[go: up one dir, main page]

CN104741103B - 活化与再生过滤器材料的方法及由此获得的过滤器材料 - Google Patents

活化与再生过滤器材料的方法及由此获得的过滤器材料 Download PDF

Info

Publication number
CN104741103B
CN104741103B CN201410837002.6A CN201410837002A CN104741103B CN 104741103 B CN104741103 B CN 104741103B CN 201410837002 A CN201410837002 A CN 201410837002A CN 104741103 B CN104741103 B CN 104741103B
Authority
CN
China
Prior art keywords
solution
filter
filter material
sodium salt
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410837002.6A
Other languages
English (en)
Other versions
CN104741103A (zh
Inventor
马伦·德尔·卡门·古铁雷斯·库蒂诺
迭戈·阿朗索·贝内加斯·亚日吉
叶夫根尼亚·斯波迪内·斯皮里迪诺娃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Santiago de Chile
Original Assignee
Universidad de Santiago de Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Santiago de Chile filed Critical Universidad de Santiago de Chile
Publication of CN104741103A publication Critical patent/CN104741103A/zh
Application granted granted Critical
Publication of CN104741103B publication Critical patent/CN104741103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明提供了活化与再生过滤器材料的方法及由此获得的过滤器材料。具体讲,本发明涉及一种用于水过滤器的过滤器材料和用于活化及再生该过滤器材料的方法,该过滤器材料基于无机表面。无论该过滤器材料是自然的或合成的,都在其首次使用后被再生,该方法使用惰性盐溶液和微波提供的能量。

Description

活化与再生过滤器材料的方法及由此获得的过滤器材料
技术领域
本发明涉及化学领域,尤其涉及用于活化与再生对人和动物消耗的流体进行过滤的过滤器材料的方法,以及用上述方法获得的经再生和活化的材料。
背景技术
获取来自不同来源的清洁可饮用的纯净水是一项永无止境的任务。经常发现水由于各种原因被污染,水质缺乏安全是世界上大多数国家无法避免的威胁。各种等级的污染导致不断的寻求处理污染的系统,因此,过滤器的使用必不可少。这些过滤器可以根据想要清除的污染物,用不同材料组成。然而,在使用过滤器的同时包含另一个缺陷,利用它们清除了污染物,但污染物被保留在过滤器中,当达到保留期的最大限度(过滤器的有用寿命的顶点)时,需要将其用另一个更换,这时,由于需要更换过滤器的环境污染的新问题就产生了。
存在很多种类的用于过滤器的材料,其中对于已清除的污染物和再生处理两者,无机表面都起重要作用。由于源自不同的结构,铝硅酸盐具有不同比例的铝和硅,并且具有多样的性质。由于成本低廉和容易获得,沸石(zeolites)已经是最多用于此目的的材料之一。
其他疏水微孔材料也曾被描述(文献WO 2007056717)用于生产过滤器设备。也报道过用于除去水的砷污染的组分和方法,其中该方法基于覆盖有生锈金属的浮石(pumice)(美国专利申请第2007017871号)的使用。
此外,专利申请AU 2011340169描述一种基于金属、碳、氧化氮及其它有作用的元素/族(groups)的有机-无机复合材料及其制造方法,该有机-无机复合材料用于从水中除去诸如砷、氟等的阴离子污染物。该有机-无机复合物可以由至少一种生物材料制成,例如,几丁质(chitin)、壳聚糖(chitosan)、生物膜以及诸如铁、铝等的金属盐。在不同条件下,有机-无机复合物显示出对砷和氟的高吸收能力。而且,该文献描述了使用新的再生规程取得的令人惊讶的98%-99%的再生。
专利US 2013292336描述了一种废水净化方法,其基于使用催化氧化法,用于除去可溶性金属。催化氧化法能够制成氧气饱和并且高PH值的过滤水,这导致当在进一步处理阶段中加入诸如碳酸钠的软化剂时可溶性金属的大量沉淀。
除了用于从液体除去污染物的材料,用于再生这些过滤器材料的多种方法也被描述过。例如,文献WO 2009000429涉及一种用于处理浮石的再生方法,所述再生方法基于在有空气流时热能的使用。文献WO 2008022562也描述一种吸附剂和过滤材料的再生方法,该方法基于热能的使用。
另一方面,专利申请US 2009261042描述了一种由吸附剂材料组成的过滤器及其通过使用纳米颗粒的再生处理。
对于浮石和活性炭两者,关于此主题的文献中描述的大多数用于过滤器材料再生的方法都将热能用作除去吸附到它们的杂质的方式(WO 2008022562,DE4443628,US6676839)。
其它方法(文献WO 9102699)报道使用微波辐射从微粒衬底(particulatesubstrate)的表面除去或改造不想要的材料。该方法对于后续或以后使用的可循环衬底特别有用。在该专利中,示例了使用微波辐射除去有机化合物的氧化铝处理。
另一方面,美国专利5,262,024报道了一种通过应用能量波的、与基质(matrix)相关联的离子类的解吸处理。该文献中提到解吸能量可以是微波功率、超声和声能以及电磁势能,并且电解质能够增强解吸。然而,该文献的实施例教导,这种方法对被铀污染的土壤有作用,并且电解质未表现出在示出的解吸处理中的改善。
发明内容
本发明涉及用于活化和再生无机滤波器材料的方法,其基于惰性盐流和微波辐射应用的结合,该无机滤波器材料尤其获取自铝硅酸盐。通过使用浓度为0.5-1.5M的钾或钠的惰性盐溶液,应用来自微波的辐射能600-1000瓦(30到95秒)实现活化。在污染物解吸的常规处理后检验活化效果(批量系统)。
根据本发明一个优选的实施例,为了活化,钾盐溶液是KNO3和KCL,使用浓度是1M,该溶液流和微波辐射一起被应用到过滤器介质1分钟。通过该处理,获得活性为初始产品的90%的产品。
根据本发明另一个优选的实施例,为了活化,钠盐溶液是NaCl和NaNO3,使用浓度是1M,该溶液流和微波辐射一起被应用到过滤器介质1分钟。
为了再生过滤器材料,应用与上述相同的方法,区别仅仅是盐溶液包括分别衍生自KOH或NaOH的盐,而不是KCl或NaCl,浓度为1.5-3.5M,这对于2M的实施方式是优选的浓度。
优选地,本发明的被活化和再生的过滤器材料是沸石。
在有自然大气时执行整个处理,要求在经受惰性盐流和微波辐射的条件下不断搅拌过滤器材料。
附图说明
图1示出本发明关于过滤器材料的活化和再生处理的框图,通过该处理,惰性盐溶液流经该材料,同时该材料受微波辐射源辐射;
图2示出在过滤器材料的活化处理后砷的常规吸附时间;
图3示出在过滤器材料的活化处理后的砷的吸附;
图4示出通过本发明的四个周期的吸附-解吸再生处理后,过滤器材料的砷除去能力。
具体实施方式
本发明提出一种活化和再生过滤器材料的方法,从而从被过滤的流体中同时除去多种污染物。再生的过滤材料优选是无机物,其来源既可以是自然的,也可以是合成的。依照本发明的一种优选的方式,过滤器材料是铝硅酸盐,这通过使用以前的活化处理增加其吸附活性(activity),该以前的活化处理使用惰性盐流和微波辐射的结合。过滤器介质以及用该方法活化的过滤器介质,能够再重用多次,避免随吸附的污染物被清理到周围环境中,这代表了一种降低环境污染的方式。
本申请中提出的再生方法,还允许将污染物集中用于在其他一些采矿或工业处理中的可能的重用。这意味着污染的无机废物的价值增加。
当金属离子具有20mgL-1的初始浓度时,发生砷吸附处理,这获得批量瞬时8-11mgL-1的最大吸附。利用再生处理,能够获得起初材料85%-95%的再生。这些结果获取自8个独立试样的多个试验。在第二周期中使用再生的材料,吸附5-10mg L-1。在提取(recovery)处理中,无砷材料占初始使用材料的9-80%。即使在随后的第四重用周期,该材料每个周期被吸附5-10mgL-1,并在每次重新活化处理中释放90-80%。
本申请另一个目标在于经再生的过滤器材料及其衍生物,以及除去污染物的处理和使用该处理的过滤器材料的再生,该经再生的过滤器材料通过使用本发明的方法而再生。
实现示例
示例1 使用的过滤器的活化
使用1:10的比例用于活化处理,该比例对应于10mL的活化剂(activator)溶液、1克过滤器材料。
活化溶液由KNO3和KCl组成,浓度为1M。在沸石过滤器表面流过上述溶液,同时施加相当于1000瓦的能量的微波辐射。
该处理在有空气并不断搅拌混合物的条件下完成。
一旦该材料用盐溶液活化后,将其以3400rpm离心分离10分钟,丢弃上层清液,将固体沉淀分散在双蒸馏水中,搅动30分钟,同样的处理重复四次。
示例2 污染物的常规吸附分析
在实现表面活化处理之后,在污染物的常规吸附之前,需要确定除去污染物的时间,以确定在接触过滤器材料之后立即发生污染物吸附,而不管接触发生的时间(图1)。
观察到实现了8-10mgL-1的吸附。这意味着使用1:10的比例(被活化材料:活化溶液),实现了所述吸附。
一旦被活化,试样被置于与污染溶液接触以达到平衡,实现如下的方法:
被活化材料的试样与10ml的污染物溶液混合,它们被分散、搅拌并以3400rpm离心分离10分钟。所获得的上层清液被提取用于进一步分析,带有被吸附的阳离子的固体被称重。
示例3 过滤器材料的再生
经受相同的解吸,使用本发明的再生处理的试样具有最大的污染物浓度。
为此,对于过滤器材料,在此情况下,将2M的KNO3和衍生自KOH溶液的盐的溶液流经沸石,并经历1000瓦的微波辐射的处理。
在以上确定试样中存在污染物(尤其是砷)之后,通过原子吸收光谱执行这一过程。
经过四个周期的吸附和除去污染物处理除去污染物,除去比例达到80-95%,这表示所完成的处理允许有效地再生过滤器。

Claims (4)

1.一种用于活化和再生包含自然的或合成的铝硅酸盐的过滤器材料的方法,所述方法包括步骤:
提供以前使用的无机过滤器材料;
在该材料表面上流过浓度在0.5至1.5M之间的钾盐和/或钠盐溶液的第一流,并用具有600至1000瓦效能的微波对其进行辐射;
离心分离所获得的材料;
提取固体沉淀以经受新的过滤周期;
使提取的过滤器材料经受浓度在1.5至3.5M之间的钾盐和/或钠盐溶液的第二流,并用微波对其进行辐射;
再次离心分离该材料;
提取固体沉淀以在新的过滤周期中使用。
2.根据权利要求1所述的方法,其中:
所述第一流的钾盐溶液是KNO3溶液和/或KCl溶液,所述第二流的钾盐溶液是KNO3溶液和/或衍生自KOH的盐溶液;以及
所述第一流的钠盐溶液是NaNO3溶液和/或NaCl溶液,所述第二流的钠盐溶液是NaNO3溶液和/或衍生自NaOH的盐溶液。
3.一种经受活化和再生方法的包含自然的或合成的铝硅酸盐的过滤器材料,所述方法包括:
提供以前使用的无机过滤器材料;
在该材料表面上流过浓度在0.5至1.5M之间的钾盐和/或钠盐溶液的第一流,并用具有600至1000瓦效能的微波对其进行辐射;
离心分离所获得的材料;
提取固体沉淀以经受新的过滤周期;
使提取的过滤器材料经受浓度在1.5至3.5M之间的钾盐和/或钠盐溶液的第二流,并用微波对所述材料进行辐射;
再次离心分离该材料;
提取固体沉淀以在新的过滤周期中使用。
4.根据权利要求3所述的过滤器材料,其中:
所述第一流的钾盐溶液是KNO3溶液和/或KCl溶液,所述第二流的钾盐溶液是KNO3溶液和/或衍生自KOH的盐溶液;以及
所述第一流的钠盐溶液是NaNO3溶液和/或NaCl溶液,所述第二流的钠盐溶液是NaNO3溶液和/或衍生自NaOH的盐溶液。
CN201410837002.6A 2013-12-30 2014-12-29 活化与再生过滤器材料的方法及由此获得的过滤器材料 Active CN104741103B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3788-2013 2013-12-30
CL2013003788A CL2013003788A1 (es) 2013-12-30 2013-12-30 Procedimiento para la activacion y regeneracion de un material filtrante; y material filtrante obtenido.

Publications (2)

Publication Number Publication Date
CN104741103A CN104741103A (zh) 2015-07-01
CN104741103B true CN104741103B (zh) 2019-09-27

Family

ID=53480695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410837002.6A Active CN104741103B (zh) 2013-12-30 2014-12-29 活化与再生过滤器材料的方法及由此获得的过滤器材料

Country Status (3)

Country Link
US (1) US9610563B2 (zh)
CN (1) CN104741103B (zh)
CL (1) CL2013003788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235858B1 (ko) * 2020-04-09 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362122B1 (en) * 1999-11-08 2002-03-26 Uop Llc Regeneration of spent zeolite compositions
US6379435B1 (en) * 1997-06-30 2002-04-30 Sanyo Electric Co., Ltd. Adsorbing device, method of deodorizing therewith, and method of supplying high concentration oxygen
CN102068970A (zh) * 2009-11-20 2011-05-25 北京师范大学 一种含砷活性氧化铝吸附剂的无害化及解吸再生技术
CN103252223A (zh) * 2013-05-15 2013-08-21 东华大学 一种微波活化过硫酸钾再生吸附有机物饱和活性炭的方法
CN103303996A (zh) * 2013-04-02 2013-09-18 中国科学院生态环境研究中心 具有不同表面特征的活性铝氧化物除氟吸附材料的应用
CN103331152A (zh) * 2013-06-09 2013-10-02 李国庆 一种微波再生净水装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262024A (en) 1989-05-08 1993-11-16 Ionex Method for effecting the desorption of ionic species from a soil matrix using wave energy
WO1991002699A1 (en) 1989-08-22 1991-03-07 Commonwealth Scientific And Industrial Research Organisation Microwave method
DE4443628A1 (de) 1994-12-08 1996-06-13 August Gronert Mesinstrumente Verfahren und Vorrichtung zur Reinigung von lösungsmittelhaltiger Luft mittels Aktivkohlefilter und Regeneration des Filters bei Rückgewinnung des Lösungsmittels
US6676839B1 (en) 1999-12-08 2004-01-13 Mcmahon James P. Process for continuous chemical separation
US7491335B2 (en) 2005-05-13 2009-02-17 The Board Of Regents Of The University Of Texas System Removal of arsenic from water with oxidized metal coated pumice
US20090200233A1 (en) 2005-11-08 2009-08-13 Worcester Polytechnic Institute Methods and devices for the removal of organic contaminants from water
AU2007264736A1 (en) 2006-06-27 2008-01-03 Technion Reserch And Development Foundation Ltd. Method for adsorption of fluid contaminants and regeneration of the adsorbent
CN100562352C (zh) 2006-08-17 2009-11-25 张大伟 一种用于水处理的过滤吸附料的再生方法
ITMI20071264A1 (it) 2007-06-22 2008-12-23 Eni Spa Processo per la rigenerazione di zeoliti apolari adsorbenti utilizzate per il trattamento di acque contaminate
WO2012075389A2 (en) 2010-12-02 2012-06-07 Douglas Frederick Sr Method for treating a variety of wastewater streams
AU2011340169A1 (en) 2010-12-06 2013-07-11 Council Of Scientific & Industrial Research Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379435B1 (en) * 1997-06-30 2002-04-30 Sanyo Electric Co., Ltd. Adsorbing device, method of deodorizing therewith, and method of supplying high concentration oxygen
US6362122B1 (en) * 1999-11-08 2002-03-26 Uop Llc Regeneration of spent zeolite compositions
CN102068970A (zh) * 2009-11-20 2011-05-25 北京师范大学 一种含砷活性氧化铝吸附剂的无害化及解吸再生技术
CN103303996A (zh) * 2013-04-02 2013-09-18 中国科学院生态环境研究中心 具有不同表面特征的活性铝氧化物除氟吸附材料的应用
CN103252223A (zh) * 2013-05-15 2013-08-21 东华大学 一种微波活化过硫酸钾再生吸附有机物饱和活性炭的方法
CN103331152A (zh) * 2013-06-09 2013-10-02 李国庆 一种微波再生净水装置

Also Published As

Publication number Publication date
CL2013003788A1 (es) 2014-05-02
CN104741103A (zh) 2015-07-01
US20150182948A1 (en) 2015-07-02
US9610563B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
Alandis et al. Adsorptive applications of montmorillonite clay for the removal of Ag (I) and Cu (II) from aqueous medium
Zhou et al. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin
Emenike et al. A critical review on the removal of mercury (Hg2+) from aqueous solution using nanoadsorbents
US6042731A (en) Method of removing arsenic species from an aqueous medium using modified zeolite minerals
Hammood et al. Adsorption performance of dyes over zeolite for textile wastewater treatment
JP5490035B2 (ja) 汚染土壌の洗浄方法
JP7196276B2 (ja) 変性活性炭およびその使用方法
KR20220079647A (ko) 물에서 오염물질 분자를 제거하고 파괴하기 위한 재사용 가능한 복합 필터 재료, 및 이를 제조 및 사용하는 방법
CN103408209A (zh) 一种利用改性沸石原位控制底泥磷释放的方法
Abdulkareem et al. Treatment of clinoptilolite as an adsorbent for the removal of copper ion from synthetic wastewater solution
CN104741103B (zh) 活化与再生过滤器材料的方法及由此获得的过滤器材料
JP5046853B2 (ja) 重金属類を含有する汚染水の処理剤および処理方法
JP3869451B1 (ja) ダイオキシン類除去法及び除去剤
Temel et al. Investigation of copper (II), zinc (II) and lead (II) removal onto expanded perlite by adsorption from the wastes of metal casting industry: Statistical modeling and optimization.
Subeshan et al. Mercury recycling technologies in its’ end-of-life management: a review
Senthil Rajan et al. Biosorption of chromium (VI+) using tamarind fruit shells in continuously mixed batch reactor
WO2021119100A1 (en) Methods for the destruction of contaminants absorbed to activated carbon
CA2885496C (en) Method for treating solution containing rare earth
Ostovan et al. Evaluation of the sawdust modified with diethylenetriamine as an effective adsorbent for Fe (III) removal from water
Rangasamy et al. Effect of natural zeolite material on hexavalent chromium adsorption
Khosravi et al. Investigation of TiO 2 and ZnO nanoparticles coated on raw pumice for efficient removal of ethidium bromide from aqueous solutions
Rasuli et al. Performance of surfactant-modified forms of clinoptilolite and pumice in nitrate removal from aqueous solution
Ghribi et al. Adsorptive Removal of Congo Red Dye from Aqueous Solution Using Natural Clay in a Fixed Bed Column
Kasman et al. Removal of Iron From Aqueous Solution By Rice Husk: Isotherm and Kinetic Study
Yu et al. Removal of methylene blue from water by NiO-modified silica gel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant