CN104650194A - Peptide dentritic macromolecular drug and preparation method and application thereof - Google Patents
Peptide dentritic macromolecular drug and preparation method and application thereof Download PDFInfo
- Publication number
- CN104650194A CN104650194A CN201510079479.7A CN201510079479A CN104650194A CN 104650194 A CN104650194 A CN 104650194A CN 201510079479 A CN201510079479 A CN 201510079479A CN 104650194 A CN104650194 A CN 104650194A
- Authority
- CN
- China
- Prior art keywords
- peptide
- dendrimer
- peptide dendrimer
- drug
- dendrimers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 170
- 239000003814 drug Substances 0.000 title claims abstract description 101
- 229940079593 drug Drugs 0.000 title claims abstract description 97
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000000412 dendrimer Substances 0.000 claims abstract description 170
- 229920000736 dendritic polymer Polymers 0.000 claims abstract description 170
- 125000000524 functional group Chemical group 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 9
- 235000001014 amino acid Nutrition 0.000 claims description 30
- 150000001413 amino acids Chemical class 0.000 claims description 30
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 23
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 21
- 125000001041 indolyl group Chemical group 0.000 claims description 15
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 12
- 239000004472 Lysine Substances 0.000 claims description 12
- 239000002246 antineoplastic agent Substances 0.000 claims description 11
- 229940041181 antineoplastic drug Drugs 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 125000003277 amino group Chemical group 0.000 claims description 9
- 238000006482 condensation reaction Methods 0.000 claims description 8
- 239000004475 Arginine Substances 0.000 claims description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 3
- 235000003704 aspartic acid Nutrition 0.000 claims description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 3
- 235000013922 glutamic acid Nutrition 0.000 claims description 3
- 239000004220 glutamic acid Substances 0.000 claims description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004473 Threonine Substances 0.000 claims description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 2
- 235000002374 tyrosine Nutrition 0.000 claims description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims 1
- 235000008521 threonine Nutrition 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 9
- 230000004071 biological effect Effects 0.000 abstract description 7
- 230000003321 amplification Effects 0.000 abstract description 5
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 3
- 238000009509 drug development Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 102000006395 Globulins Human genes 0.000 abstract 1
- 108010044091 Globulins Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 18
- 206010028980 Neoplasm Diseases 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 230000003993 interaction Effects 0.000 description 14
- 230000000259 anti-tumor effect Effects 0.000 description 13
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 10
- 102000039446 nucleic acids Human genes 0.000 description 10
- 108020004707 nucleic acids Proteins 0.000 description 10
- 150000007523 nucleic acids Chemical class 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- 238000010511 deprotection reaction Methods 0.000 description 8
- 239000002547 new drug Substances 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000022131 cell cycle Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 150000007530 organic bases Chemical class 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- GOLXRNDWAUTYKT-UHFFFAOYSA-N 3-(1H-indol-3-yl)propanoic acid Chemical compound C1=CC=C2C(CCC(=O)O)=CNC2=C1 GOLXRNDWAUTYKT-UHFFFAOYSA-N 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000012827 research and development Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102100028999 High mobility group protein HMGI-C Human genes 0.000 description 3
- 101000986379 Homo sapiens High mobility group protein HMGI-C Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 3
- 238000012764 semi-quantitative analysis Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 tryptophan) Chemical class 0.000 description 3
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 3
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- FBVSXKMMQOZUNU-NSHDSACASA-N N2,N6-Bis{[(2-methyl-2-propanyl)oxy]carbonyl}lysine Chemical compound CC(C)(C)OC(=O)NCCCC[C@@H](C(O)=O)NC(=O)OC(C)(C)C FBVSXKMMQOZUNU-NSHDSACASA-N 0.000 description 2
- 108010087230 Sincalide Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000010609 cell counting kit-8 assay Methods 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000012679 convergent method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229940042040 innovative drug Drugs 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- NFVNYBJCJGKVQK-ZDUSSCGKSA-N N-[(Tert-butoxy)carbonyl]-L-tryptophan Chemical compound C1=CC=C2C(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CNC2=C1 NFVNYBJCJGKVQK-ZDUSSCGKSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000012678 divergent method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000003168 generic drug Substances 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000005917 in vivo anti-tumor Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种肽类树状大分子药物及其制备方法和应用,属于生物医学领域,所述药物包括肽类树状大分子骨架和端基功能化基团。通过所述端基功能化基团保证药物的生物学活性,所述肽类树状大分子外围可以接枝大量的端基功能化基团,从而通过树状大分子的放大效应有效地放大端基功能化基团的生物学效应。所述药物具有精确的分子结构,丰富的表面官能团,良好的水溶性,还具有类球蛋白和易被细胞摄取等生物学特点,丰富了肽类树状大分子的生物学应有和促进了肽类药物的发展。所述的制备方法,工艺简单,且能够通过控制各原料的配备来精确控制肽类树状大分子药物的结构。The invention discloses a peptide dendrimer medicine and its preparation method and application, belonging to the field of biomedicine. The medicine comprises a peptide dendrimer skeleton and a terminal functional group. The biological activity of the drug is ensured by the terminal functional group, and a large number of terminal functional groups can be grafted on the periphery of the peptide dendrimer, so that the terminal can be effectively amplified through the amplification effect of the dendrimer. Biological effects of functional groups. The drug has a precise molecular structure, abundant surface functional groups, good water solubility, and also has biological characteristics such as globulin and easy uptake by cells, which enriches the biological characteristics of peptide dendrimers and promotes Peptide drug development. The preparation method has a simple process, and can accurately control the structure of the peptide dendrimer drug by controlling the preparation of each raw material.
Description
技术领域technical field
本发明属于生物医学领域,具体涉及一种治疗型肽类树状大分子抗癌药物。The invention belongs to the field of biomedicine, and in particular relates to a therapeutic peptide dendrimer anticancer drug.
技术背景technical background
随着环境污染、食品安全等问题日趋严重,恶性肿瘤等重大疾病的发病率显著增高,疾病治疗引起了人们的广泛关注。目前,基于化学药物的化疗是目前最行之有效的疾病治疗方法之一;通过药物分子作用于肿瘤细胞以实现疾病治疗的目的。然而,新药的开发和应用一直以来是癌症治疗研究的重大难题,但新药的开发是提高药物治疗效果、降低毒副作用、实现多药耐药逆转的重大策略。With the increasingly serious problems of environmental pollution and food safety, the incidence of major diseases such as malignant tumors has increased significantly, and the treatment of diseases has attracted widespread attention. At present, chemotherapy based on chemical drugs is one of the most effective methods of disease treatment; drug molecules act on tumor cells to achieve the purpose of disease treatment. However, the development and application of new drugs has always been a major problem in cancer treatment research, but the development of new drugs is an important strategy to improve the efficacy of drugs, reduce side effects, and achieve the reversal of multidrug resistance.
中国是世界上最大的药物生产和出口大国,但其中仿制药生产占到97%以上。为了实现由医药大国向医药强国的发展目标,加强创新药物的研究和开发势在必行。国家通过各种政策、科技项目等推动“重大新药创制”的发展,鼓励创新药研发、引导新药产业化。到目前为止,发明拥有自主知识产权的新药仍然是我国药物研发的重大挑战。新的靶标探索和新药的分子设计是新药研制的重要突破口。China is the largest drug production and export country in the world, but the production of generic drugs accounts for more than 97%. In order to realize the goal of developing from a big country in medicine to a powerful country in medicine, it is imperative to strengthen the research and development of innovative drugs. The state promotes the development of "major new drug creation" through various policies and scientific and technological projects, encourages the research and development of innovative drugs, and guides the industrialization of new drugs. So far, inventing new drugs with independent intellectual property rights is still a major challenge for my country's drug research and development. The discovery of new targets and the molecular design of new drugs are important breakthroughs in the development of new drugs.
近年来,天然产物提取、前药和金属类药物的研究和开发在癌症治疗中卓有成效。引人注目的是,基于天然氨基酸的肽类药物在抗肿瘤治疗的优势不断凸显,例如其特异性的作用靶点、高效的生物学活性和低的毒副作用。研究者们正试图通过设计和构建具有不同氨基酸序列和分子结构的肽类药物以获得高效的抗肿瘤药物。目前,肽类药物面临的重大挑战在于生产成本高、合成和纯化难度大、水溶性差、细胞摄取量低等主要问题;因此开发一类具有易合成、高效的肽类药物对新药研制具有重大意义。In recent years, the research and development of natural product extraction, prodrugs and metallodrugs have been fruitful in cancer treatment. Strikingly, the advantages of peptide drugs based on natural amino acids in anti-tumor therapy have been highlighted, such as their specific targets, high-efficiency biological activity, and low side effects. Researchers are trying to obtain highly effective antitumor drugs by designing and constructing peptide drugs with different amino acid sequences and molecular structures. At present, the major challenges facing peptide drugs are high production costs, difficult synthesis and purification, poor water solubility, and low cellular uptake; therefore, the development of a class of peptide drugs with easy synthesis and high efficiency is of great significance to the development of new drugs .
发明内容Contents of the invention
基于肽类树状大分子的结构精确、多官能度、生物学活性和仿生功能等方面的特点,肽类树状大分子具有成为一种新型肽类药物的潜质。开发一种治疗型树状大分子抗肿瘤药物不仅是从分子结构的角度拓展了肽类新药的开发,同时也完善了树状大分子在生物医学领域的研究。本发明内容,既区别于以往的载体型树状大分子对药物负载的功能开发,又区别于以往线型肽类药物的研制,是一种在结构和组成上创新的肽类新药研制。在此基础上,本发明提供了一种治疗型肽类树状大分子抗癌药物,利用肽类树状大分子的放大效应有效地放大氨基酸中的生物活性基团的生物功能,进而实现疾病治疗的目的。Based on the characteristics of precise structure, multifunctionality, biological activity and biomimetic function of peptide dendrimers, peptide dendrimers have the potential to become a new type of peptide drugs. The development of a therapeutic dendrimer anti-tumor drug not only expands the development of new peptide drugs from the perspective of molecular structure, but also improves the research of dendrimer in the field of biomedicine. The content of the present invention is not only different from the previous functional development of carrier-type dendrimers for drug loading, but also different from the previous development of linear peptide drugs. It is a novel peptide drug development in terms of structure and composition. On this basis, the present invention provides a therapeutic peptide dendrimer anticancer drug, which effectively amplifies the biological functions of the bioactive groups in amino acids by using the amplification effect of peptide dendrimers, thereby realizing the purpose of treatment.
本发明通过以下技术方案来实现:The present invention is realized through the following technical solutions:
一种治疗型肽类树状大分子药物,包括肽类树状大分子骨架和端基功能化基团。通过所述端基功能化基团保证药物的生物学活性,所述肽类树状大分子外围可以接枝大量的端基功能化基团,从而通过树状大分子的放大效应有效地放大端基功能化基团的生物学效应。A therapeutic peptide dendrimer drug comprises a peptide dendrimer skeleton and a terminal functional group. The biological activity of the drug is ensured by the terminal functional group, and a large number of terminal functional groups can be grafted on the periphery of the peptide dendrimer, so that the terminal can be effectively amplified through the amplification effect of the dendrimer. Biological effects of functional groups.
作为可选方式,在上述肽类树状大分子药物中,所述端基功能化基团为具有生物学活性的氨基酸。有效利用氨基酸的生物学功能和生物大分子相互作用特性,且氨基酸残基可以改善药物理化性质(如溶解性),便于在体内发挥治疗作用。氨基酸既作为端基功能化基团又作为肽类树状大分子骨架的支化单元,使肽类树状大分子药物结构更紧凑和精确,具有易合成、易纯化、水溶性好等特性。As an alternative, in the above-mentioned peptide dendrimer drug, the terminal functional group is an amino acid with biological activity. The biological functions of amino acids and the interaction characteristics of biomacromolecules are effectively utilized, and the amino acid residues can improve the physicochemical properties (such as solubility) of drugs, so as to facilitate the therapeutic effect in vivo. Amino acids are used not only as terminal functional groups but also as branching units of the peptide dendrimer skeleton, which makes the structure of peptide dendrimers more compact and precise, and has the characteristics of easy synthesis, easy purification, and good water solubility.
作为可选方式,在上述肽类树状大分子药物中,所述端基功能化基团含有吲哚环。吲哚环能够与核酸相互作用,利用树状大分子的放大效应和核酸超分子作用,干扰细胞周期,可以实现其抗肿瘤活性。As an alternative, in the above-mentioned peptide dendrimer drug, the terminal functional group contains an indole ring. The indole ring can interact with nucleic acid, utilize the amplification effect of dendrimers and the supramolecular action of nucleic acid, interfere with the cell cycle, and realize its anti-tumor activity.
作为可选方式,在上述肽类树状大分子药物中,所述端基功能化基团为色氨酸。利用色氨酸中的吲哚环作为活性基团,利用色氨酸的吲哚环与核酸超分子作用,引起细胞凋亡,从而实现肿瘤的治疗;氨基酸残基可以增强药物水溶性;同时色氨酸还作为肽类树状大分子骨架的一部分支化单元。As an alternative, in the above-mentioned peptide dendrimers, the terminal functional group is tryptophan. Using the indole ring in tryptophan as an active group, using the indole ring of tryptophan to interact with nucleic acid supramolecules, causing cell apoptosis, thereby realizing the treatment of tumors; amino acid residues can enhance the water solubility of drugs; Amino acids also serve as part of the branching units of the peptide dendrimer backbone.
作为可选方式,在上述肽类树状大分子药物中,所述肽类树状大分子是以氨基酸为支化单元的一代或二代或三代或四代肽类树状大分子。As an alternative, in the above-mentioned peptide dendrimer drug, the peptide dendrimer is a first-generation or second-generation or third-generation or fourth-generation peptide dendrimer with amino acids as branching units.
作为可选方式,在上述肽类树状大分子药物中,所述肽类树状大分子骨架中的支化单元为赖氨酸、丝氨酸、谷氨酸、精氨酸、组氨酸、苏氨酸、酪氨酸、天冬氨酸、色氨酸中的至少一种。As an alternative, in the above peptide dendrimer drug, the branching units in the peptide dendrimer skeleton are lysine, serine, glutamic acid, arginine, histidine, threonine At least one of amino acid, tyrosine, aspartic acid, tryptophan.
作为可选方式,在上述肽类树状大分子药物中,所述肽类树状大分子为扇形或球形。采用肽类树状大分子使所述药物具体类球蛋白的结构。As an alternative, in the above peptide dendrimer drug, the peptide dendrimer is fan-shaped or spherical. Peptide dendrimers are used to render the drug specific to the globulin-like structure.
作为可选方式,在上述肽类树状大分子药物中,所述的肽类树状大分子的结构式如下:As an alternative, in the above-mentioned peptide dendrimer drug, the structural formula of the peptide dendrimer is as follows:
其中Rm代表球形分子的核心分子,m代表核心分子的官能度,核心分子的官能度可以为3、4、6或8;K为氨基酸支化单元,G 1.O和G 2.0分别代表一代和二代肽类树状大分子;n代表端基功能化基团。Among them, Rm represents the core molecule of the spherical molecule, m represents the functionality of the core molecule, and the functionality of the core molecule can be 3, 4, 6 or 8; K is the amino acid branching unit, G 1.0 and G 2.0 represent the first generation and Second-generation peptide dendrimers; n represents terminal functional groups.
作为可选方式,在上述肽类树状大分子药物中,所述核心分子为 中的一种。As an alternative, in the above-mentioned peptide dendrimers, the core molecule is One of.
本发明还提供了一种制备所述的肽类树状大分子药物的制备方法,其特征在于,包括以下步骤:The present invention also provides a method for preparing the peptide dendrimer drug, which is characterized in that it comprises the following steps:
(1)制备肽类树状大分子;(1) preparing peptide dendrimers;
(2)在肽类树状大分子外围接枝端基功能化基团。(2) Grafting terminal functional groups on the periphery of peptide dendrimers.
作为可选方式,步骤(1)中所述肽类树状大分子的制备可以采用发散法或收敛法或发散-收敛相结合的方法。As an alternative, the preparation of the peptide dendrimers in step (1) may adopt a divergent method or a convergent method or a combined divergent-convergent method.
作为可选方式,步骤(1)中所述肽类树状大分子的制备方法具体为:As an alternative, the preparation method of the peptide dendrimer described in step (1) is specifically:
a)对氨基酸进行官能团保护:根据所要制备的肽类树状大分子的核心分子表面官能团的不同对氨基酸进行保护,如核心分子表面官能团为氨基则对氨基酸的氨基进行保护,如核心分子表面官能团为羟基或羧基则对氨基酸的羧基进行保护;a) Protect the functional group of the amino acid: protect the amino acid according to the difference of the surface functional group of the core molecule of the peptide dendrimer to be prepared, if the surface functional group of the core molecule is an amino group, then protect the amino group of the amino acid, such as the surface functional group of the core molecule If it is a hydroxyl or carboxyl group, the carboxyl group of the amino acid is protected;
b)制备一代树状大分子:按比例称取支化核(官能度为n,n>1)、含保护基团的氨基酸(1.5n当量)、缩合剂(1.5n当量)、催化剂(1.5n当量)和有机碱(4n当量),在0℃氮气保护条件下,加入溶剂进行脱水缩合反应;然后在室温下反应,反应结束后,所得溶液经洗涤,干燥,减压浓缩,在有机溶剂中沉淀分离得到带有保护基团第一代肽类树状大分子;b) Preparation of a first-generation dendrimer: Weigh branched cores (functionality n, n>1), amino acids (1.5n equivalents) containing protective groups, condensing agents (1.5n equivalents), catalysts (1.5 n equivalents) and organic bases (4n equivalents), under the condition of 0 ℃ nitrogen protection, add a solvent to carry out dehydration condensation reaction; then react at room temperature, after the reaction is over, the resulting solution is washed, dried, concentrated under reduced pressure, in an organic solvent The first-generation peptide dendrimers with protective groups were obtained by precipitation and separation in medium;
c)脱保护:准确称取第一代肽类树状大分子,脱保护试剂(20n当量),加入溶剂溶解,在氮气保护下室温反应4小时,脱除保护,减压浓缩,通过萃取或沉淀,获得第一代肽类树状大分子;c) Deprotection: Accurately weigh the first-generation peptide dendrimer, deprotection reagent (20n equivalent), add solvent to dissolve, react at room temperature under nitrogen protection for 4 hours, remove protection, concentrate under reduced pressure, and extract or Precipitate to obtain the first generation of peptide dendrimers;
d)制备二代树状大分子:按比例称取第一代肽类树状大分子(官能度为2n)、含保护基团的氨基酸(3n当量)、缩合剂(3n当量)、催化剂(3n当量)和有机碱(8n当量),在0℃氮气保护条件下,加入溶剂进行脱水缩合反应;然后在室温下反应,反应结束后,所得溶液经洗涤,干燥,减压浓缩,在有机溶剂中沉淀得到带有保护基团第二代肽类树状大分子;重复以上脱保护和缩合反应步骤,可得到第三、第四代树状大分子。d) Preparation of second-generation dendrimers: Weigh the first-generation peptide dendrimers (functionality 2n), amino acids (3n equivalents) containing protective groups, condensing agents (3n equivalents), catalysts ( 3n equivalent) and organic base (8n equivalent), under the condition of nitrogen protection at 0 ℃, add a solvent for dehydration condensation reaction; then react at room temperature, after the reaction, the resulting solution is washed, dried, concentrated under reduced pressure, in an organic solvent The second-generation peptide dendrimers with protective groups are obtained by precipitation in medium; the third and fourth-generation dendrimers can be obtained by repeating the above deprotection and condensation reaction steps.
作为可选方式,所述步骤(2)中通过氨基与羧基的缩合反应将端基功能化基团接枝到肽类树状大分子外围。As an optional way, in the step (2), the terminal functional group is grafted to the periphery of the peptide dendrimer through the condensation reaction of the amino group and the carboxyl group.
作为可选方式,当所述肽类树状大分子药物的端基功能化基团为具有生物学活性的氨基酸(如色氨酸)时,直接将该具有生物学活性的氨基酸作为肽类树状大分子骨架最外层对的支化单元制备更高代的树状大分子,即可实现所述步骤(2)中在肽类树状大分子外围接枝端基功能化基团的目的。As an alternative, when the terminal functional group of the peptide dendrimer drug is a biologically active amino acid (such as tryptophan), directly use the biologically active amino acid as a peptide tree The branching unit of the outermost layer pair of the macromolecular skeleton can be used to prepare higher-generation dendrimers, which can achieve the purpose of grafting terminal functional groups on the periphery of the peptide dendrimers in step (2). .
本发明还提供了一种上述的肽类树状大分子药物在制备抗肿瘤药物中的应用。将本发明所述肽类树状大分子药物将其作为一种抗癌药物对肿瘤具有良好的抑制作用。The present invention also provides an application of the above-mentioned peptide dendrimers in the preparation of antitumor drugs. The peptide dendrimer drug of the present invention is used as an anticancer drug and has a good inhibitory effect on tumors.
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps.
本发明的有益效果:Beneficial effects of the present invention:
本发明提出了一种新的治疗型肽类树状大分子抗癌药物,成功解决了肽类药物的水溶性差、穿膜渗透性差和生产成本高等问题,得到了易合成、水溶性好和抗肿瘤活性高的肽类树状大分子抗癌药物。The present invention proposes a new therapeutic peptide dendrimer anticancer drug, which successfully solves the problems of poor water solubility, poor transmembrane permeability and high production cost of peptide drugs, and obtains easy synthesis, good water solubility and anticancer drug. Peptide dendrimer anticancer drug with high tumor activity.
本发明所述的肽类树状大分子抗癌药物,具有精确的分子结构,丰富的表面官能团,还具有类球蛋白和易被肿瘤细胞摄取等生物学特点,丰富了肽类树状大分子的生物学应有和促进了肽类药物的发展。The peptide dendritic macromolecular anticancer drug of the present invention has precise molecular structure, rich surface functional groups, and also has biological characteristics such as globoids and easy uptake by tumor cells, which enriches the peptide dendritic macromolecular The biology should and promote the development of peptide drugs.
在本发明的可选方式中,采用色氨酸为端基功能化氨基酸,利用树状大分子的放大效应,可以使色氨酸的吲哚环与核酸相互作用进而发挥肽类树状大分子药物的生物学功能。In an optional mode of the present invention, tryptophan is used as the terminal functionalized amino acid, and the amplification effect of dendrimers can be used to make the indole ring of tryptophan interact with nucleic acid to develop peptide dendrimers. Biological functions of drugs.
本发明所述的制备方法,工艺简单,且能够通过控制各原料的配备来精确控制肽类药物的结构和功能。The preparation method of the present invention has a simple process, and can accurately control the structure and function of the peptide drug by controlling the preparation of each raw material.
附图说明Description of drawings
图1是本发明所述肽类树状大分子药物的工作原理的示意图。Fig. 1 is a schematic diagram of the working principle of the peptide dendrimer drug of the present invention.
图2是本发明实施例2中所述肽类树状大分子药物的合成路线图。Fig. 2 is a synthetic route diagram of the peptide dendrimer drug described in Example 2 of the present invention.
图3是本发明实施例2中所述肽类树状大分子药物的核磁共振氢谱图。Fig. 3 is the H NMR spectrum of the peptide dendrimer drug described in Example 2 of the present invention.
图4是本发明实施例2中所述肽类树状大分子药物的质谱。Fig. 4 is the mass spectrum of the peptide dendrimer drug described in Example 2 of the present invention.
图5是本发明实施例2中所述肽类树状大分子药物的反相高效液相色谱图。Fig. 5 is a reversed-phase high performance liquid chromatogram of the peptide dendrimer drug described in Example 2 of the present invention.
图6是本发明实施例3中所述肽类树状大分子药物与DNA作用的琼脂糖凝胶电泳。Fig. 6 is an agarose gel electrophoresis of the interaction between the peptide dendrimer drug described in Example 3 of the present invention and DNA.
图7是本发明实施例3中所述肽类树状大分子药物与DNA作用的荧光发射光谱。Fig. 7 is the fluorescence emission spectrum of the interaction between the peptide dendrimer drug described in Example 3 of the present invention and DNA.
图8是本发明实施例3中所述肽类树状大分子药物与DNA作用的透射电镜照片。Fig. 8 is a transmission electron micrograph of the interaction between the peptide dendrimer drug described in Example 3 of the present invention and DNA.
图9是本发明实施例3中所述肽类树状大分子药物与DNA作用的紫外可见光谱。Fig. 9 is the ultraviolet-visible spectrum of the interaction between the peptide dendrimer drug described in Example 3 of the present invention and DNA.
图10是本发明实施例3中所述肽类树状大分子药物与DNA作用的氢谱。Fig. 10 is the hydrogen spectrum of the interaction between the peptide dendrimer drug described in Example 3 of the present invention and DNA.
图11是本发明实施例3中所述肽类树状大分子药物与DNA作用的红外图谱。Fig. 11 is an infrared spectrum of the interaction between the peptide dendrimer drug and DNA in Example 3 of the present invention.
图12是本发明实施例4中所述肽类树状大分子药物对不同肿瘤细胞的细胞存活率。Fig. 12 is the cell survival rate of different tumor cells of the peptide dendrimer drug described in Example 4 of the present invention.
图13是本发明实施例4中所述肽类树状大分子药物与DNA作用的激光共聚焦图片。Fig. 13 is a laser confocal picture of the interaction between the peptide dendrimer drug described in Example 4 of the present invention and DNA.
图14是本发明实施例4中所述肽类树状大分子药物细胞摄取的激光共聚焦图片。Fig. 14 is a laser confocal image of the cellular uptake of the peptide dendrimer drug described in Example 4 of the present invention.
图15是本发明实施例4中所述肽类树状大分子药物与DNA作用的细胞周期分布。Fig. 15 is the cell cycle distribution of the interaction between the peptide dendrimer drug described in Example 4 of the present invention and DNA.
图16是本发明实施例5中BABL/c小鼠治疗21天的肿瘤体积和体重变化。Figure 16 shows the changes in tumor volume and body weight of BABL/c mice treated for 21 days in Example 5 of the present invention.
图17是本发明实施例5中BABL/c小鼠治疗21天后肿瘤组织免疫组化切片照片和半定量数据分析。Fig. 17 is a photo of immunohistochemical section of tumor tissue and analysis of semi-quantitative data after 21 days of treatment of BABL/c mice in Example 5 of the present invention.
具体实施方式:Detailed ways:
以下通过实施例再对本发明的上述内容作进一步的详细说明。但不应当将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明的精神和原则之内做的任何修改,以及根据本领域普通技术知识和惯用手段做出的等同替换或者改进,均应包括在本发明的保护范围内。The above-mentioned content of the present invention will be further described in detail below through the examples. However, this should not be construed as limiting the scope of the above-mentioned subject matter of the present invention to the following examples. Any modification made without departing from the spirit and principles of the present invention, as well as equivalent replacements or improvements made according to ordinary technical knowledge and conventional means in the field shall be included in the protection scope of the present invention.
实施例1:肽类树状大分子的制备Embodiment 1: the preparation of peptide dendrimer
a)对氨基酸进行官能团保护:根据所要制备的肽类树状大分子的核心分子表面官能团的不同对氨基酸进行保护,如核心分子表面官能团为氨基或羟基则对氨基酸的氨基进行保护,如核心分子表面官能团为羧基则对氨基酸的羧基进行保护;a) Protect the functional group of the amino acid: protect the amino acid according to the difference of the surface functional group of the core molecule of the peptide dendrimer to be prepared. If the surface functional group of the core molecule is an amino group or a hydroxyl group, protect the amino group of the amino acid, such as the core molecule If the surface functional group is a carboxyl group, the carboxyl group of the amino acid is protected;
b)制备一代树状大分子:按比例称取支化核(官能度为n,n>1)、含保护基团的氨基酸(1.5n当量)、缩合剂(1.5n当量)、催化剂(1.5n当量)和有机碱(4n当量),在0℃,氮气保护条件下,加入溶剂进行脱水缩合反应;然后在室温下反应,反应结束后,所得溶液经洗涤干燥,减压浓缩,以有机溶剂沉淀得到带有保护基团第一代肽类树状大分子;b) Preparation of a first-generation dendrimer: Weigh branched cores (functionality n, n>1), amino acids (1.5n equivalents) containing protective groups, condensing agents (1.5n equivalents), catalysts (1.5 n equivalents) and an organic base (4n equivalents), at 0°C, under nitrogen protection conditions, add a solvent for dehydration condensation reaction; then react at room temperature, after the reaction, the resulting solution is washed and dried, concentrated under reduced pressure, and organic solvent Precipitate to obtain the first generation of peptide dendrimers with protective groups;
c)脱保护:准确称取第一代肽类树状大分子,脱保护试剂(20n当量),加入溶剂溶解,在氮气保护下室温反应4小时,脱除保护,减压浓缩,通过萃取或沉淀,获得第一代肽类树状大分子;c) Deprotection: Accurately weigh the first-generation peptide dendrimer, deprotection reagent (20n equivalent), add solvent to dissolve, react at room temperature under nitrogen protection for 4 hours, remove protection, concentrate under reduced pressure, and extract or Precipitate to obtain the first generation of peptide dendrimers;
d)制备二代树状大分子:按比例称取第一代肽类树状大分子(官能度为2n)、含保护基团的氨基酸(3n当量)、缩合剂(3n当量)、催化剂(3n当量)和有机碱(8n当量),在0℃,氮气保护条件下,加入溶剂进行脱水缩合反应;然后在室温下反应,反应结束后,所得溶液经洗涤,干燥,减压浓缩,有机溶剂沉淀得到带有保护基团第二代肽类树状大分子;d) Preparation of second-generation dendrimers: Weigh the first-generation peptide dendrimers (functionality 2n), amino acids (3n equivalents) containing protective groups, condensing agents (3n equivalents), catalysts ( 3n equivalent) and organic base (8n equivalent), at 0°C, under the condition of nitrogen protection, add a solvent for dehydration condensation reaction; then react at room temperature, after the reaction, the resulting solution is washed, dried, concentrated under reduced pressure, organic solvent Precipitate to obtain the second-generation peptide dendrimers with protective groups;
重复以上脱保护和缩合反应步骤,可得到第三、第四代树状大分子。By repeating the above deprotection and condensation reaction steps, the third and fourth generation dendrimers can be obtained.
分别选取 中的一种作为支化核,以赖氨酸、精氨酸、组氨酸、谷氨酸或天冬氨酸、色氨酸中的一种或几种作为支化单元,制得一系列一至四代的肽类树状大分子。其结构式如式1所示。select separately One of them is used as a branched core, and one or more of lysine, arginine, histidine, glutamic acid or aspartic acid, and tryptophan are used as branching units to prepare a series of One to four generations of peptide dendrimers. Its structural formula is shown in formula 1.
本实施例中所述缩合剂、催化剂、有机碱、溶剂,可选择现有技术中已知的用于羧基与氨基的脱水缩合的各种缩合剂、催化剂、有机碱、溶剂。The condensing agent, catalyst, organic base, and solvent described in this embodiment can be selected from various condensing agents, catalysts, organic bases, and solvents known in the prior art for the dehydration condensation of carboxyl and amino groups.
实施例2:一种肽类树状大分子药物的具体合成例(合成路线如图2)Embodiment 2: A specific synthetic example of a peptide dendrimer drug (the synthetic route is shown in Figure 2)
一代肽类树状大分子(G1-Poss-Lys)的合成Synthesis of a new generation of peptide dendrimers (G1-Poss-Lys)
将30mL浓盐酸在50℃滴加到350mL甲醇中,继续升高温度到90℃,3-氨基丙基三乙氧基硅烷15 mL缓慢滴加,密闭反应24h,四氢呋喃沉淀,得到八聚(3-氨丙基)倍半硅氧烷盐酸(Poss·HCl)。1H NMR(600 MHz,DMSO-d6)δ8.14(s,2H),3.61-3.59(t,2H),1.69(m,2H),0.75-0.72(t,2H)。Add 30 mL of concentrated hydrochloric acid dropwise to 350 mL of methanol at 50°C, continue to raise the temperature to 90°C, slowly add 15 mL of 3-aminopropyltriethoxysilane dropwise, and react in a closed state for 24 hours, tetrahydrofuran precipitates to obtain octamer (3 - Aminopropyl)silsesquioxane hydrochloride (Poss.HCl). 1 H NMR (600 MHz, DMSO-d 6 ) δ 8.14 (s, 2H), 3.61-3.59 (t, 2H), 1.69 (m, 2H), 0.75-0.72 (t, 2H).
称取2.0g笼型八聚(3-氨丙基)倍半硅氧烷盐酸(Poss·HCl)、8.0g O-苯并三氮唑-四甲基脲六氟磷酸酯(HBTU)和2.5g 1-羟基苯并三唑(HOBT)加入到100mL单颈瓶中,将5.0g Boc-lys(Boc)-OH加入50mL恒压滴液漏斗中,抽真空,充氮气。用注射器加入约40mL重蒸过的DMF溶剂,冰浴搅拌下加入3mL的N,N-二异丙基乙胺(DIPEA),继续搅拌半小时后撤去冰浴,改为室温下反应48h。减压除去溶剂后,加入氯仿溶解,依次用饱和NaHCO3、NaHSO4、NaCl洗涤。用无水MgSO4干燥后,旋除溶剂,在乙腈中重结晶,得到白色粉状固体G1-Poss-Lys-Boc。1H NMR(600 MHz,DMSO-d6)δ7.76(s,1H),6.73(s,2H),3.83(d,1H),3.02-2.86(d,4H),1.46-1.19(m,J=7.0 Hz,26H),1.37(s,6H),0.55(s,2H)。Weigh 2.0g cage-type octamer (3-aminopropyl) silsesquioxane hydrochloride (Poss HCl), 8.0g O-benzotriazole-tetramethyluronium hexafluorophosphate (HBTU) and 2.5 Add 1-g 1-hydroxybenzotriazole (HOBT) into a 100mL single-neck flask, add 5.0g Boc-lys(Boc)-OH into a 50mL constant pressure dropping funnel, vacuumize and fill with nitrogen. Add about 40 mL of distilled DMF solvent with a syringe, add 3 mL of N,N-diisopropylethylamine (DIPEA) under stirring in an ice bath, continue stirring for half an hour, remove the ice bath, and react at room temperature for 48 h. After the solvent was removed under reduced pressure, chloroform was added for dissolution, followed by washing with saturated NaHCO 3 , NaHSO 4 , and NaCl. After drying with anhydrous MgSO 4 , the solvent was spun off and recrystallized in acetonitrile to obtain G1-Poss-Lys-Boc as a white powdery solid. 1 H NMR (600 MHz, DMSO-d 6 )δ7.76(s,1H),6.73(s,2H),3.83(d,1H),3.02-2.86(d,4H),1.46-1.19(m, J=7.0 Hz, 26H), 1.37(s, 6H), 0.55(s, 2H).
脱保护Deprotection
将1.0g的G1-Poss-Lys-Boc白色粉末,加入6mL的三氟乙酸(TFA),室温反应6h。减压旋去TFA,用油泵抽干,加入无水乙醚搅拌有白色沉淀产生,得到化合物G1-Poss-Lys。产物无需提纯,直接用于下步反应。Add 1.0 g of G1-Poss-Lys-Boc white powder to 6 mL of trifluoroacetic acid (TFA), and react at room temperature for 6 h. The TFA was spun off under reduced pressure, pumped dry with an oil pump, added anhydrous ether and stirred, and a white precipitate was formed to obtain the compound G1-Poss-Lys. The product was directly used in the next reaction without purification.
肽类树状大分子药物(G2-Poss-Trp)的合成Synthesis of Peptide Dendrimers (G2-Poss-Trp)
重复G1-Poss-Lys-Boc的合成步骤,将其中的笼型八聚(3-氨丙基)倍半硅氧烷盐酸换成一代肽类树状大分子(G1-POSS-Lys),将Boc-lys(Boc)-OH换成Boc-Trp-OH,合成G2-Poss-Trp-Boc。1H NMR(600MHz,DMSO-d6)δ10.76(s,2H),8.32(s,3H),7.84-6.66(m,10H),4.24-4.16(t,3H),3.02(m,8H),1.27-1.11(s,26H),0.55(s,2H)。Repeat the synthetic steps of G1-Poss-Lys-Boc, and replace the cage octapoly (3-aminopropyl) silsesquioxane hydrochloride with a first-generation peptide dendrimer (G1-POSS-Lys). Boc-lys(Boc)-OH is replaced by Boc-Trp-OH to synthesize G2-Poss-Trp-Boc. 1 H NMR (600MHz,DMSO-d 6 )δ10.76(s,2H),8.32(s,3H),7.84-6.66(m,10H),4.24-4.16(t,3H),3.02(m,8H ), 1.27-1.11(s,26H), 0.55(s,2H).
脱保护与纯化Deprotection and purification
将1.0g的G2-Poss-Trp-Boc的白色粉末,加入2mL的三氟乙酸,室温反应6h。减压旋去TFA,用油泵抽干,加入无水乙醚搅拌有白色沉淀产生,得到化合物G2-Poss-Trp。将得到的G2肽类树状大分子溶于去离子水中,透析3天,冷冻干燥备用,即得到外围为色氨酸的肽类树状大分子药物(G2-Poss-Trp)。Add 1.0 g of white powder of G2-Poss-Trp-Boc to 2 mL of trifluoroacetic acid, and react at room temperature for 6 h. The TFA was spun off under reduced pressure, drained with an oil pump, and anhydrous ether was added to stir to produce a white precipitate to obtain the compound G2-Poss-Trp. The obtained G2 peptide dendrimers were dissolved in deionized water, dialyzed for 3 days, and freeze-dried for later use to obtain peptide dendrimers surrounded by tryptophan (G2-Poss-Trp).
经核磁共振检测(见图3)显示通过该方法成功制备了一代和二代肽类树状大分子(图3为G2-Poss-Trp-Boc的核磁图谱)。为进一步对所合成的化合物进行确定,还使用质谱仪(美国Waters公Q-TOF premier)对所得化合物的分子量进行了测定。结果也证实所得产物是目标化合物(图4为G2-Poss-Trp的质谱图)。进一步用高效液相色谱评价了该肽类树状大分子药物的纯度达99.9%(见图5)。The NMR detection (see Figure 3) shows that the first and second generation peptide dendrimers were successfully prepared by this method (Figure 3 is the NMR spectrum of G2-Poss-Trp-Boc). In order to further confirm the synthesized compound, the molecular weight of the obtained compound was also determined using a mass spectrometer (Q-TOF premier from Waters, USA). The results also confirmed that the obtained product was the target compound (Figure 4 is the mass spectrum of G2-Poss-Trp). The purity of the peptide dendrimer drug was further evaluated by high performance liquid chromatography to reach 99.9% (see FIG. 5 ).
实施例3:对实施例2中制备的肽类树状大分子药物,对其进行下述几方面的检测:Embodiment 3: to the peptide dendrimer drug prepared in embodiment 2, it is carried out the detection of following aspects:
(1)用凝胶电泳阻滞实验观察不同量的肽类树状大分子药物与DNA作用的能力,将不同W/P比(比值为0.1~40)的肽类树状大分子药物与p-EGFPC1质粒DNA(包含200ng DNA)室温复合30min,W/P比指肽类药物中的色氨酸(W)与DNA中的磷酸基团(P)摩尔比。复合物经过1%琼脂糖凝胶电泳100mV 45min,溴化乙锭染色,在254nm的紫外灯下观察,图6结果显示,当肽类树状大分子药物与p-EGFPC1质粒的摩尔比大于10:1时,就能有效与p-EGFPC1质粒相互作用,阻滞其移动。(1) Use gel electrophoresis retardation experiments to observe the ability of different amounts of peptide dendrimer drugs to interact with DNA. - EGFPC1 plasmid DNA (including 200ng DNA) was compounded at room temperature for 30 minutes, and the W/P ratio refers to the molar ratio of tryptophan (W) in the peptide drug to the phosphate group (P) in the DNA. The complex was subjected to 1% agarose gel electrophoresis at 100mV for 45min, stained with ethidium bromide, and observed under a 254nm ultraviolet light. The results in Figure 6 show that when the molar ratio of peptide dendrimers to p-EGFPC1 plasmid is greater than 10 :1, it can effectively interact with the p-EGFPC1 plasmid and block its movement.
(2)同时,荧光光谱进一步说明肽类树状大分子药物(TRPDs)与p-EGFPC1质粒之间存在超分子作用。首先,按照不同W/P比(从20:1到1:1)将肽类树状大分子药物(浓度为5μg/mL)与DNA室温复合30min,通过F-7000荧光分光光度计检测肽类树状大分子药物的荧光发射光谱变化。如图7所示,在肽类树状大分子药物浓度一定的情况下(5μg/mL),随着DNA量的不断增加,肽类树状大分子药物与DNA相互作用,导致色氨酸分子在365nm的特征吸收峰淬灭,肽类树状大分子与DNA形成聚集体导致散射光578nm的吸收峰增强。(2) At the same time, the fluorescence spectrum further indicated that there was a supramolecular interaction between peptide dendrimer drugs (TRPDs) and p-EGFPC1 plasmid. First, according to different W/P ratios (from 20:1 to 1:1), peptide dendrimer drugs (concentration: 5 μg/mL) were compounded with DNA at room temperature for 30 min, and peptides were detected by F-7000 fluorescence spectrophotometer Fluorescence emission spectrum changes of dendrimer drugs. As shown in Figure 7, at a certain concentration of peptide dendrimers (5 μg/mL), as the amount of DNA continues to increase, peptide dendrimers interact with DNA, resulting in tryptophan molecules The characteristic absorption peak at 365nm was quenched, and the formation of aggregates between peptide dendrimers and DNA led to the enhancement of the absorption peak at 578nm of scattered light.
(3)为了进一步探究该肽类树状大分子药物与核酸之间的相互作用,首先,通过透射电镜(TEM)表征了肽类树状大分子药物核酸聚集体的纳米尺度。将肽类树状大分子药物(浓度为100μg/mL)与DNA按照W/P为10室温复合30min后冻干,通过TEM观察肽类树状大分子药物与DNA形成的聚集体。如图8所示,在肽类树状大分子药物为100μg/mL,W/P摩尔比为10时,肽类树状大分子药物与DNA形成约60nm的聚集体。(3) In order to further explore the interaction between the peptide dendrimer drug and nucleic acid, first, the nanoscale of the peptide dendrimer drug nucleic acid aggregate was characterized by transmission electron microscopy (TEM). Peptide dendrimers (concentration: 100 μg/mL) were compounded with DNA at a W/P of 10 at room temperature for 30 min and then freeze-dried. The aggregates formed between peptide dendrimers and DNA were observed by TEM. As shown in Figure 8, when the peptide dendrimer drug concentration is 100 μg/mL and the W/P molar ratio is 10, the peptide dendrimer drug and DNA form aggregates of about 60 nm.
(4)其次,紫外可见吸收光谱表明肽类树状大分子药物与DNA之间存在π-相互作用。首先,按照不同W/P比(从5:1到30:1)将肽类树状大分子药物(浓度为10μg/mL)与DNA室温复合30min,未复合DNA的肽类树状大分子药物(TRPDs)作为对照,通过紫外可见分光光度计检测肽类树状大分子药物的紫外可见光谱变化进而研究肽类树状大分子药物与DNA的π-相互作用。如图9所示,在在肽类树状大分子药物浓度一定的情况下(10μg/mL),随着DNA量的不断增加,由于肽类树状大分子的色氨酸吲哚环与DNA存在π-相互作用,使色氨酸的紫外吸收250-300nm的吸收峰变宽,峰值增加。(4) Secondly, the UV-Vis absorption spectrum indicated that there was a π-interaction between the peptide dendrimers and DNA. First, according to different W/P ratios (from 5:1 to 30:1), the peptide dendrimer drug (concentration: 10 μg/mL) was compounded with DNA at room temperature for 30 min, and the peptide dendrimer drug without DNA complexed (TRPDs) as a control, the UV-Vis spectrum changes of peptide dendrimer drugs were detected by UV-Vis spectrophotometer to study the π-interaction between peptide dendrimer drugs and DNA. As shown in Figure 9, under a certain concentration of peptide dendrimer drug (10 μg/mL), with the continuous increase of DNA amount, due to the tryptophan indole ring of peptide dendrimer and DNA There is a π-interaction, which broadens and increases the peak of the ultraviolet absorption of tryptophan at 250-300nm.
(5)另外,将肽类树状大分子药物与DNA不同W/P(如100:1和25:1)室温复合30min,冷冻干燥,通过核磁研究肽类树状大分子药物与DNA的π-相互作用。如图10所示,核磁结果表明,该肽类树状大分子药物中的色氨酸吲哚环与DNA存在π-相互作用,与肽类树状大分子药物的核磁谱图相比,随着DNA的增加,吲哚环的质子化学位移明显向高场移动,同时峰形变宽。(5) In addition, the peptide dendrimer drug and DNA were compounded at room temperature for 30 min at different W/P (such as 100:1 and 25:1), freeze-dried, and the π ratio between the peptide dendrimer drug and DNA was studied by NMR. -interaction. As shown in Figure 10, the NMR results show that there is a π-interaction between the tryptophan indole ring in the peptide dendrimer drug and DNA. Compared with the NMR spectrum of the peptide dendrimer drug, the With the increase of DNA, the chemical shift of the proton of the indole ring obviously moves to the high field, and the peak shape becomes wider at the same time.
(6)最后,将肽类树状大分子药物与DNA不同W/P(如10:1和1:1)室温复合30min,冷冻干燥,我们通过红外光谱(图11)可以看出,肽类树状大分子药物可以与DNA相互作用导致鸟嘌呤伸缩振动从1698cm-1位移到1675cm-1,PO2对称伸缩振动从1088cm-1位移到1016cm-1.(6) Finally, compound peptide dendrimers and DNA with different W/P (such as 10:1 and 1:1) at room temperature for 30 minutes, and freeze-dry. We can see from infrared spectroscopy (Figure 11) that peptides Dendrimer drugs can interact with DNA, resulting in the displacement of guanine stretching vibration from 1698cm -1 to 1675cm -1 , and the displacement of PO 2 symmetric stretching vibration from 1088cm -1 to 1016cm -1 .
实施例4:生物学评价Embodiment 4: biological evaluation
CCK-8法测定肽类树状大分子药物体外毒性实验。In vitro toxicity test of peptide dendrimers by CCK-8 method.
选择处于生长活跃期的多种肿瘤细胞(选择4T1,HepG2,HeLa,MCF-7,MCF-7/ADR,SKOV3和SKOV3/ADR等7种肿瘤细胞系)接种于96孔板中,培养24小时后,加入实施例2中制得的肽类树状大分子药物,分为4组,给药浓度分别为10ug/mL、50ug/mL、70ug/mL、100ug/mL,每个实验组设置6个平行样,同时设置以下对照组:将所述肽类树状大分子药物分别换成色氨酸、一代赖氨酸,色氨酸/一代赖氨酸混合物以及二代赖氨酸,其余操作相同。继续培养一定时间后,用PBS缓冲液(pH 7.4)冲洗后并更换新的培养基,加入CCK-8,避光继续培养2h,用酶标仪测定490nm处的吸光值,计算细胞存活率。实验结果如图12所示,所述肽类树状大分子药物对各种肿瘤细胞均具有高效的抗肿瘤活性,且抗肿瘤活性随浓度增加而增强。对照组实验结果显示色氨酸、一代赖氨酸,色氨酸/一代赖氨酸混合物以及二代赖氨酸具有良好的生物相容性。Select a variety of tumor cells in the active growth phase (select 7 tumor cell lines such as 4T1, HepG2, HeLa, MCF-7, MCF-7/ADR, SKOV3 and SKOV3/ADR) and inoculate them in 96-well plates, and culture them for 24 hours Afterwards, the peptide dendrimer drug prepared in Example 2 was added, and divided into 4 groups, the administration concentrations were 10ug/mL, 50ug/mL, 70ug/mL, 100ug/mL, and each experimental group was set to 6 parallel samples, and set the following control groups at the same time: replace the peptide dendrimers with tryptophan, first-generation lysine, tryptophan/first-generation lysine mixture, and second-generation lysine, and the rest of the operations same. After continuing to cultivate for a certain period of time, rinse with PBS buffer (pH 7.4) and replace with a new medium, add CCK-8, and continue to cultivate in the dark for 2 hours, measure the absorbance at 490nm with a microplate reader, and calculate the cell survival rate. The experimental results are shown in Figure 12. The peptide dendrimers have highly effective anti-tumor activity against various tumor cells, and the anti-tumor activity is enhanced with the increase of the concentration. The experimental results of the control group showed that tryptophan, first-generation lysine, tryptophan/first-generation lysine mixture and second-generation lysine had good biocompatibility.
体外细胞内荧光变化。Fluorescence changes in cells in vitro.
取肿瘤细胞,加入培养基稀释,按每孔固定个数的密度接种于玻底皿中,待细胞贴壁生长后,加入浓度为10μg/mL的肽类树状大分子药物(蓝色荧光)。细胞培养2小时后,用PBS(pH 7.4)漂洗2遍后,Hoechst 33342标记DNA(蓝色荧光),用PBS(pH 7.4)漂洗2遍后,再加入PBS,用激光共聚焦观察体外细胞内肽类树状大分子药物的荧光变化情况。实验结果如图13所示,在405nm激发的情况下,不仅可以在低波段(400nm到500nm)(图13中a和b)发射荧光,同样在较高波段(550nm到800nm)(图13中c和d)发射荧光,表明在低波段发射的荧光由肽类树状大分子产生,高波段发射的荧光有肽类树状大分子药物与细胞内DNA相互作用导致散射光强度增加,该现象与体外肽类树状大分子药物与DNA复合物荧光光谱变化一致,表明该肽类药物确实可以和细胞内DNA发生相互作用。Take tumor cells, add medium to dilute, inoculate in a glass-bottom dish at a fixed number per well, and add peptide dendrimer drug (blue fluorescence) at a concentration of 10 μg/mL after the cells adhere to the wall. . After the cells were cultured for 2 hours, rinsed twice with PBS (pH 7.4), Hoechst 33342 labeled DNA (blue fluorescence), rinsed twice with PBS (pH 7.4), then added PBS, and observed in vitro cells with confocal laser Fluorescence changes of peptide dendrimers. The experimental results are shown in Figure 13. In the case of excitation at 405nm, not only can fluorescence be emitted in the low band (400nm to 500nm) (a and b in Figure 13), but also in the higher band (550nm to 800nm) (in Figure 13 c and d) Fluorescence emission, indicating that the fluorescence emitted in the low band is produced by peptide dendrimers, and the fluorescence emitted in the high band is due to the interaction between peptide dendrimer drugs and intracellular DNA, resulting in an increase in the intensity of scattered light. This phenomenon It is consistent with the change of fluorescence spectrum of peptide dendrimer drug and DNA complex in vitro, indicating that the peptide drug can indeed interact with intracellular DNA.
体外细胞摄取实验。In vitro cell uptake experiments.
取肿瘤细胞,加入培养基稀释,按每孔固定个数的密度接种于玻底皿中,待细胞贴壁生长后,加入浓度为10μg/mL用FITC标记的肽类树状大分子药物(绿色荧光)。细胞培养几个时间点后,用PBS(pH 7.4)漂洗2遍后,Hoechst 33342标记DNA(蓝色荧光),用PBS(pH 7.4)漂洗2遍后,再加入PBS,用激光共聚焦观察体外细胞摄取肽类树状大分子药物的细胞内分布和变化情况。激光共聚焦实验结果(图14)表明肽类树状大分子药物能有效的进入细胞,并与胞内核酸物质相互作用,从而实现其抗肿瘤效果。Tumor cells were taken, diluted with culture medium, and inoculated in a glass-bottomed dish at a fixed number per well. After the cells adhered to the wall, FITC-labeled peptide dendrimers were added at a concentration of 10 μg/mL (green fluorescence). After the cells were cultured for several time points, rinsed twice with PBS (pH 7.4), Hoechst 33342 labeled DNA (blue fluorescence), rinsed twice with PBS (pH 7.4), then added PBS, and observed in vitro with laser confocal Intracellular distribution and changes of peptide dendrimers uptake by cells. The results of laser confocal experiments ( FIG. 14 ) show that peptide dendrimers can effectively enter cells and interact with intracellular nucleic acid substances to achieve their anti-tumor effects.
细胞凋亡检测。Apoptosis detection.
取肿瘤细胞,加入培养基稀释,按每孔固定个数的密度接种于六孔板中,待细胞贴壁生长后,加入浓度为10μg/mL的肽类树状大分子药物,培养24小时后,收集细胞,并用70%乙醇固定24h,离心,PBS漂洗一遍后,细胞进行PI染色30min,离心,PBS漂洗一遍后,用PBS重悬细胞,通过流式细胞仪观察肽类药物对细胞周期的影响。实验结果如图15所示,该肽类树状大分子药物可以使细胞周期停滞在sub-G1期,而色氨酸、一代赖氨酸,色氨酸/一代赖氨酸混合物以及二代赖氨酸都没有引起细胞周期的改变,肽类树状大分子药物可以通过与核酸超分子作用,进而影响细胞周期,最终导致细胞的凋亡。Take tumor cells, add medium to dilute, inoculate in six-well plate according to the density of fixed number per well, after the cells adhere to the wall, add peptide dendrimers with a concentration of 10 μg/mL, and cultivate for 24 hours , collect the cells, fix with 70% ethanol for 24 hours, centrifuge, rinse with PBS once, stain the cells with PI for 30 minutes, centrifuge, rinse with PBS once, resuspend the cells with PBS, observe the effect of peptide drugs on the cell cycle by flow cytometry Influence. The experimental results are shown in Figure 15. The peptide dendrimer drug can arrest the cell cycle in the sub-G1 phase, while tryptophan, first-generation lysine, tryptophan/first-generation lysine mixture, and second-generation lysine Amino acids did not cause changes in the cell cycle. Peptide dendrimers can interact with nucleic acid supramolecules to affect the cell cycle and eventually lead to cell apoptosis.
实施例5:动物体内抗肿瘤实验。Embodiment 5: antitumor experiment in animal body.
在4周龄BABL/c小鼠(约20-25g)建立4T1肿瘤模型,待肿瘤长至100cm3时,将小鼠随机分组,将肽类树状大分子药物和对照组G2-Lys配置成一定浓度,每只老鼠进行肌肉注射,每只100μL,每隔两天进行一次尾静脉给药,共给药四次,同时每隔2天对肿瘤大小及小鼠体重记录,观察期为21天。实验完毕后将小鼠解剖,制备重要组织和器官切片。实验结果如图16,17和18所示,图16A为体内抗肿瘤实验安排,图16B为在观察期21天内肿瘤相对体积大小的变化,图16C为在观察期21天内肿瘤相对体重的变化,图17A为肿瘤切片免疫组化(H&E),CD-31,Ki-67和TUNEL染色,图17B为肿瘤组织切片CD-31染色阳性细胞半定量分析,图17C为肿瘤组织切片Ki-67染色阳性细胞半定量分析,图17D为肿瘤组织切片TUNEL染色阳性细胞半定量分析。该肽类树状大分子药物可以有效抑制肿瘤生长、新生血管、肿瘤增值,并引起肿瘤细胞的凋亡,同时,小鼠身体状况良好,并没有引起其他器官的病变。The 4T1 tumor model was established in 4-week-old BABL/c mice (about 20-25g). When the tumor grew to 100cm 3 , the mice were randomly divided into groups, and the peptide dendrimer drug and the control group G2-Lys were configured as At a certain concentration, each mouse was injected intramuscularly, 100 μL for each mouse, administered once every two days through the tail vein, and administered four times in total. At the same time, the tumor size and mouse weight were recorded every two days, and the observation period was 21 days. . After the experiment, the mice were dissected to prepare slices of important tissues and organs. The experimental results are shown in Figures 16, 17 and 18, Figure 16A is the arrangement of the in vivo anti-tumor experiment, Figure 16B is the change in the relative volume of the tumor within 21 days of the observation period, and Figure 16C is the change in the relative weight of the tumor during the 21 days of the observation period, Figure 17A is tumor section immunohistochemistry (H&E), CD-31, Ki-67 and TUNEL staining, Figure 17B is the semi-quantitative analysis of tumor tissue section CD-31 staining positive cells, Figure 17C is tumor tissue section Ki-67 staining positive Semi-quantitative analysis of cells, Figure 17D is a semi-quantitative analysis of TUNEL-positive cells in tumor tissue sections. The peptide dendrimer drug can effectively inhibit tumor growth, new blood vessels, tumor proliferation, and induce apoptosis of tumor cells. At the same time, the mice are in good health and have not caused lesions in other organs.
实施例6Example 6
以作为支化核,以色氨酸为支化单元,制得一至四代的肽类树状大分子。按照实施例4所述的生物生物学评价方法,对所得的一至四代的肽类树状大分子药物进行抗肿瘤效果检测。结果显示:一至四代的肽类树状大分子药物都具有良好的水溶性、穿膜渗透性和抗肿瘤效果,且随着代数的增加,抗肿瘤效果增强。由于该治疗型肽类树状大分子的内腔和端基兼具吲哚环结构,能进一步增强其与核酸分子的超分子作用(共轭作用、嵌插作用和静电作用等),因此能够增强其抗肿瘤效果。by As a branching core, tryptophan is used as a branching unit to prepare one to four generations of peptide dendrimers. According to the biobiological evaluation method described in Example 4, the antitumor effect of the obtained first to fourth generation peptide dendrimer drugs was tested. The results showed that the peptide dendrimers of the first to fourth generations all had good water solubility, membrane penetration and anti-tumor effect, and the anti-tumor effect was enhanced with the increase of generations. Since the lumen and end groups of the therapeutic peptide dendrimers have both indole ring structures, it can further enhance its supramolecular interactions with nucleic acid molecules (conjugation, intercalation and electrostatic interactions, etc.), so it can Enhance its anti-tumor effect.
实施例7Example 7
选取与含羧基的吲哚环(如3-吲哚丙酸)缩合,得到以吲哚环为端基功能化基团的0代树枝状大分子药物。选取作为支化核,以氨基酸为支化单元,分别制得1、2、3代树状大分子骨架,分别将各代大分子骨架外围的氨基与含羧基的吲哚环缩合,得1、2、3代树状大分子药物。select Condensation with a carboxyl-containing indole ring (such as 3-indole propionic acid) to obtain a 0-generation dendritic macromolecular drug with the indole ring as the terminal functional group. select As the branched core, the 1st, 2nd, and 3rd generation dendritic macromolecular frameworks were prepared respectively with amino acids as the branching units, and the amino groups on the periphery of the macromolecular frameworks of each generation were condensed with carboxyl-containing indole rings to obtain 1 and 2 , 3rd generation dendrimer drugs.
实施例8Example 8
选取与含羧基的吲哚环(如3-吲哚丙酸)缩合,得到以吲哚环为端基功能化基团的0代树状大分子药物。选取作为支化核,以氨基酸为支化单元,分别制得1、2、3代树状大分子骨架,分别将各代大分子骨架外围的氨基与含羧基的吲哚环缩合,得1、2、3代树状大分子药物。select Condensation with a carboxyl-containing indole ring (such as 3-indole propionic acid) to obtain a 0-generation dendrimer drug with the indole ring as the terminal functional group. select As the branched core, the 1st, 2nd, and 3rd generation dendritic macromolecular frameworks were prepared respectively with amino acids as the branching units, and the amino groups on the periphery of the macromolecular frameworks of each generation were condensed with carboxyl-containing indole rings to obtain 1 and 2 , 3rd generation dendrimer drugs.
按照实施例4所述的生物生物学评价方法,分别对实施例7和8所得的0至3代的肽类树状大分子药物进行抗肿瘤效果检测。实施例7和8所得的0至3代的肽类树状大分子药物的结果基本相同:随着代数的提高,外围色氨酸残基数目的逐步增加;因此,肽类树状大分子与核酸的结合能力增强,抗肿瘤能力逐步提高;随着代数增加引起吲哚残基增加,增强了树状大分子与氨基酸作用的可能性,却降低了树状大分子的水溶性,其抗肿瘤效果弱于含有色氨酸残基的肽类树状大分子。According to the biobiological evaluation method described in Example 4, the anti-tumor effects of the 0-3 generation peptide dendrimer drugs obtained in Examples 7 and 8 were tested respectively. The results of the 0 to 3 generation peptide dendrimer drugs obtained in Examples 7 and 8 are basically the same: as the number of generations increases, the number of peripheral tryptophan residues gradually increases; therefore, the peptide dendrimers and The binding ability of nucleic acid is enhanced, and the anti-tumor ability is gradually improved; with the increase of algebra, the increase of indole residues increases the possibility of the interaction between dendrimers and amino acids, but reduces the water solubility of dendrimers, and its anti-tumor Less effective than peptide dendrimers containing tryptophan residues.
以上所述仅为本发明的优选实施例,对本发明而言仅是说明性的,而非限制性的;本领域普通技术人员理解,在本发明权利要求所限定的精神和范围内对其进行许多改变,修改,甚至等效变更,但都将落入本发明的保护范围。The above is only a preferred embodiment of the present invention, and it is only illustrative of the present invention, rather than restrictive; those of ordinary skill in the art understand that it is carried out within the spirit and scope defined by the claims of the present invention. Many changes, modifications, and even equivalent changes will fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510079479.7A CN104650194B (en) | 2015-02-14 | 2015-02-14 | A kind of peptide dendrimer drug and its preparation method and application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510079479.7A CN104650194B (en) | 2015-02-14 | 2015-02-14 | A kind of peptide dendrimer drug and its preparation method and application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104650194A true CN104650194A (en) | 2015-05-27 |
| CN104650194B CN104650194B (en) | 2019-04-16 |
Family
ID=53241878
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510079479.7A Expired - Fee Related CN104650194B (en) | 2015-02-14 | 2015-02-14 | A kind of peptide dendrimer drug and its preparation method and application |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104650194B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105131092A (en) * | 2015-07-17 | 2015-12-09 | 中国科学院长春应用化学研究所 | Amphiphilic anti-freeze molecule based on silsesquioxane, preparation method thereof and anti-icing surface material |
| CN107261112A (en) * | 2017-07-25 | 2017-10-20 | 四川大学 | A kind of chiral tree-shaped peptides macromolecular induces the application of peptide medicament as autophagy |
| CN107383383A (en) * | 2017-07-21 | 2017-11-24 | 四川大学 | A kind of tree-shaped peptides macromolecular of homochiral and preparation method thereof |
| CN107625968A (en) * | 2017-09-20 | 2018-01-26 | 四川大学 | A tumor-specific tissue-cell double-permeable nanoparticle, preparation method and application thereof |
| WO2021213492A1 (en) * | 2020-04-24 | 2021-10-28 | 上海森辉医药有限公司 | Drug-carrying macromolecule and preparation method therefor |
| CN114272208A (en) * | 2020-12-14 | 2022-04-05 | 南京工业大学 | Micelle-assisted dissociation polypeptide nano-scale cooperative multi-drug delivery system and preparation method thereof |
| CN114276553A (en) * | 2020-12-31 | 2022-04-05 | 南京工业大学 | Monosaccharide functionalized organic nano soft ball and preparation method thereof |
| WO2023231052A1 (en) * | 2022-05-30 | 2023-12-07 | 浙江大学 | Nutritional polypeptide having branched structure and efficient broad-spectrum antibacterial and antifungal functions |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103550781A (en) * | 2013-10-18 | 2014-02-05 | 四川大学 | Self-assembled dendrimer drug carrier, and preparation method and application thereof |
| CN103554923A (en) * | 2013-10-18 | 2014-02-05 | 四川大学 | Peptide type tree-shaped macromolecule self-assembly body as well as preparation method and application thereof |
-
2015
- 2015-02-14 CN CN201510079479.7A patent/CN104650194B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103550781A (en) * | 2013-10-18 | 2014-02-05 | 四川大学 | Self-assembled dendrimer drug carrier, and preparation method and application thereof |
| CN103554923A (en) * | 2013-10-18 | 2014-02-05 | 四川大学 | Peptide type tree-shaped macromolecule self-assembly body as well as preparation method and application thereof |
Non-Patent Citations (2)
| Title |
|---|
| 张屹等: "吲哚类抗肿瘤药物的研究进展", 《化工中间体》 * |
| 顾忠伟,罗奎等: "新型生物医用材料:肽类树枝状大分子及其生物医学应用", 《中国科学:化学》 * |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105131092A (en) * | 2015-07-17 | 2015-12-09 | 中国科学院长春应用化学研究所 | Amphiphilic anti-freeze molecule based on silsesquioxane, preparation method thereof and anti-icing surface material |
| CN105131092B (en) * | 2015-07-17 | 2020-01-03 | 中国科学院长春应用化学研究所 | Silsesquioxane-based amphiphilic antifreeze molecule, preparation method and anti-icing surface material |
| CN107383383A (en) * | 2017-07-21 | 2017-11-24 | 四川大学 | A kind of tree-shaped peptides macromolecular of homochiral and preparation method thereof |
| CN107261112A (en) * | 2017-07-25 | 2017-10-20 | 四川大学 | A kind of chiral tree-shaped peptides macromolecular induces the application of peptide medicament as autophagy |
| CN107261112B (en) * | 2017-07-25 | 2020-04-21 | 四川大学 | Application of a chiral dendritic peptide macromolecule as an autophagy-inducing peptide drug |
| CN107625968A (en) * | 2017-09-20 | 2018-01-26 | 四川大学 | A tumor-specific tissue-cell double-permeable nanoparticle, preparation method and application thereof |
| CN107625968B (en) * | 2017-09-20 | 2020-09-29 | 四川大学 | Tumor-specific tissue-cell double penetration nanoparticle, preparation method and application thereof |
| WO2021213492A1 (en) * | 2020-04-24 | 2021-10-28 | 上海森辉医药有限公司 | Drug-carrying macromolecule and preparation method therefor |
| CN114272208A (en) * | 2020-12-14 | 2022-04-05 | 南京工业大学 | Micelle-assisted dissociation polypeptide nano-scale cooperative multi-drug delivery system and preparation method thereof |
| CN114276553A (en) * | 2020-12-31 | 2022-04-05 | 南京工业大学 | Monosaccharide functionalized organic nano soft ball and preparation method thereof |
| CN114276553B (en) * | 2020-12-31 | 2023-02-21 | 南京工业大学 | Monosaccharide functionalized organic nano soft ball and preparation method thereof |
| WO2023231052A1 (en) * | 2022-05-30 | 2023-12-07 | 浙江大学 | Nutritional polypeptide having branched structure and efficient broad-spectrum antibacterial and antifungal functions |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104650194B (en) | 2019-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104650194A (en) | Peptide dentritic macromolecular drug and preparation method and application thereof | |
| Li et al. | Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent | |
| CN103550781B (en) | Dendrimer self assembly pharmaceutical carrier and its preparation method and application | |
| JP6867084B2 (en) | New cationic polyphosphazene compounds, polyphosphazene-drug conjugate compounds and methods for producing them | |
| CN111298132B (en) | Tree-shaped molecule gemcitabine self-assembled nano prodrug and preparation method and application thereof | |
| CN108379549B (en) | Preparation method and application of anti-cancer supramolecular hydrogel containing casein valine peptide and based on D-configuration short peptide self-assembly | |
| CN103131005B (en) | Amino acid block copolymer and preparation method thereof and mixture | |
| CN105999299B (en) | A kind of small molecule micelle nano drug loading system and its preparation method and application | |
| CN106565825A (en) | Stabilized A7R polypeptide and application of polypeptide in construction of tumor targeted diagnosis and treatment drug delivery system | |
| CN113797335B (en) | Polypeptide-based self-assembled photosensitive nanofiber material, preparation method thereof and application thereof in preparation of antitumor drugs | |
| CN108948152A (en) | An amphiphilic membrane-penetrating peptide bond, its preparation method and use | |
| Gileva et al. | Lipoamino acid-based cerasomes for doxorubicin delivery: Preparation and in vitro evaluation | |
| CN103055324B (en) | Compound of co-carried cis-platinum and adriamycin, micelle and preparation method of micelle | |
| CN107625968B (en) | Tumor-specific tissue-cell double penetration nanoparticle, preparation method and application thereof | |
| CN113135984A (en) | In-situ self-assembly polypeptide derivative responding to pathological microenvironment and application thereof | |
| CN106397765A (en) | Vitamin E-modified polyethyleneimine (PEI) derivative, and synthetic method and application thereof | |
| CN105859990A (en) | Polymer with side chains containing lipoyl, preparation method of polymer, polymer vesica prepared from polymer and application of polymer vesica | |
| CN102526756A (en) | Adriamycin composite, micelle and preparation method for micelle | |
| CN105504293A (en) | Preparation and application of fluorescent star-shaped block copolymer | |
| CN106512021A (en) | Paclitaxel-loading asymmetric dendrimer nanometer drug carrier system and preparation method thereof | |
| CN103768612A (en) | Adriamycin-loaded PEGylated peptide dendrimer targeted drug delivery system and preparation method thereof | |
| CN111420053B (en) | A multifunctional magnetic nanoparticle complex that can be aggregated intracellularly and its preparation method | |
| KR20120126356A (en) | Nanoparticles comprising amphiphilic low molecular weight hyaluronic acid complex and a process for the preparation thereof | |
| CN104208709A (en) | Brain-targeted water soluble drug carrier as well as preparation method and application thereof | |
| CN111995745A (en) | A kind of double lock type polymer and its preparation method and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190416 Termination date: 20210214 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |