[go: up one dir, main page]

CN104756238B - Method of controlling a switch-mode ion energy distribution system - Google Patents

Method of controlling a switch-mode ion energy distribution system Download PDF

Info

Publication number
CN104756238B
CN104756238B CN201380056068.5A CN201380056068A CN104756238B CN 104756238 B CN104756238 B CN 104756238B CN 201380056068 A CN201380056068 A CN 201380056068A CN 104756238 B CN104756238 B CN 104756238B
Authority
CN
China
Prior art keywords
function
ion
substrate
periodic voltage
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380056068.5A
Other languages
Chinese (zh)
Other versions
CN104756238A (en
Inventor
V·布劳克
D·J·霍夫曼
D·卡特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Engineering Solutions Global Holdings Private Ltd
Original Assignee
Advanced Energy Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/596,976 external-priority patent/US9767988B2/en
Application filed by Advanced Energy Industries Inc filed Critical Advanced Energy Industries Inc
Priority to CN201711336133.6A priority Critical patent/CN107978506B/en
Publication of CN104756238A publication Critical patent/CN104756238A/en
Application granted granted Critical
Publication of CN104756238B publication Critical patent/CN104756238B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2485Electric or electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

Systems, methods, and apparatus for regulating ion energy within a plasma chamber and clamping a substrate to a substrate support are disclosed. An exemplary method comprises: placing a substrate within a plasma chamber; forming a plasma within the plasma chamber; controllably switching electrical energy to the substrate to apply a periodic voltage function to the substrate; and modulating the periodic voltage function in response to a defined ion energy distribution of the surface of the substrate during a plurality of periods of the periodic voltage function so as to achieve the defined ion energy distribution on a time-averaged basis.

Description

控制开关模式离子能量分布系统的方法Method of controlling a switch-mode ion energy distribution system

相关案件和优先权Related Cases and Priorities

此申请是2011年7月28日提交的美国专利申请号No.13/193,299的部分继续申请和2010年8月29日提交的非临时美国专利申请号No.12/870,837的部分继续申请。申请号No.13/193,299和No.12/870,837的细节以其全文引用方式并入本申请中用于所有适合的目的。This application is a continuation-in-part of US Patent Application No. 13/193,299, filed July 28, 2011 and a continuation-in-part of nonprovisional US Patent Application No. 12/870,837, filed August 29, 2010. The details of Application Nos. 13/193,299 and 12/870,837 are incorporated by reference in their entireties into this application for all appropriate purposes.

技术领域technical field

本公开内容大体上涉及等离子体处理。具体而言,本发明涉及等离子体辅助蚀刻、沉积、和/或其它等离子体辅助工艺的方法和装置,但不限于此。The present disclosure generally relates to plasma processing. In particular, but not limited to, the present invention relates to methods and apparatus for plasma assisted etching, deposition, and/or other plasma assisted processes.

背景技术Background technique

很多类型的半导体器件是利用基于等离子体的蚀刻技术制造的。如果导体被蚀刻,则可以将相对于地的负电压施加到导电衬底,以便在衬底导体的表面两端创建基本上一致的负电压,其将带正电的离子吸引向导体,并且结果,碰撞导体的正离子基本上具有相同的能量。Many types of semiconductor devices are fabricated using plasma-based etching techniques. If the conductor is etched, a negative voltage with respect to ground can be applied to the conductive substrate to create a substantially uniform negative voltage across the surface of the substrate conductor, which attracts positively charged ions towards the conductor, and as a result , the positive ions that collide with the conductor have essentially the same energy.

然而,如果衬底是电介质,则不变化的电压对在衬底的表面两端的电压不起作用。但是AC电压(例如,高频)可以施加到导电板(卡盘),以使得AC区域在衬底的表面感应出电压。在AC周期的正半周期期间,衬底吸引相对于正离子的质量为轻的电子;从而在正半周期内很多电子会被吸引到衬底的表面。结果,衬底的表面将会带负电,这使得离子将吸引到带负电的表面。并且当离子撞击衬底的表面时,撞击将材料从衬底的表面逐出,完成了蚀刻。However, if the substrate is a dielectric, the constant voltage has no effect on the voltage across the surface of the substrate. But an AC voltage (eg high frequency) can be applied to the conductive plate (chuck) so that the AC region induces a voltage at the surface of the substrate. During the positive half of the AC cycle, the substrate attracts electrons which are light in mass relative to the positive ions; thus many electrons will be attracted to the surface of the substrate during the positive half cycle. As a result, the surface of the substrate will be negatively charged, so that ions will be attracted to the negatively charged surface. And when the ions strike the surface of the substrate, the impact dislodges material from the surface of the substrate, completing the etch.

在许多情况下,期望有窄离子能量分布,但是将正弦波施加到衬底会感应出宽的离子能量分布,这限制了等离子体处理执行期望的蚀刻轮廓的能力。已知的实现窄离子能量分布技术很昂贵、效率低、难以控制并且可能不利地影响等离子体密度。结果,这些已知的技术没用被商业化所采用。相应地,需要一种系统和方法来解决目前技术的不足并且提供其它新颖和创造性的特征。In many cases, a narrow ion energy distribution is desired, but applying a sine wave to the substrate induces a broad ion energy distribution, which limits the ability of the plasma process to perform the desired etch profile. Known techniques for achieving narrow ion energy distributions are expensive, inefficient, difficult to control, and can adversely affect plasma density. As a result, these known techniques have not been adopted commercially. Accordingly, what is needed is a system and method that addresses the deficiencies of the current technology and provides other novel and inventive features.

发明内容Contents of the invention

以下概括了附图中所示出的本公开内容的示范性实施例。在具体实施方式部分中将更全面地描述这些和其它实施例。然而,应当理解,不存在将本发明限制于发明内容部分或具体实施方式部分中所描述的形式的意图。本领域技术人员可以认识到,有许多会落入如权利要求中所表达的本发明的精神和范围内的修改、等同和替代结构。Exemplary embodiments of the present disclosure illustrated in the drawings are summarized below. These and other embodiments are described more fully in the Detailed Description section. It should be understood, however, that there is no intention to limit the invention to the forms described in this Summary or Detailed Description. Those skilled in the art can recognize that there are many modifications, equivalents and alternative constructions which would fall within the spirit and scope of the invention as expressed in the claims.

根据一个实施例,本发明可以表征为一种用于建立一个或多个等离子体鞘层电压的方法。所述方法可以包括向等离子体室的衬底支撑部提供经修改的周期电压函数。所述衬底支撑部可以耦合到被配置为用于在等离子体中进行处理的衬底。同样,所述经修改的周期电压函数可以包括由离子电流补偿Ic修改的周期电压函数。所述经修改的周期电压函数可以包括脉冲和所述脉冲之间的部分。同样,所述脉冲可以是所述周期电压函数的函数,并且所述脉冲之间的部分的斜率可以是所述离子电流补偿Ic的函数。所述方法还可以包括存取至少表示所述衬底支撑部的电容的有效电容值C1。所述方法最终可以识别将产生到达所述衬底的表面的离子的所定义的离子能量分布函数的所述离子电流补偿Ic的值,其中,所述识别是所述有效电容C1和所述脉冲之间的所述部分的斜率dV0/dt的函数。According to one embodiment, the invention may be characterized as a method for establishing one or more plasma sheath voltages. The method may include providing the modified periodic voltage function to the substrate support of the plasma chamber. The substrate support may be coupled to a substrate configured for processing in a plasma. Likewise, the modified periodic voltage function may comprise a periodic voltage function modified by ion current compensation Ic. The modified periodic voltage function may include pulses and portions between the pulses. Likewise, the pulses may be a function of the periodic voltage function and the slope of the portion between the pulses may be a function of the ion current compensation Ic. The method may further comprise accessing an effective capacitance value Ci representing at least the capacitance of the substrate support. The method may ultimately identify a value of the ion current compensation Ic that will produce a defined ion energy distribution function for ions reaching the surface of the substrate, wherein the identification is the effective capacitance C and the A function of the slope dV 0 /dt of the portion between pulses.

根据另一个实施例,本发明可以描述为一种用于对等离子体进行偏置从而在等离子体处理室内的衬底的表面处实现定义的离子能量的方法。所述方法可包括向衬底支撑部施加包括由离子电流补偿修改的周期电压函数的经修改的周期电压函数。所述方法还可包括对所述经修改的周期电压函数的至少一个循环进行采样以产生电压数据点。所述方法还可包括根据所述电压数据点来估算所述衬底表面处的第一离子能量的数值。同样,所述方法可以包括调节所述经修改的周期电压函数,直到所述第一离子能量等于所述定义的离子能量。According to another embodiment, the invention may be described as a method for biasing a plasma to achieve a defined ion energy at the surface of a substrate within a plasma processing chamber. The method may include applying to the substrate support a modified periodic voltage function comprising a periodic voltage function modified by ion current compensation. The method may also include sampling at least one cycle of the modified periodic voltage function to generate voltage data points. The method may also include estimating a value of a first ion energy at the substrate surface from the voltage data points. Likewise, the method may comprise adjusting the modified periodic voltage function until the first ion energy is equal to the defined ion energy.

根据又一实施例,本发明可以表征为一种用以实现离子能量分布函数宽度的方法。所述方法可包括向等离子体处理室的衬底支撑部提供经修改的周期电压函数。所述方法还可包括在第一时刻和在第二时刻从所述非正弦波形采样至少两个电压。所述方法可以另外包括将所述至少两个电压的斜率计算为dV/dt。同样,所述方法可包括将所述斜率与已知的参考斜率进行比较,以便与离子能量分布函数宽度相对应。最终,所述方法可包括调节所述经修改的周期电压函数,以使得所述斜率接近所述参考斜率。According to yet another embodiment, the invention can be characterized as a method to achieve the breadth of the ion energy distribution function. The method can include providing a modified periodic voltage function to a substrate support of a plasma processing chamber. The method may also include sampling at least two voltages from the non-sinusoidal waveform at a first time instant and at a second time instant. The method may additionally comprise calculating the slope of the at least two voltages as dV/dt. Likewise, the method may include comparing the slope to a known reference slope to correspond to an ion energy distribution function width. Finally, the method may include adjusting the modified periodic voltage function such that the slope approaches the reference slope.

本公开内容的另一方面可表征为一种装置,包括电源、离子电流补偿部件和控制器。所述电源可提供周期电压函数,所述周期电压函数具有脉冲和所述脉冲之间的部分。所述离子电流补偿部件可以修改所述脉冲之间的所述部分的斜率,以形成经修改的周期电压函数。所述经修改的周期电压函数可以被配置为用于提供到衬底支撑部,以用于在等离子体处理室中进行处理。所述控制器可以耦合到所述开关模式电源和所述离子电流补偿部件。所述控制器还可以被配置为识别所述离子电流补偿的数值,如果向所述衬底支撑部提供所述离子电流补偿,将产生到达所述衬底的表面的离子的定义的离子能量分布函数。Another aspect of the disclosure can be characterized as an apparatus including a power supply, an ion current compensation component, and a controller. The power supply may provide a periodic voltage function having pulses and portions between the pulses. The ion current compensation component may modify the slope of the portion between the pulses to form a modified periodic voltage function. The modified periodic voltage function may be configured for provision to a substrate support for processing in a plasma processing chamber. The controller may be coupled to the switched mode power supply and the ion current compensation component. The controller may be further configured to identify a value of the ion current compensation that, if provided to the substrate support, would result in a defined ion energy distribution of ions reaching the surface of the substrate function.

本公开内容的又一方面可以表征为一种非暂时性的有形计算机可读存储介质,其编码有处理器可读指令,以便执行用于监控被配置为处理衬底的等离子体的离子电流的方法。所述方法可以包括:考虑到具有第一数值的离子电流补偿情况下,对经修改的周期电压函数进行采样,并且考虑到具有第二数值的所述离子电流补偿情况下,对所述经修改的周期电压函数进行采样。所述方法还可包括基于所述第一采样和所述第二采样来确定作为时间的函数的所述经修改的周期电压函数的斜率。所述方法还基于所述第一采样和所述第二采样来确定作为时间的函数的所述经修改的周期电压函数的斜率。所述方法最终可包括基于所述斜率来计算所述离子电流补偿的第三数值,在所述第三数值处,所述衬底上的恒定电压将在所述经修改的周期电压函数的至少一个周期内存在。Yet another aspect of the present disclosure can be characterized as a non-transitory tangible computer readable storage medium encoded with processor readable instructions to perform a method for monitoring an ion current of a plasma configured to process a substrate method. The method may include sampling a modified periodic voltage function taking into account ion current compensation having a first value, and taking into account said ion current compensation having a second value, sampling said modified The periodic voltage function is sampled. The method may also include determining a slope of the modified periodic voltage function as a function of time based on the first sample and the second sample. The method also determines a slope of the modified periodic voltage function as a function of time based on the first sample and the second sample. The method may ultimately include calculating a third value of the ion current compensation based on the slope at which the constant voltage across the substrate will be at least exist within one cycle.

本文中进一步详细描述这些实施例和其它实施例。These and other embodiments are described in further detail herein.

附图说明Description of drawings

通过参照以下具体实施方式和附属权利要求同时结合附图,本发明的各个目的和优点和更完整的理解会显而易见并且更易于理解,其中,遍及数个附图,完全相同的附图标记指代相同或类似的元件,并且在附图中:Various objects and advantages and a more complete understanding of the present invention will become apparent and more readily understood by reference to the following detailed description and appended claims when taken in conjunction with the accompanying drawings, wherein like reference numerals refer to throughout the several drawings Identical or similar elements, and in the drawings:

图1示出了根据本发明的一个实施方式的等离子体处理系统的框图;Figure 1 shows a block diagram of a plasma processing system according to one embodiment of the present invention;

图2是示出了图1中所示出的开关模式电源系统的示范性实施例的框图;FIG. 2 is a block diagram illustrating an exemplary embodiment of the switched-mode power supply system shown in FIG. 1;

图3是可用于实现参考图2描述的开关模式偏置电源的部件的原理图表示;FIG. 3 is a schematic representation of components that may be used to implement the switch-mode bias power supply described with reference to FIG. 2;

图4是示出了两个驱动信号波形的时序图;FIG. 4 is a timing diagram showing two drive signal waveforms;

图5是实现在特定离子能量处集中的离子能量分布的操作开关模式偏置电源的单模式的图形表示;5 is a graphical representation of a single mode of operating a switched mode bias power supply to achieve an ion energy distribution focused at a particular ion energy;

图6是示出了其中生成离子能量分布中的两个分立的峰的操作的双模态模式的示图;Figure 6 is a diagram illustrating a dual-modal mode of operation in which two discrete peaks in the ion energy distribution are generated;

图7A和图7B是示出了等离子体中进行的实际、直接离子能量测量的示图;7A and 7B are diagrams showing actual, direct ion energy measurements made in a plasma;

图8是示出了本发明的另一个实施例的框图;Figure 8 is a block diagram illustrating another embodiment of the present invention;

图9A是示出由正弦调制函数调制的示范性周期电压函数的示图;Figure 9A is a graph showing an exemplary periodic voltage function modulated by a sinusoidal modulation function;

图9B是图9A中所示出的周期电压函数的一部分的分解图;Figure 9B is an exploded view of a portion of the periodic voltage function shown in Figure 9A;

图9C示出了由周期电压函数的正弦调制得到的、基于时间平均的得到的离子能量分布;Figure 9C shows the time-averaged resulting ion energy distribution resulting from the sinusoidal modulation of the periodic voltage function;

图9D示出了当周期电压函数由正弦调制函数调制时得到的时间平均的IEDF的等离子体中进行的实际直接离子能量测量;Figure 9D shows actual direct ion energy measurements made in a plasma of the time-averaged IEDF obtained when the periodic voltage function is modulated by a sinusoidal modulation function;

图10A示出了由锯齿调制函数调制的周期电压函数;Figure 10A shows a periodic voltage function modulated by a sawtooth modulation function;

图10B是图10A中所示出的周期电压函数的一部分的分解图;Figure 10B is an exploded view of a portion of the periodic voltage function shown in Figure 10A;

图10C是示出了由图10A和10B中的周期电压函数的正弦调制得到的、基于时间平均的所得到的离子能量的分布的示图;Figure 10C is a graph showing the time-averaged resulting distribution of ion energies resulting from the sinusoidal modulation of the periodic voltage function in Figures 10A and 10B;

图11是在右列中示出IEDF函数并且在左列中示出相关联的调制函数的示图;Figure 11 is a diagram showing the IEDF function in the right column and the associated modulation function in the left column;

图12是示出了其中离子电流补偿部件补偿等离子体室内的离子电流的实施例的框图;Figure 12 is a block diagram illustrating an embodiment in which ion current compensation components compensate for ion current within a plasma chamber;

图13是示出了示范性离子电流补偿部件的图示;Figure 13 is a diagram showing exemplary ion current compensation components;

图14是示出了在图13中所示出的节点Vo处的示范性电压的示图;FIG. 14 is a graph showing exemplary voltages at the node Vo shown in FIG. 13;

图15A-15C是响应于补偿电流在衬底或晶圆的表面处出现的电压波形;15A-15C are voltage waveforms occurring at the surface of a substrate or wafer in response to a compensation current;

图16是可以实施为实现参考图13所描述的电流源的电流源的示范性实施例;FIG. 16 is an exemplary embodiment of a current source that may be implemented to implement the current source described with reference to FIG. 13;

图17A和17B是示出了本发明的其它实施例的框图;17A and 17B are block diagrams illustrating other embodiments of the present invention;

图18是示出了本发明的另一个实施例的框图;Figure 18 is a block diagram illustrating another embodiment of the present invention;

图19是示出了本发明的又一个实施例的框图;Figure 19 is a block diagram illustrating yet another embodiment of the present invention;

图20是可结合参考图1-19所描述的实施例使用的输入参数和控制输出的框图;Figure 20 is a block diagram of input parameters and control outputs that may be used in conjunction with the embodiments described with reference to Figures 1-19;

图21是示出了本发明的又一个实施例的框图;Figure 21 is a block diagram illustrating yet another embodiment of the present invention;

图22是示出了本发明的又一个实施例的框图;Figure 22 is a block diagram illustrating yet another embodiment of the present invention;

图23是示出了本发明的又一个实施例的框图;Figure 23 is a block diagram illustrating yet another embodiment of the present invention;

图24是示出了本发明的又一个实施例的框图;Figure 24 is a block diagram illustrating yet another embodiment of the present invention;

图25是示出了本发明的又一个实施例的框图;Figure 25 is a block diagram illustrating yet another embodiment of the present invention;

图26是示出了本发明的又一个实施例的框图;Figure 26 is a block diagram illustrating yet another embodiment of the present invention;

图27是示出了本发明的又一个实施例的框图;Figure 27 is a block diagram illustrating yet another embodiment of the present invention;

图28示出了根据本公开内容的实施例的方法;Figure 28 illustrates a method according to an embodiment of the disclosure;

图29示出了根据本公开内容的实施例的另一种方法;Figure 29 shows another method according to an embodiment of the present disclosure;

图30示出了控制碰撞衬底的表面的离子的离子能量分布的方法的一个实施例;Figure 30 illustrates one embodiment of a method of controlling the ion energy distribution of ions striking a surface of a substrate;

图31示出了用于设置IEDF和离子能量的方法;Figure 31 shows a method for setting the IEDF and ion energy;

图32示出了根据本公开内容的一个实施例的向衬底支撑部传送的两个经修改的周期电压函数波形;Figure 32 shows two modified periodic voltage function waveforms delivered to a substrate support according to one embodiment of the present disclosure;

图33示出了可以指示等离子体密度中的等离子体源不稳定性或变化的离子电流波形;Figure 33 shows ion current waveforms that can be indicative of plasma source instabilities or changes in plasma density;

图34示出了具有非周期形状的经修改的周期电压函数波形的离子电流IIFigure 34 shows the ion current II with a modified periodic voltage function waveform having a non-periodic shape;

图35示出了可以指示偏置电源内的故障的经修改的周期电压函数波形;Figure 35 shows a modified periodic voltage function waveform that may indicate a fault within the bias supply;

图36示出了可以指示系统电容的动态变化的经修改的周期电压函数波形;Figure 36 shows a modified periodic voltage function waveform that can indicate dynamic changes in system capacitance;

图37示出了可以指示等离子体密度的变化的经修改的周期电压函数波形;Figure 37 shows a modified periodic voltage function waveform that can indicate a change in plasma density;

图38示出了针对不同工艺运行的离子电流的采样,其中,离子电流中的漂移可以指示系统漂移;Figure 38 shows sampling of ion currents for different process runs, where drift in ion current may indicate system drift;

图39示出了针对不同工艺参数的离子电流的采样。Figure 39 shows sampling of ion current for different process parameters.

图40示出了在室中无等离子体的情况下监控的两个偏置波形;Figure 40 shows two bias waveforms monitored with no plasma in the chamber;

图41示出了可以用于验证等离子体工艺的两个偏置波形;Figure 41 shows two bias waveforms that can be used to verify the plasma process;

图42示出了显示电源电压和离子能量之间的关系的若干电源电压和离子能量图;Figure 42 shows several supply voltage and ion energy graphs showing the relationship between supply voltage and ion energy;

图43示出了控制碰撞衬底的表面的离子的离子能量分布的方法的一个实施例;Figure 43 illustrates one embodiment of a method of controlling the ion energy distribution of ions striking a surface of a substrate;

图44示出了在本文中所公开的系统中的不同点处的各个波形;Figure 44 shows various waveforms at various points in the system disclosed herein;

图45示出了在离子电流补偿Ic中进行最终增加变化以便使其匹配离子电流II的效果;Figure 45 shows the effect of making a final incremental change in the ion current compensation Ic so that it matches the ion current II ;

图46示出了离子能量的选择;Figure 46 shows the selection of ion energy;

图47示出了离子能量分布函数宽度的选择和扩展;Figure 47 illustrates selection and expansion of ion energy distribution function width;

图48示出了可以用于实现多于一个离子能量电平的电源电压VPS的一个模式,其中,每一离子能量电平具有窄IEDF宽度;Figure 48 shows one mode of supply voltage V PS that can be used to achieve more than one ion energy level, where each ion energy level has a narrow IEDF width;

图49示出了可以用于实现多于一个离子能量电平的电源电压VPS的另一个模式,其中,每一离子能量电平具有窄IEDF宽度;以及Figure 49 shows another mode of supply voltage V PS that can be used to achieve more than one ion energy level, where each ion energy level has a narrow IEDF width; and

图50示出了可以用于创建所定义的IEDF的电源电压VPS和离子电流补偿IC的一个组合。Figure 50 shows one combination of supply voltage V PS and ion current compensation IC that can be used to create the defined IEDF .

具体实施方式detailed description

图1中大体示出了等离子体处理系统的示范性实施例。如所示出的,等离子体电源102耦合到等离子体处理室104,并且开关模式电源106耦合到支承部108,在室104内衬底110放置在支承部108上。还示出了耦合到开关模式电源106的控制器112。An exemplary embodiment of a plasma processing system is generally shown in FIG. 1 . As shown, plasma power supply 102 is coupled to plasma processing chamber 104 and switched mode power supply 106 is coupled to support 108 upon which substrate 110 is placed within chamber 104 . Also shown is a controller 112 coupled to the switch mode power supply 106 .

在此示范性实施例中,等离子体处理室104可以以基本上常规结构的室来实现(例如,包括由一个或多个泵(未示出)排空的真空外壳)。此外,本领域技术人员将会理解,室104内的等离子体可以被任一种源激励,例如包括螺旋形的等离子体源,其包括用以激励和维持反应器内的等离子体114的磁线圈和天线,并且可以提供气体入口来将气体引入室104中。In the exemplary embodiment, plasma processing chamber 104 may be implemented as a chamber of substantially conventional construction (eg, including a vacuum enclosure evacuated by one or more pumps (not shown)). Furthermore, those skilled in the art will understand that the plasma in chamber 104 may be excited by any source, including, for example, a helical plasma source that includes magnetic coils to energize and maintain plasma 114 in the reactor. and antenna, and a gas inlet may be provided to introduce gas into the chamber 104 .

如所示出的,示范性等离子体室104被设置和配置为利用对衬底110的高能离子轰击和其它等离子体处理(例如,等离子体沉积和等离子体辅助离子植入)来进行等离子体辅助的材料蚀刻。此实施例中的等离子体电源102被配置为在一个或多个频率下(例如,13.56MHz)经由匹配网络(未示出)将能量(例如,RF能量)施加到室104,以便激励和维持等离子体114。应当理解,本发明不限于任一特定类型的用以将能量耦合到室104的等离子体电源102或源,并且可以将各种频率和能量电平电容或电感地耦合到等离子体114。As shown, the exemplary plasma chamber 104 is configured and configured for plasma-assisted material etching. The plasma power supply 102 in this embodiment is configured to apply energy (eg, RF energy) to the chamber 104 via a matching network (not shown) at one or more frequencies (eg, 13.56 MHz) to energize and maintain plasma114. It should be understood that the present invention is not limited to any particular type of plasma power supply 102 or source used to couple energy to chamber 104 and that various frequencies and energy levels may be capacitively or inductively coupled to plasma 114 .

如所示出的,将要处理的电介质衬底110(例如,半导体晶圆)至少部分由支承部108支承,支承部108可以包括常规晶圆卡盘的一部分(例如,用于半导体晶圆处理)。支承部108可以形成为在支承部108与衬底110之间具有绝缘层,其中衬底110被电容地耦合到平台,但支承部108也可以以不同于支承部108的电压浮置。As shown, a dielectric substrate 110 (e.g., a semiconductor wafer) to be processed is at least partially supported by a support 108, which may comprise a portion of a conventional wafer chuck (e.g., for semiconductor wafer processing) . The support 108 may be formed with an insulating layer between the support 108 and the substrate 110 , where the substrate 110 is capacitively coupled to the platform, but the support 108 may also float at a different voltage than the support 108 .

如上所述,如果衬底110和支承部108均为导体,则能够将不变电压施加到支承部108,并且由于通过衬底110的电传导,施加到支承部108的电压也被施加到衬底110的表面。As mentioned above, if both the substrate 110 and the support 108 are conductors, a constant voltage can be applied to the support 108, and due to electrical conduction through the substrate 110, the voltage applied to the support 108 is also applied to the substrate. The surface of the bottom 110.

然而,当衬底110是电介质的情况下,向支承部108施加不变电压对衬底110的处理表面两端产生电压不起作用。因此,示范性开关模式电源106被配置为受控制以便在衬底110的表面上实现能吸引等离子体114中的离子来与衬底110碰撞的电压,从而执行衬底110的受控蚀刻和/或沉积和/或其它的等离子体辅助工艺。However, applying a constant voltage to the support 108 has no effect on generating a voltage across the treated surface of the substrate 110 when the substrate 110 is a dielectric. Accordingly, the exemplary switched-mode power supply 106 is configured to be controlled to achieve a voltage on the surface of the substrate 110 that attracts ions in the plasma 114 to collide with the substrate 110 to perform a controlled etch of the substrate 110 and/or or deposition and/or other plasma assisted processes.

此外,如本文进一步讨论,实施例的开关模式电源106被配置为工作以使得由等离子体电源102(向等离子体114)施加的能量与由开关模式电源106施加到衬底110的能量之间基本上不存在相互作用。例如,由控制开关模式电源106施加的能量是可控的,以便能控制离子能而基本上不影响等离子体114密度。Furthermore, as discussed further herein, switch-mode power supply 106 of an embodiment is configured to operate such that there is substantially There is no interaction on . For example, the energy applied by controlling the switch mode power supply 106 is controllable so that ion energy can be controlled without substantially affecting the plasma 114 density.

此外,许多图1所示出的示范性开关模式电源106的实施例由可由相对简单的控制算法控制的相对廉价的部件实现。并且与现有技术相比,许多开关模式电源106的实施例有效得多;从而减小了与去除过量热能有关的能量成本和昂贵材料。Furthermore, many of the embodiments of the exemplary switched-mode power supply 106 shown in FIG. 1 are implemented from relatively inexpensive components that can be controlled by relatively simple control algorithms. And many embodiments of the switch mode power supply 106 are much more efficient than the prior art; thereby reducing energy costs and expensive materials associated with removing excess thermal energy.

一个已知的对电介质衬底施加电压的技术是利用大功率线性放大器与复杂的控制方案相结合,以对在衬底表面感应出电压的衬底支承部施加能量。然而,这种技术还没有被商业实体所采用,原因是还未证明该技术性价比高且易于管理。具体而言,所使用的线性放大器通常较大、非常昂贵、低效且难以控制。此外,线性放大器内在地需要AC耦合(例如,隔直流电容器),并且类似卡盘的辅助功能由并行馈送电路实现,其会损害具有卡盘的源的系统的AC频谱纯净度。One known technique for applying a voltage to a dielectric substrate utilizes a high power linear amplifier combined with a complex control scheme to apply energy to the substrate support which induces a voltage on the substrate surface. However, this technology has not been adopted by commercial entities because it has not proven to be cost-effective and easy to manage. Specifically, the linear amplifiers used are usually large, very expensive, inefficient and difficult to control. Furthermore, linear amplifiers inherently require AC coupling (eg, DC blocking capacitors), and additional chuck-like functions are performed by parallel feed circuits, which compromise the AC spectral cleanliness of systems with chucked sources.

已考虑到的另一种技术是对衬底施加高频功率(例如,利用一个或多个线性放大器)。然而,由于对衬底施加的高频功率对等离子体密度有影响,因此已经发现此技术对等离子体密度有不利的影响。Another technique that has been considered is to apply high frequency power to the substrate (eg, using one or more linear amplifiers). However, this technique has been found to adversely affect plasma density due to the effect of high frequency power applied to the substrate on plasma density.

在一些实施例中,图1中所示出的开关模式电源106可以通过降压、升压或者升降压型能量技术来实现。在这些实施例中,可以控制开关模式电源106来施加变化的脉冲功率的电平,以在衬底110表面上感应出电势。In some embodiments, the switch-mode power supply 106 shown in FIG. 1 may be implemented by buck, boost, or buck-boost type energy technology. In these embodiments, the switched-mode power supply 106 may be controlled to apply varying levels of pulsed power to induce an electrical potential on the surface of the substrate 110 .

在其它实施例中,开关模式电源106可以由其它更复杂的开关模式电源和控制技术来实现。接下来参考图2,例如,参考图1描述的开关模式电源由开关模式偏置电源206来实现,开关模式偏置电源206用于将能量施加到衬底110,以实现一个或者多个期望的轰击衬底110的高能离子。还示出了离子能量控制部件220、电弧检测部件222以及耦合到开关模式偏置电源206和波形存储器224这两者的控制器212。In other embodiments, the switch mode power supply 106 may be implemented by other more complex switch mode power supply and control techniques. Referring next to FIG. 2, for example, the switch-mode power supply described with reference to FIG. The energetic ions that bombard the substrate 110 . Also shown is an ion energy control component 220 , an arc detection component 222 , and a controller 212 coupled to both a switched mode bias power supply 206 and a waveform memory 224 .

所示的这些部件的设置是合理的;从而在实际实施方式中可以组合或进一步分离这些部件,并且可以以各种方式连接这些部件,而不改变系统的基本工作。例如,在一些实施例中,可以利用可由硬件、软件、固件或其组合实现的控制器212来控制电源202和开关模式偏置电源206这两者。然而,在替代实施例中,电源202和开关模式偏置电源206由完全独立的功能单元来实现。进一步举例说明,控制器212、波形存储器224、离子能量控制部220和开关模式偏置电源206可以集成为单个部件(例如,位于共同的外壳中)或者可以分布在分立部件中。The arrangement of these components shown is rational; thus in a practical implementation these components can be combined or further separated and connected in various ways without changing the basic operation of the system. For example, in some embodiments, both the power supply 202 and the switch-mode bias power supply 206 may be controlled by a controller 212 , which may be implemented in hardware, software, firmware, or a combination thereof. However, in an alternate embodiment, the power supply 202 and the switch-mode bias power supply 206 are implemented by entirely separate functional units. By way of further example, controller 212, waveform memory 224, ion energy control 220, and switch mode bias power supply 206 may be integrated into a single component (eg, in a common housing) or may be distributed among discrete components.

此实施例中的开关模式偏置电源206通常被配置为以可控的方式对支承部208施加电压,以实现轰击衬底表面的期望的(定义的)离子的能量分布。更具体而言,开关模式偏置电源206被配置为通过将一个或多个特定能量电平的特定波形施加到衬底来实现期望的(定义的)离子能量分布。并且更具体地,响应于来自离子能量控制部220的输入,开关模式偏置电源206施加特定能量电平来实现特定离子能量,并且利用由波形存储器224中的波形数据定义的一个或多个电压波形来施加特定的能量电平。因此,可以利用离子控制部来选择一个或多个特定离子轰击能量,以执行对衬底的可控蚀刻(或其它形式的等离子体处理)。The switch-mode bias power supply 206 in this embodiment is generally configured to apply a voltage to the support 208 in a controllable manner to achieve a desired (defined) energy distribution of ions bombarding the substrate surface. More specifically, the switch-mode bias power supply 206 is configured to achieve a desired (defined) ion energy distribution by applying one or more specific waveforms at specific energy levels to the substrate. And more specifically, in response to input from ion energy control section 220, switch mode bias power supply 206 applies a specific energy level to achieve a specific ion energy, and utilizes one or more voltages defined by waveform data in waveform memory 224 waveform to apply a specific energy level. Accordingly, one or more specific ion bombardment energies may be selected using the ion control to perform a controlled etch (or other form of plasma processing) of the substrate.

如所示出的,开关模式电源206包括开关部件226’、226”(例如,大功率场效应晶体管),其用于响应于来自对应驱动部件228’、228”的驱动信号来将能量切换到衬底210的支承部208。并且基于波形存储器224的内容所定义的定时而由控制器212对由驱动部件228’、228”产生的驱动信号230’、230”进行控制。例如,许多实施例中的控制器212适于解释波形存储器的内容并且产生驱动控制信号232’、232”,驱动控制信号232’、232”由驱动部件228’、228”利用来控制至开关部件226’、226”的驱动信号230’、230”。尽管以示范性的目的示出了两个可以以半桥配置设置的开关部件226’、226”,但是必然能够想到在各种架构中可以实现更少或另外的开关部件(例如,H桥配置)。As shown, the switched mode power supply 206 includes switching components 226', 226" (eg, high power field effect transistors) for switching energy to The support portion 208 of the substrate 210 . And the drive signals 230', 230" generated by the drive components 228', 228" are controlled by the controller 212 based on timing defined by the contents of the waveform memory 224. For example, the controller 212 in many embodiments is adapted to interpret the contents of the waveform memory and generate drive control signals 232', 232", which are utilized by the drive components 228', 228" to control the switching components to 226 ′, 226 ″ drive signals 230 ′, 230 ″. Although two switching components 226 ′, 226 ″ that may be arranged in a half-bridge configuration are shown for exemplary purposes, it is certainly conceivable that in various architectures the Fewer or additional switching components are implemented (eg, H-bridge configuration).

在多种操作模式下,控制器212(例如,利用波形数据)调制驱动控制信号232’、232”的定时,以便在衬底210的支承部208实现期望的波形。另外,开关模式电源206基于离子能量控制信号234对衬底210提供电源,控制信号234可以是DC信号或者是时变波形。因此,本实施例能够通过控制至开关部件的定时信号并且控制由开关部件226’、226”施加的能量(由离子能控制部件220控制)来控制离子能量分布。In various modes of operation, the controller 212 modulates (e.g., using waveform data) the timing of the drive control signals 232', 232" to achieve a desired waveform at the support 208 of the substrate 210. Additionally, the switched-mode power supply 206 is based on The ion energy control signal 234 provides power to the substrate 210, and the control signal 234 can be a DC signal or a time-varying waveform. Therefore, this embodiment can control the timing signal to the switching components and control the timing signals applied by the switching components 226', 226". The energy (controlled by the ion energy control unit 220) to control the ion energy distribution.

另外,此实施例中的控制器212被配置为:响应于由电弧检测部件222检测的等离子室204内的电弧来执行电弧管理功能。在一些实施例中,当检测到电弧时,控制器212改变驱动控制信号232’、232”,以使得施加在开关模式电源206的输出端236的波形熄灭等离子体214中的电弧。在其它实施例中,控制器212通过简单中断驱动控制信号232’、232”的施加来熄灭电弧,以使得开关模式偏置电源206的输出端236的能量的施加被中断。Additionally, controller 212 in this embodiment is configured to perform arc management functions in response to an arc within plasma chamber 204 detected by arc detection component 222 . In some embodiments, when an arc is detected, the controller 212 alters the drive control signals 232', 232", such that the waveform applied to the output 236 of the switch-mode power supply 206 extinguishes the arc in the plasma 214. In other implementations In one example, the controller 212 extinguishes the arc by simply interrupting the application of the drive control signals 232', 232", such that the application of energy to the output 236 of the switch-mode bias power supply 206 is interrupted.

接下来参考图3,其是可以用于实现参考图2描述的开关模式偏置电源206的部件的原理图表示。如所示出的,此实施例中的开关部件T1和T2以半桥(也被称为图腾柱)型拓扑来设置。共同地,R2、R3、C1和C2均表示等离子体负载,C10是有效电容(在本文也被称为串联电容或卡盘电容),以及C3是可选物理电容器,以防止来自衬底表面上感应出的电压或者来自静电卡盘(未示出)的电压的DC电流流过电路。C10被称为有效电容,因为其包括衬底支撑部和静电卡盘(或e-卡盘)的串联电容(或者也被称为卡盘电容)以及偏置的施加所固有的其它电容,诸如绝缘和衬底。如所示出的,L1是杂散电感(例如,向负载馈送电能的导体的固有电感)。并且在此实施例中,存在三个输入:Vbus、V2和V4。Reference is next made to FIG. 3 , which is a schematic representation of components that may be used to implement the switch-mode bias power supply 206 described with reference to FIG. 2 . As shown, the switching elements T1 and T2 in this embodiment are arranged in a half bridge (also known as totem pole) type topology. Collectively, R2, R3, C1, and C2 all represent the plasma load, C10 is the effective capacitance (also referred to herein as series capacitance or chuck capacitance), and C3 is an optional physical capacitor to prevent The induced voltage or DC current from the voltage of the electrostatic chuck (not shown) flows through the circuit. C10 is referred to as the effective capacitance because it includes the series capacitance of the substrate support and the electrostatic chuck (or e-chuck) (or also known as the chuck capacitance) as well as other capacitances inherent to the application of bias, such as insulation and substrate. As shown, L1 is the stray inductance (eg, the inherent inductance of a conductor feeding power to the load). And in this embodiment, there are three inputs: Vbus, V2 and V4.

V2和V4表示驱动信号(例如,参考图2描述的由驱动部件228’、228”输出的驱动信号230’、230”),并且在此实施例中,可以为V2和V4定时(脉冲长度和/或相互延迟),使得可以调制T1和T2的关闭以控制被施加到衬底支承部的电压输出Vout的波形。在许多实施方式中,用于实现开关部件T1和T2的晶体管都不是理想开关,因此为了达到期望的波形,考虑晶体管特定特征。在许多操作模式下,简单地改变V2和V4的定时可以实现将要在Vout施加的期望的波形。V2 and V4 represent drive signals (e.g., drive signals 230', 230" output by drive components 228', 228" described with reference to FIG. / or mutually delayed) so that the closing of T1 and T2 can be modulated to control the waveform of the voltage output Vout applied to the substrate support. In many implementations, neither of the transistors used to implement switching components T1 and T2 is an ideal switch, so in order to achieve the desired waveforms, transistor specific characteristics are considered. In many modes of operation, simply varying the timing of V2 and V4 can achieve the desired waveform to be applied at Vout.

例如,可以操作开关T1、T2以使得在衬底110、210表面的电压通常为负且周期电压脉冲接近和/或略微超过正电压参考。衬底110、210表面处的电压值是定义离子能量的值,其特征可以在离子能量分布函数(IEDF)方面。为了在衬底110、210表面处实现期望的电压,在Vout的脉冲通常为矩形的且具有宽度长到足以在衬底110、210表面感应出短暂的正电压,以便将充足的电子吸引到衬底110、210表面,从而实现期望的电压和对应的离子能量。For example, the switches T1, T2 may be operated such that the voltage at the surface of the substrate 110, 210 is generally negative and the periodic voltage pulse approaches and/or slightly exceeds the positive voltage reference. The voltage value at the surface of the substrate 110, 210 is a value defining ion energy, which may be characterized in terms of an ion energy distribution function (IEDF). To achieve the desired voltage at the surface of the substrate 110, 210, the pulse at Vout is generally rectangular and has a width long enough to induce a brief positive voltage at the surface of the substrate 110, 210 to attract sufficient electrons to the substrate. The bottom 110, 210 surfaces to achieve the desired voltage and corresponding ion energy.

接近和/或稍微超过正电压参考的周期电压脉冲可具有由开关T1,T2的开关能力限制的最小时间。所述电压的大致负部分可延伸,只要所述电压并不构建到损坏开关的电平。同时,电压的负部分的长度应超过离子渡越时间。Periodic voltage pulses approaching and/or slightly exceeding the positive voltage reference may have a minimum time limited by the switching capabilities of the switches T1, T2. The substantially negative portion of the voltage may extend as long as the voltage does not build up to a level that damages the switch. At the same time, the length of the negative part of the voltage should exceed the ion transit time.

此实施例中的Vbus定义了在Vout测量的脉冲幅度,其定义了衬底表面的电压以及离子能量。再次简要地参考图2,Vbus可以耦合到离子能量控制部,所述离子能量控制部可以由用于向Vbus施加DC信号或时变波形的DC电源来实现。Vbus in this embodiment defines the pulse amplitude measured at Vout, which defines the voltage at the substrate surface as well as the ion energy. Referring briefly again to FIG. 2, Vbus may be coupled to an ion energy control, which may be implemented by a DC power supply for applying a DC signal or time-varying waveform to Vbus.

可以调制脉宽、脉冲形状和/或两个信号V2、V4的相互延迟以达到在Vout的期望波形(在本文也被称为修改的周期电压函数),并且施加到Vbus的电压可以影响脉冲的特性。换句话说,电压Vbus可以影响脉宽、脉冲形状和/或信号V2、V4的相对相位。例如,简要参考图4,示出了示出可以施加到T1和T2的两个驱动信号波形(作为V2和V4)定时图,以便在Vout产生如图4所示出的周期电压函数。为了调制在Vout的脉冲形状(例如,为了实现Vout的脉冲的最小时间,还达到脉冲的峰值),可以控制两个栅极驱动信号V2、V4的定时。The pulse width, pulse shape, and/or mutual delay of the two signals V2, V4 can be modulated to achieve a desired waveform at Vout (also referred to herein as a modified periodic voltage function), and the voltage applied to Vbus can affect the characteristic. In other words, the voltage Vbus can affect the pulse width, pulse shape and/or relative phase of the signals V2, V4. For example, referring briefly to FIG. 4 , a timing diagram is shown showing two drive signal waveforms (as V2 and V4 ) that may be applied to T1 and T2 to produce a periodic voltage function at Vout as shown in FIG. 4 . The timing of the two gate drive signals V2, V4 can be controlled in order to modulate the pulse shape at Vout (eg, to achieve the minimum time of the pulse of Vout, but also the peak value of the pulse).

例如,可以将两个栅极驱动信号V2、V4施加到开关部件T1、T2,因而与脉冲之间的时间T相比,在Vout施加的每个脉冲的时间可以较短,但是长到足以在衬底110、210表面感应出正电压,以便将电子吸引到衬底110、210表面。此外,已经发现通过改变脉冲之间的栅极电压电平,可以控制在脉冲之间施加到Vout的电压的斜率(例如,为了实现在脉冲之间衬底表面的基本恒定的电压)。在一些操作模式中,栅极脉冲的重复率大约为400kHz,但该重复率会根据应用的不同而必然变化。For example, two gate drive signals V2, V4 may be applied to the switching elements T1, T2, whereby each pulse applied at Vout may be short in time compared to the time T between pulses, but long enough to be in A positive voltage is induced on the surface of the substrate 110, 210 to attract electrons to the surface of the substrate 110, 210. Furthermore, it has been found that by varying the gate voltage level between pulses, the slope of the voltage applied to Vout between pulses can be controlled (eg, to achieve a substantially constant voltage at the substrate surface between pulses). In some modes of operation, the repetition rate of the gate pulses is approximately 400kHz, but this repetition rate will necessarily vary depending on the application.

尽管没有要求,但是在实际中,根据基于实际实施方式的建模和细化,可以定义可用于产生期望的(定义的)离子能量分布的波形,并且可以存储所述波形(例如,在参考图1描述的波形存储部中,作为电压电平的序列)。另外,在许多实施方式中,可以直接产生波形(例如,不需要来自Vout的反馈);因此,避免了反馈控制系统的不期望的方面(例如,设定时间)。Although not required, in practice, from modeling and refinement based on actual implementations, waveforms that can be used to generate desired (defined) ion energy distributions can be defined and stored (e.g., in the reference graph 1 described in the waveform memory section, as a sequence of voltage levels). Additionally, in many implementations, waveforms can be generated directly (eg, without feedback from Vout); thus, undesirable aspects of feedback control systems (eg, set times) are avoided.

再次参考图3,可以调制Vbus以控制离子能量,并且所存储的波形可以用于控制栅极驱动信号V2、V4,以实现Vout处的期望脉冲幅度,同时使脉宽最小化。再一次地,这可以根据可以建模或实施及经验地建立的晶体管的特定特征来完成。例如,参考图5,示出了Vbus随时间变化、衬底110、210表面的电压随时间变化以及对应的离子能量分布的示图。Referring again to FIG. 3, Vbus can be modulated to control ion energy, and the stored waveform can be used to control gate drive signals V2, V4 to achieve the desired pulse amplitude at Vout while minimizing the pulse width. Again, this can be done in terms of specific characteristics of transistors that can be modeled or implemented and established empirically. For example, referring to FIG. 5 , there is shown a graph of Vbus varying with time, the voltage at the surface of the substrate 110 , 210 varying with time, and the corresponding ion energy distribution.

图5中的示图示出了操作开关模式偏置电源106、206的单模式,其实现了在特定离子能集中的离子能量分布。如所示出的,为了在此示例中实现单个离子能量的集中,保持施加到Vbus的电压不变,同时控制施加到V2和V4的电压(例如,利用图3所示的驱动信号),以便在开关模式偏置电源106、206的输出端产生脉冲,其实现了图5中所示的对应的离子能量分布。The diagram in Figure 5 shows a single mode of operation of the switch mode bias power supply 106, 206, which achieves ion energy distribution at a particular ion energy concentration. As shown, to achieve concentration of individual ion energies in this example, the voltage applied to Vbus is held constant while the voltages applied to V2 and V4 are controlled (e.g., using the drive signals shown in FIG. 3 ) so that Pulses are generated at the output of the switch mode bias power supply 106, 206 which achieve the corresponding ion energy distribution shown in FIG.

如图5所示出的,衬底110、210表面的电势通常为负,以吸引轰击并且蚀刻衬底110、210的离子。(通过对Vout施加脉冲)施加到衬底110、210的周期短脉冲具有由施加到Vbus的电势来定义的大小,并且这些脉冲导致了衬底110、210的电势的微小变化(例如,接近于正或略微正的电势),这将电子吸引到衬底表面,以便实现沿衬底110、210表面的大体上的负电势。如图5所示出的,施加到Vbus的恒定电压实现了在特定离子能量的单个离子通量的集中;因此,可以通过简单地将Vbus设定为特定电势来选择特定离子轰击能量。在其它操作模式下,可以创建两个或更多个分离的离子能量的集中(例如,参见图49)。As shown in FIG. 5 , the potential of the surface of the substrate 110 , 210 is generally negative to attract ions that bombard and etch the substrate 110 , 210 . Periodic short pulses applied to the substrate 110, 210 (by pulsing Vout) have a magnitude defined by the potential applied to Vbus, and these pulses result in small changes in the potential of the substrate 110, 210 (e.g., close to Positive or slightly positive potential), which attracts electrons to the substrate surface so as to achieve a substantially negative potential along the surface of the substrate 110, 210. As shown in Figure 5, a constant voltage applied to Vbus achieves a concentration of individual ion flux at a specific ion energy; thus, a specific ion bombardment energy can be selected by simply setting Vbus to a specific potential. In other modes of operation, two or more separate concentrations of ion energies may be created (eg, see FIG. 49 ).

本领域技术人员将认识到,无需将电源限制为开关模式电源,并且如此,还可控制电源的输出以便影响一定离子能量。如此,当在不与离子电流补偿或离子电流组合的情况下考虑时,电源(无论是开关模式电源或其它电源)的输出也可被称为电源电压VPSThose skilled in the art will recognize that the power supply need not be limited to a switch mode power supply, and as such, the output of the power supply can also be controlled in order to affect a certain ion energy. As such, the output of a power supply (whether switched mode or otherwise) may also be referred to as the supply voltage V PS when considered without combination with ion current compensation or ion current.

参考图6,例如,示出了在离子能量分布中产生有两个分离峰的双模态操作模式的示图。如所示出的,在此操作模式下,衬底经受两个明显的电压和周期脉冲的电平,并且因此创建了两个分离的离子能量的集中。如所示出的,为了实现两个明显的离子能量集中,在Vbus施加的电压在两个电平之间交变,并且每个电平限定了两个离子能量集中的能量电平。Referring to FIG. 6 , for example, a diagram of a dual mode mode of operation that produces two separate peaks in the ion energy distribution is shown. As shown, in this mode of operation, the substrate is subjected to two distinct levels of voltage and periodic pulses, and thus two separate concentrations of ion energy are created. As shown, to achieve two distinct ion energy concentrations, the voltage applied at Vbus alternates between two levels, and each level defines an energy level for the two ion energy concentrations.

尽管图6示出了在每一脉冲之后交变的衬底110、210的两个电压(例如,图48),但这必然不是所要求的。例如,在其它操作模式下,相对于施加到Vout的电压,对施加到V2和V4的电压进行切换(例如,使用图3中所示出的驱动信号),以使得在衬底表面的感应电压在两个或者更多脉冲之后从第一电压到第二电压(反之亦然)交变(例如,图49)。Although Figure 6 shows the two voltages of the substrate 110, 210 alternating after each pulse (eg, Figure 48), this is certainly not required. For example, in other modes of operation, the voltages applied to V2 and V4 are switched relative to the voltage applied to Vout (e.g., using the drive signals shown in FIG. 3 ) such that the induced voltage at the substrate surface Alternating from the first voltage to the second voltage (and vice versa) after two or more pulses (eg, FIG. 49 ).

在现有技术中,已经尝试将(由波形发生器产生的)两个波形的组合施加到线性放大器并将放大后的两个波形的组合施加到衬底以便实现多个离子能量。然而,此方法比参考图6描述的方法复杂得多,并需要昂贵的线性放大器和波形产生器。In the prior art, attempts have been made to apply the combination of two waveforms (generated by the waveform generator) to a linear amplifier and apply the amplified combination of the two waveforms to the substrate in order to achieve multiple ion energies. However, this method is much more complex than that described with reference to Figure 6 and requires expensive linear amplifiers and waveform generators.

接下来参考图7A和7B,分别示出了与施加到Vbus的DC电压的单能和双电平调制对应的在等离子体中进行的实际直接离子能量测量的示图。如图7A所示出的,响应于施加到Vbus的不变电压(例如,如图5所示出的),离子能量分布集中在80eV附近。并且在图7B中,响应于Vbus的双电平调节(例如,如图6所示出的),两个分离的离子能量集中存在于85eV和115eV附近。Referring next to Figures 7A and 7B, there are shown graphs of actual direct ion energy measurements made in a plasma corresponding to single-energy and bi-level modulation of the DC voltage applied to Vbus, respectively. As shown in FIG. 7A, in response to a constant voltage applied to Vbus (eg, as shown in FIG. 5), the ion energy distribution is centered around 80 eV. And in FIG. 7B, in response to a bi-level adjustment of Vbus (eg, as shown in FIG. 6), two separate ion energies exist concentrated around 85eV and 115eV.

接下来参考图8,示出了本发明的示出另一实施例的框图。如所示出的,开关模式电源806经由电弧检测部件822耦合到控制器812、离子能量控制部件820以及衬底支承部808。控制器812,开关模式电源806和离子能量控制部件820共同地工作来对衬底支承部808施加能量,以在时间平均的基础上在衬底810的表面实现期望的(定义的)离子能量分布。Referring next to FIG. 8 , there is shown a block diagram illustrating another embodiment of the present invention. As shown, switched mode power supply 806 is coupled to controller 812 , ion energy control component 820 , and substrate support 808 via arc detection component 822 . The controller 812, the switch mode power supply 806 and the ion energy control unit 820 work together to apply energy to the substrate support 808 to achieve a desired (defined) ion energy distribution on the surface of the substrate 810 on a time-averaged basis .

简短地参考图9A,例如示出了周期约为400kHz的周期电压函数,其在所述周期电压函数的多个周期期间由约5kHz的正弦调制函数进行调制。图9B是图9A中循环的周期电压函数的部分的分解图,以及图9C示出了由周期电压函数的正弦调制得到的、在时间平均的基础上的、所得到的离子能量的分布。以及图9D示出了当周期电压函数由正弦调制函数进行调制时所得到的、时间平均的IEDF的等离子体中进行的实际直接的离子能量测量。如本文进一步讨论的,在时间平均的基础上实现期望的(定义的)离子能量分布可以通过简单地改变施加到周期电压的调制函数来实现。Referring briefly to FIG. 9A , for example, a periodic voltage function with a period of about 400 kHz is shown, which is modulated by a sinusoidal modulation function of about 5 kHz during a number of cycles of the periodic voltage function. Fig. 9B is an exploded view of a portion of the periodic voltage function cycled in Fig. 9A, and Fig. 9C shows the resulting distribution of ion energies on a time-averaged basis resulting from sinusoidal modulation of the periodic voltage function. And Fig. 9D shows actual direct ion energy measurements in plasmas of time-averaged IEDFs obtained when the periodic voltage function is modulated by a sinusoidal modulation function. As discussed further herein, achieving a desired (defined) ion energy distribution on a time-averaged basis can be achieved by simply varying the modulation function applied to the periodic voltage.

参考作为另一示例的图10A和10B,通过大约5kHz的锯齿调制函数来调制400kHz的周期电压函数,以在时间平均的基础上达到图10C中所示出的离子能量分布。如所示出的,除了图10中的周期电压函数是由锯齿函数而非正弦函数调制以外,结合图10使用的周期电压函数与图9相同。Referring to FIGS. 10A and 10B as another example, a 400 kHz periodic voltage function is modulated by a sawtooth modulation function of approximately 5 kHz to achieve the ion energy distribution shown in FIG. 10C on a time averaged basis. As shown, the periodic voltage function used in connection with FIG. 10 is the same as FIG. 9 except that the periodic voltage function in FIG. 10 is modulated by a sawtooth function rather than a sinusoidal function.

应当认识到,图9C和图10C所示出的离子能量分布函数不表示衬底810表面的瞬时离子能量分布,而是相反表示时间平均的离子能量。参考图9C,例如,在某一特定时刻,离子能量分布将会是在调制函数的整个周期过程上存在的、所示出的离子能量分布的子集。It should be appreciated that the ion energy distribution functions shown in FIGS. 9C and 10C do not represent the instantaneous ion energy distribution at the surface of the substrate 810, but instead represent time-averaged ion energies. Referring to Fig. 9C, for example, at a particular moment, the ion energy distribution will be a subset of the shown ion energy distribution that exists over the entire period of the modulation function.

还应当认识到,调制函数不必是固定函数,也不必为固定频率。在某些情况下,例如,可能会期望对具有一个或者多个特定调制函数的周期的周期电压函数进行调制来实现特定的、时间平均的离子能量分布,并且然后对具有一个或者多个另一调制函数的周期的周期电压函数进行调制来实现另一时间平均的离子能量分布。在很多情况下,对(调制周期电压函数的)调制函数的这种改变可以是有利的。例如,如果需要特定离子能量分布来蚀刻特定几何构造或蚀刻穿过特定材料,就可以使用第一调制函数,并且然后,随后可以使用另一调制函数来实现不同的蚀刻几何形状或蚀刻穿过另一材料。It should also be realized that the modulation function need not be a fixed function, nor need it be a fixed frequency. In some cases, for example, it may be desirable to modulate a periodic voltage function with one or more periods of a particular modulation function to achieve a particular, time-averaged ion energy distribution, and then to have one or more other The period of the modulation function is modulated by a periodic voltage function to achieve another time-averaged ion energy distribution. Such a change to the modulation function (that modulates the periodic voltage function) can be advantageous in many cases. For example, if a particular ion energy distribution is required to etch a particular geometry or etch through a particular material, a first modulation function can be used, and then another modulation function can subsequently be used to achieve a different etch geometry or etch through another a material.

类似地,周期电压函数(例如,图9A、9B、10A和10B中的400kHz的部件及图4中的Vout)不必严格固定(例如,周期电压函数的形状和频率可以变化),但是通常其频率由室内的离子的渡越时间来确定,以使得室内的离子受施加到衬底810的电压影响。Similarly, periodic voltage functions (e.g., the 400kHz component in Figures 9A, 9B, 10A, and 10B and Vout in Figure 4) do not have to be strictly fixed (e.g., the shape and frequency of the periodic voltage function can vary), but typically its frequency Determined by the transit time of the ions in the chamber such that the ions in the chamber are affected by the voltage applied to the substrate 810 .

回过来参考图8,控制器812向开关模式电源806提供驱动控制信号832’和832”,使得开关模式电源806产生周期电压函数。开关模式电源806可以由图3所示出的部件来实现(例如,创建图4所示出的周期电压函数),但是必然能够想到可以利用其它开关架构。Referring back to FIG. 8 , the controller 812 provides drive control signals 832 ′ and 832 ″ to the switch-mode power supply 806 such that the switch-mode power supply 806 generates a periodic voltage function. The switch-mode power supply 806 can be implemented by the components shown in FIG. 3 ( For example, create the periodic voltage function shown in Figure 4), although it is certainly conceivable that other switching architectures could be utilized.

一般而言,离子能量控制部件820起到向周期电压函数施加调制函数(其由控制器812结合开关模式电源806产生)的作用。如图8所示,离子能量控制部件820包括与自定义IEDF部850通信的调制控制器840、IEDF函数存储器848、用户接口846和电源部件844。应当认识到,示出这些部件意在表达功能部件,实际上所述功能部件可以由相同或不同的部件来实现。In general, ion energy control component 820 functions to apply a modulation function (generated by controller 812 in conjunction with switched mode power supply 806 ) to a periodic voltage function. As shown in FIG. 8 , the ion energy control unit 820 includes a modulation controller 840 in communication with a custom IEDF section 850 , an IEDF function memory 848 , a user interface 846 and a power supply unit 844 . It should be appreciated that these components are shown to represent functional components, which in practice may be implemented by the same or different components.

此实施例中的调制控制器840通常基于定义调制函数的数据来控制电源部件844(及其输出834),并且电源部件844(基于来自调制控制器840的控制信号842)产生调制函数834,将调制函数834施加到由开关模式电源806产生的周期电压函数。此实施例中的用户接口846被配置为使用户能够选择存储在IEDF函数存储器848中的预定义的IEDF函数,或者结合自定义的IEDF部件850来定义自定义的IEDF。The modulation controller 840 in this embodiment typically controls the power supply section 844 (and its output 834) based on data defining the modulation function, and the power supply section 844 (based on the control signal 842 from the modulation controller 840) generates the modulation function 834, which will Modulation function 834 is applied to the periodic voltage function generated by switch mode power supply 806 . The user interface 846 in this embodiment is configured to enable the user to select a predefined IEDF function stored in the IEDF function memory 848 , or to define a custom IEDF in conjunction with the custom IEDF component 850 .

在许多实施方式中,电源部件844包括DC电源(例如,DC开关模式电源或者线性放大器),其将调制电压(例如,变化的DC电压)施加到开关模式电源(例如,图3中所示出的开关模式电源的Vbus)。在这些实施方式中,调制控制器840控制由电源部件844输出的电压电平,使得电源部件844施加与调制函数相符的电压。In many implementations, the power supply section 844 includes a DC power supply (eg, a DC switch-mode power supply or a linear amplifier) that applies a modulated voltage (eg, a varying DC voltage) to a switch-mode power supply (eg, as shown in FIG. Vbus of the switch-mode power supply). In these embodiments, the modulation controller 840 controls the voltage level output by the power supply component 844 such that the power supply component 844 applies a voltage consistent with the modulation function.

在一些实施方式中,IEDF函数存储器848包括与多个IEDF分布函数中的每一个相对应的多个数据集,并且用户接口846使用户能够选择期望的(定义的)IEDF函数。参考图11,例如,右列示出了可用于供用户选择的示范性IEDF函数。以及左列示出了相关的调制函数,调制控制器840结合电源部件844将所述调制函数应用于周期电压函数来实现对应的IEDF函数。应当认识到,图11中所示出的IEDF函数仅是示范性的,也可用于选择其它IEDF函数。In some implementations, the IEDF function store 848 includes a plurality of data sets corresponding to each of the plurality of IEDF distribution functions, and the user interface 846 enables a user to select a desired (defined) IEDF function. Referring to FIG. 11, for example, the right column shows exemplary IEDF functions available for user selection. And the left column shows the associated modulation function that the modulation controller 840 applies to the periodic voltage function in conjunction with the power supply unit 844 to implement the corresponding IEDF function. It should be appreciated that the IEDF functions shown in FIG. 11 are exemplary only and other IEDF functions may also be selected.

自定义的IEDF部件850通常起到使用户能够通过用户接口846来定义期望的(定义的)离子能量分布函数的作用。在某些实施方式中,例如,自定义的IEDF部件850使用户能够确定定义离子能量分布的特定参数的值。The custom IEDF component 850 generally functions to enable a user to define a desired (defined) ion energy distribution function through the user interface 846 . In certain embodiments, for example, a custom IEDF component 850 enables a user to determine values for specific parameters that define ion energy distributions.

例如,自定义的IEDF部件850使得可以根据在高电平(高IF)、中电平(中IF)和低电平(低IF)的相对通量电平(例如,根据通量的百分比)结合定义这些能量电平之间的IEDF的一个或多个函数来定义IEDF函数。在许多情况下,仅高IF、低IF和这些电平之间的IEDF函数才足以定义IEDF函数。作为特定示例,用户可以利用在20%贡献电平(contributionlevel)(对总IEDF的贡献)与30%贡献电平之间的正弦IEDF来请求20%贡献电平的1200eV、30%贡献电平的700eV。For example, a custom IEDF component 850 allows for relative flux levels (e.g., in terms of percentages of flux) at high level (high IF), medium level (mid IF), and low level (low IF) The IEDF function is defined in combination with one or more functions defining the IEDF between these energy levels. In many cases, only the IEDF function between high IF, low IF and these levels is sufficient to define the IEDF function. As a specific example, a user may request 1200 eV for the 20% contribution level, 1200 eV for the 30% contribution level with a sinusoidal IEDF between the 20% contribution level (contribution to the total IEDF) and the 30% contribution level. 700eV.

还可以想到,自定义的IEDF部850可以使用户能够以一个或多个(例如,多)能量电平的列表以及对应的每一能量电平与IEDF的百分比贡献来填充表格。以及在另一替代实施例中,可以想到,自定义的IEDF部件850结合用户接口846通过向用户呈现使用户能够绘制期望的(定义的)IEDF的图形工具来使用户能够图形地产生期望的(定义的)IEDF。It is also contemplated that the custom IEDF section 850 may enable a user to populate a table with a list of one or more (eg, multiple) energy levels and the corresponding percentage contribution of each energy level to the IEDF. And in another alternative embodiment, it is contemplated that the custom IEDF component 850 in conjunction with the user interface 846 enables the user to graphically generate a desired (defined) IEDF by presenting the user with a graphical tool that enables the user to draw the desired (defined) IEDF defined) IEDF.

此外还可以想到,IEDF函数存储器848和自定义IEDF部件850可以交互操作以使用户能够选择预定义的IEDF函数并然后更改预定义的IEDF函数,以便产生由预定义的IEDF函数导出的自定义的IEDF函数。It is also contemplated that the IEDF function memory 848 and the custom IEDF component 850 can interoperate to enable the user to select a predefined IEDF function and then alter the predefined IEDF function in order to generate a custom IEDF function derived from the predefined IEDF function. IEDF function.

一旦定义了IEDF函数,调制控制器840就将定义期望的(定义的)IEDF函数的数据转换为控制电源部件844的控制信号842,以使得电源部件844实现与期望的(定义的)IEDF相对应的调制函数。例如,控制信号842控制电源部件844以使得电源部件844输出由调制函数定义的电压。Once the IEDF function is defined, the modulation controller 840 converts the data defining the desired (defined) IEDF function into a control signal 842 that controls the power supply unit 844 such that the power supply unit 844 implements a function corresponding to the desired (defined) IEDF modulation function. For example, the control signal 842 controls the power supply component 844 such that the power supply component 844 outputs a voltage defined by the modulation function.

接下来参考图12,其为示出离子电流补偿部件1260补偿等离子体室1204内的离子电流的实施例的框图。申请人已经发现,在更高能级下,室内更高电平的离子电流影响衬底表面的电压,并且结果,离子能量分布也受到影响。简短地参考图15A-15C,例如,示出了当电压波形出现在衬底1210或晶圆表面时的电压波形及其与IEDF的关系。Reference is next made to FIG. 12 , which is a block diagram illustrating an embodiment of ion current compensation component 1260 compensating for ion current within plasma chamber 1204 . Applicants have found that at higher energy levels, higher levels of ion current in the chamber affect the voltage at the substrate surface and, as a result, the ion energy distribution is also affected. Referring briefly to FIGS. 15A-15C , for example, voltage waveforms and their relationship to the IEDF are shown as they appear at the substrate 1210 or wafer surface.

更具体地,图15A示出了当离子电流II等于补偿电流Ic时衬底1210表面的周期电压函数;图15B示出了当离子电流II大于补偿电流Ic时衬底1210表面的电压波形;以及图15C示出了当离子电流II小于补偿电流Ic时衬底表面的电压波形。More specifically, Figure 15A shows the periodic voltage function of the substrate 1210 surface when the ion current I I is equal to the compensation current Ic; Figure 15B shows the voltage waveform on the substrate 1210 surface when the ion current I I is greater than the compensation current Ic ; and FIG. 15C shows the voltage waveform on the substrate surface when the ion current I I is less than the compensation current Ic.

如在图15A中所示出的,当II=Ic时,离子能量的扩展1470相对窄于在图15B中所示出的当II>Ic时的离子能量的均匀扩展1472、或者在图15C中所示出的当II<Ic时的离子能量的均匀扩展1474。因此,离子电流补偿部件1260在离子电流较高时(例如,通过补偿离子电流的效果)实现离子能量的窄的扩展,并且还实现了离子能量的均匀扩展1572、1574可控(例如,当期望具有离子能量扩展时)。As shown in FIG. 15A , when I I =Ic, the spread 1470 of ion energies is relatively narrower than the uniform spread 1472 of ion energies shown in FIG. 15B when I I >Ic, or in Uniform spread 1474 of ion energy when II < Ic shown in 15C. Thus, the ion current compensation component 1260 achieves a narrow spread of ion energy when the ion current is high (e.g., by compensating for the effects of the ion current), and also enables a uniform spread 1572, 1574 of the ion energy that is controllable (e.g., when desired with ion energy extension).

如在图15B中所示出的,在没有离子电流补偿(当II>Ic)的情况下,在周期电压函数的正的部分之间,衬底表面的电压以斜坡式方式变为较小地负的,这产生了更宽的离子能量扩展1572。类似地,当利用离子电流补偿来增大补偿电流的电平直到超过如图15C中所示出的离子电流(II<Ic)的电平时,在周期电压函数的正的部分之间,衬底表面的电压以斜坡式方式变得更负,并且产生更宽的均匀离子能量扩展1574。As shown in Figure 15B, without ion current compensation (when I I > Ic), the voltage at the substrate surface becomes smaller in a ramp-like fashion between the positive parts of the periodic voltage function Negatively, this produces a wider ion energy spread 1572. Similarly, when ion current compensation is used to increase the level of compensation current until the level of ion current (I I < Ic) is exceeded as shown in FIG. 15C, between the positive part of the periodic voltage function, the substrate The voltage at the bottom surface becomes more negative in a ramped fashion and produces a wider uniform ion energy spread 1574 .

回过来参考图12,离子电流补偿部件1260可以实现为独立的附件,其可以可选地加到开关模式电源1206和控制器1212。在其它实施例中,(例如,如图13中所示出的),离子电流补偿部件1260可以与本文描述的其它部件(例如,开关模式电源106、206、806、1206和离子能量控制部件220、820)共用共同的外壳1366。在此实施例中,提供到等离子体室1204的周期电压函数可被称为经修改的周期电压函数,因为其包括由来自离子电流补偿部件1260的离子电流补偿修改的周期电压函数。控制器1212可在开关模式电源1206和离子电流补偿1260的输出组合的电气节点处的不同时刻对电压进行采样。Referring back to FIG. 12 , ion current compensation component 1260 can be implemented as a separate accessory that can optionally be added to switch mode power supply 1206 and controller 1212 . In other embodiments, (eg, as shown in FIG. 13 ), ion current compensation component 1260 can be integrated with other components described herein (eg, switched mode power supplies 106 , 206 , 806 , 1206 and ion energy control component 220 ). , 820) share a common housing 1366. In this embodiment, the periodic voltage function provided to the plasma chamber 1204 may be referred to as a modified periodic voltage function because it includes a periodic voltage function modified by ion current compensation from ion current compensation component 1260 . Controller 1212 may sample voltages at different times at the electrical nodes of the output combination of switch mode power supply 1206 and ion current compensation 1260 .

如图13中所示出的,示出了示范性的离子电流补偿部件1360,其包括耦合到开关模式电源的输出端1336的电流源1364以及耦合到电流源1364和输出端1336这两者的电流控制器1362。图13还示出了等离子体室1304,并且等离子体室内具有电容性元件C1、C2和离子电流II。如图所示出的,C1表示与可以包括但不限于绝缘材料、衬底、衬底支承部和e-卡盘的室1304相关联的部件的固有电容(本文也被称为有效电容),以及C2表示鞘层电容和杂散电容。在此实施例中,向等离子体室1304提供的并且在V0处可测量的周期电压函数可以被称为经修改的周期电压函数,由于其包括由离子电流补偿Ic修改的周期电压函数。As shown in FIG. 13 , an exemplary ion current compensation component 1360 is shown that includes a current source 1364 coupled to the output 1336 of the switched-mode power supply and a current source 1364 coupled to both the current source 1364 and the output 1336 . Current controller 1362. Figure 13 also shows a plasma chamber 1304 with capacitive elements C1, C2 and an ion current II inside the plasma chamber. As shown, C1 represents the intrinsic capacitance (also referred to herein as effective capacitance) of components associated with chamber 1304 which may include, but is not limited to, insulating material, substrate, substrate support, and e-chuck, And C2 represents the sheath capacitance and stray capacitance. In this embodiment, the periodic voltage function provided to the plasma chamber 1304 and measurable at V 0 may be referred to as a modified periodic voltage function since it includes a periodic voltage function modified by the ion current compensation Ic.

鞘层(本文中也被称为等离子体鞘层)是等离子体中接近衬底表面的层并且可能是等离子体处理室的具有高密度正离子并且因此总体过剩正电荷的壁。鞘层接触的表面通常具有占优势的负电荷。鞘层凭借比正离子更快的电子速度而出现,因此导致更大比例的电子到达衬底表面或壁,因此使得鞘层耗尽电子。鞘层厚度(λ鞘层)是等离子体特性(诸如,等离子体密度和等离子体温度)的函数。The sheath (also referred to herein as the plasma sheath) is the layer in the plasma close to the substrate surface and possibly the wall of the plasma processing chamber that has a high density of positive ions and thus an overall excess of positive charge. The surfaces that the sheath contacts typically have a predominantly negative charge. The sheath occurs by virtue of a faster electron velocity than the positive ions, thus causing a greater proportion of electrons to reach the substrate surface or wall, thus depleting the sheath of electrons. The sheath thickness (λsheath) is a function of plasma properties such as plasma density and plasma temperature.

应当注意的是,因为此实施例中的C1是与室1304相关联的部件的固有(本文中也被称为有效)电容,所以它是被加到处理的增益控制的可存取电容。例如,一些现有技术方法利用线性放大器将偏置电源耦合至具有隔直流电容器的衬底上,并且然后利用隔直流电容器两端的监控电压作为反馈来控制其线性放大器。尽管在本文公开的许多实施例中,电容器能够将开关模式电源耦合到衬底支承部,但由于本发明的数个实施例中不需要使用隔直流电容器的反馈控制,所以不必这样做。It should be noted that since C1 in this embodiment is the intrinsic (herein also referred to as effective) capacitance of the components associated with chamber 1304, it is the accessible capacitance that is added to the gain control of the process. For example, some prior art approaches utilize a linear amplifier to couple a bias supply onto a substrate with a DC blocking capacitor, and then use the monitored voltage across the DC blocking capacitor as feedback to control its linear amplifier. While in many of the embodiments disclosed herein capacitors are able to couple the switched mode power supply to the substrate support, this is not necessary since several embodiments of the present invention do not require feedback control using DC blocking capacitors.

在参考图13的同时参考图14,图14是示出图13中所示出的Vo处的示范性电压(例如,经修改的周期电压函数)。在操作中,电流控制器1362监控Vo处的电压,如下式计算间隔t期间(如图14中所示出的)的离子电流:Referring to FIG. 14 in conjunction with FIG. 13 , FIG. 14 is a diagram illustrating an exemplary voltage (eg, a modified cycle voltage function) at Vo shown in FIG. 13 . In operation, the current controller 1362 monitors the voltage at Vo and calculates the ion current during interval t (as shown in FIG. 14 ) as follows:

(等式1) (equation 1)

离子电流II和固有电容(也被称为有效电容)C1中的任一者或两者可以是时变的。由于C1对于给定工具是基本恒定的并且是可测量的,所以只需要监控Vo来实现补偿电流的不间断控制。如上所述,为了得到更多离子能量的单能分布(例如,如图15A中所示出的),电流控制器控制电流源1364以使得Ic与II基本相等(或在替代方案中,根据等式2与II相关)。按照这种方法,即使当离子电流达到影响衬底表面的电压的电平时,也可以保持离子能量的窄扩展。并且此外,如果需要的话,可以如图15B和15C所示出地那样来控制离子能量的扩展,以使得在衬底表面产生额外的离子能量。Either or both of the ion current II and the intrinsic capacitance (also known as the effective capacitance) C 1 may be time-varying. Since C1 is substantially constant and measurable for a given tool, only Vo needs to be monitored to achieve uninterrupted control of the compensation current. As described above, to obtain a monoenergetic distribution of more ion energies (e.g., as shown in FIG . is related to II according to Equation 2). In this way, a narrow spread of ion energy can be maintained even when the ion current reaches a level that affects the voltage of the substrate surface. And also, if desired, the spread of ion energy can be controlled as shown in Figures 15B and 15C such that additional ion energy is generated at the substrate surface.

同样,在图13中示出了反馈线1370,其可以结合控制离子能量分布使用。例如,图14中所示出的ΔV(本文中还被称为电压阶跃或第三部分1406)的值表示瞬时离子能量,并且可以用于许多实施例中作为反馈控制环路的一部分。在一个实施例中,根据等式式4,电压阶跃ΔV与离子能量相关。在其它实施例中,峰间电压VPP可与瞬时离子能量相关。替代地,峰间电压VPP与第四部分1408的斜率dV0/dt乘以时间t的乘积之间的差可与瞬时离子能量相关(例如,VPP–dV0/dt·t)Also, a feedback line 1370 is shown in Figure 13, which may be used in conjunction with controlling ion energy distribution. For example, the value of ΔV (also referred to herein as a voltage step or third portion 1406 ) shown in FIG. 14 represents instantaneous ion energy and may be used in many embodiments as part of a feedback control loop. In one embodiment, according to Equation 4, the voltage step ΔV is related to ion energy. In other embodiments, the peak-to-peak voltage V PP may be related to the instantaneous ion energy. Alternatively, the difference between the peak-to-peak voltage V PP and the product of the slope dV 0 /dt of the fourth portion 1408 times the time t may be related to the instantaneous ion energy (e.g., V PP −dV 0 /dt·t)

接下来参考图16,示出了电流源1664的示范性实施例,其可以用于实现参考图13中所描述的电流源1364。在此实施例中,与串联电感器L2连接的可控负DC电压源起到电流源的作用,但是本领域技术人员将会理解,鉴于本说明书,可以由其它部件和/或配置来实现电流源。Referring next to FIG. 16 , an exemplary embodiment of a current source 1664 is shown that may be used to implement the current source 1364 described with reference to FIG. 13 . In this embodiment, a controllable negative DC voltage source connected to series inductor L2 acts as a current source, but those skilled in the art will appreciate that, in light of this specification, other components and/or configurations may be used to implement current source.

图43示出了控制碰撞衬底的表面的离子的离子能量分布的方法的一个实施例。方法4300通过向在等离子体处理室内支撑衬底的衬底支撑部施加经修改的周期电压函数4302(参见图44中的经修改的周期电压函数4402)而开始。可经由至少两个‘旋钮’(诸如离子电流补偿IC(参见图44中的IC4404)和电源电压VPS(参见图44中的电源电压4406)控制经修改的周期电压函数。用于产生电源电压的示范性部件是图1中的开关模式电源106。为了帮助解释电源电压VPS,其在本文中示出为在测量时不耦合到离子电流和离子电流补偿。然后在离子电流补偿IC的第一数值和所述第二数值处对经修改的周期电压函数进行采样4304。针对离子电流补偿IC的每一数值选取经修改的周期电压函数的电压的至少两个样本。执行采样4304以便实现对离子电流II和鞘层电容C鞘层的计算4306(或确定)4306。这种确定可涉及找到离子电流补偿IC,如果将其施加到衬底支撑部(或当将其施加到该衬底支撑部时)将产生窄的(例如,最小)离子能量分布函数(IEDF)宽度。计算4306还可以可选地包括基于经修改的周期电压函数的波形的采样4304来确定电压阶跃ΔV(也被称为经修改的周期电压函数的第三部分1406)。电压阶跃ΔV可与到达衬底的表面的离子的离子能量相关。当首次找到离子电流II时,可忽视电压阶跃ΔV。将在以下图30的论述中提供采样4304和计算4306的细节。Figure 43 illustrates one embodiment of a method of controlling the ion energy distribution of ions impinging on a surface of a substrate. Method 4300 begins by applying a modified periodic voltage function 4302 (see modified periodic voltage function 4402 in FIG. 44 ) to a substrate support that supports a substrate within a plasma processing chamber. The modified periodic voltage function can be controlled via at least two 'knobs', such as ion current compensation IC (see IC 4404 in FIG. 44 ) and supply voltage V PS (see supply voltage 4406 in FIG. 44 ). For An exemplary component that generates the supply voltage is the switch-mode power supply 106 in Figure 1. To aid in explaining the supply voltage, VPS , it is shown herein as measured without being coupled to the ion current and ion current compensation. Then the ion current compensation The modified periodic voltage function is sampled 4304 at the first value of IC and the second value . At least two samples of the voltage of the modified periodic voltage function are taken for each value of ion current compensation IC. Execute Sampling 4304 to enable calculation 4306 (or determination) 4306 of ion current II and sheath capacitance Csheath. This determination may involve finding ion current compensation Ic if applied to the substrate support (or when applied to the substrate support which, when applied to the substrate support, will produce a narrow (e.g., minimum) ion energy distribution function (IEDF) width. Calculation 4306 may also optionally include determining The voltage step ΔV (also referred to as the third part 1406 of the modified periodic voltage function). The voltage step ΔV can be related to the ion energy of the ions reaching the surface of the substrate. When the ion current II is first found, it can be Neglect the voltage step ΔV. The details of sampling 4304 and calculation 4306 will be provided in the discussion of FIG. 30 below.

一旦已知离子电流II和鞘层电容C鞘层,方法4300就可移到图31的涉及设置并且监控IEDF的离子能量和形状(例如,宽度)的方法3100。例如,图46示出了电源电压的变化可如何影响离子能量的变化。特别地,所示出的电源电压的大小减小,从而导致离子能量的减小的大小。另外,图47示出了,考虑到窄IEDF 4714的情况下,可通过调节离子电流补偿IC来使IEDF变宽。替代地或并行地,方法4300可如参考图32-41所描述地那样执行各种度量,其利用离子电流II、鞘层电容C鞘层和经修改的周期电压函数的波形其它方面。Once the ion current II and the sheath capacitance Csheath are known, method 4300 can move to method 3100 of FIG. 31 which involves setting and monitoring the ion energy and shape (eg, width) of the IEDF. For example, Figure 46 shows how changes in supply voltage can affect changes in ion energy. In particular, the shown reduced magnitude of the supply voltage results in a reduced magnitude of the ion energy. Additionally, Figure 47 shows that, given a narrow IEDF 4714, the IEDF can be made wider by adjusting the ion current compensation IC. Alternatively or in parallel, method 4300 may perform various metrics as described with reference to FIGS. 32-41 , utilizing ion current II , sheath capacitance Csheath, and other aspects of the waveform of the modified periodic voltage function.

除设置离子能量和/或IEDF宽度以外,方法4300可调节经修改的周期电压函数4308以便保持离子能量和IEDF宽度。特别地,可执行对由离子电流补偿部件提供的离子电流补偿IC的调节和对电源电压的调节4308。在一些实施例中,可通过电源的总线电压Vbus(例如,图3的总线电压Vbus)控制电源电压。离子电流补偿IC控制IEDF宽度,并且电源电压控制离子能量。In addition to setting ion energy and/or IEDF width, method 4300 can adjust modified periodic voltage function 4308 so as to maintain ion energy and IEDF width. In particular, adjustments to the ion current compensation IC provided by the ion current compensation component and adjustments to the supply voltage can be performed 4308 . In some embodiments, the power supply voltage can be controlled by the bus voltage V bus of the power supply (eg, the bus voltage V bus of FIG. 3 ). The ion current compensation IC controls the IEDF width, and the supply voltage controls the ion energy.

在这些调节4308之后,可再次对经修改的周期电压函数4304进行采样,并且可再次执行对离子电流II、鞘层电容C鞘层和电压阶跃ΔV的计算4306。如果离子电流II或电压阶跃ΔV不同于所定义的数值(或在替代方案中,所期望的数值),则可调节离子电流补偿IC和/或电源电压4308。可出现采样4304、计算4306和调节4308的循环,以便保持离子能量eV和/或IEDF宽度。After these adjustments 4308, the modified periodic voltage function 4304 can be sampled again, and the calculation 4306 of the ion current II , the sheath capacitance Csheath, and the voltage step ΔV can be performed again. Ion current compensation I C and/or supply voltage 4308 may be adjusted if ion current II or voltage step ΔV is different from defined values (or in the alternative, desired values). A cycle of sampling 4304, calculating 4306, and adjusting 4308 may occur in order to maintain ion energy eV and/or IEDF width.

图30示出了控制碰撞衬底的表面的离子的离子能量分布的方法的另一实施例。在一些实施例中,如上所述,可期望实现窄IEDF宽度(例如,最小IEDF宽度,或在替代方案中,~6%半高全宽)。如此,方法3000可向室并且向衬底支撑部提供经修改的周期电压函数,以使得在衬底的表面处存在恒定衬底电压,并且因此鞘层电压。这继而以基本上恒定的电压对鞘层两端的离子进行加速,因此使得离子能够以基本上相同离子能量碰撞衬底,其继而提供窄IEDF宽度。例如,在图45中,可见调节离子电流补偿IC可导致脉冲之间的衬底电压Vsub具有恒定或基本上恒定的电压,因此导致IEDF变窄。Figure 30 shows another embodiment of a method of controlling the ion energy distribution of ions impinging on a surface of a substrate. In some embodiments, as described above, it may be desirable to achieve a narrow IEDF width (eg, the minimum IEDF width, or in the alternative, ~6% full width at half maximum). As such, method 3000 may provide a modified periodic voltage function to the chamber and to the substrate support such that there is a constant substrate voltage, and thus sheath voltage, at the surface of the substrate. This in turn accelerates the ions across the sheath at a substantially constant voltage, thus enabling the ions to strike the substrate with substantially the same ion energy, which in turn provides a narrow IEDF width. For example, in FIG. 45 , it can be seen that adjusting the ion current compensation IC can cause the substrate voltage V sub to have a constant or substantially constant voltage between pulses, thus causing a narrowing of the IEDF .

假设无杂散电容(参见图45中的周期电压函数(V0)的最后五个周期),在离子电流补偿IC等于离子电流II时实现了这种经修改的周期电压函数。在替代方案中,在考虑杂散电容C杂散的情况下,根据等式2,离子电流补偿IC与离子电流II相关:Assuming no stray capacitance (see the last five cycles of the periodic voltage function (V 0 ) in FIG. 45 ) , this modified periodic voltage function is achieved when the ion current compensation IC is equal to the ion current II . In the alternative, the ion current compensation I is related to the ion current I according to Equation 2, taking into account the stray capacitance C stray :

(等式2) (equation 2)

其中,C1是有效电容(例如,参考图3和图13所述的固有电容)。有效电容C1可随时间变化或恒定。出于本公开内容的目的,窄IEDF宽度可在II=IC时或在替代方案中当满足等式2时存在。图45-50使用命名法(nomenclature)II=IC,但应理解的是,这些等式仅是等式2的简化,并且因此等式2可替代图45-50中使用的等式。杂散电容C杂散是等离子体室的累积电容,如由电源所见。在图45中示出了八个周期。where C 1 is the effective capacitance (eg, the inherent capacitance described with reference to FIGS. 3 and 13 ). The effective capacitance C 1 can vary over time or be constant. For the purposes of this disclosure, a narrow IEDF width may exist when I I =IC or in the alternative when Equation 2 is satisfied. Figures 45-50 use the nomenclature I I = IC , but it should be understood that these equations are only a simplification of Equation 2, and that Equation 2 may therefore be substituted for the equation used in Figures 45-50. Stray capacitance Cstray is the accumulated capacitance of the plasma chamber, as seen by the power supply. Eight cycles are shown in FIG. 45 .

方法3000可开始于向衬底支撑部(例如,图1中的衬底支撑部108)施加经修改的周期电压函数(例如,图14中所示出的经修改的周期电压函数或图44中的经修改的周期电压函数4402)3002。可在两个或更多个时刻对经修改的周期电压函数的电压进行采样3004,并且根据此采样,可计算经修改的周期电压函数的周期的至少一部分的斜率dV0/dt(例如,脉冲之间的部分或第四部分1408的斜率)3006。在决策3010之前的某时刻,可存取有效电容C1(例如,图13中的固有电容C1和图3中的固有电容C10)的先前确定的数值(例如,从存储器或从用户输入存取)3008。基于斜率dV0/dt、有效电容C1和离子电流补偿IC,可如下针对离子电流补偿IC的每一数值评估函数f(等式3):Method 3000 may begin by applying a modified periodic voltage function (e.g., the modified periodic voltage function shown in FIG. The modified periodic voltage function 4402) of 3002. The voltage of the modified periodic voltage function can be sampled 3004 at two or more instants, and from the sampling, the slope dV 0 /dt (e.g., pulse The slope between the portion or fourth portion 1408) 3006. At some point prior to decision 3010, a previously determined value of effective capacitance C1 (e.g., intrinsic capacitance C1 in FIG. 13 and intrinsic capacitance C10 in FIG. 3 ) may be accessed (e.g., from memory or from a user input). Take) 3008. Based on the slope dV 0 /dt, the effective capacitance C 1 , and the ion current compensation IC, the function f (Equation 3 ) can be evaluated for each value of the ion current compensation IC as follows:

(等式3) (equation 3)

如果函数f为真,则离子电流补偿IC等于离子电流II,或在替代方案中,使得等式2为真,并且已经实现窄IEDF宽度3010(例如,参见图45)。如果函数f不为真,则可进一步调节离子电流补偿IC 3012,直到函数f为真。查看此情况的另一方式是可调节离子电流补偿IC,直到其匹配离子电流II(或在替代方案中,满足等式2的关系),在此点处将存在窄IEDF宽度。在图45中可看见对离子电流补偿Ic的这种调节和IEDF的所产生变窄。在存储操作3014中可(例如,在存储器中)存储离子电流II和对应的离子电流补偿Ic。离子电流IC可如同有效电容C1一样随时间变化。If the function f is true, the ion current compensation IC is equal to the ion current II , or in the alternative, so that Equation 2 is true, and a narrow IEDF width 3010 has been achieved (see, eg, FIG. 45 ). If the function f is not true, the ion current compensation IC 3012 may be further adjusted until the function f is true. Another way of looking at this is that the ion current compensation Ic can be adjusted until it matches the ion current II (or in the alternative, the relationship of Equation 2 is satisfied), at which point there will be a narrow IEDF width. This adjustment of ion current compensation Ic and the resulting narrowing of the IEDF can be seen in FIG. 45 . In store operation 3014, the ion current II and the corresponding ion current compensation Ic may be stored (eg, in a memory). The ionic current I C can vary with time as can the effective capacitance C 1 .

当满足等式3时,离子电流II是已知的(因为IC=II或因为等式2为真)。因此,方法3000实现对离子电流II的实时的远程和非侵入性测量,而不影响等离子体。这导致若干新颖度量,诸如将参考图32-41所述的那些度量(例如,对等离子体密度的远程监控和对等离子体源的远程故障检测)。When Equation 3 is satisfied, the ion current I I is known (either because I C =I I or because Equation 2 is true). Thus, method 3000 enables real-time remote and non-invasive measurement of ion current II without affecting the plasma. This leads to several novel metrics, such as those that will be described with reference to FIGS. 32-41 (eg, remote monitoring of plasma density and remote fault detection of plasma sources).

在调节3012补偿电流IC时,离子能量将很可能比delta函数更宽,并且离子能量将类似于图15B、图15C或图44的离子能量。然而,一旦发现补偿电流IC满足等式2,IEDF就将出现,如图15A或图45的右侧部分中所示出—为具有窄IEDF宽度(例如,最小IEDF宽度)。这是因为当IC=II时(或替代地当等式2为真时),经修改的周期电压函数的脉冲之间的电压导致基本上恒定的鞘层或衬底电压,并且因此基本上恒定的离子能量。在图46中,衬底电压4608包括恒定电压部分之间的脉冲。这些脉冲具有如此短的持续时间以致于其对离子能量和IEDF的影响可以忽略不计,并且因此衬底电压4608被当作是基本上恒定的。When adjusting 3012 the compensation current I C , the ion energy will likely be broader than the delta function, and the ion energy will be similar to that of FIG. 15B , FIG. 15C , or FIG. 44 . However, once the compensation current IC is found to satisfy Equation 2, an IEDF will emerge, as shown in FIG. 15A or the right part of FIG. 45—as having a narrow IEDF width (eg, minimum IEDF width). This is because the voltage between pulses of the modified periodic voltage function results in a substantially constant sheath or substrate voltage when Ic = II (or alternatively when Equation 2 is true), and thus substantially constant ion energy. In Figure 46, the substrate voltage 4608 includes pulses between constant voltage portions. These pulses are of such short duration that their impact on the ion energy and IEDF is negligible, and thus the substrate voltage 4608 is considered substantially constant.

下文提供关于图30中示出的方法步骤中的每一个方法步骤的进一步细节。在一个实施例中,经修改的周期电压函数可具有如同图14中所示出的波形的波形并且可包括第一部分(例如,第一部分1402)、第二部分(例如,1404)、第三部分(例如,第三部分1406)和第四部分(例如,第四部分1408),其中第三部分可具有电压阶跃ΔV,并且第四部分可具有斜率dV0/dt。斜率dV0/dt可以为正、负或零。经修改的周期电压函数1400还可被描述为具有包括第一部分1402、第二部分1404和第三部分1406的脉冲,以及脉冲之间的部分(第四部分1408)。Further details regarding each of the method steps shown in Figure 30 are provided below. In one embodiment, the modified periodic voltage function may have a waveform like that shown in FIG. 14 and may include a first portion (e.g., first portion 1402), a second portion (e.g., 1404), a third portion (eg, third portion 1406 ) and a fourth portion (eg, fourth portion 1408 ), where the third portion may have a voltage step ΔV and the fourth portion may have a slope dV 0 /dt. The slope dV 0 /dt can be positive, negative or zero. The modified periodic voltage function 1400 can also be described as having pulses comprising a first portion 1402, a second portion 1404, and a third portion 1406, with a portion between the pulses (fourth portion 1408).

经修改的周期电压函数可被测量为图3中的V0并且可出现为图44中的经修改的周期电压函数4402。经修改的周期电压函数4402通过将电源电压4406(也被称为周期电压函数)与离子电流补偿4404组合而产生。电源电压4406主要负责产生并且使经修改的周期电压函数4402的脉冲成形,并且离子电流补偿4404主要负责产生并且使脉冲之间的部分成形,其通常是直线倾斜的电压。增加离子电流补偿Ic导致脉冲之间的部分的斜率的大小减小,如图45中所见。减小电源电压4606的大小导致脉冲的幅度的大小和经修改的周期电压函数4602的峰间电压的减小,如图46中所见。The modified periodic voltage function may be measured as V 0 in FIG. 3 and may appear as modified periodic voltage function 4402 in FIG. 44 . Modified periodic voltage function 4402 is produced by combining supply voltage 4406 (also referred to as periodic voltage function) with ion current compensation 4404 . The supply voltage 4406 is primarily responsible for generating and shaping the pulses of the modified periodic voltage function 4402, and the ion current compensation 4404 is primarily responsible for generating and shaping the portion between pulses, which is typically a linearly sloped voltage. Increasing the ion current compensation Ic results in a decrease in the magnitude of the slope of the portion between pulses, as seen in FIG. 45 . Reducing the magnitude of the supply voltage 4606 results in a reduction in the magnitude of the amplitude of the pulses and the peak-to-peak voltage of the modified periodic voltage function 4602 , as seen in FIG. 46 .

在电源是开关模式电源的情况下,可施加第一开关T1和第二开关T2的开关图4410。例如,第一开关T1可实施为图3中的开关T1,并且第二开关T2可实施为图3中的第二开关T2。两个开关示出为具有完全相同的开关时间,但是异相180°。在其它实施例中,开关可具有诸如在图4中所示出的轻微相位偏移之类的轻微相位偏移。当第一开关T1开启时,电源电压牵引到最大大小,其在图44中为负值,因为电源具有负总线电压。第二开关T2在此周期期间关闭,以使得电源电压4406与地隔离。当开关反向(reverse)时,电源电压4406接近并且稍微超过(pass)大地。在所示出的实施例中,存在两个脉冲宽度,但是这不是必须的。在其它实施例中,脉冲宽度针对所有周期可完全相同。在其它实施例中,脉冲宽度可适时变化或调制。In case the power supply is a switch mode power supply, a switching diagram 4410 of the first switch T1 and the second switch T2 may be applied. For example, the first switch T1 may be implemented as the switch T1 in FIG. 3 , and the second switch T2 may be implemented as the second switch T2 in FIG. 3 . Both switches are shown to have exactly the same switching times, but are 180° out of phase. In other embodiments, the switches may have a slight phase offset such as that shown in FIG. 4 . When the first switch T1 is turned on, the supply voltage pulls to a maximum magnitude, which is negative in FIG. 44 because the supply has a negative bus voltage. The second switch T2 is closed during this period, so that the supply voltage 4406 is isolated from ground. When the switch is reversed, the supply voltage 4406 approaches and passes slightly over ground. In the illustrated embodiment, there are two pulse widths, but this is not required. In other embodiments, the pulse width may be exactly the same for all periods. In other embodiments, the pulse width can be varied or modulated in time.

经修改的周期电压函数可应用到衬底支撑部3002,并且在经修改的周期电压函数到达衬底支撑部之前在最后一个可存取点处采样3004为V0(例如,在开关模式电源与有效电容之间)。未经修改的周期电压函数(或图44中的电源电压4406)可源自诸如图12中的开关模式电源1206之类的电源。图44中的离子电流补偿4404可源自诸如图12中的离子电流补偿部件1260或图13中的离子电流补偿部件1360的电流源。The modified periodic voltage function may be applied to the substrate support 3002 and sampled 3004 as V at the last accessible point before the modified periodic voltage function reaches the substrate support (e.g., in a switched-mode power supply with effective capacitance). The unmodified periodic voltage function (or supply voltage 4406 in FIG. 44 ) may be derived from a power supply such as switched mode power supply 1206 in FIG. 12 . Ion current compensation 4404 in FIG. 44 may originate from a current source such as ion current compensation component 1260 in FIG. 12 or ion current compensation component 1360 in FIG. 13 .

可对经修改的周期电压函数的一部分或整个经修改的周期电压函数进行采样3004。例如,可第四部分(例如,第四部分1408)进行采样。采样3004可在电源和衬底支撑部之间执行。例如,在图1中,可在开关模式电源106与支撑部108之间执行采样3004。例如,在图1中,可在开关模式电源106与支撑部108之间执行采样3004。在图3中,可在电感器L1与固有电容C10之间执行采样3004。在一个实施例中,可在电容C3与固有电容C10之间在V0处执行采样3004。由于固有电容C10和表示等离子体的元件(R2、R3、C1和C2)不可存取用于实时测量,因此通常在图3中的固有电容C10的左侧执行采样3004。虽然固有电容C10通常不在处理期间测量,但是其通常已知恒定,并且因此可在制造期间进行设置。同时,在一些情况下,固有电容C10可随时间变化。A portion of the modified periodic voltage function or the entire modified periodic voltage function may be sampled 3004 . For example, a fourth portion (eg, fourth portion 1408) may be sampled. Sampling 3004 can be performed between the power supply and the substrate support. For example, in FIG. 1 , sampling 3004 may be performed between switched mode power supply 106 and support 108 . For example, in FIG. 1 , sampling 3004 may be performed between switched mode power supply 106 and support 108 . In FIG. 3, sampling 3004 may be performed between inductor L1 and inherent capacitance C10. In one embodiment, sampling 3004 may be performed at V0 between capacitance C3 and intrinsic capacitance C10. Since the intrinsic capacitance C10 and the elements representing the plasma (R2, R3, C1 and C2) are not accessible for real-time measurements, sampling 3004 is typically performed to the left of the intrinsic capacitance C10 in FIG. 3 . Although the intrinsic capacitance C10 is not usually measured during processing, it is usually known to be constant and thus can be set during manufacture. Meanwhile, in some cases, the inherent capacitance C10 may vary with time.

虽然在一些实施例中,仅需要经修改的周期电压函数的两个样本,但在其它实施例中,可针对经修改的周期电压函数的每一周期选取数百、数千或成千上万个样本。例如,采样率可大于400kHz。这些采样率实现对经修改的周期电压函数及其形状的更精确的并且详细的监控。在此相同纹理(vein)中,对周期电压函数的更详细监控允许对波形的更精确比较:不同周期之间、不同工艺条件之间、不同工艺之间、不同室之间、不同源之间等。例如,以这些采样率,可区分图14中示出的周期电压函数的第一、第二、第三和第四部分1402、1404、1406、1408,这以传统采样率会是不可能的。在一些实施例中,较高采样率实现对电压阶跃ΔV和斜率dV0/dt的解析,这在本领域中是不可能的。在一些实施例中,可对经修改的周期电压函数的一部分进行采样,而不对其它部分进行采样。While in some embodiments only two samples of the modified periodic voltage function are required, in other embodiments hundreds, thousands or thousands of samples may be chosen for each cycle of the modified periodic voltage function samples. For example, the sampling rate may be greater than 400kHz. These sampling rates enable more accurate and detailed monitoring of the modified periodic voltage function and its shape. In this same vein, more detailed monitoring of the cycle voltage function allows for a more precise comparison of waveforms: between different cycles, between different process conditions, between different processes, between different chambers, between different sources Wait. For example, at these sampling rates, the first, second, third and fourth parts 1402, 1404, 1406, 1408 of the periodic voltage function shown in Figure 14 can be distinguished, which would not be possible at conventional sampling rates. In some embodiments, the higher sampling rate enables resolution of the voltage step ΔV and slope dV 0 /dt, which is not possible in the art. In some embodiments, a portion of the modified periodic voltage function may be sampled while other portions are not sampled.

可基于在时间t(例如,第四部分1408)期间进行的多次V0测量对斜率dV0/dt进行计算3006。例如,可执行线性拟合以将一条线拟合到V0值,其中所述线的斜率给出斜率dVo/dt。在另一示例中,可确定在图14中的时间t(例如,第四部分1408)的开始和结束处的V0值,并且可在这两个点之间拟合一条线,其中所述线的斜率给出为dVo/dt。这些仅是可计算脉冲之间的部分的斜率dVo/dt的许多方式中的两种方式。The slope dV 0 /dt may be calculated 3006 based on a number of V 0 measurements taken during time t (eg, fourth portion 1408 ). For example, a linear fit can be performed to fit a line to the V 0 value, where the slope of the line gives the slope dV o /dt. In another example, values of V at the beginning and end of time t (e.g., fourth portion 1408) in FIG. 14 can be determined, and a line can be fitted between these two points, wherein the The slope of the line is given as dV o /dt. These are just two of many ways in which the slope dV o /dt of the portion between pulses can be calculated.

决策3010可以是用于将IEDF调谐到窄宽度(例如,最小宽度,或在替代方案中,6%半高全宽)的迭代循环的部分。等式3仅在离子电流补偿Ic等于离子电流II(或在替代方案中,根据等式2与II相关)的情况下保持为真,其仅在存在恒定衬底电压并且因此恒定且基本上单一的离子能量(窄IEDF宽度)的情况下发生。在图46中可见恒定衬底电压4608(Vsub)。因此,离子电流II或替代地离子电流补偿Ic可用在等式3中。Decision 3010 may be part of an iterative loop for tuning the IEDF to a narrow width (eg, the minimum width, or in the alternative, 6% full width at half maximum). Equation 3 holds true only if the ion current compensation I is equal to the ion current I (or in the alternative, related to I according to Equation 2), which is only true if there is a constant substrate voltage and thus constant and substantially Occurs in the case of upper single ion energies (narrow IEDF width). A constant substrate voltage 4608 (V sub ) is seen in FIG. 46 . Therefore, ion current II or alternatively ion current compensation Ic may be used in Equation 3.

替代地,可针对第一周期和第二周期对沿第四部分1408(也被称为脉冲之间的部分)的两个数值进行采样,并且可分别针对每一周期确定第一斜率和第二斜率。根据这两个斜率,可确定离子电流补偿Ic,期望离子电流补偿Ic使等式3针对第三(但尚未测量)斜率为真。因此,可估算离子电流II,预计离子电流II对应于窄IEDF宽度。这些仅是可确定窄IEDF宽度并且可发现对应的离子电流补偿Ic和/或对应的离子电流II的许多方式中的两种方式。Alternatively, two values along the fourth portion 1408 (also referred to as the portion between pulses) may be sampled for the first period and the second period, and the first slope and the second slope may be determined for each period, respectively. slope. From these two slopes, the ion current compensation Ic can be determined, which is expected to make Equation 3 true for the third (but not yet measured) slope. Therefore, the ion current II can be estimated, which is expected to correspond to a narrow IEDF width. These are just two of many ways in which a narrow IEDF width can be determined and a corresponding ion current compensation Ic and/or a corresponding ion current II can be found.

对离子电流补偿Ic的调节3012可涉及增加或减小离子电流补偿Ic,并且对每一调节的步长无限制。在一些实施例中,等式3中函数f的符号可用于确定是增加还是减小离子电流补偿。如果符号为负的,则可减小离子电流补偿Ic,而正符号可指示需要增加离子电流补偿Ic。Adjustment 3012 of ion current compensation Ic may involve increasing or decreasing ion current compensation Ic, and there is no limit to the step size of each adjustment. In some embodiments, the sign of the function f in Equation 3 can be used to determine whether to increase or decrease ion current compensation. If the sign is negative, the ion current compensation Ic may be decreased, while a positive sign may indicate that the ion current compensation Ic needs to be increased.

一旦已经识别离子电流补偿Ic等于离子电流II(或在其它方案中,根据等式2与其相关),方法3000就可前进到进一步设置点操作(参见图31)或远程室和源监控操作(参见图32-41)。所述进一步设置点操作可包括设置离子能量(也参见图46)和离子能量的分布或IEDF宽度(也参见图47)。源和室监控可包括监控等离子体密度、源供应异常、等离子体电弧以及其它。Once the ion current compensation Ic has been identified to be equal to the ion current II (or in other schemes related thereto according to Equation 2), the method 3000 can proceed to further setpoint operations (see FIG. 31 ) or remote chamber and source monitoring operations ( See Figures 32-41). The further set point operations may include setting the ion energy (see also FIG. 46 ) and the distribution or IEDF width of the ion energy (see also FIG. 47 ). Source and chamber monitoring may include monitoring plasma density, source supply anomalies, plasma arcing, and others.

此外,方法3000可选地循环回到采样3004以便连续(或在替代方案中,周期地)更新离子电流补偿Ic。例如,考虑到当前离子电流补偿Ic的情况下,可以周期地执行采样3004、计算3006、决策3010和调节3012,以便确保继续满足等式3。同时,如果更新满足等式3的离子电流补偿Ic,则还可更新离子电流II并且可以存储3014经更新数值。Furthermore, method 3000 optionally loops back to sampling 3004 to continuously (or, in the alternative, periodically) update ion current compensation Ic. For example, sampling 3004, calculating 3006, deciding 3010, and adjusting 3012 may be performed periodically to ensure that Equation 3 continues to be satisfied, taking into account the current ion current compensation Ic. At the same time, if the ion current compensation Ic satisfying Equation 3 is updated, the ion current II may also be updated and the updated value may be stored 3014 .

虽然方法3000可发现并且设置离子电流补偿Ic从而等于离子电流II,或在替代方案中,满足等式2,但在没有将离子电流IC设置为该数值的情况下(或在替代方案中,在将离子电流IC设置为该数值之前),可以确定实现窄IEDF宽度所需的离子电流补偿Ic的数值。例如,通过针对第一周期施加第一离子电流补偿Ic1并且测量脉冲之间的电压的第一斜率dV01/dt,并且通过针对第二周期施加第二离子电流补偿Ic2并且测量脉冲之间的电压的第二斜率dV02/dt,可确定与第三离子电流补偿Ic3相关联的第三斜率dV03/dt,其中,期望等式3为真。第三离子电流补偿Ic3可以是如果施加将产生窄IEDF宽度的离子电流补偿。因此,可仅借助对离子电流补偿的单一调节来确定满足等式3并且因此与离子电流II相对应的离子电流补偿Ic。方法3000可然后移到图31和/或图32-41中所述的方法,而不曾将离子电流IC设置为实现窄IEDF宽度所需的数值。可执行这种实施例以便增加调谐速度。While method 3000 may find and set ion current offset Ic to equal ion current II , or in the alternative, satisfy Equation 2, without setting ion current Ic to this value (or in alternative , before setting the ion current IC to this value), the value of the ion current compensation Ic required to achieve a narrow IEDF width can be determined. For example, by applying a first ion current for the first period compensating for Ic1 and measuring the first slope dV01 /dt of the voltage between pulses, and by applying a second ion current for a second period Ic2 and measuring between pulses The second slope dV 02 /dt of the voltage of , may determine the third slope dV 03 /dt associated with the third ion current compensation Ic 3 , where Equation 3 is expected to be true. The third ion current compensation Ic 3 may be an ion current compensation which if applied would result in a narrow IEDF width. Therefore, the ion current compensation Ic satisfying Equation 3 and thus corresponding to the ion current II can be determined by means of only a single adjustment of the ion current compensation. Method 3000 may then move to the method described in FIG. 31 and/or FIGS. 32-41 without ever setting ion current Ic to the value required to achieve a narrow IEDF width. Such an embodiment may be implemented in order to increase tuning speed.

图31示出了用于设置IEDF宽度和离子能量的方法。所述方法源自图30中示出的方法3000,并且可选取左侧路径3100(也被称为IEDF支路)或右侧路径3101(也被称为离子能量支路)中的任一路径,其需要分别设置IEDF宽度和离子能量。离子能量eV与电压阶跃ΔV或图14的经修改的周期电压函数1400的第三部分1406成正比。离子能量eV与电压阶跃ΔV之间的关系可写为等式4:Figure 31 shows a method for setting the IEDF width and ion energy. The method is derived from the method 3000 shown in FIG. 30 and can take either of the left path 3100 (also known as the IEDF branch) or the right path 3101 (also known as the ion energy branch) , which need to set the IEDF width and ion energy separately. The ion energy eV is proportional to the voltage step ΔV or the third part 1406 of the modified periodic voltage function 1400 of FIG. 14 . The relationship between ion energy eV and voltage step ΔV can be written as Equation 4:

(等式4) (equation 4)

其中C1是有效电容(例如,卡盘电容;图3中的固有电容C10;或图13中的固有电容C1),并且C2是鞘层电容(例如,图3中的鞘层电容C4或图3中的鞘层电容C2)。鞘层电容C2可包括杂散电容并且取决于离子电流II。电压阶跃ΔV可被测量为经修改的周期电压函数1400的第二部分1404与第四部分1408之间的电压的变化。通过控制并且监控电压阶跃ΔV(其是电源电压或诸如图3中的总线电压Vbus之类的总线电压的函数),可控制并且知道离子能量eV。where C1 is the effective capacitance (e.g., chuck capacitance; intrinsic capacitance C10 in Figure 3; or intrinsic capacitance C1 in Figure 13), and C2 is the sheath capacitance (e.g., sheath capacitance C4 in Figure 3 or Sheath capacitance C2) in Figure 3). The sheath capacitance C 2 may include stray capacitance and depends on the ion current I I . The voltage step ΔV may be measured as a change in voltage between the second portion 1404 and the fourth portion 1408 of the modified periodic voltage function 1400 . By controlling and monitoring the voltage step ΔV, which is a function of the supply voltage or a bus voltage such as the bus voltage V bus in FIG. 3 , the ion energy eV can be controlled and known.

同时,可根据等式5估计IEDF宽度:Meanwhile, the IEDF width can be estimated according to Equation 5:

(等式5) (equation 5)

其中,在C是C串联的情况下I是II,或在C是C有效的情况下I是IC。时间t是脉冲之间的时间,VPP是峰间电压,并且ΔV是电压阶跃。where I is II in the case where C is C in series , or I is IC in the case where C is C in effect . Time t is the time between pulses, V PP is the peak-to-peak voltage, and ΔV is the voltage step.

另外,鞘层电容C2可用在多种计算和监控操作中。例如,可如下估算Debye鞘层距离λ鞘层In addition, the sheath capacitance C2 can be used in various computing and monitoring operations. For example, the Debye sheath distance λsheath can be estimated as follows:

(等式6) (equation 6)

其中是真空介电常数,以及A是衬底的面积(或在替代方案中,衬底支撑部的表面积)。在一些高电压应用中,等式6写为等式7:where is the vacuum permittivity, and A is the area of the substrate (or in the alternative, the surface area of the substrate support). In some high voltage applications, Equation 6 is written as Equation 7:

(等式7) (Equation 7)

另外,可以将鞘层中的e场估算为鞘层电容C2、鞘层距离λ鞘层和离子能量eV的函数。鞘层电容C2连同离子电流II一起还可用于根据等式8来确定等离子体密度ne,其中针对单独电离的等离子体,饱和电流Isat与补偿电流IC线性相关。Additionally, the e-field in the sheath can be estimated as a function of the sheath capacitance C 2 , the sheath distance λ sheath and the ion energy eV. The sheath capacitance C 2 together with the ion current II can also be used to determine the plasma density ne according to Equation 8, where the saturation current I sat is linearly related to the compensation current I C for a separately ionized plasma.

(等式8) (Equation 8)

可使用鞘层电容C2和饱和电流Isat来计算衬底表面处的离子的有效质量。等离子体密度ne、鞘层中的电场、离子能量eV、离子的有效质量和衬底的DC电位VDC是通常仅经由本领域中的间接手段监控的基本等离子体参数。本公开内容实现对这些参数的直接测量,因此实现对等离子体特性的更精确实时监控。The effective mass of ions at the substrate surface can be calculated using the sheath capacitance C 2 and the saturation current I sat . The plasma density ne , the electric field in the sheath, the ion energy eV, the effective mass of the ion and the DC potential V DC of the substrate are fundamental plasma parameters that are usually only monitored via indirect means in the art. The present disclosure enables direct measurement of these parameters, thus enabling more accurate real-time monitoring of plasma properties.

如等式4中所见,鞘层电容C2还可用于监控并且控制离子能量eV,如图31的离子能量支路3101中示出。离子能量支路3101通过接收离子能量的用户选择3102而开始。然后,离子能量支路3101可对供应周期电压函数的开关模式电源的初始电源电压进行设置3104。在采样的周期电压操作3108之前的某时刻,还可存取离子电流3106(例如,从存储器存取)。可采样周期电压3108,并且可对经修改的周期电压函数的第三部分的测量进行测量3110。可根据经修改的周期电压函数的电压阶跃ΔV(也被称为第三部分(例如,第三部分1406))来计算离子能量II 3112。然后,离子能量支路3101可确定离子能量是否等于所定义的离子能量3114,并且如果这样,则离子能量处于所期望的设置点处并且离子能量支路3101可结束。如果离子能量不等于所定义的离子能量,则离子能量支路3101可调节电源电压3116,并且再次对周期电压进行采样3108。然后,离子能量支路3101可循环通过采样3108、测量3110、计算3112、决策3114和设置3116,直到离子能量等于所定义的离子能量。As seen in Equation 4, the sheath capacitance C 2 can also be used to monitor and control the ion energy eV, as shown in ion energy branch 3101 of FIG. 31 . The ion energy branch 3101 begins by receiving a user selection 3102 of ion energy. The ion energy branch 3101 may then set 3104 the initial supply voltage of the switched mode power supply supplying a periodic voltage function. At some point prior to the sampled cycle voltage operation 3108, the ion current 3106 may also be accessed (eg, from memory). The periodic voltage can be sampled 3108 and a measurement of a third portion of the modified periodic voltage function can be measured 3110 . Ion energy I I 3112 may be calculated from the voltage step ΔV (also referred to as the third portion (eg, third portion 1406 )) of the modified periodic voltage function. The ion energy branch 3101 can then determine if the ion energy is equal to the defined ion energy 3114, and if so, the ion energy is at the desired set point and the ion energy branch 3101 can end. If the ion energy is not equal to the defined ion energy, the ion energy branch 3101 can adjust the supply voltage 3116 and sample the cycle voltage again 3108 . The ion energy branch 3101 may then loop through sampling 3108, measuring 3110, calculating 3112, deciding 3114, and setting 3116 until the ion energy is equal to the defined ion energy.

在图31的IEDF支路3100中示出了用于监控并且控制IEDF宽度的方法。IEDF支路3100包括接收IEDF宽度的用户选择3150并且对当前IEDF宽度进行采样3152。然后,决策3154确定所定义的IEDF宽度是否等于当前IEDF宽度,并且如果满足决策3152,则IEDF宽度是如所期望的(或所定义的)IEDF宽度,并且IEDF支路3100可结束。然而,如果当前IEDF宽度并不等于所定义的IEDF宽度,则可调节离子电流补偿Ic 3156。此确定3154和调节3156可以以循环方式继续,直到当前IEDF宽度等于所定义的IEDF宽度。A method for monitoring and controlling the IEDF width is shown in IEDF branch 3100 of FIG. 31 . The IEDF branch 3100 includes receiving a user selection 3150 of an IEDF width and sampling 3152 a current IEDF width. Decision 3154 then determines whether the defined IEDF width is equal to the current IEDF width, and if decision 3152 is satisfied, the IEDF width is as expected (or as defined) and the IEDF branch 3100 may end. However, if the current IEDF width is not equal to the defined IEDF width, the ion current compensation Ic 3156 may be adjusted. This determination 3154 and adjustment 3156 may continue in a loop until the current IEDF width is equal to the defined IEDF width.

在一些实施例中,还可实施IEDF支路3100以保护所期望的IEDF形状。可产生各种IEDF形状,并且每一IEDF形状可与不同离子能量和IEDF宽度相关联。例如,第一IEDF形状可以是delta函数,而第二IEDF形状可以是平方函数。其它IEDF形状可以是杯形的。在图11中可见各种IEDF形状的示例。In some embodiments, IEDF branch 3100 may also be implemented to preserve the desired IEDF shape. Various IEDF shapes can be generated, and each IEDF shape can be associated with a different ion energy and IEDF width. For example, the first IEDF shape may be a delta function, while the second IEDF shape may be a square function. Other IEDF shapes may be cup-shaped. Examples of various IEDF shapes can be seen in FIG. 11 .

在知道离子电流II和电压阶跃ΔV的情况下,可针对离子能量eV求解等式4。可通过改变电源电压(其继而导致电压阶跃ΔV发生变化)来控制电压阶跃ΔV。较大电源电压导致电压阶跃ΔV增加,并且电源电压减小导致电压阶跃ΔV减小。换句话说,增加电源电压导致较大离子能量eV。Knowing the ion current II and the voltage step ΔV, Equation 4 can be solved for the ion energy eV. The voltage step ΔV can be controlled by varying the supply voltage, which in turn causes the voltage step ΔV to vary. A larger supply voltage results in an increase in the voltage step ΔV, and a decrease in the supply voltage results in a decrease in the voltage step ΔV. In other words, increasing the supply voltage results in larger ion energies eV.

此外,由于以上系统和方法对连续变化的反馈回路起作用,因此尽管由于等离子体源或室条件的变化或刻意调节而引起的等离子体的变化,可以保持所期望的(或所定义的)离子能量和IEDF宽度。Furthermore, because the above systems and methods operate on a continuously varying feedback loop, desired (or defined) ion can be maintained despite variations in the plasma due to changes in plasma source or chamber conditions or deliberate adjustments. Energy and IEDF width.

虽然已经依据单一离子能量描述了图30-41,但本领域技术人员将认识到,产生并且监控所期望的(或所定义的)IEDF宽度(或IEDF形状)和离子能量的这些方法可进一步用于产生并且监控两个或更多个离子能量,每一离子能量具有其自己的IEDF宽度(或IEDF形状)。例如,通过在第一、第三和第五周期中提供第一电源电压VPS并且在第二、第四和第六周期中提供第二电源电压,可针对到达衬底的表面的离子实现两个不同并且窄的离子能量(例如,图42A)。使用三个不同电源电压导致三个不同离子能量(例如,图42B)。通过改变在此期间施加多个电源电压中的每一电源电压的时间,或在此期间施加每一电源电压电平的周期的个数,可控制不同离子能量的离子通量(例如,图42C)。Although Figures 30-41 have been described in terms of a single ion energy, those skilled in the art will recognize that these methods of generating and monitoring a desired (or defined) IEDF width (or IEDF shape) and ion energy can be further utilized For generating and monitoring two or more ion energies, each ion energy has its own IEDF width (or IEDF shape). For example, by providing the first power supply voltage V PS in the first, third and fifth periods and the second power supply voltage in the second, fourth and sixth periods, two can be achieved for ions reaching the surface of the substrate. different and narrow ion energies (eg, Figure 42A). Using three different supply voltages resulted in three different ion energies (eg, Figure 42B). By varying the time during which each of multiple supply voltages is applied, or the number of cycles during which each supply voltage level is applied, ion flux for different ion energies can be controlled (e.g., FIG. 42C ).

以上论述已显示如何将由电源提供的周期电压函数与由离子电流补偿部件提供的离子电流补偿组合,其可用于控制在等离子体处理期间到达衬底的表面的离子的离子能量以及IEDF宽度和/或IEDF形状。The above discussion has shown how combining the periodic voltage function provided by the power supply with the ion current compensation provided by the ion current compensation component can be used to control the ion energy as well as the IEDF width and/or IEDF shape.

迄今所述控制中的一些控制通过使用以下各项的一些组合来实现:(1)固定波形(波形的连续周期相同);(2)具有至少两个部分的波形,所述至少两个部分与离子能量和IEDF成比例(例如,图14中示出的第三部分和第四部分1406和1408);以及(3)高采样率(例如,125MHz),其实现对波形的不同特征的精确监控。例如,在现有技术(诸如线性放大器向衬底发送与经修改的周期电压函数类似的波形)的情况下,周期之间的不期望的变化使得难以使用那些现有技术波形来表征离子能量或IEDF宽度(或IEDF形状)。Some of the controls described so far are achieved by using some combination of: (1) a fixed waveform (sequential periods of the waveform are the same); (2) a waveform with at least two sections that are the same as Ion energy is proportional to the IEDF (e.g., the third and fourth portions 1406 and 1408 shown in FIG. 14); and (3) a high sampling rate (e.g., 125 MHz), which enables precise monitoring of different features of the waveform . For example, in the case of prior art techniques such as linear amplifiers sending a waveform to the substrate that resembles a modified periodic voltage function, the undesired variation between cycles makes it difficult to use those prior art waveforms to characterize ion energy or IEDF width (or IEDF shape).

在线性放大器已经用于对衬底支撑部进行偏置的情况下,尚未看见以高速率进行采样的需要,因为波形从周期到周期并不一致,并且因此波形的解析特征(例如,脉冲之间的部分的斜率)通常将不提供有用信息。这种有用信息在使用了固定波形时的确出现,如本本开内容和相关公开内容中所见。Where linear amplifiers have been used to bias the substrate support, the need for sampling at high rates has not been seen because the waveform is not consistent from cycle to cycle, and thus the analytical characteristics of the waveform (e.g., the interval between pulses part of the slope) will generally not be informative. This useful information does appear when fixed waveforms are used, as seen in this and related disclosures.

本文中公开的固定波形和高采样率进一步导致更精确的统计观察是可行的。由于此增加的精度度,可经由监控经修改的周期电压函数的各种特性来监控等离子体源和室中的等离子体的操作和处理特性。例如,对经修改的周期电压函数的测量实现对鞘层电容和离子电流的远程监控,并且可在不知道室工艺或其它室细节的情况下进行监控。若干示例随后仅示出迄今所述系统和方法可用于对源和室的非侵入式监控和故障检测的大量方式中的一些方式。The fixed waveforms and high sampling rates disclosed herein further lead to more precise statistical observations being feasible. Due to this increased precision, the operating and processing characteristics of the plasma source and the plasma in the chamber can be monitored via monitoring various characteristics of the modified periodic voltage function. For example, measurement of the modified periodic voltage function enables remote monitoring of sheath capacitance and ion current, and can be done without knowledge of chamber process or other chamber details. The several examples that follow illustrate only some of the numerous ways in which the systems and methods described thus far can be used for non-intrusive monitoring and fault detection of sources and chambers.

作为监控的示例,并且参考图14,波形1400的DC偏移可表示等离子体源(在下文中被称为“源”)的健康状况。在另一示例中,经修改的周期电压函数的脉冲的顶部部分1404(第二部分)的斜率可与源内的阻尼效应相关联。从水平线(horizontal)的顶部部分1404的斜率(示出为具有等于0的斜率)的标准偏差是基于波形1400的方面来监控源健康状况的另一方式。另一方面涉及沿经修改的周期电压函数的第四部分1408测量所采样V0点的标准偏差,并且使所述标准偏差与室振铃相关联。例如,在于连续脉冲之中监控此标准偏差并且所述标准偏差随时间增加的情况下,这可指示在室中(例如在e-卡盘中)存在振铃。振铃可以是到室或室中的不良电气连接的迹象或者额外不想要电感或电容的迹象。As an example of monitoring, and with reference to FIG. 14 , a DC offset of waveform 1400 may indicate the health of a plasma source (hereinafter "source"). In another example, the slope of the top portion 1404 (second portion) of the pulse of the modified periodic voltage function may be associated with a damping effect within the source. The standard deviation from the slope of the top portion 1404 of the horizontal (shown as having a slope equal to 0) is another way to monitor source health based on aspects of the waveform 1400 . Another aspect involves measuring the standard deviation of the sampled V 0 points along the fourth portion 1408 of the modified periodic voltage function, and correlating the standard deviation to the chamber ringing. For example, where this standard deviation is monitored among successive pulses and increases over time, this may indicate the presence of ringing in the chamber, such as in an e-chuck. Ringing can be a sign of a poor electrical connection to or in the chamber or of additional unwanted inductance or capacitance.

图32示出了根据本公开内容的一个实施例的向衬底支撑部传送的两个经修改的周期电压函数。进行比较时,两个经修改的周期电压函数可用于室匹配或者原位异常或故障检测。例如,两个经修改的周期电压函数中的一个经修改的周期电压函数可以是参考波形,并且第二经修改的周期电压函数可在校准期间选自等离子体处理室。两个经修改的周期电压函数之间的差(例如,峰间电压VPP的差)可用于校准等离子体处理室。替代地,第二经修改的周期电压函数可在处理期间与参考波形进行比较,并且波形特性的任何差别(例如,移动)可指示故障(例如,经修改的周期电压函数的第四部分3202的斜率的差)。Figure 32 shows two modified periodic voltage functions delivered to the substrate support according to one embodiment of the present disclosure. When compared, the two modified periodic voltage functions can be used for chamber matching or in situ anomaly or fault detection. For example, one of the two modified periodic voltage functions may be a reference waveform, and the second modified periodic voltage function may be selected from the plasma processing chamber during calibration. The difference between the two modified periodic voltage functions (eg, the difference in peak-to-peak voltage V PP ) can be used to calibrate the plasma processing chamber. Alternatively, the second modified periodic voltage function may be compared to a reference waveform during processing, and any difference (e.g., shift) in waveform characteristics may indicate a fault (e.g., a fourth portion 3202 of the modified periodic voltage function difference in slope).

图33示出了可以指示等离子体密度中的等离子体源不稳定性或变化的离子电流波形。可对离子电流II中的波动(诸如图33中示出的波动)进行分析以便识别系统中的故障和异常。例如,图33中的周期波动可指示等离子体源(例如,等离子体电源102)中的低频率不稳定性。离子电流II中的这种波动还可指示等离子体密度的循环变化。此指示符和其可指示的可能故障或异常仅是离子电流II的远程监控可用于特定优点的许多方式中的一种方式。Figure 33 shows ion current waveforms that may indicate plasma source instabilities or changes in plasma density. Fluctuations in ion current II , such as those shown in Figure 33, can be analyzed to identify faults and anomalies in the system. For example, periodic fluctuations in FIG. 33 may indicate low frequency instabilities in the plasma source (eg, plasma power supply 102). Such fluctuations in ion current II can also indicate cyclic changes in plasma density. This indicator and the possible faults or abnormalities it may indicate are but one of many ways in which remote monitoring of the ion current II can be used to particular advantage.

图34示出了具有非周期形状的经修改的周期电压函数的离子电流II。离子电流II的此实施例可指示诸如等离子体不稳定性之类的非周期波动和等离子体密度的变化。这种波动还可指示各种等离子体不稳定性,诸如,电弧、寄生等离子体的形成或等离子体密度的漂移。Figure 34 shows the ion current II as a function of the modified periodic voltage with a non-periodic shape. This example of ion current II can be indicative of non-periodic fluctuations such as plasma instabilities and changes in plasma density. Such fluctuations may also indicate various plasma instabilities, such as arcing, formation of parasitic plasma, or drift in plasma density.

图35示出了可指示偏置电源内的故障的经修改的周期电压函数。第三所示出的周期的顶部部分(在本文中也被称为第二部分)示出可指示偏置电源(例如,图12中的电源1206)中的振铃的异常行为。此振铃可以是对偏置电源内的故障的指示。对振铃的进一步分析可识别帮助识别电源系统内的故障的特性。Figure 35 shows a modified cycle voltage function that may indicate a fault within the bias supply. The top portion of the third illustrated cycle (also referred to herein as the second portion) shows anomalous behavior that may indicate ringing in the bias power supply (eg, power supply 1206 in FIG. 12 ). This ringing may be an indication of a fault within the bias supply. Further analysis of the ringing can identify characteristics that help identify faults within the power system.

图36示出了可指示系统的电容的动态(或非线性)变化的经修改的周期电压函数。例如,非线性地取决于电压的杂散电容可导致这种经修改的周期电压函数。在另一示例中,等离子体击穿或卡盘中的故障还可导致这种经修改的周期电压函数。在三个所示出的周期中的每一周期中,每一周期的第四部分3602中的非线性可指示系统电容的动态变化。例如,非线性可指示鞘层电容的变化,因为系统电容的其它分量是大部分固定的。Figure 36 shows a modified periodic voltage function that can indicate dynamic (or non-linear) changes in the capacitance of the system. For example, stray capacitances that are nonlinearly voltage dependent can lead to such a modified periodic voltage function. In another example, plasma breakdown or a fault in the chuck may also result in such a modified periodic voltage function. In each of the three illustrated cycles, non-linearity in the fourth portion 3602 of each cycle may indicate dynamic changes in system capacitance. For example, non-linearity may indicate a change in the sheath capacitance since other components of the system capacitance are mostly fixed.

图37示出了可指示等离子体密度的变化的经修改的周期电压函数。所示出的经修改的周期电压函数示出斜率dV0/dt中的单调移动,其可指示等离子体密度的变化。这些单调移动可提供对预期事件(诸如,工艺蚀刻结束点)的直接指示。在其它实施例中,这些单调移动可指示在不存在预期事件的工艺中的故障。Figure 37 shows a modified periodic voltage function indicative of a change in plasma density. The shown modified periodic voltage function shows a monotonic shift in slope dV 0 /dt, which may be indicative of a change in plasma density. These monotonic movements can provide a direct indication of expected events, such as the end point of process etch. In other embodiments, these monotonic movements may indicate failures in the process where expected events do not exist.

图38示出了针对不同工艺运行的离子电流的采样,其中离子电流中的漂移可指示系统漂移。每一数据点可表示给定运行的离子电流,其中可接受限制是定义可接受离子电流的用户定义或自动限制。离子电流中的漂移(其将离子电流逐渐推到该可接受限制以上)可指示衬底损坏是可能的。此类型的监控还可与任何数量的其它传统监控(诸如光学遗漏(optical omission)、厚度测量等)组合。除监控离子电流漂移以外的这些传统类型的监控可增强现有监控和统计控制。Figure 38 shows sampling of ion current for different process runs, where drift in ion current may indicate system drift. Each data point may represent the ion current for a given run, where acceptable limits are user-defined or automatic limits that define acceptable ion currents. A drift in the ion current, which gradually pushes the ion current above the acceptable limit, may indicate that substrate damage is possible. This type of monitoring can also be combined with any number of other traditional monitoring (such as optical omission, thickness measurement, etc.). These traditional types of monitoring in addition to monitoring ion current drift can augment existing monitoring and statistical controls.

图39示出了针对不同工艺参数的离子电流的采样。在此图解中,离子电流可用作区分不同工艺和不同工艺特性的优值图。这种数据可用在等离子体配方和过程的开发中。例如,可测试十一个工艺条件,产生十一个所示出离子电流数据点,并且可以将产生优选离子电流的工艺选择为理想工艺,或在替代方案中作为优选过程。例如,可以将最低离子电流选择为理想工艺,并且此后与优选工艺相关联的离子电流可以用作用以判断工艺是否以优选工艺条件来执行的度量。除类似的传统优值特性(诸如速率、选择性和齿廓角)以外或作为类似的传统度量特性(例如速率、选择性和齿廓角)的替代,此优值图可用于命名一些非限制性示例。Figure 39 shows sampling of ion current for different process parameters. In this illustration, the ion current can be used as a figure of merit to differentiate between different processes and different process characteristics. Such data can be used in the development of plasma formulations and processes. For example, eleven process conditions may be tested, resulting in the eleven shown ionic current data points, and the process producing the preferred ionic current may be selected as the ideal process, or as the preferred process in the alternative. For example, the lowest ionic current can be selected as the ideal process, and thereafter the ionic current associated with the preferred process can be used as a metric to determine whether the process is performing with the preferred process conditions. This figure of merit can be used to name some non-limiting sexual example.

图40示出了在室中无等离子体的情况下监控的两个经修改的周期电压函数。可比较这两个经修改的周期电压函数并将其用于表征等离子体室。在实施例中,第一经修改的周期电压函数可以是参考波形,而第二经修改的周期电压函数可以是当前监控的波形。可在处理室中无等离子体的情况下(例如在室清洁或预防性维护之后)选取这些波形,并且因此第二波形可用于在将室释放到(或回到)生产中之前提供对室的电气状态的验证。Figure 40 shows two modified periodic voltage functions monitored without plasma in the chamber. These two modified periodic voltage functions can be compared and used to characterize the plasma chamber. In an embodiment, the first modified periodic voltage function may be a reference waveform and the second modified periodic voltage function may be a currently monitored waveform. These waveforms can be chosen in the absence of plasma in the processing chamber (e.g., after chamber cleaning or preventive maintenance), and thus a second waveform can be used to provide insight into the chamber before releasing it into (or back into) production. Verification of electrical status.

图41示出了可用于验证等离子体过程的两个经修改的周期电压函数。第一经修改的周期电压函数可以是参考波形,而第二经修改的周期电压函数可以是当前监控的波形。当前监控的波形可与参考波形进行比较,并且任何差别可指示另外使用传统监控方法不可检测的寄生和/或非电容性阻抗问题。例如,图35的波形上所见的振铃可被检测并且可以表示电源中的振铃。Figure 41 shows two modified periodic voltage functions that can be used to verify the plasma process. The first modified periodic voltage function may be a reference waveform and the second modified periodic voltage function may be a currently monitored waveform. The currently monitored waveform may be compared to a reference waveform, and any differences may indicate parasitic and/or non-capacitive impedance issues that would otherwise be undetectable using traditional monitoring methods. For example, ringing seen on the waveform of Figure 35 can be detected and can indicate ringing in the power supply.

可以监控图32-41中所示出的度量中的任一度量,同时方法3000循环以便更新离子电流补偿Ic、离子电流II和/或鞘层电容C鞘层。例如,在每一离子电流II之后,在图38中选取采样,方法3000可循环回到采样3004以便确定经更新的离子电流II。在另一示例中,作为监控操作的结果,可期望对离子电流II、离子能量eV或IEDF宽度的校正。可进行对应校正,并且方法3000可循环回到采样3004以找到满足等式3的新的离子电流补偿Ic。Any of the metrics shown in FIGS. 32-41 may be monitored while method 3000 loops to update ion current compensation Ic, ion current II , and/or sheath capacitance Csheath . For example, after each ion current II , a sample is taken in FIG. 38, method 3000 may loop back to sample 3004 to determine an updated ion current II . In another example, corrections to ion current II , ion energy eV, or IEDF width may be desired as a result of monitoring operations. Corresponding corrections can be made, and method 3000 can loop back to sampling 3004 to find a new ion current compensation Ic that satisfies Equation 3.

本领域技术人员将认识到,图30、图31和图43中示出的方法并不需要任何特定或所描述的操作次序,其也不限于由图示出或图中暗示的任何次序。例如,可在设置并且监控IEDF宽度和/或离子能量eV之前、期间或之后监控度量(图32-41)。Those skilled in the art will appreciate that the methods shown in FIGS. 30 , 31 , and 43 do not require any particular or described order of operations, nor are they limited to any order shown or implied by the figures. For example, metrics may be monitored before, during, or after setting and monitoring the IEDF width and/or ion energy eV (FIGS. 32-41).

图44示出了本文中所公开的系统中的不同点处的各个波形。考虑到开关模式电源的开关部件的所示出的开关模式4410、电源电压VPS 4406(本文中也被称为周期电压函数)、离子电流补偿Ic 4404、经修改的周期电压函数4402和衬底电压Vsub 4412的情况下,IEDF具有所示出的宽度4414(其可能未按比例绘制)或IEDF形状4414。此宽度宽于本公开内容已称为“窄宽度”的宽度。如所看见的,当离子电流补偿Ic 4404大于离子电流II时,衬底电压Vsub4412并非恒定。IEDF宽度4414与衬底电压Vsub 4412的脉冲之间的倾斜部分之间的电压差成比例。Figure 44 shows various waveforms at different points in the system disclosed herein. Consider the illustrated switching pattern 4410 of the switching components of the switch mode power supply, the supply voltage V PS 4406 (also referred to herein as the periodic voltage function), the ion current compensation Ic 4404, the modified periodic voltage function 4402 and the substrate At voltage V sub 4412 , the IEDF has a width 4414 as shown (which may not be drawn to scale) or an IEDF shape 4414 . This width is wider than what this disclosure has referred to as a "narrow width". As can be seen, the substrate voltage V sub 4412 is not constant when the ion current compensation Ic 4404 is greater than the ion current II. The IEDF width 4414 is proportional to the voltage difference between ramp portions between pulses of the substrate voltage V sub 4412 .

考虑到此非窄IEDF宽度4414的情况下,本文中所公开的方法要求调节离子电流补偿Ic,直到IC=II(或在替代方案中,根据等式2与II相关)。图45示出了在离子电流补偿Ic中进行最终增加变化以便使其匹配离子电流II的效果。当IC=II时,衬底电压Vsub 4512变成基本上恒定,并且IEDF宽度4514从非窄的变成窄的。With this non-narrow IEDF width 4414 in mind, the methods disclosed herein require adjusting the ion current compensation Ic until Ic = II (or in the alternative, related to II according to Equation 2). Figure 45 shows the effect of making a final incremental change in ion current compensation Ic so that it matches ion current II . When I C = II , the substrate voltage V sub 4512 becomes substantially constant and the IEDF width 4514 changes from non-narrow to narrow.

一旦已实现窄IEDF,便可将离子能量调节到如图46中所示出的所期望或所定义的数值。此处,电源电压(或在替代方案中,开关模式电源的总线电压Vbus)的大小减小(例如,电源电压4606脉冲的最大负幅度减小)。因此,ΔV1减小到ΔV2,峰间电压也一样,从VPP1减小到VPP2那样。基本上恒定的衬底电压Vsub 4608的大小相应地减小,因此将离子能量的大小从4615减小到4614,同时保持窄IEDF宽度。Once the narrow IEDF has been achieved, the ion energy can be adjusted to a desired or defined value as shown in FIG. 46 . Here, the magnitude of the supply voltage (or, in the alternative, the bus voltage V bus of the switched-mode power supply) is reduced (eg, the maximum negative amplitude of the supply voltage 4606 pulses is reduced). Thus, ΔV 1 decreases to ΔV 2 , as does the peak-to-peak voltage, as it decreases from V PP1 to V PP2 . The magnitude of the substantially constant substrate voltage Vsub 4608 is correspondingly reduced, thus reducing the magnitude of the ion energy from 4615 to 4614 while maintaining a narrow IEDF width.

无论是否调节离子能量,可在实现窄IEDF宽度之后使IEDF宽度变宽,如图47中所示。此处,假定II=IC(或在替代方案中,等式2给出II和IC之间的关系),可调节IC,因此改变经修改的周期电压函数4702的脉冲之间的部分的斜率。由于离子电流补偿Ic和离子电流II不相等,衬底电压从基本上恒定移动到非恒定。进一步结果是IEDF宽度4714从窄IEDF 4714扩展到非窄IEDF 4702。将II调节为越远离IC,IEDF 4714宽度越大。Whether or not the ion energy is tuned, the IEDF width can be widened after achieving a narrow IEDF width, as shown in FIG. 47 . Here, assuming I I = I C (or in the alternative, Equation 2 gives the relationship between I I and I C ), I C can be adjusted, thus changing the pulse-to-pulse ratio of the modified periodic voltage function 4702. The slope of the part. Since the ion current compensation Ic and the ion current II are not equal, the substrate voltage moves from substantially constant to non-constant. A further consequence is that IEDF width 4714 extends from narrow IEDF 4714 to non-narrow IEDF 4702 . The farther I I is adjusted from I C , the wider the IEDF 4714 width will be.

图48示出了可用于实现多于一个离子能量电平的电源电压的一个模式,其中,每一离子能量电平具有窄IEDF 4814宽度。电源电压4806的大小每一周期交变。这产生针对经修改的周期电压函数4802中的每一周期的交变ΔV和峰间电压。衬底电压4812继而具有在衬底电压的脉冲之间交变的两个基本上恒定的电压。这产生两个不同离子能量,每一离子能量具有窄IEDF 4814宽度。Figure 48 shows one pattern of supply voltages that can be used to achieve more than one ion energy level, where each ion energy level has a narrow IEDF 4814 width. The magnitude of the supply voltage 4806 alternates every cycle. This produces an alternating ΔV and peak-to-peak voltage for each cycle in the modified cycle voltage function 4802 . The substrate voltage 4812 in turn has two substantially constant voltages that alternate between pulses of the substrate voltage. This produces two different ion energies, each with a narrow IEDF 4814 width.

图49示出了可以用于实现多于一个离子能量电平的电源电压的另一个模式,其中,每一离子能量电平具有窄IEDF 4914宽度。此处,电源电压4906在两个不同大小之间交变,但在交变之前的一时间也交变两个周期。如所看见的,平均离子能量相同,好像VPS 4906每一周期交变一样。这仅示出VPS 4906的各个其它模式可以如何用于实现相同离子能量的一个示例。Figure 49 shows another mode of supply voltage that can be used to achieve more than one ion energy level, where each ion energy level has a narrow IEDF 4914 width. Here, supply voltage 4906 alternates between two different magnitudes, but also alternates two cycles at a time before the alternation. As can be seen, the average ion energy is the same as if the VPS 4906 alternated every cycle. This shows just one example of how various other modes of VPS 4906 can be used to achieve the same ion energy.

图50示出了可以用于创建所定义的IEDF 5014的电源电压VPS 5006和离子电流补偿Ic 5004的一个组合。此处,交变电源电压5006产生两个不同离子能量。另外,通过将离子电流补偿5004调节为远离离子电流II,可扩展每一离子能量的IEDF 5014宽度。如果离子能量足够靠近,如其在所示出实施例中那样,则两个离子能量的IEDF 5014将重叠,产生一个大IEDF5014。其它变型也是可行的,但是此示例意在示出可以如何将对VPS 5006和IC 5004的调节的组合用于实现所定义的离子能量和所定义的IEDF 5014。Figure 50 shows one combination of supply voltage V PS 5006 and ion current compensation Ic 5004 that can be used to create the defined IEDF 5014. Here, the alternating supply voltage 5006 produces two different ion energies. Additionally, by adjusting the ion current compensation 5004 away from the ion current II , the IEDF 5014 width per ion energy can be extended. If the ion energies are close enough, as they are in the illustrated embodiment, the IEDFs 5014 for the two ion energies will overlap, resulting in one large IEDF 5014 . Other variations are possible, but this example is intended to show how a combination of adjustments to V PS 5006 and IC 5004 can be used to achieve a defined ion energy and a defined IEDF 5014 .

接下来参考图17A和17B,示出了描述本发明的其它实施例的框图。如所示出的,这些实施例中的衬底支承部1708包括静电卡盘1782,并且静电卡盘电源1780用于向静电卡盘1782供电。在一些变型中,如图17A所示,静电卡盘电源1780安置为直接向衬底支承部1708供电,以及在其它变型中,静电卡盘电源1780安置为结合开关模式电源来供电。应当注意,串联卡盘可以由独立电源供电或者通过使用控制器来供电以实现净DC卡盘功能。在此DC耦合的(例如,没有隔直流电容器)串联卡盘功能中,可以使具有其它RF源的不期望的干扰最小化。Referring next to Figures 17A and 17B, block diagrams illustrating other embodiments of the present invention are shown. As shown, the substrate support 1708 in these embodiments includes an electrostatic chuck 1782 and an electrostatic chuck power supply 1780 is used to provide power to the electrostatic chuck 1782 . In some variations, the electrostatic chuck power supply 1780 is arranged to provide power directly to the substrate support 1708, as shown in FIG. 17A, and in other variations, the electrostatic chuck power supply 1780 is arranged to provide power in conjunction with a switch mode power supply. It should be noted that the tandem chuck can be powered by an independent power source or through the use of a controller for net DC chuck functionality. In this DC coupled (eg, no DC blocking capacitor) series chuck function, undesired interference with other RF sources can be minimized.

图18示出了示出本发明的又一实施例的框图,其中通常用于产生等离子体密度的等离子体电源1884还被配置为驱动开关模式电源1806旁边的衬底支承部1808和静电卡盘电源1880。在此实施方式中,等离子体电源1884、静电卡盘电源1880和开关模式电源1806中的每一个可以位于独立的组件中,或者电源1806、1880、1884中的两个或更多个可以构成为位于同一物理组件中。有利的是,图18所示的实施例使顶电极1886(例如,喷头)能够电接地以获得电对称并减小由于少量电弧事件引起的损伤的电平。Figure 18 shows a block diagram illustrating yet another embodiment of the present invention where the plasma power supply 1884 typically used to generate the plasma density is also configured to drive the substrate support 1808 and electrostatic chuck next to the switched mode power supply 1806 Power 1880. In this embodiment, each of the plasma power supply 1884, electrostatic chuck power supply 1880, and switch mode power supply 1806 may be located in separate components, or two or more of the power supplies 1806, 1880, 1884 may be configured as in the same physical assembly. Advantageously, the embodiment shown in FIG. 18 enables the top electrode 1886 (eg, showerhead) to be electrically grounded to achieve electrical symmetry and reduce the level of damage due to a small number of arcing events.

参考图19,示出了示出本发明的再一实施例的框图。如所示出的,此实施例中的开关模式电源1906被配置为向衬底支承部和室1904供电,以便对衬底进行偏置并且点燃(且维持)等离子体这两者而无需额外的等离子体电源(例如,无需等离子体电源102、202、1202、1702、1884)例如,开关模式电源1806可以以足以点燃和维持等离子体同时对衬底支承部提供偏置的占空比来工作。Referring to Figure 19, there is shown a block diagram illustrating yet another embodiment of the present invention. As shown, the switch mode power supply 1906 in this embodiment is configured to provide power to the substrate support and chamber 1904 in order to both bias the substrate and ignite (and sustain) the plasma without additional plasma Bulk Power Supply (eg, without plasma power supply 102, 202, 1202, 1702, 1884) For example, switch mode power supply 1806 may be operated at a duty cycle sufficient to ignite and sustain the plasma while providing bias to the substrate support.

接下来参考图20,其是示出了输入参数和控制部的控制输出的框图,所述控制部可以结合参照图1至19所描述的实施例使用。对控制部的示出旨在对可以结合本文所述的实施例使用的示范性控制输入和输出提供简化的示出,而并非旨在为硬件示图。在实际实施方式中,所示的控制部可以在可由硬件、软件、固件及其组合实现的数个分立部件之中分布。Reference is next made to FIG. 20 , which is a block diagram illustrating input parameters and control outputs of a control section that may be used in conjunction with the embodiments described with reference to FIGS. 1 to 19 . The illustration of the controls is intended to provide a simplified illustration of exemplary control inputs and outputs that may be used in conjunction with the embodiments described herein, and is not intended to be a hardware diagram. In an actual implementation, the illustrated control portion may be distributed among several discrete components, which may be implemented by hardware, software, firmware, or combinations thereof.

参考本文中的上述实施例,图20所示的控制器可以提供参考图1描述的控制器112、参考图2描述的控制器212和离子能量控制部件220、参考图8描述的控制器812和离子能量控制部820、参考图12描述的离子电流补偿部件1260、参考图13描述的电流控制器1362、图16所示的Icc控制、图17A和17B分别示出的控制器1712A和1712B、图18和19分别示出的控制器1812和1912中的一个或多个的功能。With reference to the foregoing embodiments herein, the controller shown in FIG. 20 may provide the controller 112 described with reference to FIG. 1 , the controller 212 and the ion energy control unit 220 described with reference to FIG. The ion energy control part 820, the ion current compensation part 1260 described with reference to FIG. 12, the current controller 1362 described with reference to FIG. 13, the Icc control shown in FIG. 16, the controllers 1712A and 1712B shown in FIGS. 18 and 19 illustrate the functionality of one or more of the controllers 1812 and 1912, respectively.

如所示出的,可以用作控制部分的输入的参数包括参考图13和14已更详细描述的dVo/dt和ΔV。如上所述,dVo/dt可以用于结合离子能量分布扩展输入ΔE来提供控制信号Icc,控制信号Icc控制参考图12、13、14、15A-C和图16描述的离子能量分布扩展的宽度。此外,离子能量控制输入(Ei)结合可选反馈ΔV可以用于产生离子能量控制信号(例如,影响图3所示的Vbus),来实现参考图1至11更详细描述的期望的(定义的)离子能量分布。以及可以结合许多e-卡盘实施例的另一参数是DC偏移输入,其为了有效的热控制而提供静电力来将晶圆保持在卡盘上。As shown, parameters that may be used as input to the control section include dVo/dt and ΔV which have been described in more detail with reference to FIGS. 13 and 14 . As described above, dVo/dt can be used in conjunction with the ion energy distribution expansion input ΔE to provide a control signal Icc that controls the width of the ion energy distribution expansion described with reference to FIGS. 12, 13, 14, 15A-C and FIG. Additionally, the ion energy control input (Ei) in combination with optional feedback ΔV can be used to generate an ion energy control signal (e.g., affect Vbus shown in FIG. 3 ) to achieve the desired (defined ) ion energy distribution. And another parameter that can be incorporated into many e-chuck embodiments is a DC offset input that provides electrostatic force to hold the wafer on the chuck for effective thermal control.

图21示出了根据本公开内容的实施例的等离子体处理系统2100。系统2100包括封闭用于蚀刻衬底2106的顶部表面2118(以及其它等离子体过程)的等离子体2104的等离子体处理室2102。等离子体由通过等离子体电源2122供电的等离子体源2112产生(例如,原位或远程或投射)。在等离子体2104与衬底2106的顶部表面2118之间测量的等离子体鞘层电压V鞘层使来自等离子体2104的离子加速跨越等离子体鞘层2115,导致经加速的离子碰撞衬底2106的顶部表面2118并且蚀刻衬底2106(或衬底2106中未受到光致抗蚀剂保护的部分)。等离子体2104相对于地(例如,等离子体处理室2102壁)处于等离子体电位V3。衬底2106具有底部表面2120,底部表面2120经由静电卡盘2111和静电卡盘2111的顶部表面2121与衬底2106之间的卡盘电位V卡盘以静电方式保持到支撑部2108。衬底2106是电介质,并且因此在顶部表面2118处可具有第一电位V1并且在底部表面2120处可具有第二电位V2。静电卡盘2121的顶部表面与衬底的底部表面2120进行接触,并且因此这两个表面2120、2121处于同一电位V2。第一电位V1、卡盘电位V卡盘和第二电位V2经由具有由开关模式电源2130产生的DC偏置或偏移的AC波形来控制,并且经由第一导体2124提供到静电卡盘2111。可选地,经由第一导体2124提供AC波形,以及经由可选第二导体2125提供DC波形。可以经由控制器2132来控制开关模式电源2130的AC和DC输出,控制器2132还被配置为控制开关模式电源2130的各个方面。FIG. 21 illustrates a plasma processing system 2100 according to an embodiment of the disclosure. The system 2100 includes a plasma processing chamber 2102 that encloses a plasma 2104 for etching a top surface 2118 of a substrate 2106 (and other plasma processes). A plasma is generated (eg, in situ or remote or projected) by a plasma source 2112 powered by a plasma power supply 2122 . The plasma sheath voltage Vsheath measured between the plasma 2104 and the top surface 2118 of the substrate 2106 accelerates ions from the plasma 2104 across the plasma sheath 2115, causing the accelerated ions to impact the top of the substrate 2106 Surface 2118 and substrate 2106 (or portions of substrate 2106 not protected by photoresist) are etched. Plasma 2104 is at plasma potential V3 with respect to ground (eg, a wall of plasma processing chamber 2102). Substrate 2106 has a bottom surface 2120 that is electrostatically held to support 2108 via electrostatic chuck 2111 and a chuck potential V Chuck between top surface 2121 of electrostatic chuck 2111 and substrate 2106 . Substrate 2106 is a dielectric, and thus may have a first potential V 1 at top surface 2118 and a second potential V 2 at bottom surface 2120 . The top surface of the electrostatic chuck 2121 is in contact with the bottom surface 2120 of the substrate, and thus both surfaces 2120, 2121 are at the same potential V2. The first potential V 1 , the chuck potential V chuck and the second potential V 2 are controlled via an AC waveform with a DC bias or offset generated by the switch mode power supply 2130 and provided to the electrostatic chuck via the first conductor 2124 2111. Optionally, an AC waveform is provided via a first conductor 2124 and a DC waveform is provided via an optional second conductor 2125 . The AC and DC outputs of the switch mode power supply 2130 can be controlled via a controller 2132 which is also configured to control various aspects of the switch mode power supply 2130 .

离子能量和离子能量分布是第一电位V1的函数。开关模式电源2130提供经修整为影响期望的第一电位V1的AC波形,已知所述期望的第一电位V1产生期望的(或定义的)离子能量和离子能量分布。AC波形可以是RF并且具有诸如图5、图6、图11、图14、图15a、图15b和图15c中所示出的非正弦波形。第一电位V1可与图14中示出的电压ΔV的变化成比例。第一电位V1还等于等离子体电压V3减去等离子体鞘层电压V鞘层。但是由于与等离子体鞘层电压V鞘层(例如,50V–2000V)相比,等离子体电压V3通常很小(例如,小于20V),因此第一电位V1和等离子体鞘层电压V鞘层近似相等并且出于实施方式的目的可视为相等。因此,由于等离子体鞘层电压V鞘层指示离子能量,因此第一电位V1与离子能量分布成比例。通过保持恒定的第一电位V1,等离子体鞘层电压V鞘层恒定,并且因此基本上所有离子经由相同能量加速,并且因此实现窄离子能量分布。等离子体电压V3由经由等离子体源2112赋予到等离子体2104的能量得到。The ion energy and ion energy distribution are functions of the first potential V 1 . Switched mode power supply 2130 provides an AC waveform tailored to affect a desired first potential V 1 that is known to produce a desired (or defined) ion energy and ion energy distribution. The AC waveform may be RF and have a non-sinusoidal waveform such as shown in Figures 5, 6, 11, 14, 15a, 15b and 15c. The first potential V 1 may be proportional to a change in the voltage ΔV shown in FIG. 14 . The first potential V1 is also equal to the plasma voltage V3 minus the plasma sheath voltage Vsheath . But since the plasma voltage V3 is usually small (for example, less than 20V) compared to the plasma sheath voltage Vsheath (for example, 50V–2000V), the first potential V1 and the plasma sheath voltage Vsheath The layers are approximately equal and may be considered equal for implementation purposes. Thus, since the plasma sheath voltage Vsheath is indicative of ion energy, the first potential V 1 is proportional to the ion energy distribution. By maintaining a constant first potential V 1 , the plasma sheath voltage Vsheath is constant, and thus substantially all ions are accelerated via the same energy, and thus a narrow ion energy distribution is achieved. Plasma voltage V 3 results from energy imparted to plasma 2104 via plasma source 2112 .

衬底2106的顶部表面2118处的第一电位V1经由来自静电卡盘2111的电容性充电和来自通过鞘层2115的电子和离子的电荷积累的组合而形成。来自开关模式电源2130的AC波形经修整为抵消通过鞘层2115的离子和电子转移和衬底2106的顶部表面2118处的所产生电荷积累的影响,以使得第一电位V1保持基本上恒定。A first potential V 1 at the top surface 2118 of the substrate 2106 is developed via a combination of capacitive charging from the electrostatic chuck 2111 and charge accumulation from electrons and ions passing through the sheath 2115 . The AC waveform from the switch mode power supply 2130 is tailored to counteract the effects of ion and electron transfer through the sheath 2115 and the resulting charge accumulation at the top surface 2118 of the substrate 2106 such that the first potential V remains substantially constant.

将衬底2106保持到静电卡盘2111的卡盘力是卡盘电位V卡盘的函数。开关模式电源2130向AC波形提供DC偏置或DC偏移,以使得第二电位V2处于与第一电位V1不同的电位。此电位差导致卡盘电压V卡盘。可从静电卡盘2111的顶部表面2221到衬底2106内部的参考层测量卡盘电压V卡盘,其中所述参考层包括衬底内部的除了衬底2106的底部表面2120(参考层在衬底2106内的准确位置可变化)之外的任一标高(elevation)。因此,卡盘由第二电位V2控制并且与第二电位V2成比例。The chuck force holding the substrate 2106 to the electrostatic chuck 2111 is a function of the chuck potential VCHHuck. The switch mode power supply 2130 provides a DC bias or DC offset to the AC waveform such that the second potential V2 is at a different potential than the first potential V1. This potential difference results in a chuck voltage VCHHuck. The chuck voltage VCHUCK can be measured from the top surface 2221 of the electrostatic chuck 2111 to a reference layer inside the substrate 2106, which includes the inside of the substrate except the bottom surface 2120 of the substrate 2106 (the reference layer is on the substrate 2106). Any elevation other than the exact location within 2106 may vary). Thus, the chuck is controlled by and proportional to the second potential V2 .

在实施例中,第二电位V2等于由AC波形修改的开关模式电源2130的DC偏移(换句话说,具有DC偏移的AC波形,其中DC偏移大于AC波形的峰间电压)。DC偏移可以基本上大于AC波形,以使得开关模式电源2130输出的DC分量支配第二电位V2并且可忽略或忽视AC分量。In an embodiment, the second potential V is equal to the DC offset of the switch mode power supply 2130 modified by the AC waveform (in other words, an AC waveform with a DC offset, wherein the DC offset is greater than the peak-to-peak voltage of the AC waveform). The DC offset may be substantially larger than the AC waveform such that the DC component of the output of the switch mode power supply 2130 dominates the second potential V 2 and the AC component is negligible or disregarded.

衬底2106内的电位在第一与第二电位V1、V2之间变化。由于衬底2106与静电卡盘2111之间的库仑引力存在,所以卡盘电位V卡盘可以是正或负(例如,V1>V2或V1<V2),而不管卡盘电位V卡盘的极性为何。The potential within the substrate 2106 varies between first and second potentials V 1 , V 2 . Due to the presence of Coulomb attraction between the substrate 2106 and the electrostatic chuck 2111, the chuck potential V chuck can be positive or negative (e.g., V 1 >V 2 or V 1 < V 2 ), regardless of the chuck potential V chuck What is the polarity of the disk .

开关模式电源2130结合控制器2132可以确定性地并且在无传感器的情况下监控各个电压。特别地,基于AC波形的参数(例如,斜率和阶跃)来确定性地监控离子能量(例如,平均能量和离子能量分布)。例如,等离子体电压V3、离子能量和离子能量分布与由开关模式电源2130产生的AC波形的参数成比例。特别地,AC波形的下降沿的ΔV(例如参见图14)与第一电位V1成比例,并且因此与离子能量成比例。通过保持第一电位V1恒定,离子能量分布可以保持窄的。The switch mode power supply 2130 in conjunction with the controller 2132 can deterministically and sensorlessly monitor various voltages. In particular, ion energy (eg, mean energy and ion energy distribution) is deterministically monitored based on parameters of the AC waveform (eg, slope and step). For example, plasma voltage V 3 , ion energy, and ion energy distribution are proportional to parameters of the AC waveform generated by switch mode power supply 2130 . In particular, ΔV of the falling edge of the AC waveform (see eg FIG. 14 ) is proportional to the first potential V 1 , and thus proportional to the ion energy. By keeping the first potential V1 constant, the ion energy distribution can be kept narrow.

虽然不能直接测量第一电位V1并且开关模式电源输出与第一电压V1之间的相关性可以基于衬底2106的电容和处理参数而变化,但可在短处理时间已过去之后经验地确定ΔV与第一电位V1之间的比例常数。例如,在AC波形的下降沿ΔV为50V并且经验地发现针对给定的衬底和工艺的比例常数为2的情况下,可期望第一电位V1为100V。由等式4描述阶跃电压ΔV与第一电位V1(并且因此也是离子能量eV)之间的比例。因此,可以在等离子体处理室2102内部无任何传感器的情况下,基于开关模式电源的AC波形的知识来确定第一电位V1以及离子能量和离子能量分布。另外,开关模式电源2130结合控制器2132可以监控卡盘何时发生并且是否发生(例如,是否经由卡盘电位V卡盘将衬底2106保持到静电卡盘2111)。While the first potential V cannot be measured directly and the correlation between the output of the switch-mode power supply and the first voltage V can vary based on the capacitance of the substrate 2106 and processing parameters, it can be determined empirically after a short processing time has elapsed The constant of proportionality between ΔV and the first potential V1. For example, where the falling edge ΔV of the AC waveform is 50V and the constant of proportionality is empirically found to be 2 for a given substrate and process, the first potential V 1 may be expected to be 100V. The ratio between the step voltage ΔV and the first potential V 1 (and thus also the ion energy eV) is described by Equation 4. Thus, the first potential V 1 as well as the ion energy and ion energy distribution can be determined without any sensors inside the plasma processing chamber 2102 based on knowledge of the AC waveform of the switched mode power supply. Additionally, the switch mode power supply 2130 in conjunction with the controller 2132 can monitor when and if chucking occurs (eg, whether the substrate 2106 is held to the electrostatic chuck 2111 via the chuck potential VCHHuck).

通过消除或减小卡盘电位V卡盘来执行去卡盘(dechucking)。这可通过将第二电位V2设置为等于第一电位V1来完成。换句话说,可以调节DC偏移和AC波形以便导致卡盘电压V卡盘接近0V。与常规去卡盘方法相比,系统2100实现更快的去卡盘并且因此较大通量,因为可以调节DC偏移和AC波形两者以便实现去卡盘。同样,当DC和AC电源处于开关模式电源2130中时,其电路更统一、更紧密地在一起,可以经由单个控制器2132来控制(如与DC和AC电源的典型并联设置相比),并且更快地改变输出。由本文中所公开的实施例实现的去卡盘的速度还在等离子体2104熄灭之后或至少在已经关闭来自等离子体源2112的电力之后实现去卡盘。Dechucking is performed by eliminating or reducing the chuck potential VCHuck. This can be done by setting the second potential V2 equal to the first potential V1. In other words, the DC offset and AC waveform can be adjusted so as to result in the chuck voltage V chuck being close to 0V. Compared to conventional dechucking methods, the system 2100 achieves faster dechucking and thus greater throughput because both the DC offset and the AC waveform can be adjusted to achieve dechucking. Also, when the DC and AC power sources are in a switch mode power supply 2130, their circuits are more unified and closer together, can be controlled via a single controller 2132 (as compared to a typical parallel setup of DC and AC power sources), and Change output faster. The speed of dechucking achieved by embodiments disclosed herein also enables dechucking after the plasma 2104 is extinguished, or at least after power from the plasma source 2112 has been turned off.

等离子体源2112可以采取多种形式。例如,在实施例中,等离子体源2112在等离子体处理室2102内部包括电极,其在室2102内建立点燃并且维持等离子体2104的RF场。在另一个实施例中,等离子体源2112包括远程投射的等离子体源,其远程地产生电离电磁场、将电离电磁场投射或延伸到处理室2102中,并且使用电离电磁场在等离子体处理室内点燃并且维持等离子体2104。然而,远程投射的等离子体源还包括电离电磁场在到达等离子体处理室2102的途中通过的场传送部分(例如,导电管),在此期间,电离电磁场衰减,以使得等离子体处理室2102内的场强仅为当所述场首先在远程投射等离子体源中产生时的场强的十分之一、百分之一、千分之一或甚至更小部分。等离子体源2112未按比例绘制。Plasma source 2112 may take a variety of forms. For example, in an embodiment, plasma source 2112 includes electrodes inside plasma processing chamber 2102 that establish an RF field within chamber 2102 that ignites and maintains plasma 2104 . In another embodiment, the plasma source 2112 includes a remotely projected plasma source that remotely generates an ionizing electromagnetic field, projects or extends the ionizing electromagnetic field into the processing chamber 2102, and uses the ionizing electromagnetic field to ignite and maintain Plasma2104. However, the remotely projected plasma source also includes a field delivery portion (e.g., a conductive tube) through which the ionizing electromagnetic field passes on its way to the plasma processing chamber 2102, during which time the ionizing electromagnetic field decays such that the plasma processing chamber 2102 The field strength is only one-tenth, one-hundredth, one-thousandth or even a smaller fraction of the field strength when said field was first generated in the remote projection plasma source. Plasma source 2112 is not drawn to scale.

开关模式电源2130可以浮动并且因此可由在地与开关模式电源2130之间串联连接的DC电源(未示出)以任何DC偏移来进行偏置。开关模式电源2130可以经由开关模式电源2130内部的AC和DC电源(例如参见图22、图23、图26)或经由开关模式电源2130内部的AC电源和开关模式电源2130外部的DC电源(例如参见图24、图27)提供具有DC偏移的AC波形。在实施例中,开关模式电源2130可以接地并且串联耦合到在开关模式电源2130与静电卡盘2111之间串联耦合的浮动DC电源。The switched mode power supply 2130 can be floating and thus can be biased with any DC offset by a DC power supply (not shown) connected in series between ground and the switched mode power supply 2130 . The switch-mode power supply 2130 can be supplied via AC and DC power supplies internal to the switch-mode power supply 2130 (see, for example, FIGS. Figure 24, Figure 27) provides an AC waveform with a DC offset. In an embodiment, the switched mode power supply 2130 may be grounded and coupled in series to a floating DC power supply coupled in series between the switched mode power supply 2130 and the electrostatic chuck 2111.

当开关模式电源2130包括AC和DC电源两者时,控制器2132可控制开关模式电源的AC和DC输出。当开关模式电源2130与DC电源串联连接时,控制器2132可仅控制开关模式电源2130的AC输出。在替代实施例中,控制器2130可控制耦合到开关模式电源2130的DC电源和开关模式电源2130两者。本领域技术人员将认识到,虽然示出了单个控制器2132,但还可实施其它控制器以控制提供到静电卡盘2111的AC波形和DC偏移。When the switch mode power supply 2130 includes both AC and DC power supplies, the controller 2132 can control the AC and DC outputs of the switch mode power supply. When the switch mode power supply 2130 is connected in series with the DC power supply, the controller 2132 may only control the AC output of the switch mode power supply 2130 . In an alternative embodiment, controller 2130 may control both the DC power source coupled to switch-mode power supply 2130 and switch-mode power supply 2130 . Those skilled in the art will recognize that while a single controller 2132 is shown, other controllers may also be implemented to control the AC waveform and DC offset provided to the electrostatic chuck 2111.

静电卡盘2111可以是电介质(例如,陶瓷)并且因此基本上阻挡DC电压通过,或其可以是半导电材料,诸如经掺杂的陶瓷。在任一情况下,静电卡盘2111在静电卡盘2111的顶部表面2121上可具有第二电压V2,静电卡盘2111将电压电容地耦合到衬底2106(通常电介质)的顶部表面2118以形成第一电压V1The electrostatic chuck 2111 may be a dielectric (eg, ceramic) and thus substantially blocks the passage of DC voltages, or it may be a semiconducting material such as doped ceramic. In either case, electrostatic chuck 2111 may have a second voltage V2 on top surface 2121 of electrostatic chuck 2111, which capacitively couples the voltage to top surface 2118 of substrate 2106 (typically a dielectric) to form first voltage V 1 .

等离子体2104形状和尺寸不必按比例绘制。例如,可通过某一等离子体密度定义等离子体2104的边缘,在此情况下,所示出的等离子体2104未以所考虑的任何特定等离子体密度绘制。类似地,至少一些等离子体密度填充整个等离子体处理室2102,而不管所示出的等离子体2104形状如何。所示出的等离子体2104形状主要旨在示出鞘层2115,鞘层2115具有基本上比等离子体2104小的等离子体密度。Plasma 2104 shape and dimensions are not necessarily drawn to scale. For example, the edge of plasma 2104 may be defined by a certain plasma density, in which case plasma 2104 is shown not drawn at any particular plasma density under consideration. Similarly, at least some of the plasma density fills the entire plasma processing chamber 2102 regardless of the plasma 2104 shape as shown. The illustrated shape of plasma 2104 is primarily intended to illustrate sheath 2115 , which has a substantially lower plasma density than plasma 2104 .

图22示出了等离子体处理系统2200的另一个实施例。在所示出的实施例中,开关模式电源2230包括串联连接的DC电源2234和AC电源2236。控制器2232被配置为通过控制AC电源2236波形和DC电源2234偏置或偏移两者来控制具有开关模式电源2230的DC偏移输出的AC波形。此实施例还包括静电卡盘2211,其具有嵌入在卡盘2211中的栅电极或网状电极2210。开关模式电源2230向栅电极2210提供AC和DC偏置两者。DC偏置连同AC分量(其基本上小于DC偏置并且可因此被忽略)一起在栅电极2210上建立第三电位V4。当第三电位V4不同于衬底2206内任何位置(衬底2206的底部表面2220除外)的参考层处的电位时,建立卡盘电位V卡盘和库仑卡盘力,其将衬底2206保持到静电卡盘2211。所述参考层是平行于栅电极2210的虚平面。AC波形从栅电极2210电容地耦合通过静电卡盘2211的一部分,并且通过衬底2206以控制衬底2206的顶部表面2218上的第一电位V1。由于等离子体电位V3相对于等离子体鞘层电压V鞘层可忽略不计,因此第一电位V1和等离子体鞘层电压V鞘层近似相等,并且出于实际目的视为相等。因此,第一电位V1等于用于对通过鞘层2215的离子进行加速的电位。Another embodiment of a plasma processing system 2200 is shown in FIG. 22 . In the illustrated embodiment, the switched mode power supply 2230 includes a DC power supply 2234 and an AC power supply 2236 connected in series. The controller 2232 is configured to control the AC waveform with the DC offset output of the switch mode power supply 2230 by controlling both the AC power supply 2236 waveform and the DC power supply 2234 bias or offset. This embodiment also includes an electrostatic chuck 2211 having a grid or mesh electrode 2210 embedded in the chuck 2211. The switched mode power supply 2230 provides both AC and DC bias to the gate electrode 2210 . The DC bias together with the AC component (which is substantially smaller than the DC bias and can therefore be ignored) establishes a third potential V 4 on the gate electrode 2210 . When the third potential V differs from the potential at the reference layer anywhere within the substrate 2206 ( except the bottom surface 2220 of the substrate 2206), the chuck potential V and the Coulomb chuck force are established, which pull the substrate 2206 Hold to electrostatic chuck 2211. The reference layer is an imaginary plane parallel to the gate electrode 2210 . The AC waveform is capacitively coupled from the gate electrode 2210 through a portion of the electrostatic chuck 2211 and through the substrate 2206 to control a first potential V 1 on the top surface 2218 of the substrate 2206 . Since the plasma potential V3 is negligible relative to the plasma sheath voltage Vsheath, the first potential V1 and the plasma sheath voltage Vsheath are approximately equal and are considered equal for practical purposes. Therefore, the first potential V 1 is equal to the potential used to accelerate ions passing through the sheath 2215 .

在实施例中,可以对静电卡盘2211进行掺杂,以便具有足够导电性以使得通过卡盘2211的本体的任何电位差可忽略不计,并且因此栅电极或网状电极2210可基本上处于与第二电位V2相同的电压。In an embodiment, the electrostatic chuck 2211 may be doped so as to be sufficiently conductive such that any potential difference across the body of the chuck 2211 is negligible, and thus the grid or mesh electrode 2210 may be substantially in the same position as The same voltage as the second potential V2.

栅电极2210可以是嵌入到静电卡盘2211中、平行于衬底2206的任何导电平面器件,并且被配置为通过开关模式电源2230来进行偏置并且建立卡盘电位V卡盘。虽然栅电极2210示出为嵌入在静电卡盘2211的下部部分中,但栅电极2210可离衬底2206更近或更远地定位。栅电极2210还不必具有栅图案。在实施例中,栅电极2210可以是固体电极或具有带非栅形状(例如,棋盘状图案)的非固体结构。在实施例中,静电卡盘2211是陶瓷或其它电介质,并且因此栅电极2210上的第三电位V4不等于静电卡盘2211的顶部表面2221上的第一电位V1。在另一个实施例中,静电卡盘2211是稍微导电的经掺杂的陶瓷,并且因此栅电极2210上的第三电位V4可以等于静电卡盘2211的顶部表面2221上的第二电位V2The gate electrode 2210 may be any conductive planar device embedded in the electrostatic chuck 2211 parallel to the substrate 2206 and configured to be biased by a switch mode power supply 2230 and establish a chuck potential VCHUCK. Although the gate electrode 2210 is shown embedded in the lower portion of the electrostatic chuck 2211 , the gate electrode 2210 may be positioned closer or further from the substrate 2206 . The gate electrode 2210 also does not have to have a gate pattern. In an embodiment, the gate electrode 2210 may be a solid electrode or a non-solid structure with a non-gate shape (eg, a checkerboard pattern). In an embodiment, the electrostatic chuck 2211 is ceramic or other dielectric, and thus the third potential V 4 on the gate electrode 2210 is not equal to the first potential V 1 on the top surface 2221 of the electrostatic chuck 2211 . In another embodiment, the electrostatic chuck 2211 is a slightly conductive doped ceramic, and thus the third potential V on the gate electrode 2210 may be equal to the second potential V on the top surface 2221 of the electrostatic chuck 2211 .

开关模式电源2230产生可以是非正弦输出的AC输出。开关模式电源2230能够操作串联的DC和AC电源2234、2236,因为DC电源2234是AC传导型的(AC-conductive),并且AC电源2236是DC传导型的(DC-conductive)。不为DC传导型的示范性AC电源是在提供具有DC电压或电流时可能损坏的某些线性放大器。使用AC传导型的和DC传导型的电源减少了开关模式电源2230中使用的部件的数量。例如,如果DC电源2234是AC阻挡型的,则AC旁路型或DC阻挡型部件(例如,电容器)可必须与DC电源2234并联设置。如果AC电源2236是DC阻挡型的,则DC旁路型或AC阻挡型部件(例如,电感器)可必须与AC电源2236并联设置。Switched mode power supply 2230 produces an AC output that may be a non-sinusoidal output. The switch mode power supply 2230 is capable of operating DC and AC power supplies 2234, 2236 in series because the DC power supply 2234 is AC-conductive and the AC power supply 2236 is DC-conductive. Exemplary AC power supplies that are not DC conducting are certain linear amplifiers that may be damaged when supplied with a DC voltage or current. Using AC conductive and DC conductive power supplies reduces the number of components used in the switch mode power supply 2230 . For example, if the DC power source 2234 is of the AC blocking type, then an AC bypass type or DC blocking type component (eg, a capacitor) may have to be placed in parallel with the DC power source 2234 . If the AC power source 2236 is of the DC blocking type, a DC bypass type or AC blocking type component (eg, an inductor) may have to be placed in parallel with the AC power source 2236 .

在此实施例中,AC电源2238通常被配置为以可控制的方式向静电卡盘2211施加电压偏置,从而实现轰击衬底2206的顶部表面2218的离子的期望的(或定义的)离子能量分布。更具体来说,AC电源2236被配置为通过以特定功率电平向栅电极2210施加一个或多个特定波形来实现期望的(或定义的)离子能量分布。并且更特定来说,AC电源2236施加特定功率电平以实现特定离子能量,并且使用由存储在波形存储器(未示出)中的波形数据定义的一个或多个电压波形施加特定功率电平。因此,可以选择一个或多个特定离子轰击能量来执行对衬底2206的受控的蚀刻(或其它等离子体辅助工艺)。在一个实施例中,AC电源2236可利用开关模式配置(例如参见图25-27)。开关模式电源2230(并且更具体来说AC电源2236)可产生如本公开内容的各个实施例中所述的AC波形。In this embodiment, the AC power supply 2238 is generally configured to apply a voltage bias to the electrostatic chuck 2211 in a controllable manner to achieve a desired (or defined) ion energy of the ions bombarding the top surface 2218 of the substrate 2206 distributed. More specifically, AC power supply 2236 is configured to achieve a desired (or defined) ion energy distribution by applying one or more specific waveforms to gate electrode 2210 at specific power levels. And more particularly, AC power source 2236 applies a particular power level to achieve a particular ion energy, and applies the particular power level using one or more voltage waveforms defined by waveform data stored in waveform memory (not shown). Accordingly, one or more specific ion bombardment energies may be selected to perform a controlled etch (or other plasma assisted process) of the substrate 2206 . In one embodiment, the AC power source 2236 may utilize a switch mode configuration (see, eg, FIGS. 25-27 ). The switch mode power supply 2230 (and more specifically the AC power supply 2236 ) can generate AC waveforms as described in various embodiments of the present disclosure.

本领域技术人员将认识到,栅电极2210可能不是必要的并且其它实施例可在无栅电极2210的情况下实施。本领域技术人员还将认识到,栅电极2210仅是可用于建立卡盘电位V卡盘的许多器件的一个示例。Those skilled in the art will recognize that the gate electrode 2210 may not be necessary and that other embodiments may be practiced without the gate electrode 2210 . Those skilled in the art will also recognize that gate electrode 2210 is but one example of many devices that may be used to establish the chuck potential VCHUCK.

图23示出了等离子体处理系统2300的另一个实施例。所示出的实施例包括用于向静电卡盘2311提供AC波形和DC偏置的开关模式电源2330。开关模式电源2330包括DC电源2334和AC电源2336,这两个电源都可接地。AC电源2336产生经由第一导体2324向嵌入在静电卡盘2311中的第一栅电极或网状电极2310提供的AC波形。AC电源2336在第一栅电极或网状电极2310上建立电位V4。DC电源2334产生经由第二导体2325向嵌入在静电卡盘2311中的第二栅电极或网状电极2312提供的DC偏置。DC电源2334在第二栅电极或网状电极2312上建立电位V5。电位V4和V5可分别经由AC和DC电源2336、2334来独立地控制。然而,第一和第二栅电极或网状电极2310、2312还可以电容地耦合和/或可以经由静电卡盘2311中的一部分在栅电极或网状电极2310、2312之间存在DC耦合。如果存在AC或DC耦合,则可以耦合电位V4和V5。本领域技术人员将认识到,第一和第二栅电极2310、2312可设置在遍及静电卡盘2311的各种位置中,包括将第一栅极电极2310设置为第二栅极电极2312更靠近于衬底2306。Another embodiment of a plasma processing system 2300 is shown in FIG. 23 . The illustrated embodiment includes a switch mode power supply 2330 for providing an AC waveform and DC bias to the electrostatic chuck 2311. Switched mode power supply 2330 includes DC power supply 2334 and AC power supply 2336, both of which may be grounded. The AC power source 2336 generates an AC waveform that is provided to the first grid or mesh electrode 2310 embedded in the electrostatic chuck 2311 via the first conductor 2324 . The AC power source 2336 establishes a potential V 4 across the first grid or mesh electrode 2310 . A DC power source 2334 generates a DC bias that is provided via the second conductor 2325 to the second grid electrode or mesh electrode 2312 embedded in the electrostatic chuck 2311 . A DC power source 2334 establishes a potential V 5 across the second grid or mesh electrode 2312 . Potentials V4 and V5 are independently controllable via AC and DC power supplies 2336, 2334, respectively. However, the first and second grid or mesh electrodes 2310 , 2312 may also be capacitively coupled and/or there may be a DC coupling between the grid or mesh electrodes 2310 , 2312 via a portion of the electrostatic chuck 2311 . Potentials V 4 and V 5 can be coupled if there is AC or DC coupling. Those skilled in the art will recognize that the first and second gate electrodes 2310, 2312 may be disposed in various locations throughout the electrostatic chuck 2311, including disposing the first gate electrode 2310 closer to the second gate electrode 2312. on the substrate 2306.

图24示出了等离子体处理系统2400的另一个实施例。在此实施例中,开关模式电源2430向静电卡盘2411提供AC波形,其中开关模式电源2430输出由DC电源2434提供的DC偏置来偏移。开关模式电源2430的AC波形具有由控制器2435选择的波形,以便借助来自具有窄离子能量分布的等离子体2404的离子来轰击衬底2406。AC波形可以是非正弦波形(例如,方波或脉冲)并且可经由开关模式电源2430的AC电源2436产生。卡盘经由来自DC电源2434的DC偏移来控制,DC电源2434由控制器2433控制。DC电源2434可以在地与开关模式电源2430之间串联耦合。开关模式电源2430是浮动的,以使得其DC偏置可由DC电源2434来设置。Another embodiment of a plasma processing system 2400 is shown in FIG. 24 . In this embodiment, switch mode power supply 2430 provides an AC waveform to electrostatic chuck 2411 , wherein the switch mode power supply 2430 output is offset by a DC bias provided by DC power supply 2434 . The AC waveform of the switch mode power supply 2430 has a waveform selected by the controller 2435 to bombard the substrate 2406 with ions from the plasma 2404 having a narrow ion energy distribution. The AC waveform may be a non-sinusoidal waveform (eg, a square wave or pulse) and may be generated via the AC power source 2436 of the switch mode power supply 2430 . The chuck is controlled via a DC offset from a DC power supply 2434 which is controlled by a controller 2433 . DC power supply 2434 may be coupled in series between ground and switched mode power supply 2430 . Switched mode power supply 2430 is floating so that its DC bias can be set by DC power supply 2434 .

本领域技术人员将认识到,虽然所示出的实施例显示了两个独立控制器2433、2435,但可将这些控制器组合到单个功能单元、设备或系统(诸如,可选控制器2432)中。另外,可以耦合控制器2433和2435,从而彼此通信并且共享处理资源。Those skilled in the art will appreciate that while the illustrated embodiment shows two separate controllers 2433, 2435, these controllers may be combined into a single functional unit, device or system (such as optional controller 2432) middle. Additionally, controllers 2433 and 2435 may be coupled so as to communicate with each other and share processing resources.

图25示出了等离子体处理系统2500的进一步实施例。所示出的实施例包括开关模式电源2530,开关模式电源2530产生可以具有由DC电源(未示出)提供的DC偏移的AC波形。所述开关模式电源可以经由可选控制器2535来控制,可选控制器2535包括电压和电流控制器2537、2539。开关模式电源2530可以包括具有由电压控制器2537控制的电压输出的可控制电压源2538和具有由电流控制器2539控制的电流输出的可控制电流源2540。可控制电压和电流源2538、2540可以呈并联设置。可控制电流源2540被配置为对等离子体2504与衬底2506之间的离子电流进行补偿。A further embodiment of a plasma processing system 2500 is shown in FIG. 25 . The illustrated embodiment includes a switched mode power supply 2530 that generates an AC waveform that may have a DC offset provided by a DC power supply (not shown). The switch mode power supply can be controlled via an optional controller 2535 comprising voltage and current controllers 2537,2539. Switched mode power supply 2530 may include a controllable voltage source 2538 having a voltage output controlled by a voltage controller 2537 and a controllable current source 2540 having a current output controlled by a current controller 2539 . Controllable voltage and current sources 2538, 2540 may be arranged in parallel. Controllable current source 2540 is configured to compensate for ion current between plasma 2504 and substrate 2506 .

电压和电流控制器2537、2539可以耦合并且彼此通信。电压控制器2537还可以控制可控制电压源2538的开关输出2539。开关输出2539可包括两个如所示出的并联的开关,或可包括将可控制电压源2538的输出转换为所期望的AC波形(例如,非正弦波形)的任何电路。经由所述两个开关,来自可控制电压源2538的受控电压或AC波形可与可控制电流源2540的受控电流输出进行组合,以产生开关模式电源2530的AC波形输出。Voltage and current controllers 2537, 2539 may be coupled and in communication with each other. Voltage controller 2537 may also control switch output 2539 of controllable voltage source 2538 . Switch output 2539 may include two switches connected in parallel as shown, or may include any circuitry that converts the output of controllable voltage source 2538 into a desired AC waveform (eg, a non-sinusoidal waveform). Via the two switches, the controlled voltage or AC waveform from the controllable voltage source 2538 can be combined with the controlled current output of the controllable current source 2540 to produce the AC waveform output of the switch mode power supply 2530 .

可控制电压源2538示出为具有给定极性,但是本领域技术人员将认识到,相反极性等效于所示出的极性。可选地,可控制电压和电流源2538、2540连同开关输出2539一起可以是AC电源2536的部分,并且AC电源2536可以与位于开关模式电源2530内部或外部的DC电源(未示出)串联设置。The controllable voltage source 2538 is shown with a given polarity, but those skilled in the art will recognize that the opposite polarity is equivalent to that shown. Optionally, the controllable voltage and current sources 2538, 2540 along with the switch output 2539 may be part of the AC power supply 2536, and the AC power supply 2536 may be placed in series with a DC power supply (not shown) internal or external to the switch mode power supply 2530 .

图26示出了等离子体处理系统2600的又一实施例。在所示出的实施例中,开关模式电源2630向静电卡盘2611提供具有DC偏移的AC波形。所述波形的AC分量经由通过开关输出2639彼此连接的可控制电压源2638和可控制电流源2640的并联组合来产生。DC偏移由在地与可控制电压源2638之间串联耦合的DC电源2634产生。在实施例中,DC电源2634可以是浮动的而非接地的。类似地,开关模式电源2630可以是浮动的或接地的。FIG. 26 illustrates yet another embodiment of a plasma processing system 2600 . In the illustrated embodiment, switch mode power supply 2630 provides an AC waveform with a DC offset to electrostatic chuck 2611 . The AC component of the waveform is produced via a parallel combination of a controllable voltage source 2638 and a controllable current source 2640 connected to each other by a switch output 2639 . The DC offset is generated by a DC power supply 2634 coupled in series between ground and a controllable voltage source 2638 . In an embodiment, the DC power supply 2634 may be floating rather than grounded. Similarly, switch mode power supply 2630 may be floating or grounded.

系统2600可以包括用于控制开关模式电源2630的输出的一个或多个控制器。第一控制器2632可以例如经由第二控制器2633和第三控制器2635来控制开关模式电源2630的输出。第二控制器2633可以控制如由DC电源2634产生的开关模式电源2630的DC偏移。第三控制器2635可以通过控制可控制电压源2638和可控制电流源2640来控制开关模式电源2630的AC波形。在实施例中,电压控制器2637控制可控制电压源2638的电压输出,并且电流控制器2639控制可控制电流源2640的电流。电压和电流控制器2637、2639可彼此通信并且可以是第三控制器2635的一部分。System 2600 may include one or more controllers for controlling the output of switch mode power supply 2630 . The first controller 2632 may control the output of the switch mode power supply 2630 via the second controller 2633 and the third controller 2635 , for example. The second controller 2633 can control the DC offset of the switched mode power supply 2630 as generated by the DC power supply 2634 . The third controller 2635 can control the AC waveform of the switch mode power supply 2630 by controlling the controllable voltage source 2638 and the controllable current source 2640 . In an embodiment, the voltage controller 2637 controls the voltage output of the controllable voltage source 2638 and the current controller 2639 controls the current of the controllable current source 2640 . The voltage and current controllers 2637 , 2639 may be in communication with each other and may be part of the third controller 2635 .

本领域技术人员将认识到,描述控制器相对于电源2634、2638、2640的各种配置的以上实施例并非是限制性的,并且还可实施各种其它配置,而不脱离本公开内容。例如,第三控制器2635或电压控制器2637可以控制可控制电压源2638与可控制电流源2640之间的开关输出2639。作为另一示例,第二和第三控制器2633、2635可彼此通信(虽然未如此示出)。还应理解,可控制电压和电流源2638、2640的极性仅为示范性的并且并不意在是限制性的。Those skilled in the art will appreciate that the above embodiments describing various configurations of the controller relative to the power sources 2634, 2638, 2640 are not limiting and that various other configurations can also be implemented without departing from the present disclosure. For example, the third controller 2635 or the voltage controller 2637 may control the switch output 2639 between the controllable voltage source 2638 and the controllable current source 2640 . As another example, the second and third controllers 2633, 2635 may be in communication with each other (although not shown as such). It should also be understood that the polarity of the controllable voltage and current sources 2638, 2640 is exemplary only and not intended to be limiting.

可以通过交替切换两个并联开关来操作开关输出2639以便使AC波形成形。开关输出2639可包括任何种类的开关,包括但不限于MOSFET和BJT。在一个变型中,DC电源2634可以设置在可控制电流源2640与和静电卡盘2611之间(换句话说,DC电源2634可以是浮动的),并且开关模式电源2630可以接地。The switch output 2639 can be operated by alternately switching two parallel switches to shape the AC waveform. Switch output 2639 may comprise any kind of switch including, but not limited to, MOSFETs and BJTs. In one variation, DC power supply 2634 may be disposed between controllable current source 2640 and electrostatic chuck 2611 (in other words, DC power supply 2634 may be floating), and switched mode power supply 2630 may be grounded.

图27示出了等离子体处理系统2700的另一个实施例。在此变型中,开关模式电源2734再次接地,而不是并入到开关模式电源2730中,此处,DC电源2734是独立部件并且向整个开关模式电源2730(而非仅仅开关模式电源2730内的部件)提供DC偏移。Another embodiment of a plasma processing system 2700 is shown in FIG. 27 . In this variation, the switch mode power supply 2734 is again grounded, rather than being incorporated into the switch mode power supply 2730, where the DC power supply 2734 is a separate component and contributes to the entire switch mode power supply 2730 (rather than just the components within the switch mode power supply 2730). ) to provide a DC offset.

图28示出了根据本公开内容的实施例的方法2800。方法2800包括将衬底放置在等离子体室中的操作2802。方法2800还包括在等离子体室中形成等离子体的操作2804。这种等离子体可以原位形成或经由远程投射源形成。方法2800还包括开关电源操作2806。开关电源操作2806涉及可控制地开关到衬底的电力,从而向衬底施加周期电压函数。所述周期电压函数可被视为脉冲波形(例如,方波)或AC波形,并且包括由与开关模式电源串联的DC电源产生的DC偏移。在实施例中,可以将DC电源并入到开关模式电源中,并且因此与开关模式电源的AC电源串联。DC偏移在静电卡盘的顶部表面与衬底内的参考层之间产生电位差,并且此电位差被称为卡盘电位。静电卡盘与衬底之间的卡盘电位将衬底保持到静电卡盘,因此防止衬底在处理期间移动。方法2800还包括调制操作2808,其中在多个周期期间对周期电压函数进行调制。所述调制响应于衬底的表面处的期望的(或定义的)离子能量分布,从而在时间平均的基础上实现期望的(或定义的)离子能量分布。FIG. 28 illustrates a method 2800 according to an embodiment of the disclosure. Method 2800 includes an operation 2802 of placing a substrate in a plasma chamber. Method 2800 also includes an operation 2804 of forming a plasma in the plasma chamber. This plasma can be formed in situ or via a remotely projected source. Method 2800 also includes switching power supply operation 2806 . Switching power operation 2806 involves controllably switching power to the substrate, thereby applying a periodic voltage function to the substrate. The periodic voltage function can be viewed as a pulsed waveform (eg, a square wave) or an AC waveform, and includes the DC offset produced by the DC power supply in series with the switched mode power supply. In an embodiment, a DC power supply may be incorporated into the switched mode power supply and thus in series with the AC power supply of the switched mode power supply. The DC offset creates a potential difference between the top surface of the electrostatic chuck and a reference layer within the substrate, and this potential difference is called the chuck potential. The chuck potential between the electrostatic chuck and the substrate holds the substrate to the electrostatic chuck, thus preventing the substrate from moving during processing. Method 2800 also includes a modulating operation 2808, wherein the periodic voltage function is modulated during the plurality of cycles. The modulation is responsive to a desired (or defined) ion energy distribution at the surface of the substrate such that the desired (or defined) ion energy distribution is achieved on a time averaged basis.

图29示出了根据本公开内容的实施例的另一个方法2900。方法2900包括将衬底放置在等离子体室中的操作2902。方法2900还包括在等离子体室中形成等离子体的操作2904。所述等离子体可以原位形成或经由远程投射源形成。方法2900还包括接收至少一个离子能量分布设置的操作2906。在接收操作2906中接收的所述设置可以指示衬底的表面处的一个或多个离子能量。方法2900还包括开关电源操作2908,其中可控制地开关到衬底的电力,从而实现以下各项:(1)在时间平均的基础上的离子能量的期望的(或定义的)分布;以及(2)在时间平均的基础上的期望的卡盘电位。电源可以具有AC波形和DC偏移。FIG. 29 illustrates another method 2900 according to an embodiment of the disclosure. Method 2900 includes an operation 2902 of placing a substrate in a plasma chamber. Method 2900 also includes an operation 2904 of forming a plasma in the plasma chamber. The plasma can be formed in situ or via a remotely projected source. Method 2900 also includes an operation 2906 of receiving at least one ion energy distribution setting. The settings received in receive operation 2906 may be indicative of one or more ion energies at the surface of the substrate. Method 2900 also includes switching power operation 2908, wherein power to the substrate is controllably switched to achieve: (1) a desired (or defined) distribution of ion energies on a time-averaged basis; and ( 2) Expected chuck potential on a time-averaged basis. A power supply can have an AC waveform and a DC offset.

总之,在其它方面,本发明提供了一种用于使用开关模式电源选择性地产生期望的(或定义的)离子能量的方法和装置。本领域技术人员容易认识到,可以在本发明中作出许多变型和替代,其用途及其配置实现基本上与本文所述的实施例所实现的相同的结果。因此,没有将本发明限制于所公开的示范性形式的意图。许多变型、修改和替代结构均落入所公开的本发明的范围和精神内。In summary, in other aspects, the present invention provides a method and apparatus for selectively generating a desired (or defined) ion energy using a switched mode power supply. Those skilled in the art will readily recognize that many variations and substitutions may be made in the present invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Therefore, there is no intention to limit the invention to the disclosed exemplary forms. Numerous variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention.

Claims (36)

1.一种用于建立一个或多个等离子体鞘层电压的方法,包括:1. A method for establishing one or more plasma sheath voltages comprising: 向等离子体室的衬底支撑部提供经修改的周期电压函数,其中,所述衬底支撑部耦合到被配置为用于在所述等离子体中进行处理的衬底,并且其中,所述经修改的周期电压函数包括由离子电流补偿Ic修改的周期电压函数,providing a modified periodic voltage function to a substrate support of a plasma chamber, wherein the substrate support is coupled to a substrate configured for processing in the plasma, and wherein the The modified periodic voltage function includes the periodic voltage function modified by ion current compensation Ic, 其中,所述经修改的周期电压函数包括脉冲和所述脉冲之间的部分,wherein said modified periodic voltage function includes pulses and portions between said pulses, 其中,所述脉冲是所述周期电压函数的函数,以及wherein said pulse is a function of said periodic voltage function, and 其中,所述脉冲之间的所述部分的斜率是所述离子电流补偿Ic的函数;wherein the slope of said portion between said pulses is a function of said ion current compensation Ic; 存取至少表示所述衬底支撑部的电容的有效电容值C1;以及accessing an effective capacitance value C1 representing at least the capacitance of the substrate support; and 识别将产生到达所述衬底的表面的离子的定义的离子能量分布函数的所述离子电流补偿Ic的数值,其中,所述识别是所述有效电容C1和所述脉冲之间的所述部分的斜率dV0/dt的函数,identifying the value of the ion current compensation Ic that will produce a defined ion energy distribution function for ions reaching the surface of the substrate, wherein the identification is the effective capacitance C and the part of the slope dV 0 /dt function, 其中,所述离子电流补偿Ic的数值满足如下函数f:Wherein, the value of the ion current compensation Ic satisfies the following function f: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>dV</mi> <mn>0</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>C</mi> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mn>0.</mn> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><msub><mi>I</mi><mi>C</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>dV</mi><mn>0</mn></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>-</mo><mfrac><msub><mi>I</mi><mi>C</mi></msub><msub><mi>C</mi><mn>1</mn></msub></mfrac><mo>=</mo><mn>0.</mn></mrow> 2.根据权利要求1所述的方法,其中,所述定义的离子能量分布是窄离子能量分布。2. The method of claim 1, wherein the defined ion energy distribution is a narrow ion energy distribution. 3.根据权利要求2所述的方法,其中,所述定义的离子能量分布在所述脉冲之间的所述部分期间与所述衬底表面处的恒定电压相对应。3. The method of claim 2, wherein the defined ion energy distribution corresponds to a constant voltage at the substrate surface during the portion between the pulses. 4.根据权利要求3所述的方法,还包括:4. The method of claim 3, further comprising: 将所述离子电流补偿Ic设置为第一数值;Setting the ion current compensation Ic to a first value; 确定所述函数f的符号;以及determining the sign of said function f; and 如果所述函数f的所述符号为正,则增大所述离子电流补偿Ic,并且如果所述函数f的所述符号为负,则减小所述离子电流补偿Ic。If the sign of the function f is positive, the ion current compensation Ic is increased, and if the sign of the function f is negative, the ion current compensation Ic is decreased. 5.根据权利要求1所述的方法,其中,所述识别包括在两个或更多个时刻对所述脉冲之间的所述部分的电压进行采样。5. The method of claim 1, wherein the identifying includes sampling the voltage of the portion between the pulses at two or more time instants. 6.根据权利要求5所述的方法,其中,所述识别包括根据在所述两个或更多个时刻所采样的电压来计算所述斜率dV0/dt。6. The method of claim 5, wherein the identifying includes calculating the slope dV 0 /dt from voltages sampled at the two or more time instants. 7.根据权利要求6所述的方法,其中,所述识别包括针对所述经修改的周期电压函数的两个或更多个周期计算所述斜率dV0/dt,其中,所述两个或更多个周期中的每一个周期与所述离子电流补偿Ic的不同数值相关联。7. The method of claim 6, wherein said identifying comprises calculating said slope dV 0 /dt for two or more cycles of said modified periodic voltage function, wherein said two or Each of the plurality of cycles is associated with a different value of the ion current compensation Ic. 8.根据权利要求5所述的方法,其中,所述识别包括在第一周期期间并且在第二周期期间对所述脉冲之间的所述部分的电压进行采样,并且至少根据这些所采样的电压来计算所述斜率dV0/dt。8. The method of claim 5, wherein said identifying comprises sampling the voltage of said portion between said pulses during a first period and during a second period, and based at least on these sampled voltage to calculate the slope dV 0 /dt. 9.根据权利要求1所述的方法,其中,所述离子电流补偿Ic与穿过所述等离子体的等离子体鞘层的离子电流II线性相关。9. The method of claim 1, wherein the ion current compensation Ic is linearly related to the ion current II through the plasma sheath of the plasma. 10.根据权利要求9所述的方法,其中,所述离子电流补偿Ic根据以下等式与所述离子电流II线性相关:10. The method of claim 9, wherein the ionic current compensation Ic is linearly related to the ionic current Il according to the following equation: 其中,C1是所述等离子体室的由偏置电源所见的有效电容,以及C杂散是所述等离子体室的由所述偏置电源所见的累积杂散电容。where C1 is the effective capacitance of the plasma chamber as seen by the bias power supply, and Cstray is the accumulated stray capacitance of the plasma chamber as seen by the bias power supply. 11.根据权利要求10所述的方法,其中,所述有效电容C1随时间变化。11. The method of claim 10, wherein the effective capacitance C1 varies with time. 12.根据权利要求10所述的方法,其中,所述离子电流补偿Ic随时间变化。12. The method of claim 10, wherein the ionic current compensation Ic varies with time. 13.根据权利要求1所述的方法,还包括向所述衬底支撑部提供所述经修改的周期电压函数,以使得离子以第一离子能量到达所述衬底的所述表面。13. The method of claim 1, further comprising providing the modified periodic voltage function to the substrate support such that ions reach the surface of the substrate with a first ion energy. 14.根据权利要求13所述的方法,其中,所述经修改的周期电压函数具有与所述第一离子能量相对应的第一电压阶跃。14. The method of claim 13, wherein the modified periodic voltage function has a first voltage step corresponding to the first ion energy. 15.根据权利要求14所述的方法,还包括借助所述离子电流补偿Ic的第二数值向所述衬底支撑部提供所述经修改的周期电压函数,从而扩宽所述离子能量分布函数。15. The method of claim 14 , further comprising providing the modified periodic voltage function to the substrate support by means of the second value of the ion current compensation Ic, thereby broadening the ion energy distribution function . 16.根据权利要求14所述的方法,其中,在所述经修改的周期电压函数的相邻周期中提供所述第一电压阶跃和第二电压阶跃。16. The method of claim 14, wherein the first and second voltage steps are provided in adjacent periods of the modified periodic voltage function. 17.根据权利要求13所述的方法,其中,所述提供对所述等离子体的密度具有可忽略不计的影响。17. The method of claim 13, wherein the providing has a negligible effect on the density of the plasma. 18.一种用于对等离子体进行偏置从而在等离子体处理室内的衬底的表面处实现定义的离子能量的方法,所述方法包括:18. A method for biasing a plasma to achieve a defined ion energy at a surface of a substrate within a plasma processing chamber, the method comprising: 向衬底支撑部施加包括由离子电流补偿Ic修改的周期电压函数的经修改的周期电压函数,所述经修改的周期电压函数包括脉冲和所述脉冲之间的部分;applying to the substrate support a modified periodic voltage function comprising a periodic voltage function modified by ion current compensation Ic, said modified periodic voltage function comprising pulses and portions between said pulses; 对所述经修改的周期电压函数的至少一个周期进行采样,以便产生电压数据点;sampling at least one cycle of the modified periodic voltage function to generate voltage data points; 根据所述电压数据点来估算所述衬底表面处的第一离子能量的数值;以及estimating a value of a first ion energy at the substrate surface from the voltage data points; and 调节所述经修改的周期电压函数,直到所述第一离子能量等于所述定义的离子能量,adjusting said modified periodic voltage function until said first ion energy equals said defined ion energy, 其中,所述离子电流补偿Ic的数值满足如下函数f:Wherein, the value of the ion current compensation Ic satisfies the following function f: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>dV</mi> <mn>0</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>C</mi> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><msub><mi>I</mi><mi>C</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>dV</mi><mn>0</mn></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>-</mo><mfrac><msub><mi>I</mi><mi>C</mi></msub><msub><mi>C</mi><mn>1</mn></msub></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mrow> 其中,C1是至少表示所述衬底支撑部的电容的有效电容值,dV0/dt是所述脉冲之间的所述部分的斜率。where C 1 is an effective capacitance representing at least the capacitance of the substrate support and dV 0 /dt is the slope of the portion between the pulses. 19.根据权利要求18所述的方法,还包括对所述经修改的周期电压函数的至少一个周期进行采样,并且在所述调节的每一电压增加之后计算所述第一离子能量的所述数值。19. The method of claim 18 , further comprising sampling at least one cycle of the modified periodic voltage function, and calculating the first ion energy after each voltage increase of the adjustment. value. 20.根据权利要求18所述的方法,其中,所述估算是作为输入的离子电流的函数。20. The method of claim 18, wherein the estimating is a function of ion current as an input. 21.根据权利要求18所述的方法,其中,所述离子电流是所述离子电流补偿的函数。21. The method of claim 18, wherein the ionic current is a function of the ionic current compensation. 22.根据权利要求21所述的方法,其中,在对所述第一离子能量的数值的所述估算中使用以下等式:22. The method of claim 21 , wherein the following equation is used in said estimating the value of said first ion energy: 其中,ΔV是所述电压阶跃,C1是所述室的由偏置电源所见的有效电容,以及C鞘层是所述等离子体鞘层的鞘层电容,其取决于所述离子电流。where ΔV is the voltage step, C is the effective capacitance of the chamber as seen by the bias supply, and Csheath is the sheath capacitance of the plasma sheath, which depends on the ion current . 23.根据权利要求22所述的方法,其中,所述调节包括调节所述经修改的周期电压函数的所述阶跃电压ΔV,直到所述第一离子能量等于所述定义的离子能量。23. The method of claim 22, wherein said adjusting comprises adjusting said step voltage [Delta]V of said modified periodic voltage function until said first ion energy is equal to said defined ion energy. 24.根据权利要求18所述的方法,还包括将所述离子电流补偿的第一数值变为第二数值,从而扩宽所述离子能量的分布的宽度。24. The method of claim 18, further comprising changing the first value of the ion current compensation to a second value, thereby widening the width of the distribution of ion energies. 25.根据权利要求18所述的方法,其中,所述施加和所述调节对所述等离子体的等离子体密度具有可忽略不计的影响。25. The method of claim 18, wherein the applying and the adjusting have a negligible effect on the plasma density of the plasma. 26.根据权利要求18所述的方法,其中,所述调节包括调节偏置电源电压,直到所述第一离子能量等于所述定义的离子能量。26. The method of claim 18, wherein the adjusting comprises adjusting a bias supply voltage until the first ion energy is equal to the defined ion energy. 27.一种用以实现离子能量分布函数宽度的方法,所述方法包括:27. A method for achieving the breadth of an ion energy distribution function, the method comprising: 向等离子体处理室的衬底支撑部提供包括由离子电流补偿Ic修改的周期电压函数的经修改的周期电压函数,所述经修改的周期电压函数包括脉冲和所述脉冲之间的部分;providing to a substrate support of a plasma processing chamber a modified periodic voltage function comprising a periodic voltage function modified by ion current compensation Ic, the modified periodic voltage function comprising pulses and portions between the pulses; 在第一时刻并且在第二时刻从所述经修改的周期电压函数的波形采样至少两个电压;sampling at least two voltages from the waveform of the modified periodic voltage function at a first instant and at a second instant; 将所述至少两个电压的斜率计算为dV/dt;calculating the slope of the at least two voltages as dV/dt; 将所述斜率与已知的参考斜率进行比较,以便与离子能量分布函数宽度相对应;以及comparing the slope to a known reference slope to correspond to the ion energy distribution function width; and 调节所述经修改的周期电压函数,以使得所述斜率接近所述参考斜率,adjusting the modified periodic voltage function so that the slope approaches the reference slope, 其中,所述离子电流补偿Ic的数值满足如下函数f:Wherein, the value of the ion current compensation Ic satisfies the following function f: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>dV</mi> <mn>0</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>C</mi> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><msub><mi>I</mi><mi>C</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>dV</mi><mn>0</mn></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>-</mo><mfrac><msub><mi>I</mi><mi>C</mi></msub><msub><mi>C</mi><mn>1</mn></msub></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mrow> 其中,C1是至少表示所述衬底支撑部的电容的有效电容值,dV0/dt是所述脉冲之间的所述部分的斜率。where C 1 is an effective capacitance representing at least the capacitance of the substrate support and dV 0 /dt is the slope of the portion between the pulses. 28.根据权利要求27所述的方法,其中,所述第一时刻发生在所述经修改的周期电压函数的第一周期期间,并且所述第二时刻发生在所述经修改的周期电压函数的第二周期期间。28. The method of claim 27, wherein the first instant occurs during a first period of the modified periodic voltage function, and the second instant occurs during a period of the modified periodic voltage function during the second cycle of . 29.根据权利要求27所述的方法,其中,所述第一时刻和所述第二时刻发生在所述经修改的周期电压函数的同一周期期间。29. The method of claim 27, wherein the first instant and the second instant occur during the same period of the modified periodic voltage function. 30.根据权利要求27所述的方法,其中,以至少400kHz的采样率执行所述采样。30. The method of claim 27, wherein the sampling is performed at a sampling rate of at least 400 kHz. 31.一种等离子体处理系统,包括:31. A plasma processing system comprising: 等离子体处理室,所述等离子体处理室被配置为包含等离子体;a plasma processing chamber configured to contain a plasma; 衬底支撑部,所述衬底支撑部安置在所述等离子体处理室内并且被安置成在等离子体处理期间支撑衬底;a substrate support disposed within the plasma processing chamber and positioned to support a substrate during plasma processing; 电源,所述电源向所述衬底支撑部提供周期电压函数,所述周期电压函数具有脉冲和所述脉冲之间的部分;a power supply that provides a periodic voltage function to the substrate support, the periodic voltage function having pulses and portions between the pulses; 离子电流补偿部件,所述离子电流补偿部件修改所述脉冲之间的所述部分的斜率dV0/dt,以便形成向所述衬底支撑部提供的包括由离子电流补偿Ic修改的周期电压函数的经修改的周期电压函数;以及an ion current compensation component that modifies the slope dV 0 /dt of the portion between the pulses to form a periodic voltage function supplied to the substrate support comprising a modification by ion current compensation Ic The modified periodic voltage function of ; and 控制器,所述控制器与所述电源和所述离子电流补偿部件进行通信,a controller in communication with the power supply and the ion current compensation component, 其中,所述离子电流补偿Ic的数值满足如下函数f:Wherein, the value of the ion current compensation Ic satisfies the following function f: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>dV</mi> <mn>0</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>C</mi> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><msub><mi>I</mi><mi>C</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>dV</mi><mn>0</mn></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>-</mo><mfrac><msub><mi>I</mi><mi>C</mi></msub><msub><mi>C</mi><mn>1</mn></msub></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mrow> 其中,C1是至少表示所述衬底支撑部的电容的有效电容值。Wherein, C 1 is an effective capacitance representing at least the capacitance of the substrate support. 32.根据权利要求31所述的系统,其中,所述控制器调节所述离子电流补偿的幅度,直到实现到达所述衬底的表面的离子的定义的离子能量分布函数。32. The system of claim 31, wherein the controller adjusts the magnitude of the ion current compensation until a defined ion energy distribution function of ions reaching the surface of the substrate is achieved. 33.根据权利要求31所述的系统,其中,所述控制器还被配置为识别所述周期电压函数的所述脉冲的幅度,如果向所述衬底支撑部提供所述周期电压函数的所述脉冲,将产生到达所述衬底的表面的离子的定义的离子能量。33. The system of claim 31 , wherein the controller is further configured to identify the magnitude of the pulse of the periodic voltage function if the pulse of the periodic voltage function is provided to the substrate support. The pulse will generate a defined ion energy of the ions reaching the surface of the substrate. 34.根据权利要求33所述的系统,其中,所述控制器调节所述周期电压函数的所述脉冲的幅度,直到实现到达所述衬底的所述表面的离子的所述定义的离子能量。34. The system of claim 33 , wherein the controller adjusts the magnitude of the pulses of the periodic voltage function until the defined ion energy of ions reaching the surface of the substrate is achieved . 35.一种用于监控被配置为处理衬底的等离子体的离子电流的方法,所述方法包括:35. A method for monitoring an ion current of a plasma configured to process a substrate, the method comprising: 考虑到具有第一数值的离子电流补偿情况下,对经修改的周期电压函数进行第一采样;taking a first sample of the modified periodic voltage function taking into account ion current compensation having a first value; 考虑到具有第二数值的所述离子电流补偿情况下,对所述经修改的周期电压函数进行第二采样;taking a second sample of said modified periodic voltage function taking into account said ion current compensation having a second value; 基于所述第一采样和所述第二采样来确定作为时间的函数的所述经修改的周期电压函数的斜率;以及determining a slope of the modified periodic voltage function as a function of time based on the first sample and the second sample; and 基于所述斜率来计算所述离子电流补偿的第三数值,在所述第三数值处,所述衬底上的恒定电压将在所述经修改的周期电压函数的至少一个周期内存在。A third value for the ion current compensation at which a constant voltage on the substrate will exist for at least one cycle of the modified periodic voltage function is calculated based on the slope. 36.根据权利要求35所述的方法,还包括计算所述等离子体的等离子体鞘层两端的鞘层电压。36. The method of claim 35, further comprising calculating a sheath voltage across a plasma sheath of the plasma.
CN201380056068.5A 2012-08-28 2013-08-26 Method of controlling a switch-mode ion energy distribution system Active CN104756238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711336133.6A CN107978506B (en) 2012-08-28 2013-08-26 Method of controlling a switched mode ion energy distribution system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/596,976 US9767988B2 (en) 2010-08-29 2012-08-28 Method of controlling the switched mode ion energy distribution system
US13/596,976 2012-08-28
PCT/US2013/056657 WO2014035897A1 (en) 2012-08-28 2013-08-26 A method of controlling the switched mode ion energy distribution system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201711336133.6A Division CN107978506B (en) 2012-08-28 2013-08-26 Method of controlling a switched mode ion energy distribution system

Publications (2)

Publication Number Publication Date
CN104756238A CN104756238A (en) 2015-07-01
CN104756238B true CN104756238B (en) 2017-12-15

Family

ID=50184209

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711336133.6A Active CN107978506B (en) 2012-08-28 2013-08-26 Method of controlling a switched mode ion energy distribution system
CN201380056068.5A Active CN104756238B (en) 2012-08-28 2013-08-26 Method of controlling a switch-mode ion energy distribution system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201711336133.6A Active CN107978506B (en) 2012-08-28 2013-08-26 Method of controlling a switched mode ion energy distribution system

Country Status (4)

Country Link
JP (3) JP6329542B2 (en)
KR (1) KR101860182B1 (en)
CN (2) CN107978506B (en)
WO (1) WO2014035897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI862592B (en) * 2019-05-28 2024-11-21 日商東京威力科創股份有限公司 Plasma processing method and plasma processing apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9954508B2 (en) * 2015-10-26 2018-04-24 Lam Research Corporation Multiple-output radiofrequency matching module and associated methods
US20170358431A1 (en) * 2016-06-13 2017-12-14 Applied Materials, Inc. Systems and methods for controlling a voltage waveform at a substrate during plasma processing
US10312048B2 (en) 2016-12-12 2019-06-04 Applied Materials, Inc. Creating ion energy distribution functions (IEDF)
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
TWI792598B (en) 2017-11-17 2023-02-11 新加坡商Aes 全球公司 Systems and methods for spatially and temporally controlling plasma processing on substrates and related computer-readable medium
KR102803961B1 (en) * 2017-11-17 2025-05-07 에이이에스 글로벌 홀딩스 피티이 리미티드 Synchronized pulsing of plasma processing source and substrate bias
US11437221B2 (en) 2017-11-17 2022-09-06 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
US10555412B2 (en) * 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
KR102744694B1 (en) * 2019-01-10 2024-12-19 삼성전자주식회사 Plasma processing method and plasma processing apparatus
KR20250100790A (en) 2019-01-22 2025-07-03 어플라이드 머티어리얼스, 인코포레이티드 Feedback loop for controlling a pulsed voltage waveform
TWI887253B (en) * 2019-07-12 2025-06-21 新加坡商Aes全球公司 Bias supply with a single controlled switch
KR102403198B1 (en) 2019-07-19 2022-05-27 세메스 주식회사 Apparatus for treating substrate and method for treating apparatus
NL2023935B1 (en) * 2019-10-02 2021-05-31 Prodrive Tech Bv Determining an optimal ion energy for plasma processing of a dielectric substrate
JP7336395B2 (en) * 2020-01-29 2023-08-31 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
WO2022173626A1 (en) * 2021-02-09 2022-08-18 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11476090B1 (en) * 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
KR102481458B1 (en) 2021-12-15 2022-12-27 홍재혁 Tattooing device
US12046448B2 (en) 2022-01-26 2024-07-23 Advanced Energy Industries, Inc. Active switch on time control for bias supply
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12315732B2 (en) 2022-06-10 2025-05-27 Applied Materials, Inc. Method and apparatus for etching a semiconductor substrate in a plasma etch chamber
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply
US12272524B2 (en) 2022-09-19 2025-04-08 Applied Materials, Inc. Wideband variable impedance load for high volume manufacturing qualification and on-site diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201208B1 (en) * 1999-11-04 2001-03-13 Wisconsin Alumni Research Foundation Method and apparatus for plasma processing with control of ion energy distribution at the substrates
US20070193975A1 (en) * 2006-02-23 2007-08-23 Micron Technology, Inc. Using positive DC offset of bias RF to neutralize charge build-up of etch features
CN102217045A (en) * 2009-05-01 2011-10-12 先进能源工业公司 Method and apparatus for controlling ion energy distribution

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806201B2 (en) * 2000-09-29 2004-10-19 Hitachi, Ltd. Plasma processing apparatus and method using active matching
JP4319514B2 (en) * 2002-11-29 2009-08-26 株式会社日立ハイテクノロジーズ Plasma processing apparatus having high frequency power supply with sag compensation function
US7615132B2 (en) * 2003-10-17 2009-11-10 Hitachi High-Technologies Corporation Plasma processing apparatus having high frequency power source with sag compensation function and plasma processing method
JP4111186B2 (en) * 2004-11-18 2008-07-02 日新電機株式会社 Ion irradiation equipment
US7829468B2 (en) * 2006-06-07 2010-11-09 Lam Research Corporation Method and apparatus to detect fault conditions of plasma processing reactor
JP4607930B2 (en) * 2007-09-14 2011-01-05 株式会社東芝 Plasma processing apparatus and plasma processing method
US9887069B2 (en) * 2008-12-19 2018-02-06 Lam Research Corporation Controlling ion energy distribution in plasma processing systems
US9287086B2 (en) * 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US9435029B2 (en) * 2010-08-29 2016-09-06 Advanced Energy Industries, Inc. Wafer chucking system for advanced plasma ion energy processing systems
JP2012104382A (en) * 2010-11-10 2012-05-31 Tokyo Electron Ltd Plasma treatment apparatus, plasma treatment method, and plasma treatment bias voltage determination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201208B1 (en) * 1999-11-04 2001-03-13 Wisconsin Alumni Research Foundation Method and apparatus for plasma processing with control of ion energy distribution at the substrates
US20070193975A1 (en) * 2006-02-23 2007-08-23 Micron Technology, Inc. Using positive DC offset of bias RF to neutralize charge build-up of etch features
CN102217045A (en) * 2009-05-01 2011-10-12 先进能源工业公司 Method and apparatus for controlling ion energy distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI862592B (en) * 2019-05-28 2024-11-21 日商東京威力科創股份有限公司 Plasma processing method and plasma processing apparatus
US12437970B2 (en) 2019-05-28 2025-10-07 Tokyo Electron Limited Plasma processing method and plasma processing apparatus

Also Published As

Publication number Publication date
CN107978506A (en) 2018-05-01
CN107978506B (en) 2021-07-09
WO2014035897A1 (en) 2014-03-06
JP2018152349A (en) 2018-09-27
KR101860182B1 (en) 2018-05-21
CN104756238A (en) 2015-07-01
JP6329542B2 (en) 2018-05-23
JP2015534212A (en) 2015-11-26
JP2020155408A (en) 2020-09-24
KR20150046251A (en) 2015-04-29
JP6986113B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
CN104756238B (en) Method of controlling a switch-mode ion energy distribution system
US12142452B2 (en) Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US20210327679A1 (en) System, method, and apparatus for ion current compensation
US9362089B2 (en) Method of controlling the switched mode ion energy distribution system
US20190180982A1 (en) System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9210790B2 (en) Systems and methods for calibrating a switched mode ion energy distribution system
JP6329543B2 (en) Method for controlling a switched-mode ion energy distribution system
US11978611B2 (en) Apparatus with switches to produce a waveform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190411

Address after: Singapore Singapore

Patentee after: Advanced Engineering Solutions Global Holdings Private Limited

Address before: American Colorado

Patentee before: Advanced Energy Industries, Inc.

TR01 Transfer of patent right