[go: up one dir, main page]

CN104729430B - A kind of tower type solar energy thermal power generation heliostat surface testing method - Google Patents

A kind of tower type solar energy thermal power generation heliostat surface testing method Download PDF

Info

Publication number
CN104729430B
CN104729430B CN201510136376.XA CN201510136376A CN104729430B CN 104729430 B CN104729430 B CN 104729430B CN 201510136376 A CN201510136376 A CN 201510136376A CN 104729430 B CN104729430 B CN 104729430B
Authority
CN
China
Prior art keywords
msub
mrow
measured
msubsup
heliostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510136376.XA
Other languages
Chinese (zh)
Other versions
CN104729430A (en
Inventor
朱会宾
王志峰
王华荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201510136376.XA priority Critical patent/CN104729430B/en
Publication of CN104729430A publication Critical patent/CN104729430A/en
Application granted granted Critical
Publication of CN104729430B publication Critical patent/CN104729430B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种塔式太阳能热发电用定日镜面形检测方法,由工控机(4)控制待测定日镜(5),使得CCD相机(2)能够采集定日镜(5)反射的复合条纹图像屏(3)的变形图像,计算机(1)控制CCD相机(2)采集定日镜(5)反射的变形复合条纹图像,结合构造的虚拟参考平面相位分布及镜面斜率与相位的映射模型获得镜面的斜率分布情况。基于广义Hermite插值方法可得待测定日镜(5)镜面的面形。

A method for detecting the surface shape of a heliostat for tower-type solar thermal power generation. The industrial computer (4) controls the heliostat (5) to be measured, so that the CCD camera (2) can collect the composite fringe image screen reflected by the heliostat (5) (3) of the deformed image, the computer (1) controls the CCD camera (2) to collect the deformed composite fringe image reflected by the heliostat (5), and combines the constructed virtual reference plane phase distribution and the mirror slope and phase mapping model to obtain the mirror surface slope distribution. Based on the generalized Hermite interpolation method, the surface shape of the heliotrope (5) to be measured can be obtained.

Description

一种塔式太阳能热发电用定日镜面形检测方法A method for detecting the surface shape of a heliostat for tower-type solar thermal power generation

技术领域technical field

本发明涉及一种定日镜面形检测方法。The invention relates to a method for detecting the surface shape of a heliostat.

背景技术Background technique

塔式太阳能热发电具有聚光倍数高、工作温度高、热传递路程短、热损耗少、系统综合效率高等优点,其输出特性与常规火力发电最为接近,是前景最被看好的光热发电发展路线之一。塔式太阳能热发电主要由定日镜聚光系统、吸热与热能传递系统、发电系统3部分组成。定日镜聚光系统由数量众多的定日镜将太阳光汇聚反射到位于塔上的吸热器,通过吸热器将光能转换成热能,再经过热力循环来发电。定日镜是塔式太阳能热发电站中的核心部件,占电站投资成本的40-50%,是实现系统高效光热转换的载体。塔式太阳能热发电站用定日镜的主要特点为:1)开口面积较大,从几十平米到上百平米;2)镜场中定日镜数量巨大(成千上万,甚至几十万面),且离吸热器距离远,定日镜焦距较大(从几十米到上千米远,对聚光精度要求很高);3)定日镜由多面单元子镜拼接形成复杂曲面将太阳光汇聚反射到吸热器,整体面形要求高。因此,高精度镜面面形是保证定日镜汇聚的太阳光准确反射到达吸热器的前提。然而,一方面,定日镜在安装过程中单元镜拼接形成的实际整体面形与理论设计面形之间存在一定的偏差;另一方面,定日镜在室外运行期间,受到风载荷、自身重力、温度等因素影响使得镜面变形,致使定日镜镜面无法形成理想的曲面,由此造成的镜面面形微小偏差使得反射的太阳辐射偏离吸热器采光口,降低镜场聚光效率。由上述误差因素使得汇聚反射的光斑发生偏移、甚至偏离出吸热器,影响塔的安全,降低聚光效率。因此,快速定日镜镜面面形检测是保证聚光效果,提高镜场安装效率、降低成本、提高镜场聚光效率和电站运行效率的关键。目前,此类镜面面形检测通常采用三坐标机、激光雷达、摄影测量及条纹反射法。相对于前三种测量方法,条纹反射法具有高灵敏度、快速检测、系统简易等优点,适用于检测各类镜面。文献“S.Ulmer,et.al,Solar Energy,2011,85(4)681-687”采用条纹反射方法对西班牙PSA电站中39.6平米定日镜面形进行了检测,获得较好的测量结果。然而,该方法采用四步相移法利用镜场中布置的投影仪向塔上的白屏分别投影水平、垂直两个方向的条纹图像,至少投影十六幅条纹图像,检测的实时性较低,同时整个测量过程只能在夜间进行、且易受外部光源的影响。因此需要一种高效、快速、精确、简易的检测方法对定日镜面形进行检测。Tower-type solar thermal power generation has the advantages of high concentration multiple, high working temperature, short heat transfer distance, less heat loss, and high overall system efficiency. Its output characteristics are the closest to conventional thermal power generation, and it is the most promising development of solar thermal power generation. one of the routes. Tower-type solar thermal power generation is mainly composed of three parts: heliostat concentrating system, heat absorption and heat transfer system, and power generation system. The heliostat concentrating system consists of a large number of heliostats that condense and reflect sunlight to the heat absorber located on the tower, through which the light energy is converted into heat energy, and then power is generated through a thermal cycle. The heliostat is the core component of the tower solar thermal power station, accounting for 40-50% of the investment cost of the station, and is the carrier to realize the efficient light-to-heat conversion of the system. The main characteristics of heliostats used in tower solar thermal power plants are: 1) The opening area is relatively large, ranging from tens of square meters to hundreds of square meters; 2) The number of heliostats in the mirror field is huge (tens of thousands, even tens of 10,000 surfaces), and far away from the heat sink, the focal length of the heliostat is relatively large (from tens of meters to thousands of meters away, which requires high concentration accuracy); 3) The heliostat is formed by splicing multi-faceted unit mirrors The complex curved surface gathers and reflects sunlight to the heat sink, and the overall surface shape requires high requirements. Therefore, the high-precision mirror surface shape is the premise to ensure that the sunlight collected by the heliostat is accurately reflected and reaches the heat sink. However, on the one hand, there is a certain deviation between the actual overall surface shape formed by splicing unit mirrors during the installation process of the heliostat and the theoretical design surface shape; Due to gravity, temperature and other factors, the mirror surface is deformed, so that the mirror surface of the heliostat cannot form an ideal curved surface. The resulting slight deviation of the mirror surface shape makes the reflected solar radiation deviate from the daylight opening of the heat absorber, reducing the concentration efficiency of the mirror field. Due to the above error factors, the focused and reflected light spot is shifted, or even deviated from the heat absorber, which affects the safety of the tower and reduces the light concentration efficiency. Therefore, fast heliostat mirror surface shape detection is the key to ensure the concentrating effect, improve the installation efficiency of the mirror field, reduce the cost, improve the concentrating efficiency of the mirror field and the operation efficiency of the power station. At present, this kind of specular surface shape detection usually adopts three-coordinate machine, laser radar, photogrammetry and fringe reflection method. Compared with the first three measurement methods, the fringe reflection method has the advantages of high sensitivity, fast detection, and simple system, and is suitable for detecting various mirror surfaces. The document "S.Ulmer, et.al, Solar Energy, 2011, 85(4) 681-687" used the fringe reflection method to detect the surface shape of the 39.6 square meter heliostat in the Spanish PSA power station, and obtained good measurement results. However, this method uses a four-step phase-shift method to project horizontal and vertical fringe images to the white screen on the tower with a projector arranged in the mirror field, at least sixteen fringe images are projected, and the real-time performance of detection is low. , while the entire measurement process can only be carried out at night and is easily affected by external light sources. Therefore, an efficient, fast, accurate and simple detection method is needed to detect the surface shape of the heliostat.

发明内容Contents of the invention

本发明的目的是为了克服现有技术存在的不足,提供一种高效、快速、精确、简便的塔式太阳能热发电用定日镜面形检测方法。The object of the present invention is to overcome the deficiencies in the prior art and provide an efficient, fast, accurate and simple detection method for the surface shape of the tower-type solar thermal power generation heliostat.

本发明塔式太阳能热发电用定日镜面形检测方法包括以下步骤:The method for detecting the surface shape of a heliostat for tower-type solar thermal power generation of the present invention comprises the following steps:

1、将复合条纹图像屏安装在吸热塔上吸热器口的下方,调整待测定日镜和吸热塔上的CCD相机的位置,使得CCD相机可观测到待测定日镜反射的变形复合条纹图像;复合条纹图像屏为漫反射屏,所呈现的复合条纹图像在水平方向和垂直方向上的条纹频率相同;1. Install the composite fringe image screen under the heat absorber port on the heat absorbing tower, adjust the positions of the heliostat to be measured and the CCD camera on the heat absorbing tower, so that the CCD camera can observe the deformation composite of the heliotrope to be measured. Stripe image; the composite stripe image screen is a diffuse reflection screen, and the composite stripe image presented has the same stripe frequency in the horizontal direction and the vertical direction;

2、利用CCD相机采集一幅待测定日镜反射的变形复合条纹图像,将此图像信号传输至计算机;2. Use the CCD camera to collect a deformed composite fringe image reflected by the heliostat to be measured, and transmit the image signal to the computer;

3、基于窗口傅里叶滤波及质量引导相位展开方法求取待测定日镜反射的变形复合条纹图像在水平和垂直方向上的相位分布。利用Zernike多项式获取与待测定日镜等面积的虚拟参考平面相位分布,依照虚拟参考平面和待测定日镜的相位分布,获得由待测定日镜面形引起的相位偏移;3. Based on the window Fourier filter and mass-guided phase unwrapping method, the phase distribution in the horizontal and vertical directions of the deformed composite fringe image reflected by the heliotrope to be measured is obtained. Use the Zernike polynomial to obtain the phase distribution of the virtual reference plane with the same area as the heliodon to be measured, and obtain the phase offset caused by the surface shape of the heliodon to be measured according to the phase distribution of the virtual reference plane and the heliodon to be measured;

4、基于CCD相机、定日镜、复合条纹图像屏的空间相对位置,建立由定日镜镜面引起的相位偏移与镜面斜率的数学关系模型,结合步骤3中由定日镜镜面引起的相位偏移得到定日镜镜面在水平和垂直两个方向上的斜率分布;4. Based on the spatial relative positions of the CCD camera, heliostat, and composite fringe image screen, establish a mathematical relationship model between the phase offset and the mirror slope caused by the heliostat mirror, and combine the phase caused by the heliostat mirror in step 3 The slope distribution of the heliostat mirror surface in both horizontal and vertical directions is obtained by offset;

5、利用广义Hermite插值算法进行定日镜的三维面形重构。5. Use the generalized Hermite interpolation algorithm to reconstruct the 3D surface shape of the heliostat.

本发明检测系统包括CCD相机、复合条纹图像屏、待测定日镜、计算机等。复合条纹图像屏安置在吸热口下方,镜场中的待测定日镜受工控机控制运行,安装在塔式太阳能热发电系统吸热塔顶端的CCD相机由计算机控制,采集待测定日镜反射的变形复合条纹图像。与现有检测方法相比,本发明具有以下优点:The detection system of the present invention includes a CCD camera, a composite fringe image screen, a heliostat to be measured, a computer and the like. The composite stripe image screen is placed under the heat-absorbing port, the heliostat to be measured in the mirror field is controlled by the industrial computer, and the CCD camera installed on the top of the heat-absorbing tower of the tower solar thermal power generation system is controlled by the computer to collect the reflection of the heliodon to be measured Deformed composite fringe image of . Compared with existing detection methods, the present invention has the following advantages:

1、本发明采用复合条纹图像屏,基于窗口傅里叶滤波及质量引导相位展开方法获取定日镜在水平及垂直两个方向上的相位分布,只需采集一幅图像即可获得定日镜镜面的相位偏移量,与现有基于四步相移的检测方法相比,本发明具有实时性较高、抗干扰性强、受环境影响较低等特点;1. The present invention uses a composite fringe image screen, and obtains the phase distribution of the heliostat in the horizontal and vertical directions based on the window Fourier filter and the mass-guided phase unwrapping method. Only one image can be collected to obtain the heliostat Compared with the existing detection method based on the four-step phase shift, the phase offset of the mirror surface has the characteristics of high real-time performance, strong anti-interference, and low environmental influence;

2、本发明利用Zernike多项式获取虚拟参考平面相位分布。由于待测定日镜镜面面积较大,获取与待测定日镜等面积大小的标准平面镜的相位分布难以实现,因此首先获取复合条纹图像屏的相位分布,结合Zernike多项式得到与定日镜等面积的虚拟参考平面的相位分布;与现有条纹反射检测方法相比,本发明的灵活性更高。2. The present invention uses Zernike polynomials to obtain the phase distribution of the virtual reference plane. Due to the large mirror area of the heliostat to be measured, it is difficult to obtain the phase distribution of a standard plane mirror with the same area as the heliostat to be measured. Therefore, the phase distribution of the composite fringe image screen is obtained first, and the phase distribution of the heliostat with the same area as the heliostat is obtained by combining the Zernike polynomial. The phase distribution of the virtual reference plane; compared with the existing fringe reflection detection method, the flexibility of the present invention is higher.

3、本发明采用窗口傅里叶滤波对镜面反射的变形复合条纹图像进行相位提取,与传统傅里叶变换方法相比,具有抗干扰性更强、且获取的是水平及垂直两个方向上的相位分布。3. The present invention uses window Fourier filtering to extract the phase of the deformed composite fringe image reflected by the mirror surface. Compared with the traditional Fourier transform method, it has stronger anti-interference, and the acquisition is in both horizontal and vertical directions. phase distribution.

4、本发明基于广义Hermite插值算法对定日镜面形进行三维重构。由梯度或者法向矢量到三维面形的重构过程主要是基于积分计算。在理想情况下,积分与路径无关,但在实际测量过程中由于受到检测噪声、系统偏差等影响,所测得梯度为非保守场,积分路径和积分算法的选取将直接导致不同的重建结果。因此,针对此类大数据量、带噪声、欠采样梯度离散数据,利用广义Hermite插值算法进行三维面形重建,可同时确保局部和全局重建精度。4. The present invention carries out three-dimensional reconstruction on the surface shape of the heliostat based on the generalized Hermite interpolation algorithm. The reconstruction process from gradient or normal vector to 3D surface shape is mainly based on integral calculation. Ideally, the integration has nothing to do with the path, but in the actual measurement process, due to the influence of detection noise and system deviation, the measured gradient is a non-conservative field, and the selection of the integration path and integration algorithm will directly lead to different reconstruction results. Therefore, for such large amount of data, noise, and under-sampled gradient discrete data, the generalized Hermite interpolation algorithm is used for 3D surface reconstruction, which can ensure both local and global reconstruction accuracy.

附图说明Description of drawings

图1应用本发明太阳能热发电用定日镜面形检测方法的检测系统结构示意图;Fig. 1 is a schematic structural diagram of a detection system applying the heliostat surface shape detection method for solar thermal power generation of the present invention;

图2本发明太阳能热发电用定日镜面形检测方法的复合条纹图像。Fig. 2 is the composite fringe image of the method for detecting the surface shape of a heliostat for solar thermal power generation according to the present invention.

具体实施方式detailed description

下面结合附图和具体实施方式进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

如图1所示,本发明太阳能热发电用定日镜面形检测方法所基于的检测系统包括CCD相机2、复合条纹图像屏3、工控机4和计算机1。所述计算机1控制CCD相机2采集图像,并对所获取的图像进行处理;所述CCD相机2安置在吸热塔顶端;所述复合条纹图像屏3安装在吸热塔上;所述工控机4控制待测定日镜5的运行,使得CCD相机2能够采集定日镜5反射的复合条纹图像屏3的变形图像。As shown in FIG. 1 , the detection system based on the method for detecting the surface shape of a heliostat for solar thermal power generation in the present invention includes a CCD camera 2 , a composite fringe image screen 3 , an industrial computer 4 and a computer 1 . The computer 1 controls the CCD camera 2 to collect images, and processes the acquired images; the CCD camera 2 is placed on the top of the heat absorption tower; the composite stripe image screen 3 is installed on the heat absorption tower; the industrial computer 4. Control the operation of the heliostat 5 to be measured, so that the CCD camera 2 can collect the deformed image of the composite fringe image screen 3 reflected by the heliostat 5 .

本发明太阳能热发电用定日镜面形检测方法包括以下步骤:The method for detecting the surface shape of a heliostat for solar thermal power generation of the present invention comprises the following steps:

1、将复合条纹图像屏3安装在吸热塔上吸热器口的下方,调整待测定日镜5和CCD相机2的位置,使得CCD相机2可观测到待测定日镜5反射的变形复合条纹图像;1. Install the composite fringe image screen 3 below the heat absorber port on the heat absorbing tower, adjust the positions of the heliostat 5 to be measured and the CCD camera 2, so that the CCD camera 2 can observe the deformation compounding reflected by the heliodon 5 to be measured. stripe image;

2、基于窗口傅里叶滤波及质量引导相位展开方法求取待测定日镜反射的变形复合条纹图像在水平和垂直方向上的相位分布。利用Zernike多项式获取与待测定日镜等面积的虚拟参考平面相位分布,依照虚拟参考平面和待测定日镜的相位分布,获得由待测定日镜面形引起的相位偏移。2. Based on the window Fourier filter and mass-guided phase unwrapping method, the phase distribution in the horizontal and vertical directions of the deformed composite fringe image reflected by the heliotrope to be measured is obtained. Using the Zernike polynomial to obtain the phase distribution of the virtual reference plane with the same area as the heliodon to be measured, and according to the phase distribution of the virtual reference plane and the heliodon to be measured, the phase offset caused by the surface shape of the heliodon to be measured is obtained.

复合条纹图像屏3呈现的复合条纹图像表达式为:The composite fringe image expression presented by the composite fringe image screen 3 is:

其中(x,y)为复合条纹图像屏3的坐标,px和py分别为水平方向和垂直方向上的条纹周期,I0(x,y)为条纹强度,A(x,y)为背景光强度,B1(x,y)和B2(x,y)分别为条纹在水平方向和垂直方向的幅值。Where (x, y) is the coordinates of the composite fringe image screen 3, p x and p y are the fringe period in the horizontal direction and the vertical direction respectively, I 0 (x, y) is the fringe intensity, and A(x, y) is Background light intensity, B 1 (x,y) and B 2 (x,y) are the amplitudes of the stripes in the horizontal direction and vertical direction, respectively.

基于窗口傅里叶滤波方法获取此复合条纹图像屏3呈现的复合条纹图像的包裹相位:Obtain the wrapping phase of the composite fringe image presented by this composite fringe image screen 3 based on the window Fourier filtering method:

首先对表达式(1)进行窗口傅里叶变换,其变换如下:First, window Fourier transform is performed on expression (1), and the transformation is as follows:

其中Sf(u,v,ξ,η)为I0(x,y)的傅里叶变换,(u,v)为空间坐标,(ξ,η)为频域坐标,窗口函数g(x,y)为高斯函数:in Sf(u,v,ξ,η) is the Fourier transform of I 0 (x,y), (u,v) is the space coordinate, (ξ,η) is the frequency domain coordinate, the window function g(x,y ) is a Gaussian function:

σx和σy分别为高斯函数在x和y向上的标准差。σ x and σ y are the standard deviations of the Gaussian function in the x and y directions, respectively.

其次,将式(2)进行滤波:Secondly, the formula (2) is filtered:

其中θ为阈值。where θ is the threshold.

同时分别选取经过滤波后的频谱在水平和垂直方向上的基频分量。因此,所述的复合条纹图像在水平和垂直方向上的包裹相位分别为:At the same time, the fundamental frequency components in the horizontal and vertical directions of the filtered spectrum are respectively selected. Therefore, the wrapping phase of the composite fringe image in the horizontal and vertical directions They are:

其中,分别为x和y向上的包裹相位,(x,y)为空间坐标,分别为在x和y向上的基频分量,分别为的逆傅里叶变换,g(x,y)为式(2)中的高斯函数。in, with are respectively the wrapping phases of x and y upwards, (x, y) are space coordinates, with respectively the fundamental frequency components in the x and y directions, with respectively with The inverse Fourier transform of , g(x, y) is the Gaussian function in formula (2).

最后,基于质量引导相位展开算法得到包裹相位的相位分布φ0x(x,y)和φ0y(x,y)。Finally, the wrapped phase is obtained based on the mass-guided phase unwrapping algorithm with The phase distributions φ 0x (x,y) and φ 0y (x,y) of .

将上述连续相位分布φ0x(x,y)和φ0y(x,y)表示为Zernike多项式的线性组合表达式:Express the above continuous phase distributions φ 0x (x, y) and φ 0y (x, y) as linear combination expressions of Zernike polynomials:

其中zn为第n项Zernike多项式,为第n项Zernike多项式系数。Where z n is the nth Zernike polynomial, is the nth Zernike polynomial coefficient.

基于最小二乘算法求解系数利用此系数构造虚拟平面的相位分布φ0'x(x,y)和φ0'y(x,y)。Solve the coefficients based on the least squares algorithm Use this coefficient to construct the phase distribution φ 0 ' x (x,y) and φ 0 ' y (x,y) of the virtual plane.

3、基于CCD相机、定日镜、复合条纹图像屏的空间相对位置,建立由定日镜镜面引起的相位偏移与镜面斜率的数学关系模型,结合步骤3中由定日镜镜面引起的相位偏移得到定日镜镜面在水平和垂直两个方向上的斜率分布。3. Based on the spatial relative positions of the CCD camera, heliostat, and composite fringe image screen, establish a mathematical relationship model between the phase offset caused by the heliostat mirror and the slope of the mirror, and combine the phase caused by the heliostat mirror in step 3 Offset obtains the slope distribution of the heliostat mirror surface in both horizontal and vertical directions.

工控机4控制待测定日镜5,使得CCD相机,2能够采集定日镜5反射的复合条纹图像屏3的变形图像。计算机1控制CCD相机采集定日镜5反射的变形复合条纹图像,变形复合条纹图像的表达式如下:The industrial computer 4 controls the heliostat 5 to be measured, so that the CCD camera, 2 can collect the deformed image of the composite fringe image screen 3 reflected by the heliostat 5 . The computer 1 controls the CCD camera to collect the deformed composite fringe image reflected by the heliostat 5, and the expression of the deformed composite fringe image is as follows:

I1(x,y)=a(x,y)+b1(x,y)cos[φx(x,y)]+b2(x,y)cos[φy(x,y)] (7)I 1 (x,y)=a(x,y)+b 1 (x,y)cos[φ x (x,y)]+b 2 (x,y)cos[φ y (x,y)] (7)

其中I1(x,y)为条纹图像的光强分布,a(x,y)为背景光强,b1(x,y)和b2(x,y)分别表示水平方向和垂直方向上的调制度,φx(x,y)和φy(x,y)分别表示水平方向和垂直方向上受待测定日镜5镜面面形调制的相位。Where I 1 (x, y) is the light intensity distribution of the fringe image, a (x, y) is the background light intensity, b 1 (x, y) and b 2 (x, y) represent the horizontal and vertical directions respectively The degree of modulation of , φ x (x, y) and φ y (x, y) represent the phases modulated by the surface shape of the heliostat 5 to be measured in the horizontal and vertical directions, respectively.

将式(7)利用式(2)至式(5)的计算过程及质量引导相位展开算法分别得到定日镜镜面在水平方向和垂直方向上的相位φ1x(x,y)和φ1y(x,y)。Using formula (7) to use the calculation process of formula (2) to formula (5) and the mass-guided phase unwrapping algorithm to obtain the phase φ 1x (x, y) and φ 1y ( x,y).

如图1所示的检测系统可知,定日镜镜面斜率与相位的关系为:The detection system shown in Figure 1 shows that the relationship between the slope of the heliostat mirror and the phase is:

其中α为CCD相机的采集角度,Slopex为镜面在水平方向上的斜率分布,Slopey为镜面在垂直方向上的斜率分布。Where α is the acquisition angle of the CCD camera, Slope x is the slope distribution of the mirror surface in the horizontal direction, and Slope y is the slope distribution of the mirror surface in the vertical direction.

基于获取的镜面相位φ1x(x,y)和φ1y(x,y)及虚拟平面的相位φ0'x(x,y)和φ0'y(x,y),结合式(8)可得镜面在水平方向和垂直方向上的斜率分布Slopex和SlopeyBased on the obtained mirror phases φ 1x (x,y) and φ 1y (x,y) and the phases of the virtual plane φ 0 ' x (x,y) and φ 0 ' y (x,y), combined with formula (8) The slope distributions Slope x and Slope y of the mirror surface in the horizontal and vertical directions can be obtained.

4、利用广义Hermite插值算法重构定日镜的三维面形。4. Using the generalized Hermite interpolation algorithm to reconstruct the three-dimensional surface shape of the heliostat.

采用基于径向基函数的广义Hermite插值算法对获取的待测定日镜镜面斜率进行三维重构。定义插值方法如下:The generalized Hermite interpolation algorithm based on radial basis function is used to reconstruct the slope of the acquired heliotrope to be measured in three dimensions. Define the interpolation method as follows:

其中X=(x,y)T,αi和βi(1≤i≤N)是未知系数,ψ:R2→R为径向基函数,ψx和ψy分别为径向基函数ψ在x和y向上的偏导数,s(X)为待测定日镜面形函数。建立此插值方法解析导数与所测斜率数据Slopex和Slopey的匹配关系:Where X=(x,y) T , α i and β i (1≤i≤N) are unknown coefficients, ψ:R 2 →R is radial basis function, ψ x and ψ y are radial basis function ψ Partial derivatives in the x and y directions, s(X) is the mirror shape function of the day to be determined. Establish the matching relationship between the analytical derivative of this interpolation method and the measured slope data Slope x and Slope y :

其中j为第j个采样点,即求解以下线性方程:Where j is the jth sampling point, that is, to solve the following linear equation:

其中,ψxx,ψxy,ψyy为ψ分别对x的二阶偏导数、对x,y的二阶混合偏导数及对y的二阶偏导数;基于式(11)求取的系数αi和βi,将其应用到式(9)插值中重构面形,获得待测定日镜镜面的三维面形s(X)。Among them, ψ xx , ψ xy , and ψ yy are the second-order partial derivatives of ψ with respect to x, the second-order mixed partial derivatives with respect to x, y, and the second-order partial derivatives with respect to y; the coefficient α calculated based on formula (11) i and β i , apply them to the interpolation of formula (9) to reconstruct the surface shape, and obtain the three-dimensional surface shape s(X) of the heliotropic mirror surface to be measured.

Claims (1)

1.一种塔式太阳能热发电用定日镜面形检测方法,所述的检测方法包括以下步骤:1. a heliostat surface shape detection method for tower type solar thermal power generation, described detection method may further comprise the steps: (1)利用CCD相机采集待测定日镜反射的变形复合条纹图像,并存储在计算机中,再结合窗口傅里叶滤波方法和质量引导相位展开方法获取待测定日镜反射的变形复合条纹图像在水平和垂直方向上的相位分布;(1) Use the CCD camera to collect the deformed composite fringe image of the heliotrope to be measured, and store it in the computer, and then combine the window Fourier filter method and the mass-guided phase unwrapping method to obtain the deformed composite fringe image of the heliotrope to be measured. Phase distribution in horizontal and vertical directions; (2)利用Zernike多项式获取与待测定日镜等面积的虚拟参考平面的相位分布,依照虚拟参考平面和待测定日镜的相位分布,获得由待测定日镜面形引起的相位偏移;(2) Use the Zernike polynomial to obtain the phase distribution of the virtual reference plane with the same area as the heliodon to be measured, and obtain the phase offset caused by the surface shape of the heliodon to be measured according to the phase distribution of the virtual reference plane and the heliodon to be measured; (3)根据检测系统中的CCD相机、待测定日镜和复合条纹图像屏的空间相对位置,建立待测定日镜镜面引起的相位偏移与镜面斜率数学关系模型,结合步骤(1)和步骤(2)中的相位分布,获得定日镜镜面在水平方向和垂直方向上的斜率分布;(3) According to the spatial relative positions of the CCD camera in the detection system, the heliodon to be measured and the composite fringe image screen, establish the mathematical relationship model between the phase shift and the mirror slope caused by the heliotrope to be measured, and combine steps (1) and The phase distribution in (2) obtains the slope distribution of the heliostat mirror surface in the horizontal direction and the vertical direction; (4)基于广义Hermite插值方法和步骤(3)中定日镜斜率分布,获取待测定日镜镜面面形重构;(4) Based on the generalized Hermite interpolation method and the slope distribution of the heliostat in step (3), obtain the surface shape reconstruction of the heliostat to be measured; 所述步骤(2)中,利用Zernike多项式获取与待测定日镜等面积的虚拟参考平面的相位分布的方法如下:In described step (2), utilize Zernike polynomial to obtain and the method for the phase distribution of the virtual reference plane of equal area of the heliodon to be measured is as follows: 基于窗口傅里叶滤波方法获取所述复合条纹图像屏(3)呈现的复合条纹图像的包裹相位分布φ0x(x,y)和φ0y(x,y),将此相位分布表示为Zernike多项式的线性组合表达式:Based on the window Fourier filtering method, obtain the package phase distribution φ 0x (x, y) and φ 0y (x, y) of the composite fringe image presented by the composite fringe image screen (3), and express this phase distribution as a Zernike polynomial The linear combination expression of : <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>&amp;phi;</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>k</mi> <mi>n</mi> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <msubsup> <mi>k</mi> <mn>0</mn> <mn>1</mn> </msubsup> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>k</mi> <mi>n</mi> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;phi;</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>k</mi> <mi>n</mi> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <msubsup> <mi>k</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>k</mi> <mi>n</mi> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>&amp;phi;</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>k</mi> <mi>n</mi> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <msubsup> <mi>k</mi> <mn>0</mn> <mn>1</mn> </msubsup> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>k</mi> <mi>n</mi> <mn>1</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;phi;</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msubsup> <mi>k</mi> <mi>n</mi> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <msubsup> <mi>k</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>k</mi> <mi>n</mi> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> 其中zn为第n项Zernike多项式,为第n项Zernike多项式系数;(x,y)为复合条纹图像屏的坐标;Where z n is the nth Zernike polynomial, Be the nth Zernike polynomial coefficient; (x, y) are the coordinates of the composite fringe image screen; 基于最小二乘算法求解系数利用此系数构造虚拟平面的相位分布φ'0x(x,y)和φ'0y(x,y);Solve the coefficients based on the least squares algorithm Use this coefficient to construct the phase distribution φ' 0x (x,y) and φ' 0y (x,y) of the virtual plane; 所述步骤(4)基于广义Hermite插值和定日镜斜率分布重构待测定日镜镜面三维面形的方法如下:Described step (4) is based on generalized Hermite interpolation and heliostat slope distribution and reconstructs the method for the three-dimensional surface shape of the heliostat mirror surface to be measured as follows: 由所述的步骤(3)获得待测定日镜镜面在水平方向和垂直方向上的斜率分别为Slopex和Slopey,定义Hermite插值函数为:Obtained by described step (3) the slope of the heliostat mirror surface to be measured in the horizontal direction and the vertical direction is respectively Slope x and Slope y , and the Hermite interpolation function is defined as: <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>-</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> 其中X=(x,y)T,αi和βi(1≤i≤N)是未知系数,ψ:R2→R为径向基函数,Where X=(x,y) T , α i and β i (1≤i≤N) are unknown coefficients, ψ:R 2 →R is radial basis function, ψx和ψy分别为径向基函数ψ在x和y向上的偏导数,ψ x and ψ y are the partial derivatives of the radial basis function ψ in the x and y directions, respectively, s(X)为待测定日镜面形函数;(x,y)为复合条纹图像屏的坐标;s(X) is the specular surface function to be measured; (x, y) is the coordinates of the compound fringe image screen; 建立此插值方法解析导数与所测斜率数据Slopex和Slopey的匹配关系:Establish the matching relationship between the analytical derivative of this interpolation method and the measured slope data Slope x and Slope y : <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Slope</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Slope</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <mi>N</mi> </mrow> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Slope</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Slope</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <mi>N</mi> </mrow> 其中j为第j个采样点;Where j is the jth sampling point; 即求解以下线性方程:That is, solve the following linear equation: 其中,ψxx,ψxy,ψyy为ψ分别对x的二阶偏导数、对x,y的二阶混合偏导数及对y的二阶偏导数;Among them, ψ xx , ψ xy , and ψ yy are the second-order partial derivatives of ψ to x, the second-order mixed partial derivatives to x, y, and the second-order partial derivatives to y; 基于求取的系数αi和βi,即获得待测定日镜镜面的三维面形s(X)。Based on the obtained coefficients α i and β i , the three-dimensional surface shape s(X) of the heliotrope to be measured is obtained.
CN201510136376.XA 2015-03-26 2015-03-26 A kind of tower type solar energy thermal power generation heliostat surface testing method Expired - Fee Related CN104729430B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510136376.XA CN104729430B (en) 2015-03-26 2015-03-26 A kind of tower type solar energy thermal power generation heliostat surface testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510136376.XA CN104729430B (en) 2015-03-26 2015-03-26 A kind of tower type solar energy thermal power generation heliostat surface testing method

Publications (2)

Publication Number Publication Date
CN104729430A CN104729430A (en) 2015-06-24
CN104729430B true CN104729430B (en) 2017-09-22

Family

ID=53453556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510136376.XA Expired - Fee Related CN104729430B (en) 2015-03-26 2015-03-26 A kind of tower type solar energy thermal power generation heliostat surface testing method

Country Status (1)

Country Link
CN (1) CN104729430B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043283B (en) * 2015-07-08 2018-04-10 山东师范大学 The method that deformation of body phase measurement is carried out using optical flow field
CN105066904B (en) * 2015-07-16 2017-08-29 太原科技大学 Streamline product tri-dimensional facial type detection method based on phase gradient threshold value
CN108680134B (en) * 2018-05-15 2021-01-19 中测测试科技(杭州)有限公司 Online detection positioning device and method for molded surface installation of solar thermal power generation heliostat
CN109186481B (en) * 2018-09-30 2024-02-06 华南理工大学 Device and method for detecting deformation and vibration of polygonal plate based on digital speckle
CN109458951B (en) * 2018-12-14 2020-10-13 上海晶电新能源有限公司 Heliostat surface shape field detection system and method
CN110763164B (en) * 2019-12-19 2021-04-06 浙江中控太阳能技术有限公司 Heliostat pasting piece assembling detection and self-adaptive adjustment system and method
CN113847885B (en) * 2021-09-24 2022-10-25 云南特可科技有限公司 Multi-dimensional measurement method suitable for strong light reflecting environment
CN116659388B (en) * 2023-08-02 2023-10-20 沈阳仪表科学研究院有限公司 System and method for detecting installation position of each plane mirror in heliostat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440590B1 (en) * 2002-05-21 2008-10-21 University Of Kentucky Research Foundation System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns
CN101813460A (en) * 2009-02-24 2010-08-25 康宁股份有限公司 The shape measure of specular reflection surface
CN102410819A (en) * 2011-08-08 2012-04-11 苏州大学 A method for measuring three-dimensional surface shape of film-based mirror
CN103217126A (en) * 2013-04-24 2013-07-24 中国科学院电工研究所 System and method for detecting surface shape of solar trough type condenser
CN103267495A (en) * 2013-04-24 2013-08-28 中国科学院电工研究所 Detecting method and detecting system for unit mirror surface shape used for tower-type solar thermal power generation
CN104279981A (en) * 2014-10-21 2015-01-14 苏州大学 Mirror surface/mirror-surface-like object absolute surface shape measuring method and device based on stripe reflection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016663A (en) * 1996-06-13 2000-03-25 에이치. 클라에스; 레이몽 드 봉 Method and system for acquiring a three-dimensional shape description

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440590B1 (en) * 2002-05-21 2008-10-21 University Of Kentucky Research Foundation System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns
CN101813460A (en) * 2009-02-24 2010-08-25 康宁股份有限公司 The shape measure of specular reflection surface
CN102410819A (en) * 2011-08-08 2012-04-11 苏州大学 A method for measuring three-dimensional surface shape of film-based mirror
CN103217126A (en) * 2013-04-24 2013-07-24 中国科学院电工研究所 System and method for detecting surface shape of solar trough type condenser
CN103267495A (en) * 2013-04-24 2013-08-28 中国科学院电工研究所 Detecting method and detecting system for unit mirror surface shape used for tower-type solar thermal power generation
CN104279981A (en) * 2014-10-21 2015-01-14 苏州大学 Mirror surface/mirror-surface-like object absolute surface shape measuring method and device based on stripe reflection

Also Published As

Publication number Publication date
CN104729430A (en) 2015-06-24

Similar Documents

Publication Publication Date Title
CN104729430B (en) A kind of tower type solar energy thermal power generation heliostat surface testing method
Ho et al. A photographic flux mapping method for concentrating solar collectors and receivers
CN103217126B (en) A kind of solar groove type condenser surface testing system and method
Röger et al. Techniques to measure solar flux density distribution on large-scale receivers
Abuseada et al. Characterization of a new 10 kWe high flux solar simulator via indirect radiation mapping technique
Dai et al. Numerical investigation of the solar concentrating characteristics of 3D CPC and CPC-DC
CN103267495B (en) Tower type solar energy thermal power generation unit mirror surface-shaped detection method
CN107167092B (en) heliostat surface shape detection system and method based on multi-view image recognition
CN105547469B (en) The general yardstick optical field detection method of flame temperature based on microlens array and pulse laser
CN102116604A (en) Method and device for measuring sun tracking error of heliostat by using image analysis technology
Meriwether et al. New results on equatorial thermospheric winds and the midnight temperature maximum
CN104457610A (en) Solar condenser mirror surface measuring and adjusting method and device
Sallaberry et al. On-site parabolic-trough collector testing in solar thermal power plants: Experimental validation of a new approach developed for the IEC 62862-3-2 standard
CN105806253A (en) Heliostat surface-shape detection device and detection method
CN108225552A (en) Tower power station heliostat field optically focused energy-flux density distribution measurement method
CN104034058B (en) The formation method of tower type solar heat and power system Jing Chang based on GPU
Ulmer et al. Slope measurements of parabolic dish concentrators using color-coded targets
CN115717935A (en) Low-cost high-precision solar radiation measurement method
CN102967379B (en) Wavefront sensor for solar self-adaptive optical system
CN105547485B (en) The general yardstick optical field detection method of flame temperature based on microlens array with modulation laser
CN102252826B (en) Device and method for testing light concentration efficiency of high-parallelism and large-aperture light concentration system
CN108279068A (en) Laser beam quality dynamic measurement device based on four wave lateral shearing interferences
CN102297757A (en) Method and device for testing condensation performance of solar disc type condenser
CN102322957A (en) Spectrum drifting detection method for interference type hyperspectral imager
Huang et al. Theoretical analysis of error transfer from the surface slope to the reflected ray and their application in the solar concentrated collector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170922