CN104536469A - Optical coherence tomography optical probe automatic tracking and positioning control system - Google Patents
Optical coherence tomography optical probe automatic tracking and positioning control system Download PDFInfo
- Publication number
- CN104536469A CN104536469A CN201410834002.0A CN201410834002A CN104536469A CN 104536469 A CN104536469 A CN 104536469A CN 201410834002 A CN201410834002 A CN 201410834002A CN 104536469 A CN104536469 A CN 104536469A
- Authority
- CN
- China
- Prior art keywords
- probe
- optical probe
- photodetector
- position photodetector
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 title claims abstract description 95
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 238000012014 optical coherence tomography Methods 0.000 title abstract description 22
- 238000006073 displacement reaction Methods 0.000 claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims description 21
- 230000001427 coherent effect Effects 0.000 claims 1
- 230000004807 localization Effects 0.000 claims 1
- 238000010422 painting Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 30
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 3
- 238000003325 tomography Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种用于壁画检测的光学相干层析成像的光学探头自动跟踪定位控制系统,包括光学探头夹持装置和红外光学探头,所述的红外光学探头的四周的四象限依次设置A位置光电探测器、B位置光电探测器、C位置光电探测器和D位置光电探测器,所述的红外光学探头由所述的光学探头夹持装置夹持,所述的光学探头夹持装置内设有俯仰旋转电机、水平旋转电机、纵向位移步进电机、横向位移步进电机和可编程控制器。本发明能确保光学探头垂直于壁画表面并与壁画表面距离等于固定数值,保证对壁画测试的图像是最清晰和稳定的。
An optical probe automatic tracking and positioning control system for optical coherence tomography for mural detection, including an optical probe clamping device and an infrared optical probe, and four quadrants around the infrared optical probe are sequentially provided with A-position photodetectors , B position photodetector, C position photodetector and D position photodetector, described infrared optical probe is clamped by described optical probe clamping device, and described optical probe clamping device is provided with pitching rotation Motor, horizontal rotation motor, longitudinal displacement stepper motor, lateral displacement stepper motor and programmable controller. The invention can ensure that the optical probe is perpendicular to the surface of the mural and the distance from the surface of the mural is equal to a fixed value, so that the image tested on the mural is the clearest and most stable.
Description
技术领域technical field
本发明属光电自动控制系统,特别是一种用于壁画检测的光学相干层析成像的光学探头自动跟踪定位控制系统。The invention belongs to a photoelectric automatic control system, in particular to an optical probe automatic tracking and positioning control system for optical coherence tomography for mural detection.
背景技术Background technique
1991年MIT的David Huang等人将迈克尔逊干涉与共焦显微镜的原理应用到生物医学成像中,提出了光学相干层析成像技术(OpticalCoherence Tomography)。光学相干层析技术将先进的光学技术和现代计算机图像处理技术结为一体,发展成为一门新兴的层析成像技术。它采用了低相干干涉技术可以获取组织内部微观结构信息,其成像深度达数毫米,为人们分析物体组织内部微观结构、形态和质地提供了十分有效的技术手段。光学相干层析成像在材料检测方面具有以下主要优势:分辨率高、通常可以达到10微米左右,能够观察更多的样品细节信息,系统成像速度快,另外,其非接触式检测方式使得其应用更加简单、安全,其所具备的便携性,更加方便研究人员携带。In 1991, David Huang et al. of MIT applied the principle of Michelson interference and confocal microscopy to biomedical imaging, and proposed Optical Coherence Tomography (Optical Coherence Tomography). Optical coherence tomography combines advanced optical technology and modern computer image processing technology, and develops into a new tomographic imaging technology. It adopts low-coherence interferometry technology to obtain the internal microstructure information of the tissue, and its imaging depth reaches several millimeters, which provides a very effective technical means for people to analyze the internal microstructure, shape and texture of the object tissue. Optical coherence tomography has the following main advantages in material detection: high resolution, usually up to about 10 microns, can observe more sample details, fast imaging speed of the system, in addition, its non-contact detection method makes its application It is simpler and safer, and its portability makes it more convenient for researchers to carry.
光学相干层析成像最初广泛应用于医学诊疗,如人眼,人体皮肤组织成像以及龋齿的早期检测等。近年来随着OCT技术不断发展,其应用已扩展到了材料科学、薄膜技术等诸多基础研究领域。Optical coherence tomography was originally widely used in medical diagnosis and treatment, such as human eyes, human skin tissue imaging, and early detection of dental caries. In recent years, with the continuous development of OCT technology, its application has been extended to many basic research fields such as material science and thin film technology.
作为一种先进的无损检测技术方法,近年来人们开展了光学相干层析成像在考古和文物保护应用等方面的探索研究,并已取得了很大的进展,该技术由于采用非接触技术,可以对文物实现现场原位实时检测,研究成果显示:该成像技术在文物保护和考古领域方面具有很大发展前景。虽然光学层析成像技术具有分辨率高、成像速度快和无损安全的特点,但是它自身也存在技术局限,即:由于成像系统视场范围有限,使得它的一次成像尺寸一般为几个厘米量级,如何实现对壁画这样大尺寸的快速成像对光学层析成像技术在文物保护应用成为技术关键。As an advanced non-destructive testing method, in recent years, people have carried out research on the application of optical coherence tomography in archaeology and cultural relics protection, and have made great progress. Due to the use of non-contact technology, this technology can On-site in-situ real-time detection of cultural relics is realized. The research results show that this imaging technology has great development prospects in the fields of cultural relics protection and archaeology. Although optical tomography technology has the characteristics of high resolution, fast imaging speed and non-destructive safety, it also has technical limitations, that is, due to the limited field of view of the imaging system, its one-time imaging size is generally several centimeters How to achieve fast imaging of such a large size of murals is the key to the application of optical tomography in the protection of cultural relics.
由于光学层析成像系统每次自动成像范围为厘米量级,OCT系统对大幅的壁画的成像必须通过横向和纵向的连续多次扫描才能完成对壁画大面积的成像工作。而当被扫描成像的物体表面起伏不平时,会引起光学探头无法垂直对准被测对象以及对物体的成像距离的变化,影响系统聚焦功能,造成系统成像信噪比降低,成像质量下降,因此设计一种应用于壁画检测的光学相干层析成像系统的光学探头自动跟踪定位控制系统,以提高检测系统成像质量和系统稳定性十分重要。Since the automatic imaging range of the optical tomography system is on the order of centimeters each time, the imaging of large-scale murals by the OCT system must be scanned multiple times in a row in the horizontal and vertical directions to complete the large-area imaging of the murals. When the surface of the object being scanned and imaged is undulating, it will cause the optical probe to be unable to align vertically with the object to be measured and the imaging distance of the object will change, which will affect the focusing function of the system, resulting in a decrease in the signal-to-noise ratio of the system imaging and a decrease in imaging quality. It is very important to design an optical probe automatic tracking and positioning control system for the optical coherence tomography system used in mural detection to improve the imaging quality and system stability of the detection system.
发明内容Contents of the invention
本发明旨在克服上述技术不足,提供一种用于壁画检测的光学相干层析成像的光学探头自动跟踪定位控制系统,以提高光学相干层析成像系统的成像质量。The present invention aims to overcome the above-mentioned technical deficiencies, and provides an optical probe automatic tracking and positioning control system for optical coherence tomography for mural detection, so as to improve the imaging quality of the optical coherence tomography system.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种用于壁画检测的光学相干层析成像的光学探头自动跟踪定位控制系统,包括光学探头夹持装置和红外光学探头,其特征在于:所述的红外光学探头的四周的四象限依次设置A位置光电探测器、B位置光电探测器、C位置光电探测器和D位置光电探测器,所述的红外光学探头由所述的光学探头夹持装置夹持,所述的光学探头夹持装置内设有俯仰旋转电机、水平旋转电机、纵向位移步进电机、横向位移步进电机和可编程控制器,该可编程控制器的输入端与所述的A位置光电探测器、B位置光电探测器、C位置光电探测器和D位置光电探测器的输出端相连,所述的可编程控制器的输出端与所述的俯仰方向旋转电机、水平方向旋转电机、纵向位移移动步进电机、横向位移移动步进电机的控制端相连。An optical probe automatic tracking and positioning control system for optical coherence tomography for mural detection, including an optical probe clamping device and an infrared optical probe, characterized in that: the four quadrants around the infrared optical probe are sequentially set A Position photodetector, B position photodetector, C position photodetector and D position photodetector, the infrared optical probe is clamped by the optical probe clamping device, and the optical probe clamping device It is equipped with a pitching rotation motor, a horizontal rotation motor, a stepping motor for longitudinal displacement, a stepping motor for lateral displacement and a programmable controller, and the input end of the programmable controller is connected with the photodetector at position A and the photodetector at position B , the C position photodetector is connected to the output end of the D position photodetector, and the output end of the programmable controller is connected to the pitch direction rotation motor, the horizontal direction rotation motor, the longitudinal displacement moving stepper motor, the lateral displacement The control terminal of the mobile stepper motor is connected.
系统工作时这四个光电位置探测器实时检测位置参数,将所测数据传到所述的可编程控制器,计算出相应执行电机的运行步数和执行距离,控制器发命令给相应的执行电机,相应的执行电机做相应转动或移动,带动所述的红外光学探头旋转或纵向进给,直到所述红外光学探头与被测壁画垂直,通过位移电机驱动探头移动,确保探头垂直于样品表面而且与样品表面距离等于固定数值,保证此时的测试图像是最好清晰和稳定的。When the system is working, the four photoelectric position detectors detect the position parameters in real time, and transmit the measured data to the programmable controller, calculate the number of running steps and the execution distance of the corresponding execution motor, and the controller sends commands to the corresponding execution The motor, the corresponding executive motor rotates or moves accordingly, driving the infrared optical probe to rotate or feed longitudinally until the infrared optical probe is perpendicular to the mural to be measured, and the displacement motor drives the probe to move to ensure that the probe is perpendicular to the sample surface Moreover, the distance from the sample surface is equal to a fixed value to ensure that the test image at this time is the best clear and stable.
本发明的技术效果:Technical effect of the present invention:
本发明的突出特点是结构简单,不改变原有的光学系统,只是在红外探头的四周增设位置探测器,在探头夹持机构安装伺服电机,以达到自动调整探头对壁画表面的对准方向和探测距离,从而提高系统的成像质量,有利于快速实时成像。The outstanding feature of the present invention is that the structure is simple, the original optical system is not changed, only a position detector is added around the infrared probe, and a servo motor is installed on the probe clamping mechanism to automatically adjust the alignment direction of the probe to the mural surface and The detection distance improves the imaging quality of the system and facilitates fast real-time imaging.
附图说明Description of drawings
图1为现有光学相干层析成像的光学探头结构示意图;FIG. 1 is a schematic structural diagram of an optical probe for existing optical coherence tomography;
图2本发明光学相干层析成像的光学探头自动跟踪定位控制系统结构示意图。Fig. 2 is a schematic structural diagram of an optical probe automatic tracking and positioning control system for optical coherence tomography of the present invention.
图3本发明光学相干层析成像系统红外光学探头的四个位置探测器示意图。Fig. 3 is a schematic diagram of four position detectors of the infrared optical probe of the optical coherence tomography system of the present invention.
图4本发明光学相干层析成像系统红外光学探头位置探测器正视示意图。Fig. 4 is a schematic diagram of the front view of the infrared optical probe position detector of the optical coherence tomography system of the present invention.
图5本发明位置探测算法及原理示意图。Fig. 5 is a schematic diagram of the location detection algorithm and principle of the present invention.
图6本发明光学探头自动跟踪定位原理及工作过程示意图。Fig. 6 is a schematic diagram of the principle and working process of the automatic tracking and positioning of the optical probe of the present invention.
图中:In the picture:
1-红外光学探头1 - Infrared Optical Probe
2-被测物体表面2 - The surface of the object to be measured
3-4个位置探测器3-4 position detectors
4-水平旋转电机4 - Horizontal rotation motor
5-俯仰旋转电机5 - Tilting rotation motor
6-纵向位移电机6 - Longitudinal displacement motor
7-横向位移电机7 - Lateral displacement motor
8-探头夹持机构8 - Probe clamping mechanism
9-位置探测器A9 - Position detector A
10-位置探测器B10 - Position detector B
11-位置探测器C11 - Position detector C
12-位置探测器D12 - Position detector D
13-入光孔13 - light entrance hole
14-探头初始位置114 - probe initial position 1
15-探头旋转位置215 - Probe rotation position 2
16-探头横向移动位置316 - Probe lateral movement position 3
17-探头纵向移动位置417 - Probe longitudinal movement position 4
18-横向移动方向18 - Lateral movement direction
19-纵向移动方向19 - Vertical movement direction
20-探头法线初始位置20 - The initial position of the normal line of the probe
21-检测位置探头法线位置21 - Detection position Probe normal position
22-探测表面切线22 - Probe surface tangent
23-探头旋转角度θ23 - Probe rotation angle θ
24直线移动位移量ΔLy24 linear movement displacement ΔLy
25-位置探测器A和C探测距离之差ΔlA-C 25 - The difference between the detection distances of position detectors A and C Δl AC
26-位置探测器A与探测表面距离LA 26 - Distance between position detector A and detection surface L A
27-位置探测器C与探测表面距离LC 27 - Distance between the position detector C and the detection surface L C
28位置探测器B和D探测距离之差ΔlB-D 28 The difference between the detection distances of position detectors B and D Δl BD
29-位置探测器B与探测表面距离LB 29 - Distance between position detector B and detection surface L B
30-位置探测器D与探测表面距离LD 30 - Distance between position detector D and detection surface L D
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with accompanying drawings, but the protection scope of the present invention should not be limited thereby.
请参阅图2,图2是本发明光学相干层析成像的光学探头自动跟踪定位控制系统结构示意图。参见图3、图4,由图可见,本发明用于壁画检测的光学相干层析成像的光学探头自动跟踪定位控制系统,包括光学探头夹持装置8和红外光学探头1,在所述的红外光学探头1的四周的四象限依次设置A位置光电探测器9、B位置光电探测器10、C位置光电探测器11和D位置光电探测器12,所述的红外光学探头1由所述的光学探头夹持装置8夹持,所述的光学探头夹持装置8内设有俯仰旋转电机5、水平旋转电机4、纵向位移步进电机6、横向位移步进电机7和可编程控制器(图中未示),该可编程控制器的输入端与所述的A位置光电探测器9、B位置光电探测器10、C位置光电探测器11和D位置光电探测器12的输出端相连,所述的可编程控制器的输出端与所述的俯仰方向旋转电机5、水平方向旋转电机4、纵向位移移动步进电机6、横向位移移动步进电机7的控制端相连。Please refer to FIG. 2 . FIG. 2 is a schematic structural diagram of an optical probe automatic tracking and positioning control system for optical coherence tomography of the present invention. Referring to Fig. 3 and Fig. 4, it can be seen from the figures that the optical probe automatic tracking and positioning control system for optical coherence tomography of mural detection in the present invention includes an optical probe clamping device 8 and an infrared optical probe 1. The four quadrants around the optical probe 1 are successively provided with A position photodetector 9, B position photodetector 10, C position photodetector 11 and D position photodetector 12, and the infrared optical probe 1 consists of the optical Probe clamping device 8 is clamped, and described optical probe clamping device 8 is provided with pitching rotation motor 5, horizontal rotation motor 4, longitudinal displacement stepper motor 6, lateral displacement stepper motor 7 and programmable controller (Fig. Not shown in), the input end of this programmable controller is connected with the output end of described A position photodetector 9, B position photodetector 10, C position photodetector 11 and D position photodetector 12, so The output end of the programmable controller described above is connected with the control ends of the pitching direction rotating motor 5, the horizontal direction rotating motor 4, the longitudinal displacement stepping motor 6, and the lateral displacement moving stepping motor 7.
系统根据位置探测器采集的数据,计算出探头与标准测试位置的位置偏移量,再将偏移量反馈到探头夹持机构的电机驱动单元,通过直线位移电机、水平旋转电机和俯仰电机的转动,使得探头位置距离被测样品表面距离达到指定数值,同时探头的轴线垂直于被测表面的切面。According to the data collected by the position detector, the system calculates the position offset between the probe and the standard test position, and then feeds the offset back to the motor drive unit of the probe clamping mechanism, through the linear displacement motor, horizontal rotation motor and pitch motor Rotate so that the distance between the probe position and the surface of the sample to be measured reaches a specified value, and the axis of the probe is perpendicular to the tangent plane of the measured surface.
本发明的原理如下:Principle of the present invention is as follows:
在原有的频域OCT系统的红外探头的四周设置了A位置光电探测器9、B位置光电探测器10、C位置光电探测器11和D位置光电探测器12,这四个位置探测器用来探测红外探头四个角距离被测样品表面的四个位置距离,对角线方向上的两个探测器为一组。根据几何原理,平面正方形对角线上的两点如果与圆表面的距离相等,则平面正方形的法线垂直于相应表面切线。在系统中即对应红外探头轴线垂直于被测表面。如图5所示。以对角线上的一对A位置光电探测器9和C位置光电探测器11为例,当探头偏离检测位置时,两个探测器到被测表面距离之差为Δl,如果Δl大于系统偏差阈值,则控制器向相应电机发出正转或反转指令,电机执行命令后,探头做相应的旋转和移动,直到Δl小于系统所设阈值,探头角度姿态即已经调整到检测最佳位置,在通过横向和纵向位移电机驱动,可以将探头调整定位到最佳系统检测位置。A position photodetector 9, B position photodetector 10, C position photodetector 11 and D position photodetector 12 are set around the infrared probe of the original frequency domain OCT system. These four position detectors are used to detect The distance between the four corners of the infrared probe and the four positions on the surface of the sample to be measured is two detectors in the diagonal direction as a group. According to geometrical principles, if two points on the diagonal of a plane square are at the same distance from the circular surface, the normal of the plane square is perpendicular to the corresponding surface tangent. In the system, the corresponding infrared probe axis is perpendicular to the measured surface. As shown in Figure 5. Take a pair of A-position photodetector 9 and C-position photodetector 11 on the diagonal as an example, when the probe deviates from the detection position, the difference between the two detectors and the measured surface distance is Δl, if Δl is greater than the system deviation threshold, the controller sends a forward or reverse command to the corresponding motor. After the motor executes the command, the probe rotates and moves accordingly until Δl is less than the threshold set by the system, and the probe angle and attitude have been adjusted to the best detection position. Driven by horizontal and vertical displacement motors, the probe can be adjusted and positioned to the best system detection position.
本发明探头自动跟踪定位系统工作的控制算法详细步骤如下:The detailed steps of the control algorithm of the probe automatic tracking and positioning system work of the present invention are as follows:
图6是本发明的一个具体实例,该实例表明位置探测器检测探头到样品表面距离,计算出对角线A位置光电探测器9和C位置光电探测器11探测距离差ΔlA-C=LA-LC,B位置光电探测器10和D位置光电探测器12的探测距离差ΔlB-D=LB-LD,若|ΔlA-C|>阈值,且ΔlA-C<0则通过控制器向水平电机发出正向旋转指令,直到|ΔlA-C|<=阈值;若|ΔlA-C|>阈值,且ΔlA-C>0则通过控制器向水平电机发出反向旋转指令,直到|ΔlA-C|<=阈值,旋转的角度记为:θ水平。同理,可以通过探测器B和D的来控制俯仰电机旋转角度:记作:θ俯仰。当ΔlA-D和ΔlB-C,均小于规定阈值时,再判定此时探头距离样品表面的垂直距离L,L=(LA+LB+LC+LD)/4,ΔL标准=L-标准距离,由ΔL标准计算出ΔLx,ΔLy,ΔLx就是横向位移直线电机驱动探头的横向移动距离,ΔLy就是纵向直线电机驱动探头的纵向移动距离,即向样品表面方向前推动探头,经过这些步骤,探头垂直正对样品表面,而且距离样品表面距离满足系统检测要求。Fig. 6 is a specific example of the present invention, which shows that the position detector detects the distance from the probe to the sample surface, and calculates the detection distance difference between the photodetector 9 at position A and the photodetector 11 at position C on the diagonal line Δl AC = L A - L C, the detection distance difference between photodetector 10 at B position and photodetector 12 at D position Δl BD =L B -LD , if |Δl AC |>threshold value, and Δl AC <0, it will be sent to the horizontal motor through the controller Forward rotation command until |Δl AC |<=threshold value; if |Δl AC |>threshold value, and Δl AC >0, the controller sends a reverse rotation command to the horizontal motor until |Δl AC |<=threshold value, rotate The angle is recorded as: θ level . In the same way, the rotation angle of the pitch motor can be controlled by detectors B and D: denoted as: θpitch . When Δl AD and Δl BC are both less than the specified threshold, then determine the vertical distance L between the probe and the sample surface at this time, L=( LA + L B + L C + L D) /4, ΔL standard = L - standard Distance, calculated by ΔL standard , ΔLx, ΔLy, ΔLx is the lateral movement distance of the probe driven by the lateral displacement linear motor, ΔLy is the longitudinal movement distance of the probe driven by the vertical linear motor, that is, the probe is pushed forward toward the sample surface. After these steps, the probe It is perpendicular to the sample surface, and the distance from the sample surface meets the system detection requirements.
探头调整的过程如下:The process of probe adjustment is as follows:
检测开始时,探头在初始位置1处,如果位置探测器检测到探头未垂直对准检测表面,则根据计算出的水平旋转电机旋转角度θ水平和俯仰旋转电机旋转角度θ俯仰,分别在各自姿态方向完成相应旋转角度,探头完成角度姿态调整,使得探头法线垂直于探测表面,然后再进行探头的位置移动,通过上述LA、LB、LC、LD计算出来的ΔLx,ΔLy,横向位移电机和纵向位移电机分别在横向和纵向方向移动探头为ΔLx,ΔLy,此时探头垂直于检测表面而且与表面距离为规定的数值,探头可以进行检测,通过上述一系列探测、计算和电机驱动,从而完成探头自动跟踪定位控制过程。At the beginning of the detection, the probe is at the initial position 1. If the position detector detects that the probe is not vertically aligned with the detection surface, according to the calculated rotation angle θ of the horizontal rotation motor and the rotation angle θ pitch of the pitch rotation motor, respectively, in their respective attitudes The direction completes the corresponding rotation angle, and the probe completes the angle and posture adjustment so that the normal line of the probe is perpendicular to the detection surface, and then the position of the probe is moved. The ΔLx, ΔLy , and lateral The displacement motor and the longitudinal displacement motor move the probe in the horizontal and vertical directions respectively by ΔLx and ΔLy. At this time, the probe is perpendicular to the detection surface and the distance from the surface is a specified value, and the probe can be detected. Through the above series of detection, calculation and motor drive , so as to complete the probe automatic tracking and positioning control process.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410834002.0A CN104536469A (en) | 2014-12-23 | 2014-12-23 | Optical coherence tomography optical probe automatic tracking and positioning control system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410834002.0A CN104536469A (en) | 2014-12-23 | 2014-12-23 | Optical coherence tomography optical probe automatic tracking and positioning control system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN104536469A true CN104536469A (en) | 2015-04-22 |
Family
ID=52852011
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410834002.0A Pending CN104536469A (en) | 2014-12-23 | 2014-12-23 | Optical coherence tomography optical probe automatic tracking and positioning control system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104536469A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104950923A (en) * | 2015-07-01 | 2015-09-30 | 天津市视讯软件开发有限公司 | Adjusting method enabling spatial two-degree-of-freedom measured distance to be kept constant |
| CN107693048A (en) * | 2017-10-24 | 2018-02-16 | 宁波美童智能科技有限公司 | Ultrasonic sensor and its detection method |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070183631A1 (en) * | 2006-02-06 | 2007-08-09 | Beijing University Of Aeronautics And Astronautics | Methods and apparatus for measuring the flapping deformation of insect wings |
| CN101306505A (en) * | 2008-06-20 | 2008-11-19 | 吴士旭 | Method and device of alignment detection and adjustment of conterminous rotation shafts |
| WO2013058710A1 (en) * | 2011-10-18 | 2013-04-25 | Nanyang Technological University | Apparatus and method for 3d surface measurement |
| CN104034281A (en) * | 2014-06-16 | 2014-09-10 | 浙江大学 | Optical self-focusing probe used for free-form surface topography measurement |
-
2014
- 2014-12-23 CN CN201410834002.0A patent/CN104536469A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070183631A1 (en) * | 2006-02-06 | 2007-08-09 | Beijing University Of Aeronautics And Astronautics | Methods and apparatus for measuring the flapping deformation of insect wings |
| CN101306505A (en) * | 2008-06-20 | 2008-11-19 | 吴士旭 | Method and device of alignment detection and adjustment of conterminous rotation shafts |
| WO2013058710A1 (en) * | 2011-10-18 | 2013-04-25 | Nanyang Technological University | Apparatus and method for 3d surface measurement |
| CN104034281A (en) * | 2014-06-16 | 2014-09-10 | 浙江大学 | Optical self-focusing probe used for free-form surface topography measurement |
Non-Patent Citations (1)
| Title |
|---|
| 王一舒等: "基于PLC的超声波探头自动定位系统", 《工具技术》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104950923A (en) * | 2015-07-01 | 2015-09-30 | 天津市视讯软件开发有限公司 | Adjusting method enabling spatial two-degree-of-freedom measured distance to be kept constant |
| CN107693048A (en) * | 2017-10-24 | 2018-02-16 | 宁波美童智能科技有限公司 | Ultrasonic sensor and its detection method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106541419B (en) | A method of measuring robot trajectory error | |
| CN107016667B (en) | A kind of device obtaining large parts three-dimensional point cloud using binocular vision | |
| CN106568786B (en) | A kind of ray automatic detection device of small-sized cylinder girth joint | |
| CN106679588B (en) | A kind of live standing tree Laser Scanning based on 3 D laser scanning hoistable platform | |
| CN103017679A (en) | Lumen scanning system based on laser ranging sensor | |
| CN106197319B (en) | A kind of material surface three-dimensional scanner operating method based on intelligent sensing | |
| CN111398172A (en) | 3D visual detection equipment and method | |
| CN108204791A (en) | A kind of six axis laser gear measurement devices | |
| CN102944188B (en) | A kind of spot scan three dimensional shape measurement system scaling method | |
| IL275887B1 (en) | Apparatus and method for controlling the movement of an eye care system that includes a trailing support arm | |
| CN104457564A (en) | High-precision target material measurement system and method | |
| CN107560547B (en) | Scanning system and scanning method | |
| CN101458072A (en) | Three-dimensional contour outline measuring set based on multi sensors and measuring method thereof | |
| CN207036047U (en) | A kind of New Image detector | |
| CN206339207U (en) | A kind of path accuracy repetition measurement instrument | |
| CN102506711A (en) | Line laser vision three-dimensional rotate scanning method | |
| CN110645956B (en) | Multi-channel visual ranging method for stereo vision imitating insect compound eyes | |
| CN105783880B (en) | A kind of monocular laser assisted bay section docking calculation | |
| CN109870464A (en) | Surface defect detection system and method for rod-shaped objects based on machine vision | |
| CN110108236A (en) | A kind of high-temperature forging line reconstruct size fast vision measuring system and method | |
| CN214228369U (en) | A device for collecting object image information for three-dimensional reconstruction | |
| CN105962964A (en) | Self-adaptive multimode X-ray CT imaging scientific research experimental platform | |
| CN107192718A (en) | A kind of apparatus and method of cylinder and cone surface Scanning Detction | |
| CN104536469A (en) | Optical coherence tomography optical probe automatic tracking and positioning control system | |
| CN207703168U (en) | A kind of three-dimensional measuring apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150422 |
|
| WD01 | Invention patent application deemed withdrawn after publication |