CN104834313B - A kind of greenhouse intelligence spray robot and method based on RFID - Google Patents
A kind of greenhouse intelligence spray robot and method based on RFID Download PDFInfo
- Publication number
- CN104834313B CN104834313B CN201510247564.XA CN201510247564A CN104834313B CN 104834313 B CN104834313 B CN 104834313B CN 201510247564 A CN201510247564 A CN 201510247564A CN 104834313 B CN104834313 B CN 104834313B
- Authority
- CN
- China
- Prior art keywords
- module
- robot
- fruit
- spraying
- rfid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000007921 spray Substances 0.000 title claims description 19
- 239000003814 drug Substances 0.000 claims abstract description 145
- 238000005507 spraying Methods 0.000 claims abstract description 138
- 235000012055 fruits and vegetables Nutrition 0.000 claims abstract description 114
- 229940079593 drug Drugs 0.000 claims abstract description 65
- 238000001514 detection method Methods 0.000 claims abstract description 46
- 238000004891 communication Methods 0.000 claims abstract description 39
- 230000008569 process Effects 0.000 claims abstract description 20
- 230000003993 interaction Effects 0.000 claims abstract description 16
- 241000282414 Homo sapiens Species 0.000 claims abstract description 8
- 230000001105 regulatory effect Effects 0.000 claims description 28
- 238000010295 mobile communication Methods 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 241000894007 species Species 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Catching Or Destruction (AREA)
Abstract
一种基于RFID的大棚智能喷药机器人及方法,其特征在于,所述大棚智能喷药机器人包括:中央控制器、RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、供电模块、报警模块、存储模块。所述的中央控制器分别与RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、供电模块、报警模块、存储模块连接。本发明智能完成对大棚果蔬植物的整个喷药过程,减少了药物的浪费和药物残留,大大提高了工作效率和药物利用率,减少了人的体力劳动,使人不受药物的危害。
An RFID-based greenhouse intelligent spraying robot and method, characterized in that the greenhouse intelligent spraying robot includes: a central controller, an RFID path identification module, an image processing module, a spraying module, a dispensing module, a drug detection module, Wireless communication module, human-computer interaction module, self-state detection module, driving module, power supply module, alarm module, storage module. The central controller is respectively connected with the RFID path identification module, the image processing module, the spraying module, the dispensing module, the drug detection module, the wireless communication module, the human-computer interaction module, the self-state detection module, the driving module, the power supply module, and the alarm module , Storage module connection. The invention intelligently completes the whole spraying process of the fruit and vegetable plants in the greenhouse, reduces the waste of medicines and medicine residues, greatly improves the work efficiency and the utilization rate of medicines, reduces human physical labor, and protects people from the harm of medicines.
Description
技术领域technical field
本发明涉及一种智能机器人,特别是针对一种基于RFID的大棚智能喷药机器人及方法。The invention relates to an intelligent robot, in particular to an RFID-based greenhouse intelligent spraying robot and method.
背景技术Background technique
RFID(Radio Frequency Identification)是一种非接触式自动识别技术,其原理是利用射频方式进行非接触双向通信,通过射频信号来自动识别目标对象并获取相关数据。RFID技术具有非接触、阅读速度快、不受环境影响、读取距离大、标签数据可加密、存储数据容量大、存储信息可更改、能够同时处理多个标签、识别工作无须人工干预等优点。RFID (Radio Frequency Identification) is a non-contact automatic identification technology. Its principle is to use radio frequency to conduct non-contact two-way communication, and use radio frequency signals to automatically identify target objects and obtain relevant data. RFID technology has the advantages of non-contact, fast reading speed, not affected by the environment, large reading distance, tag data can be encrypted, large storage data capacity, stored information can be changed, can process multiple tags at the same time, and identification work does not require manual intervention.
目前,给大棚喷药的工作主要由人工完成。人工喷药存在以下不利因素:1、药物对人体有害,会引起人体的潜在的病变危害。2、喷药效率低下,人工喷药不仅消耗体力,更耽误时间。3、药物利用率低,人工喷药会造成喷药不均匀,药物滴漏等问题,导致药物的浪费。有一些机械喷药装置应用在大棚喷药方面,但这些喷药装置存在以下弊端:1、需要人为控制,不能够自主完成喷药全过程。2、喷药量不合理,药物浪费严重,药物利用率不够高。3、工作方式不符合现在大棚的建园标准。4、操作方式复杂。At present, the work of spraying chemicals to the greenhouse is mainly done manually. Artificial spraying has the following unfavorable factors: 1. The medicine is harmful to the human body and can cause potential pathological changes in the human body. 2. The spraying efficiency is low. Manual spraying not only consumes energy, but also wastes time. 3. The utilization rate of medicine is low. Manual spraying will cause problems such as uneven spraying and dripping of medicine, which will lead to waste of medicine. There are some mechanical spraying devices used in greenhouse spraying, but these spraying devices have the following disadvantages: 1. Human control is required, and the whole process of spraying cannot be completed independently. 2. The amount of spraying medicine is unreasonable, the waste of medicine is serious, and the utilization rate of medicine is not high enough. 3. The working method does not meet the current construction standards for greenhouses. 4. The operation mode is complicated.
因此,目前大棚喷药方式存在许多弊端,发明一种基于RFID的大棚智能喷药机器人及方法可以用来解决大棚喷药的问题,帮助大棚种植户轻松的完成对大棚果蔬植物的喷药。Therefore, there are many disadvantages in the current greenhouse spraying method. The invention of an RFID-based greenhouse intelligent spraying robot and method can be used to solve the problem of greenhouse spraying and help greenhouse growers easily complete the spraying of greenhouse fruit and vegetable plants.
发明内容Contents of the invention
本发明针对现有技术无法满足上述大棚喷药方面的问题,提供了一种基于RFID的大棚智能喷药机器人及方法,能够代替人完成对大棚果蔬植物智能喷药的机器人。该大棚智能喷药机器人通过RFID位置标记定位技术智能识别大棚建园路径自主移动,通过图像处理识别果蔬植物,根据不同果蔬植物及所处的不同生长时期合理控制喷药量,智能完成对大棚果蔬植物的整个喷药过程。The present invention aims at the problem that the prior art cannot satisfy the above greenhouse spraying, and provides an RFID-based greenhouse intelligent spraying robot and method, which can replace human beings to complete intelligent spraying of greenhouse fruit and vegetable plants. The greenhouse intelligent spraying robot intelligently recognizes the greenhouse construction path through RFID position marking and positioning technology to move autonomously, recognizes fruit and vegetable plants through image processing, and reasonably controls the spraying amount according to different fruit and vegetable plants and different growth periods, and intelligently completes the greenhouse. The entire spraying process of plants.
为了完成上述目的,本发明采用以下技术方案。In order to accomplish the above object, the present invention adopts the following technical solutions.
一种基于RFID的大棚智能喷药机器人,其特征在于,所述大棚智能喷药机器人包括:中央控制器、RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、供电模块、报警模块、存储模块。所述的中央控制器分别与RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、供电模块、报警模块、存储模块连接,所述的供电模块分别与中央控制器、RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、报警模块、存储模块连接。通过以上各个模块的统一、协调的工作,实现各个模块的功能,完成大棚智能喷药机器人对大棚果蔬植物的喷药工作。An RFID-based intelligent spraying robot for greenhouses, characterized in that the intelligent spraying robot for greenhouses includes: a central controller, an RFID path identification module, an image processing module, a spraying module, a dispensing module, a drug detection module, and a wireless communication module. module, human-computer interaction module, self-state detection module, driving module, power supply module, alarm module, and storage module. The central controller is respectively connected with the RFID path identification module, the image processing module, the spraying module, the dispensing module, the drug detection module, the wireless communication module, the human-computer interaction module, the self-state detection module, the driving module, the power supply module, and the alarm module , the storage module, and the power supply module is respectively connected with the central controller, RFID path identification module, image processing module, spraying module, dispensing module, drug detection module, wireless communication module, human-computer interaction module, self-state detection module, The driving module, the alarm module and the storage module are connected. Through the unified and coordinated work of the above modules, the functions of each module are realized, and the spraying work of the greenhouse intelligent spraying robot to the greenhouse fruit and vegetable plants is completed.
所述的中央控制器分别与RFID路径识别模块、图像处理模块、喷药模块、配药模块、药物检测模块、无线通信模块、人机交互模块、自身状态检测模块、行驶模块、供电模块、报警模块、存储模块连接,接收和处理各模块的采集信息和数据,快速控制各个模块完成具体功能。The central controller is respectively connected with the RFID path identification module, the image processing module, the spraying module, the dispensing module, the drug detection module, the wireless communication module, the human-computer interaction module, the self-state detection module, the driving module, the power supply module, and the alarm module , Storage module connection, receive and process the collected information and data of each module, and quickly control each module to complete specific functions.
所述的RFID路径识别模块采用RFID位置标记定位技术。采用在大棚区内部上方均匀间隔固定位置架起安装位置标记RFID电子标签监控机器人上安装的机器人RFID电子标签位置,通过位置标记RFID电子标签向机器人RFID电子标签提供位置信息,RFID读写器向机器人RFID电子标签和位置标记RFID电子标签发送定位命令信息,机器人RFID电子标签与最近的位置标记RFID电子标签交流信息后获取当前所处位置,RFID读写器读取机器人RFID电子标签信息和其当前位置信息。经过这种方式的多次获取当前位置后,通过中央控制器计算机器人在大棚区的具体位置。根据大棚区实际尺寸、位置标记RFID电子标签和每列果蔬植物在大棚区中的具体位置分布,对大棚区进行大棚RFID电子标签地图的建模,将大棚RFID电子标签地图模型导入到机器人存储模块由中央控制器读取,实时的RFID路径识别模块和预先存储的大棚RFID电子标签地图模型进行对比和修正,判断出每一列果蔬植物的位置,准确的识别路径使机器人在果蔬植物种植区外的空地和大棚区移动,完成对果蔬植物喷药的工作。RFID路径识别模块包括位置标记RFID电子标签、机器人RFID电子标签、RFID读写器;机器人RFID电子标签和RFID读写器安装在机器人上。The RFID path identification module adopts the RFID position marker positioning technology. The position of the robot RFID electronic tag installed on the robot is monitored by erecting the installation position mark RFID electronic tag at a fixed position evenly spaced above the interior of the greenhouse area, and the location information is provided to the robot RFID electronic tag through the position mark RFID electronic tag, and the RFID reader is sent to the robot. RFID electronic tags and position marking RFID electronic tags send positioning command information, the robot RFID electronic tag exchanges information with the nearest position marking RFID electronic tag to obtain the current location, and the RFID reader reads the robot RFID electronic tag information and its current position information. After obtaining the current position many times in this way, the specific position of the robot in the greenhouse area is calculated by the central controller. According to the actual size of the greenhouse area, the position marking RFID electronic tag and the specific position distribution of each row of fruit and vegetable plants in the greenhouse area, the greenhouse RFID electronic tag map is modeled for the greenhouse area, and the greenhouse RFID electronic tag map model is imported into the robot storage module Read by the central controller, the real-time RFID path identification module is compared and corrected with the pre-stored greenhouse RFID electronic tag map model, and the position of each column of fruit and vegetable plants is judged. The open space and the greenhouse area are moved to complete the work of spraying fruit and vegetable plants. The RFID path identification module includes a position marking RFID electronic tag, a robot RFID electronic tag, and an RFID reader; the robot RFID electronic tag and the RFID reader are installed on the robot.
所述的图像处理模块完成对果蔬植物识别和实时摄像监控周围情况,图像处理模块包括云台高清摄像头、图像采集卡、图像处理软件;图像处理模块采用图像处理和模式识别技术,通过云台高清摄像头拍摄果蔬植物的图像,通过图像采集卡和图像处理软件处理果蔬植物的图像,提取到果蔬植物的重要外观特征与存储模块中的果蔬植物图像特征信息数据库核对比较后对果蔬植物分类并判断出果蔬植物的种类名称。Described image processing module completes identification of fruit and vegetable plants and real-time camera monitoring surrounding conditions, image processing module includes cloud platform high-definition camera, image acquisition card, image processing software; The camera captures images of fruit and vegetable plants, processes the images of fruit and vegetable plants through image acquisition cards and image processing software, extracts important appearance features of fruit and vegetable plants, checks and compares them with the image feature information database of fruit and vegetable plants in the storage module, and then classifies and judges the fruit and vegetable plants The name of the species of fruit and vegetable plants.
所述的喷药模块完成机器人对果蔬植物的喷药工作,通过2个可伸缩的机械臂、6个药物喷头同时对2列果蔬植物的顶部、中部和底部喷药;6个药物喷头分别安装在2个可伸缩的机械臂的顶部、中部和底部与喷药导管连接,每一个可伸缩的机械臂在顶部、中部和底部各安装一个药物喷头,通过可伸缩的机械臂改变药物喷头的高度;药物喷头开关由电动调节阀控制开关,通过控制电动调节阀的开度控制药物喷药速度;喷药液压由安装在机器人上的农用喷药压力泵提供;每个药物喷头通过喷药导管与农用喷药压力泵连接;喷药模块包括:2个可伸缩的机械臂、6个药物喷头、6个电动调节阀、1台农用喷药压力泵、喷药导管。The spraying module completes the spraying work of the robot on the fruit and vegetable plants, and simultaneously sprays the top, middle and bottom of the two rows of fruit and vegetable plants through 2 retractable mechanical arms and 6 drug spray heads; the 6 drug spray heads are respectively installed The top, middle and bottom of the two telescopic robotic arms are connected with the spray pipe, and each telescopic robotic arm is equipped with a drug nozzle at the top, middle and bottom, and the height of the drug nozzle can be changed through the telescopic robotic arm The switch of the drug nozzle is controlled by the electric regulating valve, and the drug spraying speed is controlled by controlling the opening of the electric regulating valve; the spraying hydraulic pressure is provided by the agricultural spraying pressure pump installed on the robot; The agricultural spraying pressure pump is connected; the spraying module includes: 2 retractable mechanical arms, 6 drug spray heads, 6 electric regulating valves, 1 agricultural spraying pressure pump, and spraying conduit.
所述的配药模块完成对药物的搅拌调配,配药时,通过内置式搅拌器对药物搅匀,使药物充分溶合;在喷药过程中,搅拌器电机按用户设置好的时间间隔带动内置式搅拌器对药物搅拌,使药物不会沉淀,保证喷药过程药物的均匀溶合。配药模块包括:内置式搅拌器、搅拌器电机、药物桶。药物桶可拆卸,在配药的时候可卸下,配完药后安装在机器人身上卡住固定。The dispensing module completes the mixing and blending of the medicine. When dispensing the medicine, the medicine is stirred evenly by the built-in agitator to fully dissolve the medicine; during the spraying process, the agitator motor drives the built-in agitator according to the time interval set by the user The agitator stirs the medicine so that the medicine will not precipitate and ensures the uniform fusion of the medicine during the spraying process. The dispensing module includes: built-in agitator, agitator motor, drug bucket. The drug barrel is detachable, and can be removed when dispensing the medicine. After the medicine is dispensed, it is installed on the robot body and fixed.
所述的药物检测模块实现对药物剩余量、喷药流速的检测,药物检测模块包括液位传感器、涡轮流量计,通过液位传感器、涡轮流量计分别检测药物剩余量、喷药流速,能够避免无药工作和对药物喷头堵塞及时发现。当喷药流速过慢不正常时,说明药物喷头发生堵塞或其他故障。The drug detection module realizes the detection of the remaining amount of the drug and the spraying flow rate. The drug detection module includes a liquid level sensor and a turbine flowmeter, and the remaining amount of the drug and the spraying flow rate are respectively detected by the liquid level sensor and the turbine flowmeter. No drug work and timely detection of drug nozzle blockage. When the spray flow rate is too slow and abnormal, it means that the drug nozzle is clogged or other faults occur.
所述的无线通信模块用于机器人与上位机进行无线通信连接,无线通信模块包括WiFi无线单元和GPRS通信单元,WiFi无线单元用于机器人与上位机进行WiFi无线通信连接方式,GPRS通信单元用于机器人与上位机进行GPRS无线通信连接方式。Described wireless communication module is used for robot and upper computer to carry out wireless communication connection, and wireless communication module comprises WiFi wireless unit and GPRS communication unit, and WiFi wireless unit is used for robot and upper computer to carry out WiFi wireless communication connection mode, and GPRS communication unit is used for The robot connects with the host computer through GPRS wireless communication.
所述的人机交互模块实现人与机器人之间的信息通信。人机交互模块通过无线通信模块将机器人与用户手持移动通信设备进行连接通信。用户可以通过与机器人通信连接后的手持移动通信设备端上位机软件对机器人进行功能参数设置和实时控制,接收机器人采集的图像信息、检测信息和报警信息,实现对机器人的远距离控制和监视。The human-computer interaction module realizes information communication between human and robot. The human-computer interaction module connects and communicates between the robot and the user's hand-held mobile communication device through the wireless communication module. The user can set the functional parameters and real-time control of the robot through the upper computer software of the handheld mobile communication device after communicating with the robot, receive the image information, detection information and alarm information collected by the robot, and realize the remote control and monitoring of the robot.
所述的自身状态检测模块实现机器人检测障碍物和自身状态,自身状态检测模块包括陀螺仪、里程计、加速度传感器、超声波传感器,通过陀螺仪、里程计、加速度传感器、超声波传感器检测障碍物和自身状态。The self-state detection module realizes that the robot detects obstacles and its own state. The self-state detection module includes a gyroscope, an odometer, an acceleration sensor, and an ultrasonic sensor. state.
所述的行驶模块使用履带式移动。行驶模块的机械结构采用2条同步履带、1个主轴、1个直齿轮、1个圆锥齿轮、2个主动轮、2个从动轮。动力结构采用2个直流伺服电机、2个减速器、2个旋转编码器、2个H桥电机PWM驱动电路、电机过流保护装置。减速器与动力轮连接;直流伺服电机与减速器、旋转编码器、H桥电机PWM驱动电路连接,构成行驶动力装置。H桥电机PWM驱动电路控制电机的正转和反转,控制主动轮正、反转,带动同步履带移动完成机器人在大棚内前进、后退和转向。The traveling module uses crawlers to move. The mechanical structure of the driving module adopts 2 synchronous crawlers, 1 main shaft, 1 spur gear, 1 bevel gear, 2 driving wheels and 2 driven wheels. The power structure adopts 2 DC servo motors, 2 reducers, 2 rotary encoders, 2 H-bridge motor PWM drive circuits, and motor overcurrent protection devices. The reducer is connected to the power wheel; the DC servo motor is connected to the reducer, the rotary encoder, and the H-bridge motor PWM drive circuit to form a driving power device. The H-bridge motor PWM drive circuit controls the forward and reverse rotation of the motor, controls the forward and reverse rotation of the driving wheel, and drives the synchronous crawler to move to complete the forward, backward and steering of the robot in the greenhouse.
所述的供电模块完成对机器人整个系统的供电、电压转换、剩余电量检测,保证机器人供电的安全、高效。供电模块包括高能效电池组、电压转换器、电量检测器。The power supply module completes power supply, voltage conversion, and remaining power detection for the entire robot system, ensuring safe and efficient power supply for the robot. The power supply module includes a high-efficiency battery pack, a voltage converter, and a fuel gauge.
所述的报警模块实现了当药物余量不足、药物喷头堵塞、电池组电量不足时,通过语音播放器播放报警语音,通过无线通信向用户手持移动通信设备上位机报警,以便用户及时发现处理,报警模块包括语音播放器和用户手持移动通信设备上位机报警提示。The alarm module realizes that when the remaining amount of the drug is insufficient, the drug nozzle is blocked, and the battery pack is insufficient, the alarm voice is played through the voice player, and the upper computer of the user's handheld mobile communication device is alarmed through wireless communication, so that the user can find out in time. The alarm module includes a voice player and an alarm prompt on the upper computer of the user's handheld mobile communication device.
所述的存储模块实现对大棚地图模型数据、图像采集数据、检测信息、果蔬植物图像特征信息数据库和其他模块数据的记录和存储,存储模块包括存储器。The storage module realizes the recording and storage of greenhouse map model data, image acquisition data, detection information, fruit and vegetable plant image feature information database and other module data, and the storage module includes a memory.
一种基于RFID的大棚智能喷药方法,其特征在于,基于RFID的大棚智能喷药方法包括以下步骤:在大棚区内部上方均匀间隔固定位置架起安装位置标记RFID电子标签,每个位置标记RFID电子标签之间的距离是等间隔的,根据大棚区实际尺寸、位置标记RFID电子标签和每列果蔬植物在大棚区中的具体位置分布,对大棚区进行大棚RFID电子标签地图的建模,将大棚RFID电子标签地图模型导入到机器人存储模块由中央控制器读取,通过位置标记RFID电子标签向机器人RFID电子标签提供位置信息,RFID读写器向机器人RFID电子标签和位置标记RFID电子标签发送定位命令信息,机器人RFID电子标签与最近的位置标记RFID电子标签交流信息后获取当前所处位置,RFID读写器读取机器人RFID电子标签信息和其当前位置信息。经过这种方式的多次获取当前位置后,通过中央控制器计算机器人在大棚区的具体位置;实时的RFID路径识别模块和预先存储的大棚RFID电子标签地图模型进行对比和修正,判断出每一列果蔬植物的位置,准确的识别路径使机器人在果蔬植物种植区外的空地和大棚区中移动。An RFID-based greenhouse intelligent spraying method is characterized in that the RFID-based greenhouse intelligent spraying method includes the following steps: erecting and installing position marking RFID electronic tags at fixed positions evenly spaced above the inside of the greenhouse area, each position marking RFID The distance between the electronic tags is equally spaced. According to the actual size of the greenhouse area, the position marking RFID electronic tags and the specific position distribution of each column of fruit and vegetable plants in the greenhouse area, the greenhouse RFID electronic tag map is modeled for the greenhouse area, and the The greenhouse RFID electronic tag map model is imported into the robot storage module and read by the central controller, and the position information is provided to the robot RFID electronic tag through the position marking RFID electronic tag, and the RFID reader sends the positioning to the robot RFID electronic tag and the position marking RFID electronic tag Command information, the robot RFID electronic tag exchanges information with the nearest position marker RFID electronic tag to obtain the current location, and the RFID reader reads the robot RFID electronic tag information and its current location information. After obtaining the current position many times in this way, the specific position of the robot in the greenhouse area is calculated by the central controller; the real-time RFID path identification module is compared and corrected with the pre-stored greenhouse RFID electronic tag map model, and each row is judged The location of the fruit and vegetable plants, and the accurate identification path enable the robot to move in the open space and greenhouse area outside the fruit and vegetable plant planting area.
本大棚智能喷药机器人自动模式工作原理如下:首先,用户在药物桶里按比例配好药物和水,将药物桶安装在机器人上卡住固定好后。将内置式搅拌器的齿轮与机器人搅拌器电机连接后,使用用户手持移动通信设备上位机软件控制启动机器人,控制搅拌器电机工作,使药物经过搅拌器搅拌均匀后,设置进入自动模式。药物桶内的药物通过喷药导管与农用喷药压力泵连接,供农用喷药压力泵抽取药物。药泵电机开始运转,农用喷药压力泵准备好工作。The working principle of the automatic mode of the greenhouse intelligent spraying robot is as follows: First, the user mixes the medicine and water in the medicine bucket in proportion, and then installs the medicine bucket on the robot, clamps and fixes it. After connecting the gear of the built-in agitator to the robot agitator motor, use the user's hand-held mobile communication device upper computer software to control and start the robot, control the agitator motor to work, and make the medicine go through the agitator to stir evenly, then set to enter the automatic mode. The medicine in the medicine barrel is connected with the agricultural medicine spraying pressure pump through the medicine spraying conduit, and the medicine is extracted by the agricultural medicine spraying pressure pump. The medicine pump motor starts to run, and the agricultural spraying pressure pump is ready to work.
图像处理模块开始工作采集果蔬植物种植区和周围环境图像信息,通过云台高清摄像头拍摄果蔬植物的图像,通过图像采集卡和图像处理软件处理果蔬植物的图像,提取到果蔬植物的重要外观特征与存储模块中的果蔬植物图像特征信息数据库信息核对比较后对果蔬植物分类并判断出果蔬植物的种类名称。The image processing module starts to work to collect the image information of the fruit and vegetable planting area and the surrounding environment, capture the images of the fruit and vegetable plants through the PTZ HD camera, process the images of the fruit and vegetable plants through the image acquisition card and image processing software, and extract the important appearance characteristics and characteristics of the fruit and vegetable plants. The fruit and vegetable plant image feature information database information in the storage module is checked and compared to classify the fruit and vegetable plants and determine the type name of the fruit and vegetable plants.
机器人定位后开始从机器人工作起点和终点移动,中央控制器控制喷药模块伸开机械臂,中央控制器控制果蔬植物种植区一侧的药物喷头电动调节阀打开对果蔬植物的顶部、中部和底部喷药,中央控制器根据图像处理模块判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。After the robot is positioned, it starts to move from the starting point and the end point of the robot's work. The central controller controls the spraying module to extend the mechanical arm, and the central controller controls the electric regulating valve of the drug nozzle on the side of the fruit and vegetable planting area to open to the top, middle and bottom of the fruit and vegetable plants. For spraying, the central controller rationally controls and adjusts the opening of the electric regulating valve to control the amount of spraying according to the type name of the fruit and vegetable plant judged by the image processing module and the growth period of the fruit and vegetable plant in the manually set function parameters.
当机器人完成第一列果蔬植物种植区一侧的喷药时,中央控制器控制关闭电动调节阀停止喷药,机器人继续移动转向进入到两列果蔬植物种植区之间,中央控制器控制机器人两侧的药物喷头电动调节阀打开对2列果蔬植物的顶部、中部和底部喷药,中央控制器根据图像处理模块判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。When the robot completes the spraying on one side of the planting area of the first row of fruit and vegetable plants, the central controller controls to close the electric regulating valve to stop the spraying, and the robot continues to move and turn to enter between the two rows of fruit and vegetable planting areas. The electric regulating valve of the drug sprayer on the side opens to spray the top, middle and bottom of the two rows of fruit and vegetable plants, and the central controller judges the species name of the fruit and vegetable plants according to the image processing module and the growth period of the fruit and vegetable plants in the manual setting function parameters Reasonably control and adjust the opening of the electric regulating valve to control the amount of spraying medicine.
在喷药的过程中,搅拌器按照提前设置好的时间间隔对药物进行搅拌,保证药物始终均匀。During the spraying process, the agitator stirs the medicine according to the time interval set in advance to ensure that the medicine is always uniform.
机器人按照上述方法继续完成对果蔬植物的喷药工作,当机器人到达最后一列果蔬植物种植区时,中央控制器仅控制果蔬植物种植区一侧的药物喷头电动调节阀打开对果蔬植物的顶部、中部和底部喷药,中央控制器根据图像处理模块判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。The robot continues to complete the spraying of fruit and vegetable plants according to the above method. When the robot reaches the last row of fruit and vegetable planting areas, the central controller only controls the electric regulating valve of the drug nozzle on the side of the fruit and vegetable planting area to open the top and middle of the fruit and vegetable plants. And bottom spraying, the central controller reasonably controls and adjusts the opening of the electric regulating valve according to the type name of the fruit and vegetable plants judged by the image processing module and the growth period of the fruit and vegetable plants in the manual setting function parameters, and controls the spraying dosage.
当机器人完成对所有的果蔬植物喷药工作后,中央控制器控制关闭电动调节阀停止喷药,控制喷药模块收缩机械臂,控制机器人移动到机器人工作起点和终点等待用户下一步具体操作。When the robot finishes spraying all the fruit and vegetable plants, the central controller closes the electric regulating valve to stop spraying, controls the spraying module to shrink the mechanical arm, and controls the robot to move to the starting point and end point of the robot's work and wait for the user's next specific operation.
机器人手动模式工作原理如下:用户通过手持移动通信设备端上位机软件实现对机器人控制。用户通过手持移动通信设备端上位机软件主操作界面进入到手动模式控制软件子界面对机器人实施控制机器人行驶、机械臂伸缩、电动调节阀开关、药泵开关、搅拌器开关。通过视频窗口观察机器人周围的情况,左右上下滑动窗口可以实现云台高清摄像头的左右上下移动改变监控视角。The working principle of the manual mode of the robot is as follows: the user controls the robot through the host computer software on the handheld mobile communication device. The user enters the manual mode control software sub-interface through the main operation interface of the upper computer software on the handheld mobile communication device to control the robot's driving, mechanical arm telescopic, electric regulating valve switch, drug pump switch, and agitator switch. Observe the situation around the robot through the video window, and slide the window left and right up and down to realize the left and right movement of the high-definition camera of the pan/tilt to change the monitoring angle of view.
本发明的有益效果是:本发明一种基于RFID的大棚智能喷药机器人及方法实现机器人智能识别大棚区建园路径自主移动,通过图像处理识别果蔬植物,根据不同果蔬植物及所处的不同生长时期合理控制喷药量,同时完成对2列果蔬植物顶部、中部和底部喷药,智能完成对大棚果蔬植物的整个喷药过程。本大棚智能喷药机器人减少了药物的浪费和药物残留,大大提高了工作效率和药物利用率,减少了人的体力劳动,使人不受药物的危害。The beneficial effects of the present invention are: an RFID-based greenhouse intelligent spraying robot and method of the present invention realizes the intelligent identification of the robot for the independent movement of the construction path of the greenhouse area, and recognizes the fruit and vegetable plants through image processing, and according to the different growth of different fruit and vegetable plants and their locations During the period, the spraying amount is reasonably controlled, and the spraying of the top, middle and bottom of the two rows of fruit and vegetable plants is completed at the same time, and the entire process of spraying the fruit and vegetable plants in the greenhouse is intelligently completed. The greenhouse intelligent spraying robot reduces the waste of medicines and medicine residues, greatly improves work efficiency and medicine utilization, reduces human physical labor, and protects people from the harm of medicines.
附图说明Description of drawings
图1为本发明整体结构示意图。Figure 1 is a schematic diagram of the overall structure of the present invention.
图2为本发明RFID路径识别方法示意图。Fig. 2 is a schematic diagram of the RFID path identification method of the present invention.
图3为本发明机器人工作方法示意图。Fig. 3 is a schematic diagram of the working method of the robot of the present invention.
图4为本发明上位机软件主操作界面示意图。Fig. 4 is a schematic diagram of the main operation interface of the host computer software of the present invention.
图5为本发明机器人外部结构示意图。Fig. 5 is a schematic diagram of the external structure of the robot of the present invention.
图中1、中央控制器,2、RFID路径识别模块,3、图像处理模块,4、喷药模块,5、配药模块,6、药物检测模块,7、无线通信模块,8、人机交互模块,9、自身状态检测模块,10、行驶模块,11、供电模块,12、报警模块,13、存储模块,20、大棚区,21、位置标记RFID电子标签,22、机器人RFID电子标签,23、RFID读写器,24、机器人,30、果蔬植物种植区,31、机器人工作起点和终点,33、药物桶,34、无线天线,35、机器人机箱,36、农用喷药压力泵电机齿轮,37、可伸缩机械臂,38、药物喷头,39、云台高清摄像头,40、履带,41、行驶电机齿轮。In the figure 1. Central controller, 2. RFID path identification module, 3. Image processing module, 4. Spraying module, 5. Dispensing module, 6. Drug detection module, 7. Wireless communication module, 8. Human-computer interaction module , 9. Self-state detection module, 10. Driving module, 11. Power supply module, 12. Alarm module, 13. Storage module, 20. Greenhouse area, 21. Position marking RFID electronic tag, 22. Robot RFID electronic tag, 23. RFID reader, 24. Robot, 30. Fruit and vegetable planting area, 31. The starting point and end point of robot work, 33. Drug barrel, 34. Wireless antenna, 35. Robot chassis, 36. Agricultural spraying pressure pump motor gear, 37 , retractable mechanical arm, 38, drug nozzle, 39, pan-tilt high-definition camera, 40, crawler tracks, 41, driving motor gear.
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步的说明,以具体阐述本发明的技术方案。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, so as to specifically illustrate the technical solution of the present invention.
如图1所示,本发明一种基于RFID的大棚智能喷药机器人中央控制器1选用DSP处理器与RFID路径识别模块2、图像处理模块3、喷药模块4、配药模块5、药物检测模块6、无线通信模块7、人机交互模块8、自身状态检测模块9、行驶模块10、供电模块11、报警模块12、存储模块13连接,所述的供电模块11分别与中央控制器1、RFID路径识别模块2、图像处理模块3、喷药模块4、配药模块5、药物检测模块6、无线通信模块7、人机交互模块8、自身状态检测模块9、行驶模块10、报警模块12、存储模块13连接,保证大棚智能喷药机器人采集信息和处理信息的效率,准确控制各个模块完成相关功能。As shown in Figure 1, a kind of RFID-based greenhouse intelligent medicine spraying robot central controller 1 of the present invention selects DSP processor and RFID path recognition module 2, image processing module 3, medicine spraying module 4, dispensing module 5, medicine detection module 6. Wireless communication module 7, human-computer interaction module 8, self-state detection module 9, driving module 10, power supply module 11, alarm module 12, storage module 13 are connected, and described power supply module 11 is connected with central controller 1, RFID respectively Path recognition module 2, image processing module 3, medicine spraying module 4, medicine dispensing module 5, medicine detection module 6, wireless communication module 7, human-computer interaction module 8, self-state detection module 9, driving module 10, alarm module 12, storage The modules 13 are connected to ensure the efficiency of collecting and processing information by the greenhouse intelligent spraying robot, and accurately control each module to complete related functions.
如图2所示,一种基于RFID的大棚智能喷药机器人RFID路径识别方法实现如下:在大棚区20内部上方均匀间隔固定位置架起安装位置标记RFID电子标签21,每个位置标记RFID电子标签21之间的距离是等间隔的,根据大棚区20实际尺寸、位置标记RFID电子标签21和每列果蔬植物在大棚区20中的具体位置分布,对大棚区20进行大棚RFID电子标签地图的建模,将大棚RFID电子标签地图模型导入到机器人存储模块13由中央控制器1读取,通过位置标记RFID电子标签21向机器人RFID电子标签22提供位置信息,RFID读写器23向机器人RFID电子标签22和位置标记RFID电子标签21发送定位命令信息,机器人RFID电子标签22与最近的位置标记RFID电子标签21交流信息后获取当前所处位置,RFID读写器23读取机器人RFID电子标签22信息和其当前位置信息。经过这种方式的多次获取当前位置后,通过中央控制器1计算机器人在大棚区20的具体位置;实时的RFID路径识别模块2和预先存储的大棚RFID电子标签地图模型进行对比和修正,判断出每一列果蔬植物的位置,准确的识别路径使机器人在果蔬植物种植区30外的空地和大棚区20中移动。As shown in FIG. 2 , an RFID-based intelligent spraying robot RFID path identification method for greenhouses is implemented as follows: set up and install position marking RFID electronic tags 21 at fixed positions evenly spaced above the interior of the greenhouse area 20, and each position marks the RFID electronic tag The distance between 21 is equidistant, according to the actual size of the greenhouse area 20, the location marker RFID electronic tag 21 and the specific position distribution of each row of fruit and vegetable plants in the greenhouse area 20, the construction of the greenhouse RFID electronic tag map is carried out for the greenhouse area 20 import the map model of the greenhouse RFID electronic tag into the robot storage module 13 to be read by the central controller 1, and provide position information to the robot RFID electronic tag 22 through the position marker RFID electronic tag 21, and the RFID reader 23 to the robot RFID electronic tag 22 and the position mark RFID electronic tag 21 send positioning command information, the robot RFID electronic tag 22 exchanges information with the nearest position mark RFID electronic tag 21 to obtain the current location, and the RFID reader 23 reads the robot RFID electronic tag 22 information and its current location information. After obtaining the current position multiple times in this way, the specific position of the robot in the greenhouse area 20 is calculated by the central controller 1; the real-time RFID path identification module 2 is compared and corrected with the pre-stored greenhouse RFID electronic tag map model, and the Find out the position of each row of fruit and vegetable plants, and accurately identify the path to make the robot move in the open space outside the fruit and vegetable plant planting area 30 and the greenhouse area 20.
用户使用手持移动通信设备通过无线通信模块中WiFi无线单元或GPRS通信单元选择WiFi无线通信连接方式或GPRS无线通信连接方式与机器人连接通信,用户通过手持移动通信设备端上位机软件对机器人进行功能参数设置和实时控制,接收机器人采集的图像信息、检测信息、电量信息和报警信息,实现对机器人的远距离控制和监视。The user uses the handheld mobile communication device to select the WiFi wireless communication connection mode or the GPRS wireless communication connection mode to connect and communicate with the robot through the WiFi wireless unit or the GPRS communication unit in the wireless communication module. Set up and real-time control, receive image information, detection information, power information and alarm information collected by the robot, and realize remote control and monitoring of the robot.
本大棚智能喷药机器人自动模式工作原理如下:首先,用户在药物桶33里按比例配好药物和水,将药物桶33安装在机器人上卡住固定好后。将内置式搅拌器的齿轮与机器人搅拌器电机连接后,使用用户手持移动通信设备上位机软件控制启动机器人,控制搅拌器电机工作,使药物经过搅拌器搅拌均匀后,设置进入自动模式。药物桶33内的药物通过喷药导管与农用喷药压力泵连接,供农用喷药压力泵抽取药物。药泵电机开始运转,农用喷药压力泵准备好工作。The working principle of the automatic mode of the greenhouse intelligent spraying robot is as follows: first, the user mixes the medicine and water in proportion in the medicine bucket 33, and installs the medicine bucket 33 on the robot to block and fix it. After connecting the gear of the built-in agitator to the robot agitator motor, use the user's hand-held mobile communication device upper computer software to control and start the robot, control the agitator motor to work, and make the medicine go through the agitator to stir evenly, then set to enter the automatic mode. The medicine in the medicine barrel 33 is connected with the agricultural medicine spraying pressure pump through the medicine spraying conduit, for the agricultural medicine spraying pressure pump to extract medicine. The medicine pump motor starts to run, and the agricultural spraying pressure pump is ready to work.
图像处理模块3开始工作采集果蔬植物种植区和周围环境图像信息,通过云台高清摄像头39拍摄果蔬植物的图像,通过图像采集卡和图像处理软件处理果蔬植物的图像,提取到果蔬植物的重要外观特征与存储模块中的果蔬植物图像特征信息数据库信息核对比较后对果蔬植物分类并判断出果蔬植物的种类名称。The image processing module 3 starts to work and collects the image information of the fruit and vegetable planting area and the surrounding environment, shoots the image of the fruit and vegetable plant through the high-definition camera 39 of the cloud platform, processes the image of the fruit and vegetable plant through the image acquisition card and image processing software, and extracts the important appearance of the fruit and vegetable plant After checking and comparing the features with the image feature information database of the fruit and vegetable plants in the storage module, the fruit and vegetable plants are classified and the type names of the fruit and vegetable plants are judged.
如图3所示,机器人定位后开始从机器人工作起点和终点31按照图示实线箭头方向移动,中央控制器1控制喷药模块4伸开机械臂,中央控制器1控制果蔬植物种植区30一侧的药物喷头电动调节阀打开对果蔬植物的顶部、中部和底部喷药,中央控制器1根据图像处理模块3判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。As shown in Figure 3, after the robot is positioned, it starts to move from the starting point and end point 31 of the robot in the direction of the solid line arrow in the figure. The central controller 1 controls the spraying module 4 to extend the mechanical arm, and the central controller 1 controls the fruit and vegetable planting area 30. The electric regulating valve of the medicine nozzle on one side is opened to spray medicine on the top, middle and bottom of the fruit and vegetable plants. Reasonably control and adjust the opening of the electric control valve during the period to control the amount of spraying.
当机器人完成第一列果蔬植物种植区30一侧的喷药时,中央控制器1控制关闭电动调节阀停止喷药,机器人按实线箭头方向继续移动转向进入到两列果蔬植物种植区30之间,中央控制器1控制机器人两侧的药物喷头电动调节阀打开对2列果蔬植物的顶部、中部和底部喷药,中央控制器1根据图像处理模块3判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。When the robot completes the spraying of the first row of fruit and vegetable planting areas 30, the central controller 1 controls to close the electric control valve to stop the spraying, and the robot continues to move in the direction of the solid arrow and turns to enter between the two rows of fruit and vegetable planting areas 30. During this period, the central controller 1 controls the electric regulating valves of the drug spray nozzles on both sides of the robot to open to spray the top, middle and bottom of the two rows of fruit and vegetable plants. The growth period of the fruit and vegetable plants in the functional parameters is reasonably controlled and adjusted to adjust the opening of the electric regulating valve to control the amount of spraying.
在喷药的过程中,搅拌器按照提前设置好的时间间隔对药物进行搅拌,保证药物始终均匀。During the spraying process, the agitator stirs the medicine according to the time interval set in advance to ensure that the medicine is always uniform.
机器人按照上述方法继续完成对果蔬植物的喷药工作,当机器人到达最后一列果蔬植物种植区30时,中央控制器1仅控制果蔬植物种植区30一侧的药物喷头电动调节阀打开对果蔬植物的顶部、中部和底部喷药,中央控制器1根据图像处理模块3判断的果蔬植物的种类名称和人工设置功能参数中的果蔬植物所处的生长时期合理控制调节电动调节阀的开度,控制喷药用量。The robot continues to complete the spraying work on the fruit and vegetable plants according to the above method. When the robot reaches the last row of fruit and vegetable plant planting areas 30, the central controller 1 only controls the electric regulating valve of the drug nozzle on one side of the fruit and vegetable plant planting areas 30 to open the spraying of the fruit and vegetable plants. Top, middle and bottom spraying, central controller 1 rationally controls and adjusts the opening degree of the electric control valve according to the type name of the fruit and vegetable plant judged by the image processing module 3 and the growth period of the fruit and vegetable plant in the artificially set function parameters, and controls the opening of the spraying valve. Medicinal dosage.
当机器人完成对所有的果蔬植物喷药工作后,中央控制器1控制关闭电动调节阀停止喷药,控制喷药模块4收缩机械臂,控制机器人按照图3虚线箭头方向移动到机器人工作起点和终点31等待用户下一步具体操作。After the robot finishes spraying all the fruit and vegetable plants, the central controller 1 controls to close the electric regulating valve to stop the spraying, controls the spraying module 4 to shrink the mechanical arm, and controls the robot to move to the starting point and the end point of the robot's work in the direction of the dotted arrow in Figure 3 31 Waiting for the next specific operation by the user.
机器人手动模式工作原理如下:用户通过手持移动通信设备端上位机软件实现对机器人控制。如图4所示,用户通过手持移动通信设备端上位机软件主操作界面进入到手动模式控制软件子界面对机器人实施控制机器人行驶、机械臂伸缩、电动调节阀开关、药泵开关、搅拌器开关。通过视频窗口观察机器人周围的情况,左右上下滑动窗口可以实现云台高清摄像头39的左右上下移动改变监控视角。The working principle of the manual mode of the robot is as follows: the user controls the robot through the host computer software on the handheld mobile communication device. As shown in Figure 4, the user enters the manual mode control software sub-interface through the main operation interface of the host computer software on the handheld mobile communication device to control the robot's driving, mechanical arm telescopic, electric regulating valve switch, drug pump switch, and agitator switch . Observe the situation around the robot through the video window, and sliding the window up and down left and right can realize the movement of the high-definition camera 39 of the cloud platform up and down to change the monitoring angle of view.
机器人通过药物检测模块6中液位传感器、涡轮流量计分别检测药物剩余量、喷药流速数据,将数据传送给中央控制器1,通过无线通信模块传送数据到手持移动通信设备端上位机中显示,以及时发现并避免无药工作和药物喷头堵塞情况。The robot detects the remaining amount of medicine and spraying flow rate data through the liquid level sensor and turbine flowmeter in the medicine detection module 6, and transmits the data to the central controller 1, and transmits the data to the host computer of the handheld mobile communication device through the wireless communication module for display. , to detect and avoid non-drug work and drug nozzle blockage in time.
机器人通过自身状态检测模块9中陀螺仪、里程计、加速度传感器、超声波传感器实时检测障碍物和自身状态。The robot detects obstacles and its own state in real time through the gyroscope, odometer, acceleration sensor, and ultrasonic sensor in the self state detection module 9 .
机器人通过行驶模块10采用履带式移动。DSP处理器控制H桥电机PWM驱动电路控制电机的正转和反转,控制主动轮正、反转,带动同步履带移动完成机器人在大棚区20内前进、后退和转向。The robot adopts crawler type movement through the driving module 10 . The DSP processor controls the H-bridge motor PWM drive circuit to control the forward rotation and reverse rotation of the motor, and controls the forward and reverse rotation of the drive wheel to drive the synchronous crawler belt to move forward, backward and turn the robot in the greenhouse area 20 .
机器人通过供电模块11选用高能效锂离子电池组储存电能,电压转换器为机器人的各个模块提供合适的电压和电流,电量检测器检测电池组的剩余电量。The robot uses a high-efficiency lithium-ion battery pack to store electric energy through the power supply module 11, the voltage converter provides appropriate voltage and current for each module of the robot, and the power detector detects the remaining power of the battery pack.
机器人通过报警模块12实现了当药物余量不足、药物喷头堵塞、电池组电量不足时,通过无线通信模块7向用户手持移动通信设备报警和语音播放器播放语音报警,以便用户及时发现处理。The robot realizes through the alarm module 12 that when the remaining amount of medicine is insufficient, the medicine nozzle is blocked, and the battery pack is low in power, the wireless communication module 7 can send a voice alarm to the user's hand-held mobile communication device and a voice player, so that the user can find and process in time.
机器人存储模块13使用存储器,实现对大棚地图模型数据、图像采集数据、检测信息、果蔬植物图像特征信息数据库和其他模块数据的记录和存储。The robot storage module 13 uses a memory to record and store the greenhouse map model data, image acquisition data, detection information, fruit and vegetable plant image feature information database and other module data.
用户可以根据自己的需求对机器人的工作模式进行设置,可以设置机器人为自动模式或手动模式工作模式。自动模式下,机器人自主智能实现整个喷药的过程。手动模式依靠人工通过用户手持移动通信设备的上位机软件来控制机器人的工作。Users can set the working mode of the robot according to their own needs, and can set the robot to work in automatic mode or manual mode. In the automatic mode, the robot autonomously and intelligently realizes the entire spraying process. The manual mode relies on manpower to control the work of the robot through the upper computer software of the user's hand-held mobile communication device.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510247564.XA CN104834313B (en) | 2015-05-15 | 2015-05-15 | A kind of greenhouse intelligence spray robot and method based on RFID |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510247564.XA CN104834313B (en) | 2015-05-15 | 2015-05-15 | A kind of greenhouse intelligence spray robot and method based on RFID |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104834313A CN104834313A (en) | 2015-08-12 |
| CN104834313B true CN104834313B (en) | 2017-12-15 |
Family
ID=53812257
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510247564.XA Expired - Fee Related CN104834313B (en) | 2015-05-15 | 2015-05-15 | A kind of greenhouse intelligence spray robot and method based on RFID |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104834313B (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105389669B (en) * | 2015-12-08 | 2024-01-19 | 浙江汉脑数码科技有限公司 | NFC industrial information source data central processing system |
| CN106386759B (en) * | 2016-08-31 | 2019-12-06 | 叶志徐 | intelligent sprayer and control method thereof |
| CN109581905A (en) * | 2017-09-28 | 2019-04-05 | 莫程 | A kind of rice field spray wireless control system |
| CN107678318A (en) * | 2017-11-10 | 2018-02-09 | 昆山阳翎机器人科技有限公司 | A kind of intelligence spray robot |
| JP6854249B2 (en) * | 2018-01-26 | 2021-04-07 | ヤンマーパワーテクノロジー株式会社 | Autonomous driving system |
| CN108279678A (en) * | 2018-02-24 | 2018-07-13 | 浙江大学 | A kind of field automatic travelling device and its ambulation control method for detecting plant growth condition |
| CN108968116A (en) * | 2018-05-17 | 2018-12-11 | 长沙学院 | A kind of wisdom agricultural data acquisition method and system based on Internet of Things |
| CN108693807B (en) * | 2018-05-17 | 2021-06-22 | 中南林业科技大学 | Data acquisition and monitoring system based on Internet of things |
| CN108549441A (en) * | 2018-05-17 | 2018-09-18 | 长沙修恒信息科技有限公司 | A kind of integrated agriculture monitoring method based on Internet of Things Yu intelligent operation vehicle |
| CN110632930A (en) * | 2019-09-30 | 2019-12-31 | 上海寰钛教育科技有限公司 | Intelligent driving control method and device suitable for garden intellectualization, and storage medium |
| CN111983988A (en) * | 2020-08-28 | 2020-11-24 | 河北茂动兴腾农业技术服务有限公司 | An intelligent dispensing system |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100437629C (en) * | 2005-10-08 | 2008-11-26 | 中国农业机械化科学研究院 | Method for automatic identifying weeds in field and medicine spraying device |
| US8031086B2 (en) * | 2008-12-10 | 2011-10-04 | Deere & Company | Method and system for determining a position of a vehicle |
| CN101551454B (en) * | 2009-05-14 | 2011-06-22 | 上海交通大学 | RFID indoor positioning system |
| CN101957447A (en) * | 2009-07-16 | 2011-01-26 | 北京石油化工学院 | System and method for positioning indoor moveable robot based on active RFID |
| CN102306264A (en) * | 2011-06-02 | 2012-01-04 | 西安理工大学 | Radio frequency identification (RFID)-technology-based indoor positioning system |
| CN102542430A (en) * | 2011-12-20 | 2012-07-04 | 苏州亚安智能科技有限公司 | RFID (Radio Frequency Identification) positioning management system |
| CN203204637U (en) * | 2012-12-28 | 2013-09-18 | 苏州众天力信息科技有限公司 | Indoor three-dimensional navigation system |
| CN103439973B (en) * | 2013-08-12 | 2016-06-29 | 桂林电子科技大学 | Self-built map household cleaning robot and cleaning method |
| CN104067145B (en) * | 2014-05-26 | 2016-10-05 | 中国科学院自动化研究所 | pruning robot system |
| CN104154925A (en) * | 2014-08-25 | 2014-11-19 | 正量电子科技(苏州)有限公司 | Guidance navigation method based on radio frequency identification |
| CN104476545B (en) * | 2014-11-13 | 2016-04-20 | 济南大学 | A kind of orchard is from main jet medicine intelligent robot |
| CN104526699B (en) * | 2014-12-05 | 2016-03-02 | 网易(杭州)网络有限公司 | Indoor cleaning machine people |
| CN204719533U (en) * | 2015-05-15 | 2015-10-21 | 济南大学 | A kind of intelligence of the booth based on RFID spraying machine device people |
-
2015
- 2015-05-15 CN CN201510247564.XA patent/CN104834313B/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN104834313A (en) | 2015-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104834313B (en) | A kind of greenhouse intelligence spray robot and method based on RFID | |
| CN104834312B (en) | A kind of farmland intelligence spray robot based on RFID | |
| CN104476545B (en) | A kind of orchard is from main jet medicine intelligent robot | |
| CN104850123B (en) | A kind of greenhouse intelligence spray robot and method based on electromagnetic detection | |
| CN104820947B (en) | A kind of farmland intelligence spray robot based on suspended chain conveyer | |
| CN103999841B (en) | A kind of automatic target detection spraying system | |
| CN104834311B (en) | Greenhouse intelligent medicine spraying robot and method based on suspension chain conveyer | |
| CN104820425B (en) | A kind of farmland intelligence spray robot based on electromagnetic detection | |
| CN109964905B (en) | Self-propelled targeting pesticide application robot based on fruit tree identification and positioning and control method thereof | |
| CN113057154A (en) | A greenhouse liquid spraying robot | |
| CN107239074A (en) | Automatic working system and its map method for building up of working region | |
| CN204104581U (en) | A kind of automatic target detection spraying system based on binocular vision technology | |
| CN214508968U (en) | A fully automatic orchard pesticide spraying vehicle | |
| CN108112457A (en) | A kind of plant detection method based on Multifunctional mobile detection vehicle | |
| CN108052084A (en) | A kind of agricultural monitoring system based on Internet of Things | |
| CN203860304U (en) | Automatic targeting and spraying system | |
| CN204209694U (en) | A kind of orchard is from main jet medicine intelligent robot | |
| CN109090083A (en) | A kind of solar energy pesticide Irrigation Machine | |
| CN204719532U (en) | A kind of intelligence spraying machine device people of the farmland based on electromagnetic detection | |
| CN110199719A (en) | A kind of intelligent flower watering robot based on ROS | |
| CN204719533U (en) | A kind of intelligence of the booth based on RFID spraying machine device people | |
| CN203492641U (en) | Accurate and intelligent target-alignment pesticide spraying machine | |
| CN115843667A (en) | Intelligent garden monitoring irrigation system for environment restoration | |
| CN107296031A (en) | A kind of double-arm fruit tree plant protection robot device | |
| CN111338357A (en) | Based on wheeled multi-functional robot |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| EXSB | Decision made by sipo to initiate substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171215 Termination date: 20200515 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |