合金的临界尺寸表现出先增大后减小的趋势。然而结合表4可以发现,当提高B含量时,非晶合金的临界尺寸明显提高。所以,总体上Co的添加对合金的非晶形成能力是有利的。Figure 13 shows the effect of Co substitution on the amorphous formation ability of Fe 65-x Co x Cr 8 Mo 2 Zr 6 B 16 Si 3 bulk amorphous alloy. With the increase of Co content, the critical size of the alloy shows a first increase. trend of decreasing after increasing. However, combined with Table 4, it can be found that when the B content is increased, the critical dimension of the amorphous alloy is significantly increased. Therefore, the addition of Co is generally beneficial to the amorphous-forming ability of the alloy.

Ni是Fe的相似元素,在某些铁基非晶合金体系中Ni的添加对合金的非晶形成能力是有利的,但是在含Cr铁基非晶合金里,Ni的添加鲜有报道。在我们的研究中发现,Ni的添加对合金的非晶形成能力有明显的不利影响。加Ni非晶合金成分及其非晶形成能力见表5。Ni is a similar element to Fe. In some iron-based amorphous alloy systems, the addition of Ni is beneficial to the alloy's amorphous-forming ability, but in Cr-containing iron-based amorphous alloys, the addition of Ni is rarely reported. In our study, it was found that the addition of Ni had an obvious adverse effect on the amorphous-forming ability of the alloy. Table 5 shows the composition of the Ni-added amorphous alloy and its amorphous-forming ability.

表4含Co合金成分及其非晶形成能力Table 4 Co-containing alloy composition and its amorphous-forming ability

表5含Ni合金成分及其非晶形成能力Table 5 Composition of Ni-containing alloys and their amorphous-forming ability

表6合金成分及其非晶形成能力Table 6 Alloy Composition and Its Amorphous Formation Ability

在前述FeaCrbMocBdMeRfXg合金中,其他金属元素如Al、Ti、V、Mn、Cu、Ga、Sn、Hf、Ta、W等的适量添加均可形成块体非晶合金,相比类金属Si,添加P的不利影响更为显著。部分合金成分及其非晶性能能力示例见表6。In the aforementioned Fe a Cr b Mo c B d M e R f X g alloy, the appropriate addition of other metal elements such as Al, Ti, V, Mn, Cu, Ga, Sn, Hf, Ta, W, etc. can form lumps For bulk amorphous alloys, the adverse effect of adding P is more significant than that of metalloid Si. Examples of some alloy compositions and their amorphous performance capabilities are shown in Table 6.

2)示差扫描量热法(DSC)分析2) Differential scanning calorimetry (DSC) analysis

使用示差扫描量热仪对非晶合金样品进行热力学性能分析,升温速率为20K/min,升温范围为300K-1600K。A differential scanning calorimeter was used to analyze the thermodynamic properties of the amorphous alloy sample, the heating rate was 20K/min, and the heating range was 300K-1600K.

附图14为测得的Fe57B18Zr8Cr10Mo7块体非晶合金的DSC曲线,从DSC曲线中可以看出非晶材料特有的过冷液相区,部分块体非晶合金的热力学参数如表7所示。Accompanying drawing 14 is the DSC curve of the measured Fe 57 B 18 Zr 8 Cr 10 Mo 7 bulk amorphous alloy. From the DSC curve, it can be seen that the supercooled liquid phase region unique to amorphous materials, and some bulk amorphous alloys The thermodynamic parameters are shown in Table 7.

表7铁基块体非晶合金的热力学参数Table 7 Thermodynamic parameters of iron-based bulk amorphous alloys

3)准静态压缩试验3) Quasi-static compression test

将制备的非晶合金试棒截取并打磨成长径比为2:1的压缩样品,保证两个端面光滑且与轴向垂直,在CMT 4305型万能电子试验机上进行室温压缩测试,压缩速率为2×10-4s-1,每种合金成分最少选取3个样品进行测试。The prepared amorphous alloy test rod was cut and polished into a compressed sample with a length-to-diameter ratio of 2:1 to ensure that the two end faces were smooth and perpendicular to the axial direction. A room temperature compression test was carried out on a CMT 4305 universal electronic testing machine with a compression rate of 2 ×10 -4 s -1 , select at least 3 samples for each alloy composition to test.

附图15为Fe57B18Zr8Cr10Mo7和Fe57B18Zr8Cr12Mo5块体非晶合金的压缩应力-应变曲线,从图中可以看出,Fe57B18Zr8Cr10Mo7块体非晶合金的压缩强度约3.6GPa,弹性变形量约1.8%,弹性模量为202GPa;Fe57B18Zr8Cr12Mo5块体非晶合金的压缩强度超过4GPa,弹性变形量约2%,弹性模量为208GPa。Accompanying drawing 15 is the compressive stress-strain curve of Fe 57 B 18 Zr 8 Cr 10 Mo 7 and Fe 57 B 18 Zr 8 Cr 12 Mo 5 bulk amorphous alloys. It can be seen from the figure that Fe 57 B 18 Zr 8 The compressive strength of Cr 10 Mo 7 bulk amorphous alloy is about 3.6GPa, the elastic deformation is about 1.8%, and the elastic modulus is 202GPa; the compressive strength of Fe 57 B 18 Zr 8 Cr 12 Mo 5 bulk amorphous alloy exceeds 4GPa, The elastic deformation is about 2%, and the elastic modulus is 208GPa.

4)显微硬度测试4) Microhardness test

在显微维氏硬度计上测试Fe57Cr18Mo2Zr8B15和Fe43Cr35Mo2Zr8B12块体非晶合金的显微硬度,加载力为200g,测试环境温度为20℃。The microhardness of Fe 57 Cr 18 Mo 2 Zr 8 B 15 and Fe 43 Cr 35 Mo 2 Zr 8 B 12 bulk amorphous alloys was tested on a micro Vickers hardness tester with a loading force of 200g and a test environment temperature of 20 ℃.

试验测得Fe57Cr18Mo2Zr8B15块体非晶合金的显微维氏硬度值为1161(11.39GPa),Fe43Cr35Mo2Zr8B12块体非晶合金的显微维氏硬度值为1226(12.02GPa)。测试结果表明这两种块体非晶合金均具有极高的显微硬度,材料的显微硬度能反映其耐磨性能,一般来说,显微硬度越高材料的耐磨性能越好。尽管Cr35成分的类金属B含量较低,但由于成分中Cr含量很高,与Cr18成分相比其显微硬度反而较高。The micro-Vickers hardness value of Fe 57 Cr 18 Mo 2 Zr 8 B 15 bulk amorphous alloy is 1161 (11.39GPa), and the microscopic hardness of Fe 43 Cr 35 Mo 2 Zr 8 B 12 bulk amorphous alloy is 1161 (11.39GPa). The Vickers hardness value is 1226 (12.02GPa). The test results show that the two bulk amorphous alloys have extremely high microhardness, and the microhardness of the material can reflect its wear resistance. Generally speaking, the higher the microhardness, the better the wear resistance of the material. Although the metalloid B content of the Cr35 composition is low, its microhardness is higher compared with the Cr18 composition due to the high Cr content in the composition.

5)电化学测试5) Electrochemical test

在电化学工作站测试块体非晶合金的循环极化曲线,参比电极为饱和甘汞电极,腐蚀溶液为1mol/L的盐酸溶液,测试环境温度为30℃,待测样品表面需进行抛光处理。按照ASTM循环极化曲线的测试标准,扫描电位从相对开路电位-300mV开始,至电流密度达到1mA/cm2时,开始负方向电位扫描,直至电位达到相对开路电位-300mV时结束,扫描速度1mV/s。Test the cyclic polarization curve of the bulk amorphous alloy at the electrochemical workstation, the reference electrode is a saturated calomel electrode, the corrosion solution is 1mol/L hydrochloric acid solution, the test environment temperature is 30°C, and the surface of the sample to be tested needs to be polished. . According to the test standard of ASTM cyclic polarization curve, the scanning potential starts from the relative open circuit potential -300mV, and when the current density reaches 1mA/ cm2 , the negative direction potential scanning starts until the potential reaches the relative open circuit potential -300mV, and the scanning speed is 1mV /s.

从附图16中的循环极化曲线可以看出,Fe57Cr18Mo2Zr8B15和Fe43Cr35Mo2Zr8B12块体非晶合金在1mol/L的盐酸溶液中均表现出优异的耐腐蚀性能。Fe57Cr18Mo2Zr8B15非晶合金在1mol/L的盐酸溶液中的自腐蚀电位为-193.4mV,腐蚀速率为6.3μm/year,维钝电流密度小于5×10-5A/cm2,当电位达到约925mV时点蚀产生、钝化膜被破坏,保护电位为870mV。Fe43Cr35Mo2Zr8B12非晶合金在1mol/L的盐酸溶液中的自腐蚀电位为15.6mV,腐蚀速率为2.6μm/year,维钝电流密度小于1×10-5A/cm2,当电位达到约935mV时点蚀产生、钝化膜被破坏,保护电位为910mV。From the cyclic polarization curves in Figure 16, it can be seen that the bulk amorphous alloys of Fe 57 Cr 18 Mo 2 Zr 8 B 15 and Fe 43 Cr 35 Mo 2 Zr 8 B 12 both behave in 1mol/L hydrochloric acid solution Excellent corrosion resistance performance. The self-corrosion potential of Fe 57 Cr 18 Mo 2 Zr 8 B 15 amorphous alloy in 1mol/L hydrochloric acid solution is -193.4mV, the corrosion rate is 6.3μm/year, and the passive current density is less than 5×10 -5 A/ cm 2 , when the potential reaches about 925mV, pitting occurs, the passivation film is destroyed, and the protection potential is 870mV. The self-corrosion potential of Fe 43 Cr 35 Mo 2 Zr 8 B 12 amorphous alloy in 1mol/L hydrochloric acid solution is 15.6mV, the corrosion rate is 2.6μm/year, and the passive current density is less than 1×10 -5 A/cm 2. When the potential reaches about 935mV, pitting occurs, the passivation film is destroyed, and the protection potential is 910mV.

表8为Fe57Cr18Mo2Zr8B15和Fe43Cr35Mo2Zr8B12块体非晶合金在1mol/L的盐酸溶液中电化学性能参数,316L不锈钢作为对比。Table 8 shows the electrochemical performance parameters of Fe 57 Cr 18 Mo 2 Zr 8 B 15 and Fe 43 Cr 35 Mo 2 Zr 8 B 12 bulk amorphous alloys in 1mol/L hydrochloric acid solution, with 316L stainless steel as a comparison.

表8电化学参数Table 8 Electrochemical parameters

其中,Ecorr为自腐蚀电位,为阳极反应总速度与阴极反应总速度相等的电位,表示腐蚀开始的难易程度;icorr为自腐蚀电流密度,可换算成腐蚀速率;v为腐蚀速率;Eb为击破电位,是钝化膜被破坏、点蚀发生的电位;Ep为保护电位,是循环极化回扫时与阳极曲线交点的电位,表征材料在点蚀发生后钝化膜的自我修复能力。除以上参数外,维钝电流密度ipass也是评定材料耐腐蚀性能的重要参数,但是在很多情况下并不是恒定的,所以未单独给出。Among them, E corr is the self-corrosion potential, which is the potential at which the total speed of the anodic reaction is equal to the total speed of the cathodic reaction, indicating the difficulty of corrosion initiation; i corr is the self-corrosion current density, which can be converted into corrosion rate; v is the corrosion rate; E b is the breakdown potential, which is the potential at which the passivation film is destroyed and pitting occurs; E p is the protection potential, which is the potential at the intersection point of the anode curve during cyclic polarization retrace, which characterizes the passivation film of the material after pitting occurs self-healing ability. In addition to the above parameters, the passive current density i pass is also an important parameter to evaluate the corrosion resistance of materials, but it is not constant in many cases, so it is not given separately.

由于316L不锈钢在盐酸中腐蚀较快,不存在击破电位和保护电位。对比数据可以发现,上述两种非晶合金在盐酸中的耐腐蚀性能远远优于常规晶态材料316L不锈钢。Since 316L stainless steel corrodes quickly in hydrochloric acid, there is no breakdown potential and protection potential. Comparing the data, it can be found that the corrosion resistance of the above two amorphous alloys in hydrochloric acid is far superior to that of the conventional crystalline material 316L stainless steel.

以上所述为本发明的基本原理和主要特点。上述实施方式不以任何方式限制本发明,对以上实施方式做简单变换所获得的技术方案均在本发明的保护范围之内。The foregoing is the basic principle and main features of the present invention. The above embodiments do not limit the present invention in any way, and the technical solutions obtained by simply changing the above embodiments are within the protection scope of the present invention.

Claims (7)

1.一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbBdRf,其特征在于40≤a≤75,5≤b≤38,10≤d≤25,4≤f≤15,a+b+d+f=100,R为Ti、Zr、Nb、Hf、Ta、W中的一种或多种。1. A Fe-Cr-B series bulk amorphous alloy, whose composition is expressed as Fe a Cr b B d R f , characterized in that 40≤a≤75, 5≤b≤38, 10≤d≤25, 4≤f≤15, a+b+d+f=100, R is one or more of Ti, Zr, Nb, Hf, Ta, W. 2.一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbMocBdZrf,其特征在于30≤a≤75,5≤b≤40,0<c≤20,7≤d≤28,2≤f≤15,a+b+c+d+f=100。2. A Fe-Cr-B bulk amorphous alloy whose composition is expressed as Fe a Cr b Mo c B d Zr f , characterized in that 30≤a≤75, 5≤b≤40, 0<c≤ 20, 7≤d≤28, 2≤f≤15, a+b+c+d+f=100. 3.根据权利要求2所述的一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbMocBdZrf,其特征在于52≤a≤66,8≤b≤11,5≤c≤10,15≤d≤19,6≤f≤8,a+b+c+d+f=100,该非晶合金临界尺寸达到3mm。3. A Fe-Cr-B bulk amorphous alloy according to claim 2, whose composition is expressed as Fe a Cr b Mo c B d Zr f , characterized in that 52≤a≤66, 8≤b ≤11, 5≤c≤10, 15≤d≤19, 6≤f≤8, a+b+c+d+f=100, the critical dimension of the amorphous alloy reaches 3mm. 4.根据权利要求2所述的一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbMocBdZrf,其特征在于35≤a≤57,25≤b≤40,0<c≤6,11≤d≤16,6≤f≤8,a+b+c+d+f=100,该非晶合金具有极优秀的耐腐蚀性能。4. A Fe-Cr-B bulk amorphous alloy according to claim 2, whose composition is expressed as Fe a Cr b Mo c B d Zr f , characterized in that 35≤a≤57, 25≤b ≤40, 0<c≤6, 11≤d≤16, 6≤f≤8, a+b+c+d+f=100, the amorphous alloy has excellent corrosion resistance. 5.一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbBdCoeZrfSig,其特征在于21≤a≤35,8≤b≤11,17≤d≤19,30≤e≤40,6≤f≤8,2≤g≤4,a+b+d+e+f+g=100,该非晶合金临界尺寸达到3mm。5. A Fe-Cr-B bulk amorphous alloy whose composition is expressed as Fe a Cr b B d Co e Zr f Si g , characterized in that 21≤a≤35, 8≤b≤11, 17≤ d≤19, 30≤e≤40, 6≤f≤8, 2≤g≤4, a+b+d+e+f+g=100, the critical dimension of the amorphous alloy reaches 3mm. 6.一种Fe-Cr-B系块体非晶合金,其组成表示为FeaCrbMocBdNieRfXg,其特征在于30≤a≤75,5≤b≤40,0≤c≤20,7≤d≤28,0<e≤25,2≤f≤15,0≤g≤10,a+b+c+d+e+f+g=100,R为Ti、Zr、Nb、Hf、Ta、W中的一种或多种;X为Si、P中的一种或多种元素。6. A Fe-Cr-B bulk amorphous alloy, the composition of which is expressed as Fe a Cr b Mo c B d Ni e R f X g , characterized in that 30≤a≤75, 5≤b≤40, 0≤c≤20, 7≤d≤28, 0<e≤25, 2≤f≤15, 0≤g≤10, a+b+c+d+e+f+g=100, R is Ti, One or more of Zr, Nb, Hf, Ta, W; X is one or more of Si and P. 7.一种制备权利要求1-6之一所述Fe-Cr-B系块体非晶合金的方法,其特征在于:(1)使用的原料Fe、Co或Ni的纯度不低于99.5%,Cr或Si的纯度不低于99%,B或Mo分别以工业硼铁或工业钼铁的形式加入,其余原料的纯度不低于99.9%;(2)使用真空非自耗钨电极电弧炉熔炼合金,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压;(3)合金熔炼3-5遍,保证熔炼均匀;(4)合金熔炼完成后,使用电弧炉配套的真空吸铸设备和铜模制备圆柱形块体非晶合金。7. A method for preparing the Fe-Cr-B series bulk amorphous alloy according to one of claims 1-6, characterized in that: (1) the purity of the raw material Fe, Co or Ni used is not less than 99.5% , the purity of Cr or Si is not less than 99%, B or Mo is added in the form of industrial ferroboron or industrial molybdenum respectively, and the purity of the rest of the raw materials is not less than 99.9%; (2) Use a vacuum non-consumable tungsten electrode electric arc furnace To smelt the alloy, evacuate the furnace body to a vacuum degree ≤ 1×10 -2 Pa, and fill the furnace with pure argon until the pressure in the furnace reaches 0.4-0.5 atmospheres; (3) The alloy is smelted 3-5 times to ensure uniform smelting; ( 4) After the alloy smelting is completed, the cylindrical bulk amorphous alloy is prepared by using the vacuum suction casting equipment and the copper mold matched with the electric arc furnace.
CN201410720128.5A 2014-12-02 2014-12-02 A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof Active CN104388842B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410720128.5A CN104388842B (en) 2014-12-02 2014-12-02 A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410720128.5A CN104388842B (en) 2014-12-02 2014-12-02 A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104388842A CN104388842A (en) 2015-03-04
CN104388842B true CN104388842B (en) 2016-08-24

Family

ID=52606798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720128.5A Active CN104388842B (en) 2014-12-02 2014-12-02 A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104388842B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063516A (en) * 2015-08-01 2015-11-18 江苏华源防爆电机有限公司 High-magnetic-permeability and low-loss amorphous material for engine
CN105256270A (en) * 2015-11-18 2016-01-20 苏州热工研究院有限公司 Preparing method for Fe-Cr-B system amorphous coating with high Cr content and high B content
CN106191711B (en) * 2016-07-07 2018-01-30 河海大学 A kind of iron-based amorphous powder and its preparation method and application
CN106756642B (en) * 2016-12-21 2018-11-02 中国科学院金属研究所 A kind of strong glass forming ability Fe-based amorphous alloy and the high-compactness amorphous alloy coating of resistance to long-term corrosion
CN108624827B (en) * 2017-03-20 2020-11-17 中国科学院宁波材料技术与工程研究所 Ultralow-magnetism anti-corrosion iron-based amorphous alloy, powder and preparation method of coating of amorphous alloy
CN106849389A (en) * 2017-03-28 2017-06-13 深圳市晶弘科贸有限公司 The miniature specific type of electric machine of non-crystaline amorphous metal
CN107365950B (en) * 2017-07-24 2019-03-19 广东咏旺新材料科技有限公司 Fe-Si-B-Nb-Cu is Fe-based amorphous/nanocrystalline magnetically soft alloy material and preparation and heat treatment process
CN109022842B (en) * 2018-07-30 2020-01-03 中南大学 Method for preparing superfine structure gold-tin eutectic alloy soldering lug through one-step vacuum suction casting
CN110172650B (en) * 2019-06-18 2021-05-04 河海大学 A low-loss and high-corrosion-resistant iron-based amorphous/carbon nanotube composite material for transformer core and its preparation method and application
CN112430792B (en) * 2020-12-19 2022-02-01 兰州理工大学 Fe-based amorphous powder material and anti-corrosion wear-resistant amorphous coating
CN113201701A (en) * 2021-04-20 2021-08-03 中国科学院金属研究所 Amorphous alloy pen bead and application thereof
CN114242370B (en) * 2021-12-27 2024-09-03 浙江大学 Multicomponent FeCoSiM soft magnetic alloy and preparation method thereof
CN115354245B (en) * 2022-06-10 2023-08-29 安徽科技学院 High-corrosion-resistance wear-resistance iron-based amorphous damage repair coating and preparation method thereof
CN115786823B (en) * 2022-12-02 2025-05-06 新疆大学 A high entropy bulk amorphous alloy with obvious plasticity and excellent corrosion resistance and preparation method thereof
CN115821174B (en) * 2022-12-12 2024-05-07 广东电网有限责任公司 Fe-Co-Zr-Mo-Ni-B bulk amorphous alloy with high glass forming capability and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064561A (en) * 1991-03-06 1992-09-16 联合信号股份有限公司 Fe-Ni based soft magnetic with microcrystalline texture of millimicro meter level
CN1333914A (en) * 1998-11-06 2002-01-30 霍尼韦尔国际公司 Bulk Amorphous Metal Magnetic Components
CN1596321A (en) * 2002-01-16 2005-03-16 三井化学株式会社 Magnetic base material, laminate from magnetic base material and method for production thereof
CN1646718A (en) * 2002-02-11 2005-07-27 弗吉尼亚大学专利基金会 Bulk-solidified high-manganese non-ferromagnetic amorphous alloy steel and related methods for its use and preparation
CN103221568A (en) * 2010-10-26 2013-07-24 山阳特殊制钢株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190304A (en) * 1981-05-19 1982-11-22 Hitachi Metals Ltd Magnetic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064561A (en) * 1991-03-06 1992-09-16 联合信号股份有限公司 Fe-Ni based soft magnetic with microcrystalline texture of millimicro meter level
CN1333914A (en) * 1998-11-06 2002-01-30 霍尼韦尔国际公司 Bulk Amorphous Metal Magnetic Components
CN1596321A (en) * 2002-01-16 2005-03-16 三井化学株式会社 Magnetic base material, laminate from magnetic base material and method for production thereof
CN1646718A (en) * 2002-02-11 2005-07-27 弗吉尼亚大学专利基金会 Bulk-solidified high-manganese non-ferromagnetic amorphous alloy steel and related methods for its use and preparation
CN103221568A (en) * 2010-10-26 2013-07-24 山阳特殊制钢株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Also Published As

Publication number Publication date
CN104388842A (en) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104388842B (en) A kind of Fe-Cr-B system corrosion block non-crystaline amorphous metal and preparation method thereof
Li et al. New FeNiCrMo (P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance
CN108642399B (en) Basal high-entropy alloy and preparation method thereof
CN105088108B (en) A kind of iron-based amorphous alloy, its powder material and wear-resistant and anti-corrosion coating
Gu et al. Effects of Cu addition on the glass forming ability and corrosion resistance of Ti-Zr-Be-Ni alloys
CN107142410A (en) CrMoNbTiZr high entropy alloy materials and preparation method thereof
CN109930085B (en) A kind of high temperature and corrosion resistant high entropy amorphous soft magnetic alloy and preparation method thereof
CN109252112B (en) A Ti-based amorphous alloy with super-large amorphous forming ability and preparation method thereof
Zhang et al. Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass
Ma et al. Enhancement on GFA and mechanical properties of Ni-based bulk metallic glasses through Fe addition
CN100529146C (en) Iron-base amorphous alloy material with high saturation magnetic induction density
Howard et al. High-temperature metallic glasses: status, needs, and opportunities
Ma et al. Preparation of Ni-based bulk metallic glasses with high corrosion resistance
CN102071370A (en) High-anticorrosion Zr-Al-Ni-Nb block amorphous alloy
CN113073273A (en) High-entropy amorphous alloy material and preparation method thereof
CN106282786B (en) Base damping alloy of ferrimanganic containing Nb and preparation method thereof
CN104532169B (en) CrCo-based bulk amorphous alloy
Ma et al. Effect of Ni addition on the properties of CoMoPB bulk metallic glasses
CN101353771B (en) Tungsten based amorphous alloy
Han et al. Zr55. 8Al19. 4 (Co1− x Cu x) 24.8 (x= 0–0.8 at.%) bulk metallic glasses for surgical devices applications: KM Han et al.
CN102268618B (en) High specific strength light titanium-based amorphous alloy
CN116926447A (en) Tungsten-based high-temperature block amorphous alloy and preparation method thereof
CN105132834A (en) High-strength amorphous alloy and preparation method thereof
CN104233120B (en) A kind of block Fe-based amorphous alloy material
CN100523250C (en) NiAl-Cr(Mo) biphase eutectic crystal intermetallic compound modified by Nb

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant