CN104572373A - Memory voltage bias test method based on SVID - Google Patents
Memory voltage bias test method based on SVID Download PDFInfo
- Publication number
- CN104572373A CN104572373A CN201510002552.0A CN201510002552A CN104572373A CN 104572373 A CN104572373 A CN 104572373A CN 201510002552 A CN201510002552 A CN 201510002552A CN 104572373 A CN104572373 A CN 104572373A
- Authority
- CN
- China
- Prior art keywords
- memory
- svid
- voltage
- value
- bias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Power Sources (AREA)
Abstract
本发明公开了一种基于SVID的内存电压拉偏测试方法,在内存初始化阶段,在运行MRC时,系统读取内存信息的内存电压值后,通过CPU内部的PCU单元,经过SVID总线向相应的VR地址,发送SVID命令“SetVID?Fast?XX”,实现对应VR的输出电压调整。本发明方法在不改变主板硬件和VR设计的情况下,通过SVID?Command实现对内存VR的拉偏电压调节,同一个系统可以对插入DIMM槽的内存电压类型(1.5V内存或1.35V内存)做自适应电压调整,调整至用户希望的电压拉偏测试值,用户可根据实际的电压拉偏测试的测试条件来更新BIOS版本即可。该方法简单、有效的解决了服务器厂商在内存选型及兼容性测试用例中,内存电压拉偏测试需求。
The invention discloses an SVID-based memory voltage bias testing method. In the memory initialization stage, when running MRC, after the system reads the memory voltage value of the memory information, the system transmits the memory voltage value to the corresponding memory via the SVID bus through the PCU unit inside the CPU. VR address, send the SVID command "SetVID? Fast? XX" to adjust the output voltage corresponding to VR. In the method of the present invention, the SVID? Command realizes the adjustment of the pull-bias voltage of the memory VR. The same system can make adaptive voltage adjustments to the memory voltage type (1.5V memory or 1.35V memory) inserted into the DIMM slot, and adjust it to the voltage pull-bias test value desired by the user. The BIOS version can be updated according to the test conditions of the actual voltage bias test. This method simply and effectively solves the memory voltage bias testing requirements of server manufacturers in memory type selection and compatibility test cases.
Description
技术领域 technical field
本发明涉及服务器系统内存选型及兼容性测试领域,具体涉及一种基于SVID的内存电压拉偏测试方法。 The invention relates to the field of server system memory type selection and compatibility testing, in particular to an SVID-based memory voltage bias testing method.
背景技术 Background technique
随着云计算和大数据等新兴产业的兴起,互联网企业迅速成长和发展,相应的互联网企业的核心业务也在不断的扩大规模,其对服务器系统运行的稳定性提出了相当严格的要求。另外,在一些金融、电信、能源等关键领域,对服务器系统的稳定性要求更加苛刻。影响系统稳定性的比较关键的部件之一:内存,因内存的供电稳定性不够会导致系统出现死机、自动重启等许多问题。因此,在服务器系统研发过程中,内存兼容性测试至关重要。其中,在内存选型及兼容性测试中,很重要一项就是内存电压拉偏测试。其目的在于:把内存电压调整至内存可以运行的最恶劣条件,通过分析内存在这种恶劣条件下,系统运行情况,来判断被测内存是否兼容该服务器系统。包括百度、阿里、腾讯在内的国内比较大的互联网企业对其ODM或OEM厂商都提出了该项测试需求,也是内存厂商普遍认可的一项测试需求。因此,如何有效实现内存电压满足上下拉偏的测试条件至关重要。 With the rise of emerging industries such as cloud computing and big data, Internet companies have grown and developed rapidly, and the core business of corresponding Internet companies has also continued to expand in scale, which puts forward quite strict requirements on the stability of server system operation. In addition, in some key fields such as finance, telecommunications, and energy, the stability requirements for server systems are more stringent. One of the more critical components that affect system stability: memory, because the power supply stability of memory is not enough, it will cause many problems such as system crash and automatic restart. Therefore, in the server system development process, memory compatibility testing is very important. Among them, in memory type selection and compatibility testing, a very important item is the memory voltage bias test. Its purpose is to adjust the voltage of the memory to the worst condition that the memory can run, and to judge whether the memory under test is compatible with the server system by analyzing the system operation of the memory under such harsh conditions. Domestic relatively large Internet companies including Baidu, Ali, and Tencent have put forward this test requirement for their ODM or OEM manufacturers, and it is also a test requirement generally recognized by memory manufacturers. Therefore, how to effectively realize that the memory voltage satisfies the test conditions of the upper and lower biases is very important.
服务器厂商在做内存选型及内存兼容性测试时,需要把内存电压拉偏测试±5%进行系统下运行测试。传统的模拟环路的VR需要重新计算、调整VR芯片外围的Feedback电阻实现,非常麻烦,且需要对主板做重工;当前主流的数字环路VR可以调节VR芯片内部offset寄存器,但是调节范围有限,无法将输出电压上下限调整到标称电压的1.05倍和0.95倍,只能在标称电压基础上增加或者减少约40mv。比如:内存电压典型值是1.35V,其±5%的上下限分别是1.4175V和1.2825V,但调节寄存器只能调整到1.39V和1.31V,无法实现测试需求。并且,上述两种方法都是把输出电压固定为某特定值,比如:电压上偏固定为1.4175V,这样这块主板只能测试1.35V内存条的拉偏测试,无法实现1.5V内存条的拉偏测试,由于1.5V上拉偏5%是1.575V,因此,当针对1.5V的内存做电压拉偏测试测试时,必须再次重工。 When server manufacturers do memory type selection and memory compatibility tests, they need to test the memory voltage by ±5% for running tests under the system. The VR of the traditional analog loop needs to be recalculated and adjusted to realize the feedback resistors around the VR chip, which is very troublesome and requires heavy work on the motherboard; the current mainstream digital loop VR can adjust the internal offset register of the VR chip, but the adjustment range is limited. It is impossible to adjust the upper and lower limits of the output voltage to 1.05 times and 0.95 times the nominal voltage, and can only increase or decrease about 40mv on the basis of the nominal voltage. For example, the typical value of the memory voltage is 1.35V, and its upper and lower limits of ±5% are 1.4175V and 1.2825V respectively, but the adjustment register can only be adjusted to 1.39V and 1.31V, which cannot meet the test requirements. Moreover, the above two methods are to fix the output voltage to a specific value, for example: the upper bias of the voltage is fixed to 1.4175V, so this motherboard can only test the pull-off test of the 1.35V memory stick, and cannot realize the test of the 1.5V memory stick. Pull bias test, since 1.5V pull-up bias 5% is 1.575V, therefore, when doing voltage pull bias test for 1.5V memory, it must be reworked again.
发明内容 Contents of the invention
本发明要解决的技术问题是:在既不调整主板硬件及内存VR相关设计的情况下,通过A \B两个版本BIOS Code来实现主板内存电压的自动拉偏。并且实现1.35V内存和1.5V内存的自适应识别及电压拉偏测试调节。 The technical problem to be solved by the present invention is: without adjusting the motherboard hardware and memory VR-related design, through the A\B two versions of the BIOS Code to realize the automatic biasing of the motherboard memory voltage. It also realizes self-adaptive identification of 1.35V memory and 1.5V memory and voltage bias test adjustment.
本发明所采用的技术方案为: The technical scheme adopted in the present invention is:
一种基于SVID的内存电压拉偏测试方法,在内存初始化阶段,在运行MRC时,系统读取内存信息的内存电压值后,通过CPU内部的PCU单元,经过SVID总线向相应的VR地址,发送SVID命令“SetVID Fast XX”,实现对应VR的输出电压调整,XX代表内存VR的输出电压。 A memory voltage bias test method based on SVID. In the memory initialization stage, when the MRC is running, the system reads the memory voltage value of the memory information, and sends it to the corresponding VR address via the SVID bus through the PCU unit inside the CPU. The SVID command "SetVID Fast XX" realizes the adjustment of the output voltage of the corresponding VR, and XX represents the output voltage of the memory VR.
在内存初始化阶段,对应的BIOS 代码称为MRC(Memory Reference Code),在运行MRC时,系统首先读取内存信息,内存信息包括内存电压值,CPU在获得内存电压后把对应的电压值通过PCU发送给内存VR芯片,正常情况默认如下:内存初始电压为1.5V,如果插入DIMM的是1.35V内存,PCU将输出电压调整为1.35V,如果插入的是1.5V内存,PCU会再发送一次“SetVID_ Fast XX”命令,将输出电压调整为1.5V。 In the memory initialization stage, the corresponding BIOS code is called MRC (Memory Reference Code). When running MRC, the system first reads the memory information, which includes the memory voltage value. After the CPU obtains the memory voltage, the corresponding voltage value is passed to the PCU. Send to the memory VR chip, the normal default is as follows: the initial voltage of the memory is 1.5V, if the 1.35V memory is inserted into the DIMM, the PCU will adjust the output voltage to 1.35V, if the 1.5V memory is inserted, the PCU will send it again " SetVID_ Fast XX” command to adjust the output voltage to 1.5V.
当BIOS 代码中对应的默认值为1.35V,PCU单元发送SVID命令“SetVID Fast 1.4175”,将其改为上偏值1.4175V;当默认值1.5V时,PCU单元发送SVID命令“SetVID Fast 1.575”,改为上偏值1.575V,对应BIOS 代码定义为A版本。实现电压上拉偏+5%。 When the corresponding default value in the BIOS code is 1.35V, the PCU unit sends the SVID command "SetVID Fast 1.4175" to change it to an upper bias value of 1.4175V; when the default value is 1.5V, the PCU unit sends the SVID command "SetVID Fast 1.575" , changed to an upper bias value of 1.575V, and the corresponding BIOS code is defined as version A. Achieve voltage pull-up bias +5%.
当BIOS 代码中对应的默认值1.35V时,PCU单元发送SVID命令“SetVID Fast 1.2825”,将其改为下偏值1.2825V;当默认值为1.5V时,PCU单元发送SVID命令“SetVID Fast 1.425”,改为下偏值1.425V,对应BIOS 代码定义为B版本。实现电压下拉偏-5%。 When the corresponding default value in the BIOS code is 1.35V, the PCU unit sends the SVID command "SetVID Fast 1.2825" to change it to a lower bias value of 1.2825V; when the default value is 1.5V, the PCU unit sends the SVID command "SetVID Fast 1.425 ", changed to a lower bias value of 1.425V, and the corresponding BIOS code is defined as version B. To achieve a voltage pull-down bias of -5%.
本发明有益效果:本发明方法在不改变主板硬件和VR设计的情况下,通过SVID Command实现对内存VR的拉偏电压调节,同一个系统可以对插入DIMM槽的内存电压类型(1.5V内存或1.35V内存)做自适应电压调整,调整至用户希望的电压拉偏测试值,用户可根据实际的电压拉偏测试的测试条件来更新BIOS版本即可。该方法简单、有效的解决了服务器厂商在内存选型及兼容性测试用例中,内存电压拉偏测试需求。 Beneficial effects of the present invention: the method of the present invention realizes the adjustment of the bias voltage of the memory VR through the SVID Command without changing the design of the motherboard hardware and VR, and the same system can adjust the memory voltage type (1.5V memory or 1.35V memory) to do adaptive voltage adjustment, adjust to the voltage pull test value desired by the user, the user can update the BIOS version according to the actual test conditions of the voltage pull test. This method simply and effectively solves the memory voltage bias testing requirements of server manufacturers in memory type selection and compatibility test cases.
附图说明 Description of drawings
图1为正常MRC内存初始化示意图; Figure 1 is a schematic diagram of normal MRC memory initialization;
图2为内存拉偏+5%电压值的MRC内存初始化示意图; Figure 2 is a schematic diagram of MRC memory initialization with memory bias +5% voltage value;
图3为内存拉偏-5%电压值的MRC内存初始化示意图。 Figure 3 is a schematic diagram of the initialization of the MRC memory when the memory is pulled to a voltage value of -5%.
具体实施方式 Detailed ways
下面根据说明书附图,结合具体实施例,对本发明进一步说明: Below according to accompanying drawing of description, in conjunction with specific embodiment, the present invention is further described:
一种基于SVID的内存电压拉偏测试方法,在内存初始化阶段,在运行MRC时,系统读取内存信息的内存电压值后,通过CPU内部的PCU单元,经过SVID总线向相应的VR地址,发送SVID命令“SetVID Fast XX”,实现对应VR的输出电压调整,XX代表内存VR的输出电压。 A memory voltage bias test method based on SVID. In the memory initialization stage, when the MRC is running, the system reads the memory voltage value of the memory information, and sends it to the corresponding VR address via the SVID bus through the PCU unit inside the CPU. The SVID command "SetVID Fast XX" realizes the adjustment of the output voltage of the corresponding VR, and XX represents the output voltage of the memory VR.
在内存初始化阶段,对应的BIOS 代码称为MRC(Memory Reference Code),在运行MRC时,系统首先读取内存信息,内存信息包括内存电压值,CPU在获得内存电压后把对应的电压值通过PCU发送给内存VR芯片,正常情况默认如下:内存初始电压为1.5V,如果插入DIMM的是1.35V内存,PCU将输出电压调整为1.35V,如果插入的是1.5V内存,PCU会再发送一次“SetVID_ Fast XX”命令,将输出电压调整为1.5V。如图1所示,为系统正常Boot过程中的内存初始化流程,系统内存初始电压为1.5V,内存初始化过程中当PCU获取到内存型号是1.5V时,PCU 执行的BIOS Code会把内存VR的输出电压调整为1.5V,当PCU获取到内存型号是1.35V时,PCU 执行的BIOS Code会把内存VR的输出电压调整为1.35V。 In the memory initialization stage, the corresponding BIOS code is called MRC (Memory Reference Code). When running MRC, the system first reads the memory information, which includes the memory voltage value. After the CPU obtains the memory voltage, the corresponding voltage value is passed to the PCU. Send to the memory VR chip, the normal default is as follows: the initial voltage of the memory is 1.5V, if the 1.35V memory is inserted into the DIMM, the PCU will adjust the output voltage to 1.35V, if the 1.5V memory is inserted, the PCU will send it again " SetVID_ Fast XX” command to adjust the output voltage to 1.5V. As shown in Figure 1, it is the memory initialization process during the normal boot process of the system. The initial voltage of the system memory is 1.5V. The output voltage is adjusted to 1.5V. When the PCU obtains the memory model is 1.35V, the BIOS Code executed by the PCU will adjust the output voltage of the memory VR to 1.35V.
如图2所示,当BIOS 代码中对应的默认值为1.35V,PCU单元发送SVID命令“SetVID Fast 1.4175”,将其改为上偏值1.4175V;当默认值1.5V时,PCU单元发送SVID命令“SetVID Fast 1.575”,改为上偏值1.575V,对应BIOS 代码定义为A版本。实现电压上拉偏+5%。 As shown in Figure 2, when the corresponding default value in the BIOS code is 1.35V, the PCU unit sends the SVID command "SetVID Fast 1.4175" to change it to an upper bias value of 1.4175V; when the default value is 1.5V, the PCU unit sends the SVID The command "SetVID Fast 1.575" is changed to an upper bias value of 1.575V, and the corresponding BIOS code is defined as version A. Achieve voltage pull-up bias +5%.
如图3所示,当BIOS 代码中对应的默认值1.35V时,PCU单元发送SVID命令“SetVID Fast 1.2825”,将其改为下偏值1.2825V;当默认值为1.5V时,PCU单元发送SVID命令“SetVID Fast 1.425”,改为下偏值1.425V,对应BIOS 代码定义为B版本。实现电压下拉偏-5%。 As shown in Figure 3, when the corresponding default value in the BIOS code is 1.35V, the PCU unit sends the SVID command "SetVID Fast 1.2825" to change it to a lower bias value of 1.2825V; when the default value is 1.5V, the PCU unit sends The SVID command "SetVID Fast 1.425" is changed to a lower bias value of 1.425V, and the corresponding BIOS code is defined as version B. To achieve a voltage pull-down bias of -5%.
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。 The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510002552.0A CN104572373A (en) | 2015-01-05 | 2015-01-05 | Memory voltage bias test method based on SVID |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510002552.0A CN104572373A (en) | 2015-01-05 | 2015-01-05 | Memory voltage bias test method based on SVID |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN104572373A true CN104572373A (en) | 2015-04-29 |
Family
ID=53088507
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510002552.0A Pending CN104572373A (en) | 2015-01-05 | 2015-01-05 | Memory voltage bias test method based on SVID |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104572373A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107066363A (en) * | 2017-04-19 | 2017-08-18 | 济南浪潮高新科技投资发展有限公司 | A kind of VR power supplys commissioning device and method |
| CN107239359A (en) * | 2017-06-07 | 2017-10-10 | 济南浪潮高新科技投资发展有限公司 | A kind of method that server master board internal memory signal quality is checked by BMC |
| CN107436827A (en) * | 2016-05-27 | 2017-12-05 | 纬创资通股份有限公司 | Detection method of electronic device |
| CN109189623A (en) * | 2018-08-24 | 2019-01-11 | 郑州云海信息技术有限公司 | A kind of test method of CPU, device and electronic equipment |
| CN115309223A (en) * | 2022-08-29 | 2022-11-08 | 苏州浪潮智能科技有限公司 | Method and device for setting bias of direct current voltage, computer equipment and storage medium |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5659789A (en) * | 1995-12-15 | 1997-08-19 | Compaq Computer Corporation | Stopclock toggle system for powering two CPUs from a regulator only sized for one CPU |
| CN1443319A (en) * | 2000-07-24 | 2003-09-17 | 先进微装置公司 | Method and apparatus to provide deterministic power-on voltage in system having processor-controlled voltage level |
| CN101551698A (en) * | 2008-03-31 | 2009-10-07 | 联想(北京)有限公司 | Memory voltage regulating method and computer motherboard |
| CN102841831A (en) * | 2011-06-24 | 2012-12-26 | 鸿富锦精密工业(深圳)有限公司 | System and method for testing server memory |
| EP2796961A2 (en) * | 2013-04-25 | 2014-10-29 | Intel Corporation | Controlling power and performance in a system agent of a processor |
-
2015
- 2015-01-05 CN CN201510002552.0A patent/CN104572373A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5659789A (en) * | 1995-12-15 | 1997-08-19 | Compaq Computer Corporation | Stopclock toggle system for powering two CPUs from a regulator only sized for one CPU |
| CN1443319A (en) * | 2000-07-24 | 2003-09-17 | 先进微装置公司 | Method and apparatus to provide deterministic power-on voltage in system having processor-controlled voltage level |
| CN101551698A (en) * | 2008-03-31 | 2009-10-07 | 联想(北京)有限公司 | Memory voltage regulating method and computer motherboard |
| CN102841831A (en) * | 2011-06-24 | 2012-12-26 | 鸿富锦精密工业(深圳)有限公司 | System and method for testing server memory |
| EP2796961A2 (en) * | 2013-04-25 | 2014-10-29 | Intel Corporation | Controlling power and performance in a system agent of a processor |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107436827A (en) * | 2016-05-27 | 2017-12-05 | 纬创资通股份有限公司 | Detection method of electronic device |
| CN107066363A (en) * | 2017-04-19 | 2017-08-18 | 济南浪潮高新科技投资发展有限公司 | A kind of VR power supplys commissioning device and method |
| CN107239359A (en) * | 2017-06-07 | 2017-10-10 | 济南浪潮高新科技投资发展有限公司 | A kind of method that server master board internal memory signal quality is checked by BMC |
| CN109189623A (en) * | 2018-08-24 | 2019-01-11 | 郑州云海信息技术有限公司 | A kind of test method of CPU, device and electronic equipment |
| WO2020038039A1 (en) * | 2018-08-24 | 2020-02-27 | 郑州云海信息技术有限公司 | Cpu testing method and apparatus, and electronic device |
| US11354211B2 (en) | 2018-08-24 | 2022-06-07 | Zhengzhou Yunhai Information Technology Co., Ltd. | Method and apparatus for performing test for CPU, and electronic device |
| CN115309223A (en) * | 2022-08-29 | 2022-11-08 | 苏州浪潮智能科技有限公司 | Method and device for setting bias of direct current voltage, computer equipment and storage medium |
| CN115309223B (en) * | 2022-08-29 | 2023-08-04 | 苏州浪潮智能科技有限公司 | DC voltage bias setting method, device, computer equipment and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108898230B (en) | Equipment management method and management server | |
| CN104572373A (en) | Memory voltage bias test method based on SVID | |
| US8898358B2 (en) | Multi-protocol communication on an I2C bus | |
| CN107636620B (en) | Link retraining based on runtime performance characteristics | |
| DE112017004963T5 (en) | TENSION-MODULATED CONTROL LANE | |
| CN105909545A (en) | Whole cabinet fan speed regulation method based on CPU Margin temperature | |
| US9746890B2 (en) | Method and electronic device for generating a reference voltage | |
| US20120278701A1 (en) | Automatically Generating And Porting A Cascading Style Sheets ('CSS') Style Sheet | |
| CN104965729A (en) | Method for automatically setting BIOS default value of server | |
| US10345884B2 (en) | Mechanism to provide workload and configuration-aware deterministic performance for microprocessors | |
| US10802742B2 (en) | Memory access control | |
| JP2011530102A (en) | Adjusting power consumption for application specific integrated circuits | |
| CN104751892B (en) | Semiconductor device | |
| CN113254086A (en) | Deployment of BIOS to operating system data exchange | |
| CN106200734A (en) | Voltage generator element | |
| CN104035018A (en) | Voltage self-adaptive adjustment circuit and chip | |
| US9697792B2 (en) | Multi-protocol support for display devices | |
| US10649484B2 (en) | Dynamic adaptive clocking for non-common-clock interfaces | |
| CN204116848U (en) | A kind of many power control circuits | |
| US10324777B2 (en) | Register-based communications interface | |
| CN112306218B (en) | Control device and adjustment method | |
| CN101221456A (en) | Electronic device | |
| CN105159858A (en) | Control circuit, connecting wire and control method thereof | |
| TWI740632B (en) | Computer apparatus and power gating circuit | |
| CN104572381A (en) | Method for voltage bias for memory through BIOS |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150429 |
|
| RJ01 | Rejection of invention patent application after publication |