[go: up one dir, main page]

CN104453869A - Method of conducting diagnostics on a subterranean formation - Google Patents

Method of conducting diagnostics on a subterranean formation Download PDF

Info

Publication number
CN104453869A
CN104453869A CN201410495091.0A CN201410495091A CN104453869A CN 104453869 A CN104453869 A CN 104453869A CN 201410495091 A CN201410495091 A CN 201410495091A CN 104453869 A CN104453869 A CN 104453869A
Authority
CN
China
Prior art keywords
fracture
sensor
measurements
initiation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410495091.0A
Other languages
Chinese (zh)
Inventor
A·多布罗斯科克
E·R·封塞卡奥坎波斯
A·A·萨威蒂斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN104453869A publication Critical patent/CN104453869A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及对地下地层进行诊断的方法。一种方法包括在注入井和观测井中设置传感器;在注入井内增加压力直到裂缝从起裂位置穿过地下地层的一部分延伸到观测井的交汇位置,其中在注入井内增加压力包括将流体引入注入井;从第一传感器获得指示裂缝起裂的测量结果;在注入井确定裂缝的高度;从第二传感器获得指示裂缝交汇的测量结果;确定裂缝起裂和裂缝交汇之间引入的流体的体积;确定起裂位置和交汇位置之间的距离;确定裂缝起裂和裂缝交汇之间的时延;使用所确定的值,计算水力压裂特性。

The present invention relates to methods of diagnosing subterranean formations. A method includes placing sensors in an injection well and an observation well; increasing pressure in the injection well until a fracture extends from a location of initiation through a portion of the subterranean formation to a location where the observation well intersects, wherein increasing the pressure in the injection well includes introducing fluid into the injection well ; obtain a measurement indicative of fracture initiation from a first sensor; determine the height of the fracture at the injection well; obtain a measurement indicative of fracture intersection from a second sensor; determine the volume of fluid introduced between fracture initiation and fracture intersection; The distance between the initiation location and the intersection location; determining the time delay between fracture initiation and fracture intersection; and using the determined values, hydraulic fracture properties are calculated.

Description

对地下地层进行诊断的方法Methods for Diagnosing Subsurface Formations

相关案例Related cases

本申请要求2013年9月25日提交的美国临时申请61/882,139的权益,该申请通过引用被包括在此。This application claims the benefit of US Provisional Application 61/882,139, filed September 25, 2013, which is hereby incorporated by reference.

技术领域technical field

本发明涉及一种对地下地层进行诊断的方法。The invention relates to a method for diagnosing underground formations.

背景技术Background technique

储油层的水力压裂是优化地下含烃地层的价值、特别是非传统富气液页岩沉积层的价值的技术。由于含有如此沉积层的地层的致密特性,用于储油层特征化和水力压裂设计的标准技术常常不适用,或者出现判读(interpretation)挑战。理解泄漏过程是特征化和设计的关键组分。泄漏估计的标准实践涉及执行最小压裂或泄漏检验。由于非传统富气液页岩地层的非常低的渗透性,该检验通常提供差的结果。另一种估计泄漏的方法是使用分析方法,该方法需要了解地层的某些参数,比如渗透性和孔隙度。然而,在致密地层中这些参数可能很难估计。Hydraulic fracturing of reservoir formations is a technique that optimizes the value of subsurface hydrocarbon-bearing formations, particularly unconventional gas-rich liquid shale deposits. Due to the tight nature of formations containing such deposits, standard techniques for reservoir characterization and hydraulic fracture design are often not applicable, or interpretation challenges arise. Understanding the leak process is a key component of characterization and design. Standard practice for leak estimation involves performing minimal frac or leak testing. This test generally provides poor results due to the very low permeability of unconventional gas-rich liquid shale formations. Another way to estimate leaks is to use analytical methods that require knowledge of certain parameters of the formation, such as permeability and porosity. However, these parameters can be difficult to estimate in tight formations.

发明内容Contents of the invention

根据本公开的一个方面,方法包括在刺入地下地层的注入井中设置第一传感器。该方法还包括在刺入地下地层的观测井中设置第二传感器。该方法进一步包括在注入井内增加压力,直到裂缝从注入井的起裂位置穿过地下地层的一部分延伸到观测井的交汇位置,其中在注入井内增加压力包括将流体引入注入井。该方法包括从第一传感器获得指示裂缝起裂的测量结果。此外,该方法包括在注入井确定裂缝的高度。该方法还包括从第二传感器获得指示裂缝交汇的测量结果。该方法包括确定裂缝起裂和裂缝交汇之间引入的流体的体积。此外,该方法包括确定起裂位置和交汇位置之间的距离。该方法还包括确定裂缝起裂和裂缝交汇之间的时延(time lapse)。此外,该方法包括使用这些经确定的数值来计算水力压裂特性。According to one aspect of the present disclosure, a method includes positioning a first sensor in an injection well penetrating a subterranean formation. The method also includes positioning a second sensor in the observation well penetrated into the subterranean formation. The method further includes increasing pressure in the injection well until the fracture extends from an initiation location of the injection well through a portion of the subterranean formation to an intersection location of the observation well, wherein increasing the pressure in the injection well includes introducing fluid into the injection well. The method includes obtaining measurements indicative of fracture initiation from a first sensor. Additionally, the method includes determining the height of the fracture at the injection well. The method also includes obtaining measurements indicative of fracture convergence from the second sensor. The method includes determining a volume of fluid introduced between fracture initiation and fracture convergence. Additionally, the method includes determining the distance between the initiation location and the intersection location. The method also includes determining a time lapse between fracture initiation and fracture convergence. Additionally, the method includes using the determined values to calculate hydraulic fracture properties.

附图说明Description of drawings

图1示出了根据本公开的一个方面的注入井和观测井(在注入井和观测井之间具有延伸的裂缝)的示意图。FIG. 1 shows a schematic diagram of an injection well and an observation well (with a fracture extending between the injection well and the observation well) according to one aspect of the present disclosure.

具体实施方式Detailed ways

本公开提供了用于现场检验和得出水力压裂参数的多种方法。一般地,分布式温度和声学传感器的组合被分别安装在垂直和倾斜(deviated)井中以测量裂缝高度、裂缝生长为某一长度所需的时间以及流体泄漏速率。估计的参数也可以用于历史拟合以减少特征化应力场、地层的断裂韧度和其他相关性质中的不确定性。The present disclosure provides methods for field testing and deriving hydraulic fracturing parameters. Typically, a combination of distributed temperature and acoustic sensors are installed in vertical and deviated wells, respectively, to measure fracture height, time required for the fracture to grow to a certain length, and fluid leakage rate. The estimated parameters can also be used in history fitting to reduce uncertainties in characterizing the stress field, fracture toughness and other relevant properties of the formation.

现在参照图1,注入井10和观测井12可以被提供。该注入井10可以是水力压裂井。该注入井10和观测井12中的一个或者两者可以刺入关注的地下地层14。例如,该地下地层14可包含烃或其他自然资源。该注入井10和观测井12可以在地表15处在单一地点(pad)(未示出)处开始。然后,如所示出地,该注入井10在地表15处在注入地点16处开始,并且观测井12在地表15处在观测地点18处开始。评价地层的方法可以包括在注入井10中在如下位置放置或另外设置传感器20,在该位置传感器20可以感测指示在注入井10中从起裂位置24起的裂缝起裂的参数。如所示地,该起裂位置24是被两个封隔器23隔离的壳中的穿孔。该传感器20可以是分布式温度传感器(DTS)、压力计、多个压力计等等。例如光纤DTS可以被附接到井筒壳并提供对响应于冷(热)流体的注入的温度降低(或升高)的测量结果。在一些实施例(包括所示出的实施例)中,传感器20可以被放置在注入井10的基本垂直部分25。在这些实施例中,起裂位置24可以在注入井10的基本垂直部分25中。Referring now to FIG. 1 , injection wells 10 and observation wells 12 may be provided. The injection well 10 may be a hydraulically fractured well. One or both of the injection well 10 and observation well 12 may penetrate a subterranean formation 14 of interest. For example, the subterranean formation 14 may contain hydrocarbons or other natural resources. The injection well 10 and observation well 12 may start at a single pad (not shown) at the surface 15 . Then, as shown, the injection well 10 starts at the surface 15 at an injection site 16 and the observation well 12 starts at the surface 15 at an observation site 18 . The method of evaluating a formation may include placing or otherwise disposing a sensor 20 in the injection well 10 at a location where the sensor 20 may sense a parameter indicative of fracture initiation in the injection well 10 from an initiation location 24 . As shown, the initiation site 24 is a perforation in the shell isolated by two packers 23 . The sensor 20 may be a distributed temperature sensor (DTS), a manometer, multiple manometers, or the like. For example a fiber optic DTS may be attached to the wellbore casing and provide measurements of the temperature drop (or rise) in response to the injection of cold (hot) fluids. In some embodiments, including the one shown, the sensor 20 may be placed in a substantially vertical portion 25 of the injection well 10 . In these embodiments, the initiation location 24 may be in a substantially vertical portion 25 of the injection well 10 .

该方法还可以包括在观测井12中如下位置处放置或另外设置另一传感器26,在该位置传感器26可以感测指示在观测井12中交汇位置30处的裂缝交汇的参数。该传感器26可以是分布式声学传感器(DAS)、DTS、DAS/DTS组合或在观测井12中的任何其他仪器。光纤DAS可以被附接到井筒壳并测量由断裂引起的变形。DAS和DTS可以同时用于一个井筒。作为替代地,压力计可以出现在观测井中或注入井和观测井两者中。在一些实施例,包括所示实施例中,该传感器26可以被放置在观测井12的倾斜部分31中。在这些实施例中,该交汇位置30可以在观测井12的倾斜部分31中。The method may also include placing or otherwise positioning another sensor 26 at a location in the observation well 12 where the sensor 26 may sense a parameter indicative of fracture intersection at the intersection location 30 in the observation well 12 . The sensor 26 may be a distributed acoustic sensor (DAS), a DTS, a DAS/DTS combination, or any other instrument in the observation well 12 . A fiber optic DAS can be attached to the wellbore casing and measure the deformation caused by the fracture. DAS and DTS can be used in one wellbore at the same time. Alternatively, piezometers may be present in the observation well or in both injection and observation wells. In some embodiments, including the one shown, the sensor 26 may be placed in a sloped portion 31 of the observation well 12 . In these embodiments, the junction location 30 may be in a sloped portion 31 of the observation well 12 .

该注入井10和该观测井12的倾斜部分31可沿着最大水平应力σH的方向被定位。一旦已在注入井10内设置传感器20且在观测井12内设置传感器26,流体可以在表面15被引入到注入井10内。在注入井内的压力可以通过对流体施压而逐渐增大直到裂缝34开始形成。该裂缝34可以从注入井10中的起裂位置24穿过地下地层14的一部分延伸到观测井12中的交汇位置30。虽然有可能裂缝34继续超出交汇位置30,本公开认为交汇位置30值得特别关注。The inclined portion 31 of the injection well 10 and the observation well 12 may be positioned along the direction of maximum horizontal stress σ H . Once the sensor 20 has been positioned within the injection well 10 and the sensor 26 has been positioned within the observation well 12 , fluid may be introduced into the injection well 10 at the surface 15 . The pressure within the injection well may be gradually increased by pressurizing the fluid until fractures 34 begin to form. The fracture 34 may extend through a portion of the subterranean formation 14 from an initiation location 24 in the injection well 10 to a junction location 30 in the observation well 12 . While it is possible for the fracture 34 to continue beyond the junction location 30, the present disclosure considers the junction location 30 to be of particular concern.

裂缝34的起裂可以提供可由传感器20检测到的信号。例如,地下地层14的开裂可由压力变化、热量变化或可由传感器20测量的一些其他变化标记(register)。因此,可能可以从传感器20获得指示裂缝起裂的测量结果。该测量结果可以包括被感测的数值的指示(如,温度测量结果、压力测量结果、变形测量结果等。)和数值被感测到时的时间的指示(“起裂时间”或t0=0)。这样的一个或多个测量结果可以被保留以用于之后参考和使用。为了感测传感器20的测量结果的变化,可以在获得与裂缝34的形成相关联的任何测量结果之前,从传感器20获得基准(baseline)测量结果。因此,起裂时间的确定可以涉及比较基准测量结果与一个或多个随后测量结果直到裂缝起裂的充分的变化特性被检测到。因此,确定变化被检测到的时间提供了起裂时间的确定。依赖于传感器被配置为检测温度变化(当基准和随后测量结果是温度测量结果时)、压力变化(当基准和随后测量结果是压力测量结果时)还是某一其它类型的变化,该变化可以达到阈值温度、压力或其它值。所判读的裂缝起裂时间可以进一步与由处理压力记录判读的裂缝起裂比较并得到后者支持。The initiation of crack 34 may provide a signal detectable by sensor 20 . For example, fracturing of subterranean formation 14 may be registered by a change in pressure, a change in heat, or some other change that may be measured by sensor 20 . Therefore, it may be possible to obtain measurements from the sensor 20 indicative of crack initiation. The measurements may include an indication of the value sensed (e.g., a temperature measurement, a pressure measurement, a deformation measurement, etc.) and an indication of the time at which the value was sensed ("time to crack initiation" or t 0 = 0). Such one or more measurements may be retained for later reference and use. In order to sense changes in the measurements of sensor 20 , a baseline measurement may be obtained from sensor 20 prior to obtaining any measurements associated with the formation of crack 34 . Accordingly, determination of time to initiation may involve comparing a baseline measurement with one or more subsequent measurements until a sufficiently variable characteristic of fracture initiation is detected. Therefore, determining when a change is detected provides a determination of the time of crack initiation. Depending on whether the sensor is configured to detect a change in temperature (when the baseline and subsequent measurement is a temperature measurement), a change in pressure (when the baseline and subsequent measurement is a pressure measurement), or some other type of change, the variation can be up to threshold temperature, pressure or other value. The interpreted fracture initiation time can be further compared with and supported by the fracture initiation interpreted from the processed pressure records.

裂缝34的高度36可以在注入井10确定。具体地,裂缝34的高度36可以通过放射性示踪物、温度录井或在注入井10中的任何其它设备在起裂位置24被确定。在某些实施例中,确定裂缝34的高度36可以包括从传感器20获得额外的测量结果。例如,如果传感器20被配置为提供温度测量结果,沿着传感器20的长度的温度变化可以提供关于裂缝34高度的信息。因此,确定裂缝的高度36可以涉及随着时间过去的传感器20的温度测量结果的比较。The height 36 of the fracture 34 may be determined at the injection well 10 . Specifically, the height 36 of the fracture 34 may be determined at the initiation location 24 by radiotracers, temperature logging, or any other device in the injection well 10 . In some embodiments, determining height 36 of fracture 34 may include obtaining additional measurements from sensor 20 . For example, if sensor 20 is configured to provide temperature measurements, changes in temperature along the length of sensor 20 may provide information regarding the height of fracture 34 . Thus, determining the height 36 of the crack may involve a comparison of the temperature measurements of the sensor 20 over time.

随着注入以被紧密监测和记录的注入量继续,裂缝34通过地下地层14传播,直到裂缝34在交汇位置30与观测井交汇。裂缝34与观测井12的交汇可以提供可以由传感器24检测到的信号。例如,裂缝34到达观测井12可以由声学变化或可由传感器26测量到的某些其它变化标记。这样的测量结果可以包括感测值的指示(如,声学测量结果、温度测量结果或两者的结合)和值被感测到时的时间的指示(“交汇时间”或t)。这样的一个或多个测量结果可以被保留以用于之后参考和使用。为了感测传感器26的测量结果的变化,可以在任何与裂缝34和观测井12的交汇相关联的测量结果之前,从传感器26获得基准测量结果。因此,确定交汇时间可以涉及比较基准测量结果和一个或多个随后测量结果直到充分的变化被检测到。因此,确定变化被检测到时的时间提供了交汇时间的确定。依赖于传感器26被配置为检测声学变化(当基准和随后测量结果是声学测量结果)还是某一其它类型的变化,该变化可达到声学阈值或其他值。As injection continues at closely monitored and recorded injection rates, fracture 34 propagates through subterranean formation 14 until fracture 34 intersects the observation well at intersection location 30 . The intersection of fracture 34 with observation well 12 may provide a signal that may be detected by sensor 24 . For example, arrival of fracture 34 to observation well 12 may be marked by an acoustic change or some other change measurable by sensor 26 . Such measurements may include an indication of the sensed value (eg, an acoustic measurement, a temperature measurement, or a combination of both) and an indication of the time at which the value was sensed ("junction time" or t). Such one or more measurements may be retained for later reference and use. In order to sense changes in the measurements of the sensors 26 , baseline measurements may be obtained from the sensors 26 prior to any measurements associated with the intersection of the fracture 34 and the observation well 12 . Thus, determining the time of convergence may involve comparing a baseline measurement with one or more subsequent measurements until a sufficient change is detected. Therefore, determining the time when a change is detected provides a determination of the junction time. Depending on whether the sensor 26 is configured to detect an acoustic change (when the baseline and subsequent measurements are acoustic measurements) or some other type of change, the change may reach an acoustic threshold or other value.

同样的过程可以可选地通过使用额外的传感器(未示出)对于额外的观测井(未示出)重复执行。在这样的实例中,这样的额外的一个或多个测量结果也可以以与关于所示出的观测井12被描述的方式相似的方式被保留以用于之后参考和使用。The same process can optionally be repeated for additional observation wells (not shown) using additional sensors (not shown). In such instances, such additional measurement(s) may also be retained for later reference and use in a manner similar to that described with respect to the illustrated observation well 12 .

该起裂时间和交汇时间可被用于确定在裂缝起裂和裂缝交汇之间引入的流体的体积。例如,可从交汇时间减去起裂时间,并且体积流率可与经过的时间相乘。作为替代地,起裂时间可以被设为0,而计时器在起裂时间开始测量时间并在交汇时间停止测量。再一次,该时延可与稳定的体积流率相乘。作为替代地,在裂缝起裂和裂缝交汇之间引入的流体的体积可以由包括测量、监测、记录等在内的其他方法确定。The initiation time and convergence time can be used to determine the volume of fluid introduced between fracture initiation and fracture convergence. For example, the initiation time can be subtracted from the junction time, and the volumetric flow rate can be multiplied by the elapsed time. Alternatively, the initiation time can be set to 0, and the timer starts measuring time at the initiation time and stops measuring at the junction time. Again, this time delay can be multiplied by the steady volumetric flow rate. Alternatively, the volume of fluid introduced between fracture initiation and fracture convergence may be determined by other methods including measurement, monitoring, recording, and the like.

除了知晓引入的流体的体积和裂缝的高度36,确定裂缝长度38或起裂位置24和交汇位置30之间的距离也可是有用的。裂缝长度38可以实际上接近裂缝34的一半长度。因此,长度38可不包括裂缝34的从注入井10在远离观测井12的方向上延伸的部分。同样地,长度38可以排除裂缝34的延伸超出观测井12的部分。确定裂缝长度38可以简单地为从传感器20和传感器26获得并比较位置测量结果。作为替代地,裂缝长度可以使用微震监测来估计。然而,这些测量结果可能本质上较不准确或更不确定。In addition to knowing the volume of fluid introduced and the height 36 of the fracture, it may also be useful to determine the fracture length 38 or the distance between the initiation location 24 and the junction location 30 . Slit length 38 may actually be approximately half the length of slit 34 . Thus, length 38 may not include portions of fracture 34 extending from injection well 10 in a direction away from observation well 12 . Likewise, length 38 may exclude portions of fracture 34 that extend beyond observation well 12 . Determining fracture length 38 may be as simple as obtaining and comparing position measurements from sensor 20 and sensor 26 . Alternatively, fracture length can be estimated using microseismic monitoring. However, these measurements may be inherently less accurate or more uncertain.

在另一实施例(未示出)中,注入井10可以具有倾斜部分,并且起裂位置24可以位于注入井10的倾斜部分中。在这样的实施例中,传感器20、26可以标记起裂时间和交汇时间,并且传感器20、26和/或额外传感器可以进一步使用微震数据或允许估计裂缝34的高度36的其它技术。In another embodiment (not shown), the injection well 10 may have a sloped portion, and the initiation location 24 may be located in the sloped portion of the injection well 10 . In such an embodiment, the sensors 20 , 26 may mark the initiation time and the junction time, and the sensors 20 , 26 and/or additional sensors may further use microseismic data or other techniques that allow the height 36 of the fracture 34 to be estimated.

同样的过程可以可选地通过使用额外的传感器(未示出)对于额外的观测井(未示出)重复执行。在这样的实例中,这样的额外一个或多个测量结果可被以相似的方式获得并用于从DAS或其他数据估计裂缝间的流体分布。The same process can optionally be repeated for additional observation wells (not shown) using additional sensors (not shown). In such instances, such additional measurement(s) may be obtained in a similar manner and used to estimate interfracture fluid distribution from DAS or other data.

一旦长度38、高度36和所引入的流体体积已知,水力压裂特性可以被计算。例如,泄漏体积、泄漏系数和/或渗透性可以被计算。一些这样的计算可以涉及额外的确定,比如裂缝中的流体压力、储油层压力、流体的黏性和流体的可压缩性。其他特性(比如杨氏模量、泊松比、第二类完全椭圆积分和裂缝净压力)可以被确定并用于此处描述的方法中。Once the length 38, height 36, and volume of fluid introduced are known, hydraulic fracture properties can be calculated. For example, leak volume, leak coefficient, and/or permeability can be calculated. Some of these calculations may involve additional determinations, such as fluid pressure in the fracture, reservoir pressure, fluid viscosity, and fluid compressibility. Other properties such as Young's modulus, Poisson's ratio, complete elliptic integral of the second kind, and net fracture pressure can be determined and used in the methods described here.

基于弹性关系。长矩形裂缝的泄漏体积Vloff(L>>h)为:Based on elastic relations. The leakage volume V loff (L>>h) of a long rectangular fracture is:

VV loffloff == VV injinj -- VV ff == ∫∫ 00 tt QdtQdt -- ππ 22 44 ·&Center Dot; 11 -- vv EE. ·&Center Dot; LL hh 22 II (( mm )) ΔpΔp

其中Vinj是注入流体体积,Vf是在时间t时的裂缝体积,Q是体积测定注入速率,t是传感器26标记裂缝34和观测井12交汇的时间,h是裂缝高度36(由在注入井10中的传感器30测量),L是裂缝的一半长度38(与井间距离相同),E是杨氏模量,ν是泊松比,I(m)是第二类完全椭圆积分,Δp是裂缝净压力,且 where V inj is the injected fluid volume, V f is the fracture volume at time t, Q is the volumetric injection rate, t is the time when the sensor 26 marked fracture 34 meets the observation well 12, and h is the fracture height 36 (determined by measured by sensor 30 in well 10), L is half the length 38 of the fracture (same as the distance between wells), E is Young's modulus, ν is Poisson's ratio, I(m) is the complete elliptic integral of the second kind, Δp is the net fracture pressure, and

泄漏系数如下计算The leakage factor is calculated as follows

CC LL == 33 44 VV LL LL tt

为了说明地下地层14的泄漏特性和流动特性之间的联系,如下常数也可以被估计To illustrate the link between the leakage and flow properties of the subterranean formation 14, the following constants can also be estimated

kφkφ == CC LL 22 (( pp ff -- pp ii )) 22 ·&Center Dot; πμπμ cc tt

其中k是地层渗透性,φ是地层孔隙度,pf是裂缝中的流体压力,pi是储油层压力,μ是压裂流体的黏性且ct是流体可压缩性。where k is the formation permeability, φ is the formation porosity, p f is the fluid pressure in the fracture, p i is the reservoir pressure, μ is the viscosity of the fracturing fluid and c t is the fluid compressibility.

因此,以上所描述的方法可以对于检验和/或诊断地下地层14和另外帮助仿真设计和储油层开发以及对于估计储油层和压裂特性是有用的。该方法可以对于致密地层或具有低水力传导性和/或低渗透性的其它地层特别有用。Accordingly, the methods described above may be useful for examining and/or diagnosing subterranean formations 14 and otherwise aiding in simulation design and reservoir development and for estimating reservoir and fracture properties. The method may be particularly useful for tight formations or other formations with low hydraulic conductivity and/or low permeability.

此处提供的各种被估计的特性可以被用于水力压裂仿真器中以历史拟合其他所感兴趣的参数(如,应力状态和现场断裂韧度)。例如,所描述的方法可以允许估计裂缝高度和相应地HF限制区(如果有的话)的高度、泄漏体积VL和速度uL、泄漏系数CL以及其他地层流相关的性质。The various estimated properties provided here can be used in a hydraulic fracture simulator to history fit other parameters of interest (eg, stress state and in situ fracture toughness). For example, the described method may allow estimation of fracture height and correspondingly height of HF confinement zone (if any), leakage volume V L and velocity u L , leakage coefficient C L and other formation flow related properties.

本领域技术人员将会理解,本公开实施例、配置、材料和方法在不脱离它们的范围的情况下可存在多种修改和变化。相应地,权利要求书和它们的功能等同物的范围不应被限制于所描述和图示的特殊实施例,因为这些实施例本质上仅仅是示例性的且分开描述的元素可以被任选地组合。Those skilled in the art will appreciate that various modifications and changes may exist in the disclosed embodiments, configurations, materials and methods without departing from their scope. Accordingly, the scope of the claims and their functional equivalents should not be limited to the particular embodiments described and illustrated, since these embodiments are merely exemplary in nature and separately described elements may be optionally combination.

Claims (15)

1.一种方法,包括1. A method comprising a.在刺入地下地层的注入井中设置第一传感器;a. placing a first sensor in an injection well penetrating a subterranean formation; b.在刺入地下地层的观测井中设置第二传感器;b. placing a second sensor in an observation well penetrating the subterranean formation; c.在所述注入井内增加压力,直到裂缝从所述注入井中的起裂位置穿过地下地层的一部分延伸到所述观测井中的交汇位置,其中在所述注入井内增加压力包括将流体引入所述注入井内;c. increasing the pressure in the injection well until the fracture extends from an initiation location in the injection well through a portion of the subterranean formation to an intersection location in the observation well, wherein increasing the pressure in the injection well comprises introducing fluid into the into the injection well; d.从第一传感器获得指示裂缝起裂的测量结果;d. Obtaining measurements indicative of fracture initiation from the first sensor; e.在所述注入井处确定所述裂缝的高度;e. determining the height of said fracture at said injection well; f.从第二传感器获得指示裂缝交汇的测量结果;f. Obtaining measurements indicative of fracture convergence from the second sensor; g.确定所述裂缝起裂和所述裂缝交汇之间引入的流体的体积;g. determining the volume of fluid introduced between said fracture initiation and said fracture convergence; h.确定起裂位置和交汇位置之间的距离;h. Determine the distance between the crack initiation location and the intersection location; i.确定所述裂缝起裂和所述裂缝交汇之间的时延;以及i. determining a time delay between said fracture initiation and said fracture convergence; and j.使用所确定的值,计算水力压裂特性。j. Using the determined values, calculate hydraulic fracture properties. 2.如权利要求1所述的方法,其中所述第一传感器包括分布式温度传感器。2. The method of claim 1, wherein the first sensor comprises a distributed temperature sensor. 3.如权利要求1所述的方法,其中所述第二传感器包括分布式声学传感器。3. The method of claim 1, wherein the second sensor comprises a distributed acoustic sensor. 4.如权利要求1所述的方法,其中步骤(a)包括将所述第一传感器放置在所述注入井的基本垂直部分中;其中起裂位置在所述注入井的所述基本垂直部分中。4. The method of claim 1, wherein step (a) comprises placing the first sensor in a substantially vertical portion of the injection well; wherein a fracture initiation location is in the substantially vertical portion of the injection well middle. 5.如权利要求1所述的方法,其中步骤(b)包括将所述第二传感器放置在所述观测井的倾斜部分中;其中所述交汇位置在所述观测井的所述倾斜部分中。5. The method of claim 1, wherein step (b) comprises placing the second sensor in a sloped portion of the observation well; wherein the intersection location is in the sloped portion of the observation well . 6.如权利要求1所述的方法,其中步骤(d)的测量结果包括温度测量结果,所述方法进一步包括:6. The method of claim 1, wherein the measurements of step (d) include temperature measurements, the method further comprising: -在获得步骤(d)的温度测量结果之前,从所述第一传感器获得至少一个基准温度测量结果;以及- obtaining at least one reference temperature measurement from said first sensor prior to obtaining the temperature measurement of step (d); and -比较基准温度测量结果和步骤(d)的温度测量结果以确定起裂时间。- comparing the reference temperature measurement with the temperature measurement of step (d) to determine the crack initiation time. 7.如权利要求1所述的方法,其中步骤(d)的测量结果包括压力测量结果,所述方法进一步包括:7. The method of claim 1, wherein the measurements of step (d) include pressure measurements, the method further comprising: -在获得步骤(d)的压力测量结果之前,从所述第一传感器获得至少一个基准压力测量结果;以及- obtaining at least one reference pressure measurement from said first sensor prior to obtaining the pressure measurement of step (d); and -比较基准压力测量结果和步骤(d)的压力测量结果以确定起裂时间。- comparing the reference pressure measurement with the pressure measurement of step (d) to determine the initiation time. 8.如权利要求1所述的方法,其中步骤(f)的测量结果包括声学测量结果,所述方法进一步包括:8. The method of claim 1, wherein the measurements of step (f) include acoustic measurements, the method further comprising: -在获得步骤(f)的声学测量结果之前,从所述第二传感器获得至少一个基准声学测量结果;以及- obtaining at least one reference acoustic measurement from said second sensor prior to obtaining the acoustic measurement of step (f); and -比较基准声学测量结果和步骤(f)的声学测量结果,以确定交汇时间。- comparing the baseline acoustic measurements with the acoustic measurements of step (f) to determine the rendezvous time. 9.如权利要求1所述的方法,进一步包括,从所述第一传感器获得位置测量结果并从所述第二传感器获得位置测量结果,其中步骤(h)的确定所述距离包括比较该位置测量结果。9. The method of claim 1, further comprising, obtaining a position measurement from the first sensor and obtaining a position measurement from the second sensor, wherein determining the distance of step (h) comprises comparing the position measurement results. 10.如权利要求1所述的方法,其中确定所述裂缝的高度包括从第一传感器获得至少一个额外测量结果。10. The method of claim 1, wherein determining the height of the fracture comprises obtaining at least one additional measurement from a first sensor. 11.如权利要求10所述的方法,其中步骤(d)的测量结果包括温度测量结果,其中来自第一传感器的额外测量结果包括温度测量结果,且其中确定所述裂缝的高度包括比较该温度测量结果。11. The method of claim 10, wherein the measurements of step (d) include temperature measurements, wherein the additional measurements from the first sensor include temperature measurements, and wherein determining the height of the fracture includes comparing the temperature measurement results. 12.如权利要求1所述的方法,进一步包括确定地下地层的裂缝延伸穿过的所述部分的杨氏模量和泊松比、第二类完全椭圆积分和裂缝净压力;其中步骤(i)的计算进一步包括使用所确定的杨氏模量、泊松比、第二类完全椭圆积分和裂缝净压力。12. The method of claim 1, further comprising determining Young's modulus and Poisson's ratio, complete elliptic integral of the second kind, and net fracture pressure of the portion of the subterranean formation through which the fracture extends; wherein step (i) The calculations for further include using the determined Young's modulus, Poisson's ratio, complete elliptic integral of the second kind, and net fracture pressure. 13.如权利要求1所述的方法,其中所述水力压裂特性包括泄漏量。13. The method of claim 1, wherein the hydraulic fracture characteristic comprises leakage volume. 14.如权利要求1所述的方法,其中所述水力压裂特性包括泄漏系数。14. The method of claim 1, wherein the hydraulic fracture characteristic comprises a leak coefficient. 15.如权利要求1所述的方法,其中所述水力压裂特性包括渗透性,所述方法进一步包括确定裂缝中的流体压力、储油层压力、流体的黏性以及流体可压缩性,其中步骤(i)的计算进一步包括使用所确定的裂缝中的流体压力、储油层压力、流体黏性和流体可压缩性。15. The method of claim 1, wherein the hydraulic fracturing properties include permeability, the method further comprising determining fluid pressure in the fracture, reservoir pressure, fluid viscosity, and fluid compressibility, wherein step The calculation of (i) further includes using the determined fluid pressure in the fracture, reservoir pressure, fluid viscosity and fluid compressibility.
CN201410495091.0A 2013-09-25 2014-09-25 Method of conducting diagnostics on a subterranean formation Pending CN104453869A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361882139P 2013-09-25 2013-09-25
US61/882,139 2013-09-25

Publications (1)

Publication Number Publication Date
CN104453869A true CN104453869A (en) 2015-03-25

Family

ID=52689938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410495091.0A Pending CN104453869A (en) 2013-09-25 2014-09-25 Method of conducting diagnostics on a subterranean formation

Country Status (3)

Country Link
US (1) US20150083405A1 (en)
CN (1) CN104453869A (en)
CA (1) CA2864964A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975836A (en) * 2015-06-30 2015-10-14 中国石油天然气股份有限公司 Rock sample hydraulic fracture morphology acoustic emission diagnosis experimental method and device
CN111315959A (en) * 2017-11-01 2020-06-19 塞斯莫斯股份有限公司 Fracture length and fracture complexity determination using fluid pressure waves
CN113396270A (en) * 2018-12-12 2021-09-14 斯伦贝谢技术有限公司 Re-fracturing efficiency monitoring

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808521B2 (en) 2013-05-31 2020-10-20 Conocophillips Company Hydraulic fracture analysis
GB2544184A (en) * 2014-04-24 2017-05-10 Halliburton Energy Services Inc Fracture growth monitoring using EM sensing
US10030497B2 (en) 2015-02-10 2018-07-24 Statoil Gulf Services LLC Method of acquiring information of hydraulic fracture geometry for evaluating and optimizing well spacing for multi-well pad
US9988900B2 (en) 2015-06-30 2018-06-05 Statoil Gulf Services LLC Method of geometric evaluation of hydraulic fractures by using pressure changes
US10890058B2 (en) 2016-03-09 2021-01-12 Conocophillips Company Low-frequency DAS SNR improvement
US11365617B1 (en) * 2017-01-24 2022-06-21 Devon Energy Corporation Systems and methods for controlling fracturing operations using monitor well pressure
US11028679B1 (en) * 2017-01-24 2021-06-08 Devon Energy Corporation Systems and methods for controlling fracturing operations using monitor well pressure
US11255997B2 (en) 2017-06-14 2022-02-22 Conocophillips Company Stimulated rock volume analysis
CA3062569A1 (en) * 2017-05-05 2018-11-08 Conocophillips Company Stimulated rock volume analysis
WO2018204920A1 (en) * 2017-05-05 2018-11-08 Conocophillips Company Stimulated rock volume analysis
WO2019079481A2 (en) 2017-10-17 2019-04-25 Conocophillips Company Low frequency distributed acoustic sensing hydraulic fracture geometry
AU2019243434C1 (en) * 2018-03-28 2025-02-06 Conocophillips Company Low frequency DAS well interference evaluation
AU2019262121B2 (en) 2018-05-02 2023-10-12 Conocophillips Company Production logging inversion based on DAS/DTS
US12291943B2 (en) 2018-05-02 2025-05-06 Conocophillips Company Production logging inversion based on LFDAS/DTS
WO2020197769A1 (en) 2019-03-25 2020-10-01 Conocophillips Company Machine-learning based fracture-hit detection using low-frequency das signal
US11492541B2 (en) 2019-07-24 2022-11-08 Saudi Arabian Oil Company Organic salts of oxidizing anions as energetic materials
US11319478B2 (en) 2019-07-24 2022-05-03 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
WO2021138355A1 (en) 2019-12-31 2021-07-08 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11473009B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11268373B2 (en) 2020-01-17 2022-03-08 Saudi Arabian Oil Company Estimating natural fracture properties based on production from hydraulically fractured wells
US11365344B2 (en) 2020-01-17 2022-06-21 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11473001B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11578263B2 (en) 2020-05-12 2023-02-14 Saudi Arabian Oil Company Ceramic-coated proppant
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
WO2023288122A1 (en) 2021-07-16 2023-01-19 Conocophillips Company Passive production logging instrument using heat and distributed acoustic sensing
US11859490B2 (en) 2021-08-19 2024-01-02 Devon Energy Corporation Systems and methods for monitoring fracturing operations using monitor well flow
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US11905804B2 (en) 2022-06-01 2024-02-20 Saudi Arabian Oil Company Stimulating hydrocarbon reservoirs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005643A (en) * 1990-05-11 1991-04-09 Halliburton Company Method of determining fracture parameters for heterogenous formations
US5377104A (en) * 1993-07-23 1994-12-27 Teledyne Industries, Inc. Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures
US20110229071A1 (en) * 2009-04-22 2011-09-22 Lxdata Inc. Pressure sensor arrangement using an optical fiber and methodologies for performing an analysis of a subterranean formation
CN102787839A (en) * 2012-08-23 2012-11-21 张景和 Method for accurately drawing downhole conditions of oil field by acoustic emission located monitoring
US8386226B2 (en) * 2009-11-25 2013-02-26 Halliburton Energy Services, Inc. Probabilistic simulation of subterranean fracture propagation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537529A (en) * 1968-11-04 1970-11-03 Shell Oil Co Method of interconnecting a pair of wells extending into a subterranean oil shale formation
US5963508A (en) * 1994-02-14 1999-10-05 Atlantic Richfield Company System and method for determining earth fracture propagation
US6834233B2 (en) * 2002-02-08 2004-12-21 University Of Houston System and method for stress and stability related measurements in boreholes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005643A (en) * 1990-05-11 1991-04-09 Halliburton Company Method of determining fracture parameters for heterogenous formations
US5377104A (en) * 1993-07-23 1994-12-27 Teledyne Industries, Inc. Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures
US20110229071A1 (en) * 2009-04-22 2011-09-22 Lxdata Inc. Pressure sensor arrangement using an optical fiber and methodologies for performing an analysis of a subterranean formation
US8386226B2 (en) * 2009-11-25 2013-02-26 Halliburton Energy Services, Inc. Probabilistic simulation of subterranean fracture propagation
CN102787839A (en) * 2012-08-23 2012-11-21 张景和 Method for accurately drawing downhole conditions of oil field by acoustic emission located monitoring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOLIMAN: "Technique for Considering Fluid Compressibility and Temperature Changes in Mini-Frac Analisis"", 《SPE 15370》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975836A (en) * 2015-06-30 2015-10-14 中国石油天然气股份有限公司 Rock sample hydraulic fracture morphology acoustic emission diagnosis experimental method and device
CN104975836B (en) * 2015-06-30 2018-12-25 中国石油天然气股份有限公司 Rock sample hydraulic fracture morphology acoustic emission diagnosis experimental method and device
CN111315959A (en) * 2017-11-01 2020-06-19 塞斯莫斯股份有限公司 Fracture length and fracture complexity determination using fluid pressure waves
CN113396270A (en) * 2018-12-12 2021-09-14 斯伦贝谢技术有限公司 Re-fracturing efficiency monitoring
CN113396270B (en) * 2018-12-12 2023-08-22 斯伦贝谢技术有限公司 Re-fracturing efficiency monitoring

Also Published As

Publication number Publication date
CA2864964A1 (en) 2015-03-25
US20150083405A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
CN104453869A (en) Method of conducting diagnostics on a subterranean formation
US9163499B2 (en) Method of determining reservoir pressure
US7580796B2 (en) Methods and systems for evaluating and treating previously-fractured subterranean formations
US10416064B2 (en) Methods and systems for determining gas permeability of a subsurface formation
RU2362875C2 (en) Method of evaluating pressure in underground reservoirs
US20030094040A1 (en) Multi-probe pressure transient analysis for determination of horizontal permeability, anisotropy and skin in an earth formation
BR112014019564B1 (en) METHOD TO DETERMINE THE PERMEABILITY OR A PROPERTY INDICATIVE OF THE PERMEABILITY OF A RESERVOIR
US20160003026A1 (en) Method of determining reservoir pressure
US11739631B2 (en) Methods and systems for determining reservoir and fracture properties
Seth et al. Poroelastic pressure transient analysis: a new method for interpretation of pressure communication between wells during hydraulic fracturing
Dussan V et al. Analysis of the pressure response of a single-probe formation tester
US20170226850A1 (en) Method for determining a thermal conductivity profile of rocks in a wellbore
US10174612B2 (en) Method for determining a water intake profile in an injection well
US20110154895A1 (en) Method for a formation properties determination
US7448263B2 (en) Practical methods to estimate horizontal and vertical permeabilities
US20150354342A1 (en) Methods For Analyzing Formation Tester Pretest Data
US7448262B2 (en) Determination of correct horizontal and vertical permeabilities in a deviated well
US20140157882A1 (en) Distributed temperature sensing with background filtering
CN100519987C (en) Method for determining hydraulic potential of porous layer section
Muradov et al. Some case studies of temperature and pressure transient analysis in Horizontal, multi-zone, intelligent wells
CN105672996A (en) Comprehensive recognition system for loss of drilling fluid
Wright et al. Robust Technique for Real-Time Closure Stress Determination
US20140288836A1 (en) Method for determining the inflow profile of fluids of multilayer deposits
Lee et al. Leak-off test interpretation and modeling with application to geomechanics
RU2651647C1 (en) Determining method for parameters of formation near zone

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325

WD01 Invention patent application deemed withdrawn after publication