[go: up one dir, main page]

CN104465380B - The production method of semiconductor devices - Google Patents

The production method of semiconductor devices Download PDF

Info

Publication number
CN104465380B
CN104465380B CN201310430036.9A CN201310430036A CN104465380B CN 104465380 B CN104465380 B CN 104465380B CN 201310430036 A CN201310430036 A CN 201310430036A CN 104465380 B CN104465380 B CN 104465380B
Authority
CN
China
Prior art keywords
layer
semiconductor device
mask layer
source gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310430036.9A
Other languages
Chinese (zh)
Other versions
CN104465380A (en
Inventor
何有丰
何永根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310430036.9A priority Critical patent/CN104465380B/en
Publication of CN104465380A publication Critical patent/CN104465380A/en
Application granted granted Critical
Publication of CN104465380B publication Critical patent/CN104465380B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • H10D84/859Complementary IGFETs, e.g. CMOS comprising both N-type and P-type wells, e.g. twin-tub

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件的制作方法,包括:提供半导体衬底,所述半导体衬底表面具有栅极结构;形成覆盖所述半导体衬底以及栅极结构的掩膜层;对所述掩膜层进行氧化处理,使得部分厚度的掩膜层转化为氧化层;图形化所述掩膜层和氧化层,以图形化的掩膜层和氧化层为掩膜,对位于栅极结构侧向区域的半导体衬底进行刻蚀,形成凹槽;形成填充满所述凹槽的应力层。本发明提供的半导体器件的制作方法,在对掩膜层进行氧化处理后,改善了形成应力层工艺的选择性,从而避免在形成应力层时,所述应力层的材料形成于掩膜层表面,优化半导体器件的电学性能。

A method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has a gate structure; forming a mask layer covering the semiconductor substrate and the gate structure; and oxidizing the mask layer treatment, so that the partial thickness of the mask layer is converted into an oxide layer; patterning the mask layer and the oxide layer, using the patterned mask layer and the oxide layer as a mask, for the semiconductor substrate located in the lateral region of the gate structure The bottom is etched to form a groove; and a stress layer filling the groove is formed. The manufacturing method of the semiconductor device provided by the present invention improves the selectivity of the stress layer forming process after the mask layer is oxidized, thereby avoiding that the material of the stress layer is formed on the surface of the mask layer when the stress layer is formed , to optimize the electrical performance of semiconductor devices.

Description

半导体器件的制作方法Manufacturing method of semiconductor device

技术领域technical field

本发明涉及半导体制作领域,特别涉及半导体器件的制作方法。The invention relates to the field of semiconductor manufacturing, in particular to a manufacturing method of a semiconductor device.

背景技术Background technique

随着半导体技术的不断发展,载流子迁移率增强技术获得了广泛的研究和应用,提高沟道区的载流子迁移率能够增大MOS器件的驱动电流,提高器件的性能。With the continuous development of semiconductor technology, carrier mobility enhancement technology has been widely studied and applied. Improving the carrier mobility in the channel region can increase the driving current of MOS devices and improve the performance of the devices.

现有半导体器件制作工艺中,由于应力可以改变硅材料的能隙和载流子迁移率,因此通过应力来提高半导体器件的性能成为越来越常用的手段。具体地,通过适当控制应力,可以提高载流子(NMOS器件中的电子,PMOS器件中的空穴)迁移率,进而提高驱动电流,以此极大地提高半导体器件的性能。In the existing manufacturing process of semiconductor devices, since stress can change the energy gap and carrier mobility of silicon materials, it has become more and more common means to improve the performance of semiconductor devices through stress. Specifically, by properly controlling the stress, the mobility of carriers (electrons in NMOS devices, holes in PMOS devices) can be increased, thereby increasing the driving current, thereby greatly improving the performance of semiconductor devices.

目前,采用嵌入式锗硅(Embedded SiGe)或/和嵌入式碳硅(Embedded SiC)技术,即在需要形成PMOS区域的源区和漏区的区域先形成锗硅材料,然后再进行掺杂形成PMOS器件的源区和漏区,在NMOS区域的源区和漏区的区域先形成碳硅材料,然后再进行掺杂形成NMOS器件的源区和漏区;形成所述锗硅材料是为了引入硅和锗硅(SiGe)之间晶格失配形成的压应力,以提高PMOS器件的性能。形成所述碳硅材料是为了引入硅和碳硅(SiC)之间晶格失配形成的拉应力,以提高NMOS器件的性能。At present, embedded silicon germanium (Embedded SiGe) or/and embedded carbon silicon (Embedded SiC) technology is used, that is, silicon germanium material is first formed in the region where the source region and drain region of the PMOS region need to be formed, and then doped to form The source region and the drain region of the PMOS device, in the region of the source region and the drain region of the NMOS region, a carbon silicon material is first formed, and then doped to form the source region and the drain region of the NMOS device; the silicon germanium material is formed to introduce Compressive stress created by lattice mismatch between silicon and silicon germanium (SiGe) to enhance the performance of PMOS devices. The silicon carbon material is formed to introduce tensile stress formed by lattice mismatch between silicon and silicon carbon (SiC), so as to improve the performance of the NMOS device.

嵌入式锗硅和嵌入式碳硅技术的应用在一定程度上可以提高半导体器件的载流子迁移率,但是在实际应用中发现,半导体器件的制作工艺仍存在需要解决的问题。The application of embedded silicon germanium and embedded silicon carbon technologies can improve the carrier mobility of semiconductor devices to a certain extent, but in practical applications, it is found that there are still problems to be solved in the manufacturing process of semiconductor devices.

发明内容Contents of the invention

本发明解决的问题是提供一种优化的半导体器件的制作方法,改善形成应力层工艺的选择性,在应力层形成过程中,避免所述应力层的材料在不期望区域生长,提高半导体器件的电学性能。The problem solved by the present invention is to provide an optimized semiconductor device manufacturing method, improve the selectivity of the stress layer forming process, avoid the stress layer material from growing in the undesired region during the stress layer formation process, and improve the semiconductor device. electrical properties.

为解决上述问题,本发明提供一种半导体器件的制作方法,包括:提供半导体衬底,所述半导体衬底表面具有栅极结构;形成覆盖所述半导体衬底以及栅极结构的掩膜层;对所述掩膜层进行氧化处理,使得部分厚度的掩膜层转化为氧化层;图形化所述掩膜层和氧化层,以图形化的掩膜层和氧化层为掩膜,对位于栅极结构侧向区域的半导体衬底进行刻蚀,形成凹槽;形成填充满所述凹槽的应力层。In order to solve the above problems, the present invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, the surface of which has a gate structure; forming a mask layer covering the semiconductor substrate and the gate structure; Oxidizing the mask layer so that part of the mask layer is converted into an oxide layer; patterning the mask layer and the oxide layer, using the patterned mask layer and the oxide layer as a mask, Etching the semiconductor substrate in the lateral region of the pole structure to form a groove; forming a stress layer filling the groove.

可选的,所述氧化处理的工艺为等离子体自由基氧化。Optionally, the oxidation treatment process is plasma radical oxidation.

可选的,所述等离子体自由基氧化的反应气体为O2Optionally, the reaction gas for the plasma radical oxidation is O 2 .

可选的,所述等离子体自由基氧化的具体工艺过程为:等离子功率为300瓦至2500瓦,反应腔室压强为0.1托至20托,O2流量为10sccm至10000sccm。Optionally, the specific process of the plasma radical oxidation is as follows: the plasma power is 300 watts to 2500 watts, the reaction chamber pressure is 0.1 Torr to 20 Torr, and the O 2 flow rate is 10 sccm to 10000 sccm.

可选的,所述氧化层的厚度为5埃至100埃。Optionally, the oxide layer has a thickness of 5 angstroms to 100 angstroms.

可选的,所述掩膜层的厚度为50埃至200埃。Optionally, the mask layer has a thickness of 50 angstroms to 200 angstroms.

可选的,所述掩膜层的材料为氮化硅。Optionally, the material of the mask layer is silicon nitride.

可选的,所述掩膜层的形成工艺为化学气相沉积。Optionally, the formation process of the mask layer is chemical vapor deposition.

可选的,所述化学气相沉积的具体工艺参数为:向反应腔室内通入NH3和硅源气体,所述硅源气体为SiH4或SiH2Cl2,其中NH3流量为5sccm至1000sccm,硅源气体流量为5sccm至500sccm,反应腔室温度为300度至800度,反应腔室压强为0.05托至50托。Optionally, the specific process parameters of the chemical vapor deposition are: feed NH 3 and silicon source gas into the reaction chamber, the silicon source gas is SiH 4 or SiH 2 Cl 2 , wherein the NH 3 flow rate is 5 sccm to 1000 sccm , the silicon source gas flow rate is 5 sccm to 500 sccm, the temperature of the reaction chamber is 300 degrees to 800 degrees, and the pressure of the reaction chamber is 0.05 Torr to 50 Torr.

可选的,所述氧化层的材料为氮氧化硅。Optionally, the material of the oxide layer is silicon oxynitride.

可选的,采用选择性外延工艺形成所述应力层。Optionally, the stress layer is formed using a selective epitaxy process.

可选的,所述应力层的材料为SiC、SiCP、SiGe或SiGeB。Optionally, the material of the stress layer is SiC, SiCP, SiGe or SiGeB.

可选的,所述应力层的材料为SiGe时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、锗源气体、HCl和H2,所述硅源气体为SiH4或SiH2Cl2,所述锗源气体为GeH4,其中硅源气体流量为1sccm至1000sccm,锗源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。Optionally, when the material of the stress layer is SiGe, the specific process parameters of the selective epitaxy process are: feeding silicon source gas, germanium source gas, HCl and H2 into the reaction chamber, the silicon source gas SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , wherein the silicon source gas flow rate is 1 sccm to 1000 sccm, the germanium source gas flow rate is 1 sccm to 1000 sccm, the HCl flow rate is 1 sccm to 1000 sccm, and the H2 flow rate is 100 sccm to 1000 sccm 50000 sccm, the pressure of the reaction chamber is 1 torr to 500 torr, and the temperature of the reaction chamber is 450 to 850 degrees.

可选的,所述应力层的材料为SiC时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、碳源气体、HCl和H2,所述锗源气体为SiH4或SiH2Cl2,所述碳源气体为CH4、CH2Cl2、CH3Cl,其中,锗源气体流量为1sccm至1000sccm,碳源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。Optionally, when the material of the stress layer is SiC, the specific process parameters of the selective epitaxy process are: feeding silicon source gas, carbon source gas, HCl and H2 into the reaction chamber, the germanium source gas SiH 4 or SiH 2 Cl 2 , the carbon source gas is CH 4 , CH 2 Cl 2 , CH 3 Cl, wherein, the germanium source gas flow rate is 1 sccm to 1000 sccm, the carbon source gas flow rate is 1 sccm to 1000 sccm, and the HCl flow rate is 1 sccm to 1000 sccm, H 2 flow rate of 100 sccm to 50000 sccm, reaction chamber pressure of 1 torr to 500 torr, reaction chamber temperature of 450 to 850 degrees.

可选的,所述应力层的材料为SiC时,所述应力层的材料中C原子百分比为1%至10%。Optionally, when the material of the stress layer is SiC, the atomic percentage of C in the material of the stress layer is 1% to 10%.

可选的,所述应力层的材料为SiGe时,所述应力层的材料中Ge原子百分比为10%至55%。Optionally, when the material of the stress layer is SiGe, the atomic percentage of Ge in the material of the stress layer is 10% to 55%.

可选的,形成的半导体器件为NMOS晶体管、PMOS晶体管或CMOS晶体管。Optionally, the formed semiconductor device is an NMOS transistor, a PMOS transistor or a CMOS transistor.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本实施例中,在形成掩膜层后,对所述掩膜层进行氧化处理,使得部分厚度的掩膜层转化为氧化层。掩膜层的材料中具有较多含量浮动的Si键,在对掩膜层进行氧化处理后形成氧化层后,浮动的Si键被氧化形成Si-O键,因此氧化层材料中浮动的Si键比掩膜层材料中浮动的Si键少;所述浮动Si键的减少,有利于提高后续形成应力层工艺的选择性,从而避免在不期望区域生长应力层的材料,例如,本实施例中,氧化层表面不生长应力层的材料,因此后续去除氧化层和掩膜层的工艺难度低,可以完全去除所述掩膜层和氧化层,使得栅极结构顶部具有洁净的表面,后续在栅极结构表面形成金属硅化物时,所述金属硅化物和栅极结构接触紧密,有利于减小半导体器件的接触电阻,提高半导体器件的运行速率,进而优化半导体器件的电学性能。In this embodiment, after the mask layer is formed, the mask layer is oxidized so that a part of the mask layer is converted into an oxide layer. The material of the mask layer has a lot of floating Si bonds. After the mask layer is oxidized to form an oxide layer, the floating Si bonds are oxidized to form Si-O bonds, so the floating Si bonds in the oxide layer material There are fewer floating Si bonds than in the mask layer material; the reduction of the floating Si bonds is conducive to improving the selectivity of the subsequent stress layer forming process, thereby avoiding the growth of stress layer materials in undesired regions, for example, in this embodiment , the material of the stress layer does not grow on the surface of the oxide layer, so the difficulty of subsequent removal of the oxide layer and mask layer is low, and the mask layer and oxide layer can be completely removed, so that the top of the gate structure has a clean surface. When the metal silicide is formed on the surface of the pole structure, the metal silicide is in close contact with the gate structure, which is beneficial to reduce the contact resistance of the semiconductor device, improve the operating speed of the semiconductor device, and further optimize the electrical performance of the semiconductor device.

同时,由于形成应力层工艺的选择性好,在凹槽上方的氧化层表面不生长应力层材料,因此,在应力层形成过程中,形成应力层的工艺窗口保持不变,有利于形成高质量的应力层,增加半导体器件的载流子迁移率,提高半导体器件的驱动电流。At the same time, due to the good selectivity of the process of forming the stress layer, the stress layer material does not grow on the surface of the oxide layer above the groove. Therefore, during the formation of the stress layer, the process window for forming the stress layer remains unchanged, which is conducive to the formation of high-quality The stress layer increases the carrier mobility of the semiconductor device and improves the driving current of the semiconductor device.

进一步,本实施例中,采用了优化的工艺对掩膜层进行氧化处理,所述氧化处理的工艺为等离子体自由基氧化,等离子体自由基氧化工艺的氧化速率快,且掩膜层的材料中浮动的Si键被氧化的含量大,形成的氧化层材料中浮动的Si键含量更少,更有利于提高形成应力层的选择性,改善半导体器件的电学性能。Further, in this embodiment, an optimized process is used to oxidize the mask layer, the oxidation process is plasma radical oxidation, the oxidation rate of the plasma radical oxidation process is fast, and the material of the mask layer The content of floating Si bonds in the oxide layer is more oxidized, and the content of floating Si bonds in the formed oxide layer material is less, which is more conducive to improving the selectivity of forming the stress layer and improving the electrical performance of semiconductor devices.

附图说明Description of drawings

图1为一实施例形成半导体器件的流程示意图;Fig. 1 is a schematic flow chart of forming a semiconductor device according to an embodiment;

图2至图9为本发明另一实施例半导体器件形成过程的剖面结构示意图。2 to 9 are schematic cross-sectional structure diagrams of the formation process of a semiconductor device according to another embodiment of the present invention.

具体实施方式Detailed ways

由背景技术可知,现有技术半导体器件的形成工艺仍存在需要解决的问题。It can be seen from the background art that there are still problems to be solved in the formation process of semiconductor devices in the prior art.

针对半导体器件的形成工艺进行研究,发现半导体器件的形成工艺包括如下步骤,请参考图1:步骤S1、提供半导体衬底,所述半导体衬底包括第一区域和第二区域;步骤S2、在所述第一区域半导体衬底表面形成第一栅极结构,在所述第二区域半导体衬底表面形成第二栅极结构,且所述第一栅极结构、第二栅极结构两侧具有偏移侧墙;步骤S3、形成覆盖半导体衬底、第一栅极结构和第二栅极结构的第一掩膜层;步骤S4、图形化所述第一掩膜层,以图形化的第一掩膜层为掩膜,刻蚀位于第一栅极结构侧向区域的半导体衬底形成第一凹槽;步骤S5、采用选择性外延工艺形成填充满所述第一凹槽的第一应力层;步骤S6、去除所述第一掩膜层;步骤S7、在所述第二栅极结构侧向区域的半导体衬底内形成第二应力层,所述第二应力层与第一应力层类型相反,且所述第二应力层的形成过程与第一应力层的形成过程类似。According to research on the formation process of semiconductor devices, it is found that the formation process of semiconductor devices includes the following steps, please refer to Figure 1: step S1, providing a semiconductor substrate, the semiconductor substrate includes a first region and a second region; step S2, in A first gate structure is formed on the surface of the semiconductor substrate in the first region, a second gate structure is formed on the surface of the semiconductor substrate in the second region, and both sides of the first gate structure and the second gate structure have Offset sidewalls; step S3, forming a first mask layer covering the semiconductor substrate, the first gate structure and the second gate structure; step S4, patterning the first mask layer to form the patterned first mask layer A mask layer is a mask, etching the semiconductor substrate located in the lateral region of the first gate structure to form a first groove; step S5, using a selective epitaxy process to form a first stressor that fills the first groove layer; step S6, removing the first mask layer; step S7, forming a second stress layer in the semiconductor substrate in the lateral region of the second gate structure, the second stress layer and the first stress layer The type is opposite, and the formation process of the second stress layer is similar to that of the first stress layer.

上述工艺步骤形成的半导体器件,去除第一掩膜层的工艺难度大,且在去除第一掩膜层工艺完成后,在半导体衬底、第一栅极结构和第二栅极结构表面还会有残留物质难以去除,影响半导体器件的电学性能,特别的,后续在第一栅极结构顶部和第二栅极结构顶部会形成自对准金属硅化物,若在第一栅极结构顶部和第二栅极结构顶部存在残留物质,则会影响自对准金属硅化物的形成,且在不期望区域也形成了自对准金属硅化物。For the semiconductor device formed by the above process steps, the process of removing the first mask layer is very difficult, and after the process of removing the first mask layer is completed, there will still be There are residual substances that are difficult to remove and affect the electrical performance of the semiconductor device. In particular, a salicide will be formed on the top of the first gate structure and the top of the second gate structure. If the top of the first gate structure and the second gate structure The presence of residual substances on the top of the double gate structure will affect the formation of salicide, and also form salicide in undesired areas.

针对半导体器件的形成工艺进一步研究发现,上述问题产生的原因为:所述第一应力层的形成工艺为选择性外延,为了更好的完成第一应力层的生长,所述第一掩膜层和半导体衬底间必须具有较高的选择比,形成第一应力层工艺的选择性好;且在第一凹槽形成之前或之后,会采用氢氟酸溶液对第一凹槽进行清洗,因此,第一掩膜层还必须具有较强的抗氢氟酸溶液刻蚀的能力。Further research on the formation process of semiconductor devices found that the reason for the above problems is that the formation process of the first stress layer is selective epitaxy. In order to better complete the growth of the first stress layer, the first mask layer It must have a high selectivity ratio with the semiconductor substrate, and the selectivity of the process of forming the first stress layer is good; and before or after the formation of the first groove, the first groove will be cleaned with a hydrofluoric acid solution, so , the first mask layer must also have a strong ability to resist hydrofluoric acid solution etching.

理论上,可以采用氮化硅或氧化硅作用第一掩膜层的材料;氧化硅材料通常有两种形成方法,一为热氧化法,热氧化法形成的氧化硅材料具有比氮化硅材料更高的选择比,然而热氧化法需要纯净的硅材料作为靶材,而半导体器件的形成工艺中,在偏移侧墙形成后,无法提供纯净的硅材料作为靶材,因此,无法采用热氧化法形成第一掩膜层;二为化学气相沉积工艺形成氧化硅材料,但是采用化学气相沉积工艺形成的氧化硅材料选择比低且容易被氢氟酸溶液刻蚀,因此,化学气相沉积工艺形成的氧化硅材料不宜作为第一掩膜层的材料。而氮化硅材料由于具有较高的选择性且不易被氢氟酸溶液刻蚀,因此,通常采用氮化硅膜作为第一掩膜层。Theoretically, silicon nitride or silicon oxide can be used as the material of the first mask layer; there are usually two methods for forming silicon oxide materials, one is the thermal oxidation method, and the silicon oxide material formed by the thermal oxidation method has a higher density than the silicon nitride material. Higher selectivity, however, the thermal oxidation method requires pure silicon material as the target material, and in the formation process of semiconductor devices, after the offset sidewall is formed, pure silicon material cannot be provided as the target material, so thermal oxidation cannot be used The oxidation method forms the first mask layer; the second is the chemical vapor deposition process to form the silicon oxide material, but the silicon oxide material formed by the chemical vapor deposition process has a low selectivity ratio and is easily etched by the hydrofluoric acid solution. Therefore, the chemical vapor deposition process The formed silicon oxide material is not suitable as the material of the first mask layer. Since the silicon nitride material has high selectivity and is not easy to be etched by the hydrofluoric acid solution, a silicon nitride film is usually used as the first mask layer.

然而,尽管在采用氮化硅膜作为第一掩膜层时,形成第一应力层的选择性外延工艺在氮化硅膜和半导体衬底间具有较高的选择性,但是,由于氮化硅膜中仍存在较多浮动的Si键,且第一应力层的材料中含有较多的Si键,因此所述浮动的Si键的存在,导致在采用选择性外延工艺形成第一应力层时,在第一掩膜层表面也会生长第一应力层材料;第一应力层形成工艺完成后,在第一掩膜层表面具有第一应力层材料,且即使所述第一应力层材料含量较小,仍会导致后续去除第一掩膜层工艺难度大,第一掩膜层难以去除;后续形成自对准金属硅化物时,所述自对准金属硅化物会形成于整个掩膜层表面,导致自对准金属硅化物在不期望区域形成,降低半导体器件的可靠性。However, although the selective epitaxial process for forming the first stress layer has high selectivity between the silicon nitride film and the semiconductor substrate when the silicon nitride film is used as the first mask layer, since the silicon nitride film There are still more floating Si bonds in the film, and the material of the first stress layer contains more Si bonds, so the existence of the floating Si bonds leads to the formation of the first stress layer by using the selective epitaxy process. The first stress layer material will also grow on the surface of the first mask layer; after the first stress layer forming process is completed, there will be a first stress layer material on the surface of the first mask layer, and even if the content of the first stress layer material is relatively high Small, it will still lead to the difficulty of the subsequent removal of the first mask layer, and the first mask layer is difficult to remove; when the salicide is subsequently formed, the salicide will be formed on the entire surface of the mask layer , leading to the formation of salicides in undesired regions, reducing the reliability of semiconductor devices.

同时,由于位于凹槽上方的第一掩膜层表面也形成有第一应力层的材料,导致填充第一凹槽的工艺窗口减小,工艺窗口的减小,导致在第一凹槽内形成高质量第一应力层的难度增加,形成的第一应力层的质量变差。At the same time, because the material of the first stress layer is also formed on the surface of the first mask layer above the groove, the process window for filling the first groove is reduced, and the reduction of the process window leads to the formation of The difficulty of high-quality first stress layer increases, and the quality of the formed first stress layer deteriorates.

为此,本发明提供一种优化的半导体器件的制作方法,在形成掩膜层后,对所述掩膜层进行氧化处理,将部分厚度的掩膜层转化为氧化层,提高后续形成应力层工艺的选择性,避免应力层生长在不期望区域,提高半导体器件的电学性能。For this reason, the present invention provides a kind of manufacturing method of optimized semiconductor device, after forming mask layer, described mask layer is carried out oxidation treatment, and the mask layer of partial thickness is converted into oxide layer, improves subsequent forming stress layer. The selectivity of the process prevents the growth of the stress layer in the undesired area and improves the electrical performance of the semiconductor device.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图2至图9为本发明实施例提供的半导体器件的形成过程的剖面结构示意图。2 to 9 are schematic cross-sectional structural views of the formation process of the semiconductor device provided by the embodiment of the present invention.

请参考图2,提供半导体衬底200,所述半导体衬底200表面具有栅极结构。Referring to FIG. 2 , a semiconductor substrate 200 is provided, and the surface of the semiconductor substrate 200 has a gate structure.

需要说明的是,所述半导体衬底200包括NMOS区域或PMOS区域中的一种或两种。It should be noted that the semiconductor substrate 200 includes one or both of an NMOS region or a PMOS region.

所述半导体衬底200只包括NMOS区域I时,形成的晶体管为NMOS晶体管;所述半导体衬底200只包括PMOS区域II时,形成的晶体管为PMOS晶体管;所述半导体衬底200包括NMOS区域I和PMOS区域II时,形成的晶体管为CMOS晶体管。When the semiconductor substrate 200 only includes the NMOS region I, the formed transistor is an NMOS transistor; when the semiconductor substrate 200 only includes the PMOS region II, the formed transistor is a PMOS transistor; the semiconductor substrate 200 includes the NMOS region I and PMOS region II, the formed transistor is a CMOS transistor.

本实施例中,以所述半导体衬底200包括NMOS区域I和PMOS区域II,形成的半导体器件为CMOS晶体管作示范性说明,所述NMOS区域I和PMOS区域II的位置可以互换。In this embodiment, the semiconductor substrate 200 includes the NMOS region I and the PMOS region II, and the semiconductor device formed is a CMOS transistor for exemplary illustration, and the positions of the NMOS region I and the PMOS region II can be interchanged.

本实施例中,所述栅极结构包括位于NMOS区域I半导体衬底200表面的第一栅极结构210以及位于PMOS区域II半导体衬底200表面的第二栅极结构220。In this embodiment, the gate structure includes a first gate structure 210 located on the surface of the semiconductor substrate 200 in the NMOS region I and a second gate structure 220 located on the surface of the semiconductor substrate 200 in the PMOS region II.

在本发明其他实施例中,若半导体衬底只包括NMOS区域或PMOS区域中的一种,则所述栅极结构只包括NMOS区域半导体衬底表面的栅极结构或PMOS区域半导体衬底表面的栅极结构。In other embodiments of the present invention, if the semiconductor substrate only includes one of the NMOS region or the PMOS region, the gate structure only includes the gate structure on the surface of the semiconductor substrate in the NMOS region or the gate structure on the surface of the semiconductor substrate in the PMOS region. grid structure.

所述半导体衬底200为单晶硅、多晶硅、非晶硅或绝缘体上的硅其中的一种;所述半导体衬底200也可以为Si衬底、Ge衬底、SiGe衬底或GaAs衬底。The semiconductor substrate 200 is one of monocrystalline silicon, polycrystalline silicon, amorphous silicon or silicon-on-insulator; the semiconductor substrate 200 can also be a Si substrate, a Ge substrate, a SiGe substrate or a GaAs substrate .

所述半导体衬底200表面还可以形成若干外延界面层或应变层以提高半导体器件的电学性能。Several epitaxial interface layers or strain layers can also be formed on the surface of the semiconductor substrate 200 to improve the electrical performance of the semiconductor device.

本实施例中,所述半导体衬底200为Si衬底。In this embodiment, the semiconductor substrate 200 is a Si substrate.

本实施例中,在所述半导体衬底200内还具有隔离结构201,防止NMOS区域I和PMOS区域II之间电学连接。所述隔离结构201的填充材料可以为氧化硅、氮化硅或氮氧化硅中的一种或几种。In this embodiment, the semiconductor substrate 200 further has an isolation structure 201 to prevent the electrical connection between the NMOS region I and the PMOS region II. The filling material of the isolation structure 201 may be one or more of silicon oxide, silicon nitride or silicon oxynitride.

为满足半导体器件不断小型化的发展趋势,在NMOS区域I半导体衬底表面可以具有一个第一栅极结构,也可以具有多个第一栅极结构,且多个第一栅极结构的材料和结构可以相同也可以不同;PMOS区域II半导体衬底表面可以具有一个第二栅极结构,也可以具有多个第二栅极结构,且多个第二栅极结构的材料和结构可以相同也可以不同。In order to meet the development trend of continuous miniaturization of semiconductor devices, there may be one first gate structure or multiple first gate structures on the surface of the semiconductor substrate in the NMOS region I, and the materials of the multiple first gate structures and The structures can be the same or different; the surface of the PMOS region II semiconductor substrate can have a second gate structure or multiple second gate structures, and the materials and structures of multiple second gate structures can be the same or can be different.

本实施例中,以NMOS区域I半导体衬底200表面形成一个第一栅极结构210,PMOS区域II半导体衬底200表面形成两个第二栅极结构220且两个第二栅极结构220的材料和结构相同,且其中一个第二栅极结构220侧壁靠近隔离结构201作示范性说明。在本发明其他实施例中,所述第一栅极结构210或第二栅极结构220可以部分位于隔离结构201表面或远离隔离结构201,不应过分限制第一栅极结构210或第二栅极结构220与隔离结构201之间的位置关系。In this embodiment, one first gate structure 210 is formed on the surface of the semiconductor substrate 200 in the NMOS region I, two second gate structures 220 are formed on the surface of the semiconductor substrate 200 in the PMOS region II, and the two second gate structures 220 The materials and structures are the same, and one of the sidewalls of the second gate structure 220 is close to the isolation structure 201 for exemplary illustration. In other embodiments of the present invention, the first gate structure 210 or the second gate structure 220 may be partially located on the surface of the isolation structure 201 or away from the isolation structure 201, and the first gate structure 210 or the second gate structure should not be restricted too much. The positional relationship between the pole structure 220 and the isolation structure 201 .

所述第一栅极结构210包括位于所述半导体衬底200表面的第一栅氧化层211、位于所述第一栅氧化层211表面的第一栅电极层212。The first gate structure 210 includes a first gate oxide layer 211 on the surface of the semiconductor substrate 200 , and a first gate electrode layer 212 on the surface of the first gate oxide layer 211 .

所述第二栅极结构220包括位于所述半导体衬底200表面的第二栅氧化层221、位于所述第二栅氧化层221表面的第二栅电极层222。The second gate structure 220 includes a second gate oxide layer 221 on the surface of the semiconductor substrate 200 , and a second gate electrode layer 222 on the surface of the second gate oxide layer 221 .

所述第一栅氧化层211或第二栅氧化层221的材料为氧化硅或高k介质材料,所述第一栅电极层212或第二栅电极层222的材料为多晶硅、掺杂的多晶硅或金属。The material of the first gate oxide layer 211 or the second gate oxide layer 221 is silicon oxide or a high-k dielectric material, and the material of the first gate electrode layer 212 or the second gate electrode layer 222 is polysilicon, doped polysilicon or metal.

请参考图3,在半导体衬底200表面形成偏移侧墙202,所述偏移侧墙202位于第一栅极结构210或第二栅极结构220两侧。Referring to FIG. 3 , offset spacers 202 are formed on the surface of the semiconductor substrate 200 , and the offset spacers 202 are located on both sides of the first gate structure 210 or the second gate structure 220 .

所述偏移侧墙202保护第一栅极结构210或第二栅极结构220两侧不被后续工艺破坏;为了防止半导体器件发生短沟道效应,在栅极结构两侧的半导体衬底200内会形成口袋(Pocket)区,所述偏移侧墙202即为形成口袋区的掩膜。The offset spacer 202 protects both sides of the first gate structure 210 or the second gate structure 220 from being damaged by the subsequent process; in order to prevent the short channel effect of the semiconductor device, the semiconductor substrate 200 on both sides of the gate structure A pocket area is formed inside, and the offset sidewall 202 is a mask for forming the pocket area.

所述偏移侧墙202的材料为氮氧化硅或氮化硅,所述偏移侧墙202可以为单层结构也可以为多层结构。The material of the offset sidewall 202 is silicon oxynitride or silicon nitride, and the offset sidewall 202 can be a single-layer structure or a multi-layer structure.

本实施例中,所述偏移侧墙202为氮化硅的单层结构。In this embodiment, the offset sidewall 202 is a single-layer structure of silicon nitride.

在形成所述偏移侧墙202之前,还可以对所述第一栅极结构210或第二栅极结构220两侧的半导体衬底200进行轻掺杂离子注入,形成轻掺杂区(LDD),防止半导体器件发生热载流子效应。Before forming the offset spacer 202, lightly doped ion implantation can also be performed on the semiconductor substrate 200 on both sides of the first gate structure 210 or the second gate structure 220 to form a lightly doped region (LDD ), to prevent the hot carrier effect in semiconductor devices.

在形成所述偏移侧墙202之后,还可以对第一栅极结构210或第二栅极结构220两侧的半导体衬底200进行离子注入,形成口袋区,所述口袋区与所述轻掺杂区的类型相反,防止半导体器件发生短沟道效应。After the offset spacer 202 is formed, ion implantation can also be performed on the semiconductor substrate 200 on both sides of the first gate structure 210 or the second gate structure 220 to form a pocket region, and the pocket region and the light The types of doped regions are reversed to prevent short channel effects in semiconductor devices.

需要说明的是,所述偏移侧墙202的形成是可选的而非必需的。It should be noted that the formation of the offset sidewall 202 is optional but not necessary.

请参考图4,形成覆盖半导体衬底200和栅极结构的掩膜层203。Referring to FIG. 4 , a mask layer 203 covering the semiconductor substrate 200 and the gate structure is formed.

具体的,本实施例中,所述掩膜层203覆盖半导体衬底200、偏移侧墙202、第一栅极结构210和第二栅极结构220。Specifically, in this embodiment, the mask layer 203 covers the semiconductor substrate 200 , the offset spacer 202 , the first gate structure 210 and the second gate structure 220 .

所述掩膜层203的作用为:作为后续刻蚀半导体衬底200形成凹槽的掩膜,保护NMOS区域I的第一栅极结构210不被凹槽的形成工艺所破坏。The function of the mask layer 203 is to serve as a mask for subsequent etching of the semiconductor substrate 200 to form a groove, and to protect the first gate structure 210 of the NMOS region I from being damaged by the formation process of the groove.

掩膜层203作为后续形成凹槽工艺的掩膜,掩膜层203的材料必须满足以下两个条件:首先,在后续采用选择性外延工艺形成应力层时,所述应力层仅仅填充满凹槽,因此,掩膜层203与半导体衬底200材料间必须具有较高的选择性;其次,在后续形成凹槽以及清洗凹槽工艺中存在氢氟酸溶液,因此,所述掩膜层203的材料必须具有较高的抗氢氟酸溶液刻蚀的能力。The mask layer 203 is used as a mask for the subsequent groove formation process, and the material of the mask layer 203 must meet the following two conditions: first, when the stress layer is formed by the subsequent selective epitaxy process, the stress layer only fills the groove , therefore, there must be a high selectivity between the mask layer 203 and the material of the semiconductor substrate 200; secondly, there is a hydrofluoric acid solution in the subsequent groove formation and groove cleaning process, therefore, the mask layer 203 The material must have a high ability to resist etching by hydrofluoric acid solution.

当掩膜层203的材料为热氧化生长的氧化硅时,应力层形成工艺对掩膜层203的选择性最好,然而采用热氧化生长工艺形成氧化硅的条件苛刻,生长温度在1000度以上,且必须提供纯净硅作为靶材,而本实施例中,由于偏移侧墙202的材料为氮化硅,无法在第一栅极结构210和第二栅极结构220表面提供纯净硅作为靶材,即使可以提供纯净硅作为靶材,热氧化工艺在1000度以上的高温下进行,所述高温会破坏形成的栅极结构;因此,本实施例中,不能采用热氧化生长的氧化硅作为掩膜层203的材料。而当所述掩膜层203的材料为氮化硅时,基本满足上述对掩膜层203材料性能的要求。When the material of the mask layer 203 is silicon oxide grown by thermal oxidation, the stress layer formation process has the best selectivity for the mask layer 203, but the conditions for forming silicon oxide by thermal oxidation growth process are harsh, and the growth temperature is above 1000 degrees. , and pure silicon must be provided as a target, but in this embodiment, since the material of the offset spacer 202 is silicon nitride, it is impossible to provide pure silicon as a target on the surface of the first gate structure 210 and the second gate structure 220 material, even if pure silicon can be provided as the target material, the thermal oxidation process is carried out at a high temperature above 1000 degrees, and the high temperature will destroy the formed gate structure; therefore, in this embodiment, silicon oxide grown by thermal oxidation cannot be used as the target material. The material of the mask layer 203 . However, when the material of the mask layer 203 is silicon nitride, the above requirements on the properties of the material of the mask layer 203 are basically met.

本实施例中,所述掩膜层203的材料为氮化硅,所述掩膜层203的厚度为50埃至200埃。In this embodiment, the material of the mask layer 203 is silicon nitride, and the thickness of the mask layer 203 is 50 angstroms to 200 angstroms.

所述掩膜层203的形成工艺为化学气相沉积。The formation process of the mask layer 203 is chemical vapor deposition.

作为一个实施例,所述化学气相沉积的具体工艺参数为:向反应腔室内通入NH3和硅源气体,所述硅源气体为SiH4或SiH2Cl2,其中NH3流量为5sccm至1000sccm,硅源气体流量为5sccm至500sccm,反应腔室温度为300度至800度,反应腔室压强为0.05托至50托。As an example, the specific process parameters of the chemical vapor deposition are: feed NH 3 and silicon source gas into the reaction chamber, the silicon source gas is SiH 4 or SiH 2 Cl 2 , wherein the flow rate of NH 3 is 5 sccm to 1000 sccm, the flow rate of the silicon source gas is 5 sccm to 500 sccm, the temperature of the reaction chamber is 300 degrees to 800 degrees, and the pressure of the reaction chamber is 0.05 Torr to 50 Torr.

尽管采用氮化硅作为掩膜层203的材料,基本可以满足选择性好和抗腐蚀能力强的要求,但是,由于所述掩膜层203的材料为氮化硅,Si-N键的对Si原子的束缚能力有限,导致掩膜层203的材料中存在较多的浮动Si键,后续采用选择性外延工艺形成应力层时,在掩膜层203表面也会生长应力层材料;后续会去除掩膜层203,在第一栅极结构210顶部或第二栅极结构220顶部形成金属硅化物,若掩膜层203表面存在应力层材料,则后续无法去除掩膜层203,在第一栅极结构210顶部或第二栅极结构220顶部形成的金属硅化物时,在第一栅极结构210或第二栅极结构220侧壁也形成金属硅化物,影响半导体器件的电学性能;且在靠近凹槽的掩膜层203表面形成有应力层材料,导致填充凹槽的工艺窗口渐渐变小,工艺窗口的减小不利于形成高质量的应力层,填充凹槽的难度增加,影响半导体器件载流子迁移率的提高。Although silicon nitride is used as the material of the mask layer 203, it can basically meet the requirements of good selectivity and strong corrosion resistance, but since the material of the mask layer 203 is silicon nitride, the Si-N bond has a negative effect on Si The binding ability of atoms is limited, resulting in more floating Si bonds in the material of the mask layer 203. When the stress layer is formed by the selective epitaxy process, the stress layer material will also grow on the surface of the mask layer 203; the mask layer 203 will be removed later. The film layer 203 forms a metal silicide on the top of the first gate structure 210 or the top of the second gate structure 220. If there is a stress layer material on the surface of the mask layer 203, the mask layer 203 cannot be removed later. When the metal silicide is formed on the top of the structure 210 or the top of the second gate structure 220, the metal silicide is also formed on the sidewall of the first gate structure 210 or the second gate structure 220, which affects the electrical performance of the semiconductor device; A stress layer material is formed on the surface of the mask layer 203 of the groove, which causes the process window for filling the groove to gradually become smaller. The reduction of the process window is not conducive to the formation of a high-quality stress layer, and the difficulty of filling the groove increases, which affects the semiconductor device. Enhancement of flow rate.

因此,本发明实施例中,对所述掩膜层203进行氧化处理形成氧化层,提高应力层形成过程中氧化层和半导体衬底200间的选择比,以避免上述不良现象的发生。Therefore, in the embodiment of the present invention, the mask layer 203 is oxidized to form an oxide layer, and the selectivity ratio between the oxide layer and the semiconductor substrate 200 is increased during the formation of the stress layer, so as to avoid the occurrence of the above undesirable phenomena.

请参考图5,对所述掩膜层203进行氧化处理230,使得部分厚度的掩膜层203转化为氧化层204。Referring to FIG. 5 , an oxidation treatment 230 is performed on the mask layer 203 so that a part of the mask layer 203 is transformed into an oxide layer 204 .

所述氧化处理230将掩膜层203材料中浮动的Si键氧化形成Si-O键,所述Si-O键将掩膜层203材料中浮动的Si键束缚,因此,相较于掩膜层203,在氧化层204材料中的浮动Si键更少,氧化层204材料与半导体衬底200材料两者之间具有更好的选择性,因此后续在应力层形成过程中,所述应力层的材料不会在氧化层204表面形成。The oxidation treatment 230 oxidizes the floating Si bonds in the material of the mask layer 203 to form Si-O bonds, and the Si-O bonds bind the floating Si bonds in the material of the mask layer 203. Therefore, compared with the mask layer 203, there are fewer floating Si bonds in the material of the oxide layer 204, and there is better selectivity between the material of the oxide layer 204 and the material of the semiconductor substrate 200. Therefore, during the subsequent formation of the stress layer, the stress layer Material will not form on the surface of the oxide layer 204 .

本实施例中,所述氧化处理230的工艺为等离子体自由基氧化,即向反应腔室内通入反应气体,反应气体经过等离子处理后形成氧自由基,所述氧自由基对掩膜层203进行氧化处理230。等离子体自由基氧化工艺中氧自由基非常活泼,较易使掩膜层203中的材料氧化,因此等离子自由基氧化工艺具有较高的氧化速率,且掩膜层203材料中浮动的Si键被氧化的含量大,使得形成的氧化层204材料中浮动的Si键含量非常少,有利于形成具有更少浮动Si键含量的氧化层204,氧化层204材料中浮动Si键越少,氧化层204材料与半导体衬底200材料的结构差别越大,则后续形成应力层时的选择性越好。In this embodiment, the process of the oxidation treatment 230 is plasma radical oxidation, that is, the reactive gas is introduced into the reaction chamber, and the reactive gas forms oxygen free radicals after plasma treatment, and the oxygen free radicals affect the mask layer 203 Oxidation treatment 230 is performed. Oxygen radicals are very active in the plasma radical oxidation process, and it is easier to oxidize the material in the mask layer 203, so the plasma radical oxidation process has a higher oxidation rate, and the Si bonds floating in the material of the mask layer 203 are The content of oxidation is large, so that the content of floating Si bonds in the formed oxide layer 204 material is very small, which is conducive to the formation of an oxide layer 204 with less floating Si bond content, and the less floating Si bonds in the oxide layer 204 material, the oxide layer 204 The greater the structural difference between the material and the semiconductor substrate 200 material, the better the selectivity when forming the stress layer subsequently.

作为一个实施例,所述等离子体自由基氧化的反应气体为O2,所述等离子体自由基氧化的具体工艺过程为:等离子功率为300瓦至2500瓦,反应腔室压强为0.1托至20托,向反应腔室内通入O2流量为10sccm至10000sccm。As an example, the reaction gas of the plasma radical oxidation is O 2 , and the specific process of the plasma radical oxidation is as follows: the plasma power is 300 watts to 2500 watts, and the reaction chamber pressure is 0.1 Torr to 20 Torr, the flow of O 2 into the reaction chamber is 10sccm to 10000sccm.

若氧化层204的厚度过小,掩膜层203材料中浮动的Si键仍会扩散至氧化层204表面,导致后续形成应力层时的选择性改善程度有限;若氧化层204的厚度过大,则会导致氧化处理230的工艺难度增加。If the thickness of the oxide layer 204 is too small, the floating Si bonds in the material of the mask layer 203 will still diffuse to the surface of the oxide layer 204, resulting in a limited degree of selectivity improvement when forming a stress layer in the future; if the thickness of the oxide layer 204 is too large, This will increase the difficulty of the oxidation treatment 230 process.

本实施例中,所述氧化层204的材料为氮氧化硅,所述氧化层204的厚度为5埃至100埃。In this embodiment, the material of the oxide layer 204 is silicon oxynitride, and the thickness of the oxide layer 204 is 5 angstroms to 100 angstroms.

请参考图6,图形化所述掩膜层203和氧化层204,在掩膜层203和氧化层204中形成开口205,所述开口205位于PMOS区域II第二栅极结构220侧向区域,且所述开口205的位置和宽度对应后续形成凹槽的位置和宽度。Referring to FIG. 6, the mask layer 203 and the oxide layer 204 are patterned to form an opening 205 in the mask layer 203 and the oxide layer 204, the opening 205 is located in the lateral area of the second gate structure 220 in the PMOS region II, And the position and width of the opening 205 correspond to the position and width of the subsequently formed groove.

作为一个实施例,所述开口205的形成过程为:形成覆盖所述氧化层204的光刻胶层,所述光刻胶层具有与开口205对应的图形,以所述光刻胶层为掩膜,刻蚀氧化层204和掩膜层203,在所述氧化层204和掩膜层203中形成开口205,所述开口205位于PMOS区域II第二栅极结构220侧向区域。As an example, the forming process of the opening 205 is: forming a photoresist layer covering the oxide layer 204, the photoresist layer has a pattern corresponding to the opening 205, and using the photoresist layer as a mask film, etch the oxide layer 204 and the mask layer 203, and form an opening 205 in the oxide layer 204 and the mask layer 203, and the opening 205 is located in the lateral area of the second gate structure 220 in the PMOS region II.

在本发明其他实施例中,第二栅极结构远离隔离结构,则在第二栅极结构两侧的氧化层和掩膜层中都形成开口,后续在第二栅极结构两侧的半导体衬底内均形成凹槽。In other embodiments of the present invention, if the second gate structure is far away from the isolation structure, openings are formed in both the oxide layer and the mask layer on both sides of the second gate structure, and subsequently the semiconductor substrates on both sides of the second gate structure are Grooves are formed in the bottom.

需要说明的是,所述开口205的位置根据需要形成应力层的位置来确定,不应过分限制所述开口205的位置和宽度。It should be noted that the position of the opening 205 is determined according to the position where the stress layer needs to be formed, and the position and width of the opening 205 should not be restricted too much.

请参考图7,以所述图形化的氧化层204和掩膜层203为掩膜,刻蚀栅极结构侧向区域的半导体衬底200形成凹槽206。Referring to FIG. 7 , using the patterned oxide layer 204 and mask layer 203 as a mask, the semiconductor substrate 200 in the lateral region of the gate structure is etched to form a groove 206 .

具体的,以所述图形化的氧化层204和掩膜层203为掩膜,沿开口205(请参考图6)刻蚀第二栅极结构220侧向区域的半导体衬底200,形成凹槽206。Specifically, using the patterned oxide layer 204 and the mask layer 203 as a mask, etch the semiconductor substrate 200 in the lateral region of the second gate structure 220 along the opening 205 (please refer to FIG. 6 ) to form a groove 206.

所述凹槽206的形状为U形、方形或sigma(Σ)形。The shape of the groove 206 is U-shape, square or sigma (Σ) shape.

作为一个实施例,所述凹槽206的形状为Σ形。As an embodiment, the shape of the groove 206 is Σ-shape.

Σ形的凹槽侧壁向器件沟道方向内凹,这种形状可以有效缩短器件沟道长度,满足器件尺寸小型化的要求;且Σ形的凹槽具有在栅极间隙体下方较大下切的特点,这种形状凹槽内形成应力材料可以对器件沟道区产生更大的应力。The sidewall of the Σ-shaped groove is concave toward the direction of the device channel. This shape can effectively shorten the length of the device channel and meet the requirements of device size miniaturization; and the Σ-shaped groove has a large undercut under the gate spacer. The characteristics of the stress material formed in the groove of this shape can generate greater stress on the channel region of the device.

所述凹槽206的形成工艺可以为干法刻蚀、湿法刻蚀或干法刻蚀和湿法刻蚀相结合的刻蚀工艺。The forming process of the groove 206 may be dry etching, wet etching or an etching process combining dry etching and wet etching.

作为一个实施例,以Σ形凹槽206的形成工艺做示范性说明:首先以所述氧化层204和掩膜层203为掩膜,采用干法刻蚀工艺,沿开口205刻蚀所述半导体衬底200,形成倒梯形的预凹槽,然后采用湿法刻蚀工艺继续刻蚀所述预凹槽,形成Σ形的凹槽206。As an example, the formation process of the Σ-shaped groove 206 is used as an exemplary illustration: first, the oxide layer 204 and the mask layer 203 are used as a mask, and the semiconductor is etched along the opening 205 by using a dry etching process. On the substrate 200 , an inverted trapezoidal pre-groove is formed, and then the pre-groove is continuously etched by using a wet etching process to form a Σ-shaped groove 206 .

请参考图8,形成填充满所述凹槽206(请参考图7)的应力层207。Referring to FIG. 8 , a stress layer 207 filling the groove 206 (please refer to FIG. 7 ) is formed.

所述应力层207的顶部与半导体衬底200表面平齐或高于半导体衬底200表面。本实施例以所述应力层207的顶部与半导体衬底200表面平齐作示范性说明。The top of the stress layer 207 is level with or higher than the surface of the semiconductor substrate 200 . In this embodiment, the top of the stress layer 207 is flush with the surface of the semiconductor substrate 200 for exemplary illustration.

所述应力层207的材料为SiC、SiCP、SiGe或SiGeB。The stress layer 207 is made of SiC, SiCP, SiGe or SiGeB.

本实施例中,所述应力层207为PMOS区域II沟道区提供应力,提高PMOS区域载流子迁移率,所述应力层207的材料为压应力材料。具体的,所述应力层207的材料为SiGe或SiGeB,所述应力层207的材料中Ge原子百分比为10%至55%。In this embodiment, the stress layer 207 provides stress for the channel region of the PMOS region II to improve carrier mobility in the PMOS region, and the material of the stress layer 207 is a compressive stress material. Specifically, the material of the stress layer 207 is SiGe or SiGeB, and the atomic percentage of Ge in the material of the stress layer 207 is 10% to 55%.

采用选择性外延工艺形成所述应力层207。作为一个实施例,所述应力层207的材料为SiGe时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、锗源气体、HCl和H2,所述硅源气体为SiH4或SiH2Cl2,所述锗源气体为GeH4,其中硅源气体流量为1sccm至1000sccm,锗源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。The stress layer 207 is formed by a selective epitaxy process. As an example, when the material of the stress layer 207 is SiGe, the specific process parameters of the selective epitaxy process are: feeding silicon source gas, germanium source gas, HCl and H2 into the reaction chamber, the silicon The source gas is SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , wherein the silicon source gas flow rate is 1 sccm to 1000 sccm, the germanium source gas flow rate is 1 sccm to 1000 sccm, the HCl flow rate is 1 sccm to 1000 sccm, and the H 2 flow rate is 100 sccm to 50000 sccm, the pressure of the reaction chamber is 1 torr to 500 torr, and the temperature of the reaction chamber is 450 to 850 degrees.

在本发明其他实施例中,应力层为NMOS区域I沟道区提供应力,提高NMOS区域I载流子迁移率,则所述应力层的材料为拉应力材料。具体的,所述应力层的材料为SiC或SiCP,所述应力层的材料中C原子百分比为1%至10%。In other embodiments of the present invention, the stress layer provides stress for the channel region of the NMOS region I to improve carrier mobility in the NMOS region I, and the material of the stress layer is a tensile stress material. Specifically, the material of the stress layer is SiC or SiCP, and the atomic percentage of C in the material of the stress layer is 1% to 10%.

作为一个实施例,所述应力层的材料为SiC时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、碳源气体、HCl和H2,所述锗源气体为SiH4或SiH2Cl2,所述碳源气体为CH4、CH2Cl2、CH3Cl,其中,锗源气体流量为1sccm至1000sccm,碳源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。As an example, when the material of the stress layer is SiC, the specific process parameters of the selective epitaxy process are: feeding silicon source gas, carbon source gas, HCl and H2 into the reaction chamber, the germanium source The gas is SiH 4 or SiH 2 Cl 2 , the carbon source gas is CH 4 , CH 2 Cl 2 , CH 3 Cl, wherein the germanium source gas flow rate is 1 sccm to 1000 sccm, the carbon source gas flow rate is 1 sccm to 1000 sccm, and the HCl flow rate is 1sccm to 1000sccm, the H2 flow rate is 100sccm to 50000sccm, the reaction chamber pressure is 1 Torr to 500 Torr, and the reaction chamber temperature is 450 degrees to 850 degrees.

本发明实施例中,所述应力层207的材料为SiGe或SiGeB,氧化层204中浮动的Si键少,氧化层204和应力层207的材料结构差别较大。由于选择性外延工艺的特性为:若外延层材料与基底材料结构相同或相近,则在基底表面生长外延层材料;若外延层材料与基底材料结构不同,则在基底表生长外延层材料的速率慢,外延层材料与基底材料结构差别越大,则在基底表面生长外延层材料的速率越慢。由于本实施例中,氧化层204和应力层207的材料结构差别较大,因此在形成应力层207过程中,在氧化层204表面不会形成应力层207的材料。In the embodiment of the present invention, the material of the stress layer 207 is SiGe or SiGeB, there are few floating Si bonds in the oxide layer 204 , and the material structures of the oxide layer 204 and the stress layer 207 are quite different. Since the characteristics of the selective epitaxial process are: if the structure of the epitaxial layer material is the same or similar to that of the substrate material, the epitaxial layer material is grown on the surface of the substrate; Slower, the greater the structure difference between the epitaxial layer material and the substrate material, the slower the growth rate of the epitaxial layer material on the substrate surface. Since in this embodiment, the material structures of the oxide layer 204 and the stress layer 207 are quite different, the material of the stress layer 207 will not be formed on the surface of the oxide layer 204 during the process of forming the stress layer 207 .

同时,由于凹槽206上方的氧化层204表面也不会形成应力层207的材料,则形成应力层207的工艺窗口随着工艺时间的增加而保持不变,有利于形成致密度好的应力层207,有利于提高半导体器件的载流子迁移率,进而提高半导体器件的驱动电流。而现有技术中,在应力层形成过程中,掩膜层表面也会形成应力层的材料,随着工艺时间的增加,形成应力层的工艺窗口随之减小,导致形成的应力层质量差、致密度差,影响半导体器件的电学性能。At the same time, since the material of the stress layer 207 will not be formed on the surface of the oxide layer 204 above the groove 206, the process window for forming the stress layer 207 remains unchanged as the process time increases, which is conducive to the formation of a dense stress layer. 207, which is beneficial to improving the carrier mobility of the semiconductor device, thereby increasing the driving current of the semiconductor device. However, in the prior art, during the formation of the stress layer, the material of the stress layer is also formed on the surface of the mask layer. As the process time increases, the process window for forming the stress layer decreases, resulting in poor quality of the formed stress layer. , Poor density, affecting the electrical properties of semiconductor devices.

需要说明的是,在形成所述应力层207之前,还可以包括步骤:清洗凹槽206,去除由于刻蚀形成凹槽206的残留物,可以采用氢氟酸溶液进行所述清洗。It should be noted that, before the stress layer 207 is formed, a step may also be included: cleaning the groove 206 to remove the residues of the groove 206 formed by etching, and the cleaning may be performed by using a hydrofluoric acid solution.

请参考图9,去除所述掩膜层203(请参考图8)和所述氧化层204(请参考图8)。Referring to FIG. 9 , the mask layer 203 (please refer to FIG. 8 ) and the oxide layer 204 (please refer to FIG. 8 ) are removed.

作为一个实施例,采用湿法刻蚀工艺去除所述掩膜层203和氧化层204。As an embodiment, a wet etching process is used to remove the mask layer 203 and the oxide layer 204 .

所述湿法刻蚀工艺采用的刻蚀液体为氢氟酸溶液和热磷酸溶液。具体的,采用氢氟酸溶液去除所述氧化层204,采用热磷酸溶液去除所述掩膜层203。The etching liquid used in the wet etching process is hydrofluoric acid solution and hot phosphoric acid solution. Specifically, the oxide layer 204 is removed with a hydrofluoric acid solution, and the mask layer 203 is removed with a hot phosphoric acid solution.

在本发明其他实施例中,去除位于第一栅极结构210顶部、第二栅极结构220顶部和半导体衬底200表面的掩膜层203和氧化层204,保留位于偏移侧墙202表面的掩膜层203和氧化层204,所述保留的掩膜层203和氧化层204可以作为半导体器件的主侧墙,后续在形成半导体器件重掺杂区时,所述主侧墙为形成重掺杂区的掩膜。In other embodiments of the present invention, the mask layer 203 and the oxide layer 204 located on the top of the first gate structure 210, the top of the second gate structure 220 and the surface of the semiconductor substrate 200 are removed, and the The mask layer 203 and the oxide layer 204, the remaining mask layer 203 and the oxide layer 204 can be used as the main sidewall of the semiconductor device, and when the heavily doped region of the semiconductor device is subsequently formed, the main sidewall is used to form a heavily doped The mask of the heterogeneous area.

需要说明的是,在所述PMOS区域II应力层207形成后,也可以在NMOS区域I第一栅极结构210侧向区域半导体衬底内形成拉应力层。所述拉应力层的形成过程参见本实施例中应力层205的形成过程;在形成拉应力层过程中,也需要形成覆盖半导体衬底200、第一栅极结构210和第二栅极结构220的NMOS掩膜层,对所述NMOS掩膜层进行与本实施例提供的氧化处理230类似的氧化处理。It should be noted that, after the stress layer 207 in the PMOS region II is formed, a tensile stress layer may also be formed in the semiconductor substrate in the region next to the first gate structure 210 in the NMOS region I. For the formation process of the tensile stress layer, refer to the formation process of the stress layer 205 in this embodiment; in the process of forming the tensile stress layer, it is also necessary to form the covering semiconductor substrate 200, the first gate structure 210 and the second gate structure 220 The NMOS mask layer of the NMOS mask layer is subjected to an oxidation treatment similar to the oxidation treatment 230 provided in this embodiment.

由于在氧化层204表面未形成难以去除的应力层材料,例如SiGe、SiGeB、SiC或SiCP,因此,所述去除掩膜层203和氧化层204的工艺难度低,位于第一栅极结构210顶部和第二栅极结构220顶部的氧化层204和掩膜层203可以被完全去除。后续在第一栅极结构210顶部和第二栅极结构220顶部形成金属硅化物时,所述金属硅化物与第一栅极结构210顶部或第二栅极结构220顶部接触紧密,且避免金属硅化物在不期望区域形成,有利于降低半导体器件的接触电阻,提高半导体器件的运行速率,改善半导体器件的电学性能。Since no difficult-to-remove stress layer material, such as SiGe, SiGeB, SiC or SiCP, is formed on the surface of the oxide layer 204, the process difficulty of removing the mask layer 203 and the oxide layer 204 is low, and they are located on the top of the first gate structure 210. The oxide layer 204 and the mask layer 203 on top of the second gate structure 220 may be completely removed. When the metal silicide is subsequently formed on the top of the first gate structure 210 and the top of the second gate structure 220, the metal silicide is in close contact with the top of the first gate structure 210 or the top of the second gate structure 220, and avoids metal The silicide is formed in the undesired area, which is beneficial to reduce the contact resistance of the semiconductor device, increase the operating speed of the semiconductor device, and improve the electrical performance of the semiconductor device.

综上,本发明提供的技术方案具有以下优点:In summary, the technical solution provided by the present invention has the following advantages:

首先,本发明实施例中,对掩膜层进行氧化处理,将掩膜层材料中浮动的Si键氧化,使得部分厚度的掩膜层转化为氧化层,形成的氧化层材料中浮动的Si键含量比掩膜层材料中浮动的Si键含量少;后续形成应力层时,半导体衬底材料与氧化层材料间的选择性比半导体衬底材料与掩膜层材料间的选择性好,避免在不期望区域生长应力层的材料,改善后续在栅极结构顶部形成金属硅化物的质量,避免金属硅化物在不期望区域形成,提高半导体器件的电学性能。First, in the embodiment of the present invention, the mask layer is oxidized to oxidize the floating Si bonds in the mask layer material, so that a part of the thickness of the mask layer is converted into an oxide layer, and the floating Si bonds in the formed oxide layer material The Si bond content is less than that of the floating Si bond in the mask layer material; when the stress layer is subsequently formed, the selectivity between the semiconductor substrate material and the oxide layer material is better than the selectivity between the semiconductor substrate material and the mask layer material, avoiding the The material of the stress layer is grown in the undesired area, which improves the quality of the subsequent formation of metal silicide on the top of the gate structure, avoids the formation of metal silicide in the undesired area, and improves the electrical performance of the semiconductor device.

其次,氧化层中浮动Si键含量越少,则氧化层材料与半导体衬底材料的结构差别越大,形成应力层的选择性越好;本实施例中,采用优化的氧化处理工艺,所述氧化处理的工艺为等离子体自由基氧化,使得掩膜层材料中被氧化的浮动Si键含量大,形成的氧化层材料中几乎不存在浮动Si键,更有利于改善后续形成应力层工艺的选择性,提高半导体器件的电学性能。Secondly, the less the content of floating Si bonds in the oxide layer, the greater the structural difference between the oxide layer material and the semiconductor substrate material, and the better the selectivity for forming the stress layer; in this embodiment, the optimized oxidation treatment process is adopted, and the The oxidation treatment process is plasma radical oxidation, so that the content of oxidized floating Si bonds in the mask layer material is large, and there are almost no floating Si bonds in the formed oxide layer material, which is more conducive to improving the selection of subsequent stress layer formation processes and improve the electrical performance of semiconductor devices.

再次,本实施例中,由于凹槽上方的氧化层表面不会进行应力层材料的生长,因此在应力层形成过程中,应力层形成工艺的窗口保持不变,对形成应力层的工艺难度无影响,能够形成致密度好的应力层,进而提高半导体器件的载流子迁移率,改善半导体器件的电学性能。Again, in this embodiment, since the stress layer material does not grow on the surface of the oxide layer above the groove, during the stress layer formation process, the window of the stress layer formation process remains unchanged, which has no effect on the process difficulty of forming the stress layer. It can form a stress layer with good density, thereby improving the carrier mobility of semiconductor devices and improving the electrical properties of semiconductor devices.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (17)

1.一种半导体器件的制作方法,其特征在于,包括:1. A method for manufacturing a semiconductor device, comprising: 提供半导体衬底,所述半导体衬底表面具有栅极结构;providing a semiconductor substrate, the surface of the semiconductor substrate has a gate structure; 形成覆盖所述半导体衬底以及栅极结构的掩膜层;forming a mask layer covering the semiconductor substrate and the gate structure; 对所述掩膜层进行氧化处理,使得部分厚度的掩膜层转化为氧化层;performing oxidation treatment on the mask layer, so that part of the thickness of the mask layer is converted into an oxide layer; 图形化所述掩膜层和氧化层,图形化后的所述掩膜层和氧化层位于栅极结构的顶部和侧壁,以图形化的掩膜层和氧化层为掩膜,对位于栅极结构侧向区域的半导体衬底进行刻蚀,形成凹槽;Patterning the mask layer and oxide layer, the patterned mask layer and oxide layer are located on the top and side walls of the gate structure, using the patterned mask layer and oxide layer as a mask, and opposite to the gate structure Etching the semiconductor substrate in the lateral region of the pole structure to form grooves; 形成填充满所述凹槽的应力层。A stress layer is formed filling the groove. 2.根据权利要求1所述的半导体器件的制作方法,其特征在于,所述氧化处理的工艺为等离子体自由基氧化。2 . The method for manufacturing a semiconductor device according to claim 1 , wherein the oxidation treatment process is plasma radical oxidation. 3 . 3.根据权利要求2所述的半导体器件的制作方法,其特征在于,所述等离子体自由基氧化的反应气体为O23 . The method for manufacturing a semiconductor device according to claim 2 , wherein the reaction gas for the plasma radical oxidation is O 2 . 4.根据权利要求3所述的半导体器件的制作方法,其特征在于,所述等离子体自由基氧化的具体工艺过程为:等离子功率为300瓦至2500瓦,反应腔室压强为0.1托至20托,O2流量为10sccm至10000sccm。4. The manufacturing method of a semiconductor device according to claim 3, wherein the specific process of the plasma radical oxidation is as follows: the plasma power is 300 watts to 2500 watts, and the reaction chamber pressure is 0.1 Torr to 20 Torr, O2 flow from 10sccm to 10000sccm. 5.根据权利要求1所述的半导体器件的制作方法,其特征在于,所述氧化层的厚度为5埃至100埃。5 . The method for fabricating a semiconductor device according to claim 1 , wherein the oxide layer has a thickness of 5 angstroms to 100 angstroms. 6.根据权利要求1所述的半导体器件的制作方法,其特征在于,所述掩膜层的厚度为50埃至200埃。6. The method for manufacturing a semiconductor device according to claim 1, wherein the mask layer has a thickness of 50 angstroms to 200 angstroms. 7.根据权利要求1所述的半导体器件的制作方法,其特征在于,所述掩膜层的材料为氮化硅。7. The method for manufacturing a semiconductor device according to claim 1, wherein the material of the mask layer is silicon nitride. 8.根据权利要求7所述的半导体器件的制作方法,其特征在于,所述掩膜层的形成工艺为化学气相沉积。8 . The method for manufacturing a semiconductor device according to claim 7 , wherein the mask layer is formed by chemical vapor deposition. 9.根据权利要求8所述的半导体器件的制作方法,其特征在于,所述化学气相沉积的具体工艺参数为:向反应腔室内通入NH3和硅源气体,所述硅源气体为SiH4或SiH2Cl2,其中NH3流量为5sccm至1000sccm,硅源气体流量为5sccm至500sccm,反应腔室温度为300度至800度,反应腔室压强为0.05托至50托。9. The manufacturing method of a semiconductor device according to claim 8, characterized in that, the specific process parameters of the chemical vapor deposition are: in the reaction chamber, feed NH 3 and silicon source gas, and the silicon source gas is SiH 4 or SiH 2 Cl 2 , wherein the NH 3 flow rate is 5 sccm to 1000 sccm, the silicon source gas flow rate is 5 sccm to 500 sccm, the reaction chamber temperature is 300°C to 800°C, and the reaction chamber pressure is 0.05 Torr to 50 Torr. 10.根据权利要求1所述的半导体器件的制作方法,其特征在于,所述氧化层的材料为氮氧化硅。10 . The method for manufacturing a semiconductor device according to claim 1 , wherein the material of the oxide layer is silicon oxynitride. 11 . 11.根据权利要求1所述的半导体器件的制作方法,其特征在于,采用选择性外延工艺形成所述应力层。11. The method for manufacturing a semiconductor device according to claim 1, wherein the stress layer is formed by a selective epitaxy process. 12.根据权利要求11所述的半导体器件的制作方法,其特征在于,所述应力层的材料为SiC、SiCP、SiGe或SiGeB。12 . The method for manufacturing a semiconductor device according to claim 11 , wherein the material of the stress layer is SiC, SiCP, SiGe or SiGeB. 13.根据权利要求12所述的半导体器件的制作方法,其特征在于,所述应力层的材料为SiGe时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、锗源气体、HCl和H2,所述硅源气体为SiH4或SiH2Cl2,所述锗源气体为GeH4,其中硅源气体流量为1sccm至1000sccm,锗源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。13. The manufacturing method of a semiconductor device according to claim 12, wherein, when the material of the stress layer is SiGe, the specific process parameters of the selective epitaxy process are: a silicon source gas is introduced into the reaction chamber , germanium source gas, HCl and H 2 , the silicon source gas is SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , wherein the flow rate of the silicon source gas is from 1 sccm to 1000 sccm, and the flow rate of the germanium source gas is from 1 sccm to 1000sccm, the flow rate of HCl is 1sccm to 1000sccm, the flow rate of H2 is 100sccm to 50000sccm, the pressure of the reaction chamber is 1 torr to 500 torr, and the temperature of the reaction chamber is 450 degrees to 850 degrees. 14.根据权利要求12所述的半导体器件的制作方法,其特征在于,所述应力层的材料为SiC时,所述选择性外延工艺的具体工艺参数为:向反应腔室内通入硅源气体、碳源气体、HCl和H2,所述硅源气体为SiH4或SiH2Cl2,所述碳源气体为CH4、CH2Cl2、CH3Cl,其中,硅源气体流量为1sccm至1000sccm,碳源气体流量为1sccm至1000sccm,HCl流量为1sccm至1000sccm,H2流量为100sccm至50000sccm,反应腔室压强为1托至500托,反应腔室温度为450度至850度。14. The manufacturing method of a semiconductor device according to claim 12, wherein when the material of the stress layer is SiC, the specific process parameters of the selective epitaxy process are: a silicon source gas is introduced into the reaction chamber , carbon source gas, HCl and H 2 , the silicon source gas is SiH 4 or SiH 2 Cl 2 , the carbon source gas is CH 4 , CH 2 Cl 2 , CH 3 Cl, wherein the flow rate of the silicon source gas is 1 sccm to 1000sccm, the flow rate of carbon source gas is 1sccm to 1000sccm, the flow rate of HCl is 1sccm to 1000sccm, the flow rate of H2 is 100sccm to 50000sccm, the pressure of the reaction chamber is 1 torr to 500sccm, and the temperature of the reaction chamber is 450 degrees to 850 degrees. 15.根据权利要求12所述的半导体器件的制作方法,其特征在于,所述应力层的材料为SiC时,所述应力层的材料中C原子百分比为1%至10%。15. The manufacturing method of a semiconductor device according to claim 12, wherein when the material of the stress layer is SiC, the atomic percentage of C in the material of the stress layer is 1% to 10%. 16.根据权利要求12所述的半导体器件的制作方法,其特征在于,所述应力层的材料为SiGe时,所述应力层的材料中Ge原子百分比为10%至55%。16. The manufacturing method of a semiconductor device according to claim 12, wherein when the material of the stress layer is SiGe, the atomic percentage of Ge in the material of the stress layer is 10% to 55%. 17.根据权利要求1所述的半导体器件的制作方法,其特征在于,形成的半导体器件为NMOS晶体管、PMOS晶体管或CMOS晶体管。17. The method for manufacturing a semiconductor device according to claim 1, wherein the formed semiconductor device is an NMOS transistor, a PMOS transistor or a CMOS transistor.
CN201310430036.9A 2013-09-18 2013-09-18 The production method of semiconductor devices Active CN104465380B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310430036.9A CN104465380B (en) 2013-09-18 2013-09-18 The production method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310430036.9A CN104465380B (en) 2013-09-18 2013-09-18 The production method of semiconductor devices

Publications (2)

Publication Number Publication Date
CN104465380A CN104465380A (en) 2015-03-25
CN104465380B true CN104465380B (en) 2018-06-01

Family

ID=52911244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310430036.9A Active CN104465380B (en) 2013-09-18 2013-09-18 The production method of semiconductor devices

Country Status (1)

Country Link
CN (1) CN104465380B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066204A (en) * 2011-10-20 2013-04-24 爱思开海力士有限公司 Methods of manufacturing phase-change memory device and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024761A (en) * 2009-09-18 2011-04-20 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor integrated circuit device
KR101833849B1 (en) * 2010-10-13 2018-03-05 삼성전자주식회사 Semiconductor devices and methods of fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066204A (en) * 2011-10-20 2013-04-24 爱思开海力士有限公司 Methods of manufacturing phase-change memory device and semiconductor device

Also Published As

Publication number Publication date
CN104465380A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
TWI723777B (en) Manufacturing method of semiconductor element and plasma processing device
CN105470132B (en) The forming method of fin field effect pipe
CN104795332B (en) The forming method of fin formula field effect transistor
CN103871968B (en) MOS transistor manufacturing method
CN104616979B (en) The forming method of semiconductor devices
CN104517901B (en) The forming method of CMOS transistor
CN105719969A (en) Fin-type field effect transistor forming method
CN107481933B (en) Semiconductor structure and manufacturing method thereof
CN107785266A (en) The manufacture method of semiconductor structure
CN103871887B (en) PMOS transistor, nmos pass transistor and respective preparation method thereof
CN107785262A (en) The manufacture method of semiconductor structure
US10460996B2 (en) Fin field effect transistor and fabrication method thereof
CN104681490A (en) Forming method of CMOS (complementary metal-oxide-semiconductor) transistor
CN104465486B (en) The forming method of semiconductor devices
CN104183491B (en) The forming method of transistor
CN106960789B (en) Semiconductor device and method for improving performance of semiconductor device
CN104979288B (en) The forming method of semiconductor devices
CN105719971A (en) Formation method of semiconductor device
CN107919326A (en) Fin field effect pipe and forming method thereof
CN104465380B (en) The production method of semiconductor devices
CN106856191B (en) Semiconductor structure and forming method thereof
CN103730421A (en) Formation method of CMOS
CN103681324B (en) The manufacture method of MOS transistor
CN103531541B (en) The formation method of CMOS tube
CN106898553A (en) A kind of fin formula field effect transistor and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant