CN104898481A - Dynamic reconstruction method for parallel inverters - Google Patents
Dynamic reconstruction method for parallel inverters Download PDFInfo
- Publication number
- CN104898481A CN104898481A CN201510222126.8A CN201510222126A CN104898481A CN 104898481 A CN104898481 A CN 104898481A CN 201510222126 A CN201510222126 A CN 201510222126A CN 104898481 A CN104898481 A CN 104898481A
- Authority
- CN
- China
- Prior art keywords
- inverter circuit
- controller
- inverter
- main controller
- commissioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000010248 power generation Methods 0.000 claims description 21
- 238000013523 data management Methods 0.000 claims description 13
- 230000003993 interaction Effects 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种并联逆变器动态重构方法,涉及并联逆变器故障后的重构。所述方法包括以下步骤:1)在主控制器和从控制器上部署重构相关的功能服务;2)主控制器发现所有从控制器设备,订阅逆变电路的状态变量,记录逆变器的运行状态;3)逆变电路故障时,其相应从控制器报告故障给主控制器,主控制器控制故障设备的停运和备用设备的投运。本发明提供的并联逆变器动态重构方法,基于硬件冗余和软件重构,能实现并联逆变器恢复故障前的功能结构和运行状态。该方法有利于降低设备检修频率,提高设备的可靠性和安全性。
The invention discloses a dynamic reconfiguration method of a parallel inverter, which relates to the reconfiguration of the parallel inverter after failure. The method includes the following steps: 1) Deploying reconfiguration-related functional services on the master controller and the slave controller; 2) The master controller discovers all slave controller devices, subscribes to state variables of the inverter circuit, and records inverter 3) When the inverter circuit fails, the corresponding slave controller reports the fault to the main controller, and the main controller controls the shutdown of the faulty equipment and the commissioning of the backup equipment. The dynamic reconfiguration method of the parallel inverter provided by the present invention is based on hardware redundancy and software reconfiguration, and can realize the restoration of the functional structure and operating state of the parallel inverter before failure. The method is beneficial to reduce the maintenance frequency of the equipment and improve the reliability and safety of the equipment.
Description
技术领域technical field
本发明涉及一种并联逆变器动态重构方法。The invention relates to a dynamic reconfiguration method of a parallel inverter.
背景技术Background technique
依托风能、太阳能等可再生能源的发电方式,已经越来越受到社会各层的关注。为了适应供电需求,相对于大功率逆变器供电模式,采用模块化、标准化的功率模块组合成任意所需容量的冗余系统,已成为提高供电可靠性的有效途径。使用逆变器并联技术的关键在于如何确保各功率模块输出电压的频率、相位和同步信号一致。为了解决这一问题,现有的大功率并联逆变器产品利用光纤网络和FPGA,基于主从控制来构造各功率模块脉宽调制波的方式,确保各功率模块驱动信号的一致性,从而保证输出电压的同步。Power generation methods relying on renewable energy such as wind energy and solar energy have attracted more and more attention from all levels of society. In order to meet the power supply demand, compared with the high-power inverter power supply mode, the use of modularized and standardized power modules to form a redundant system with any required capacity has become an effective way to improve the reliability of power supply. The key to using inverter parallel technology is how to ensure that the frequency, phase and synchronization signal of the output voltage of each power module are consistent. In order to solve this problem, the existing high-power parallel inverter products use optical fiber network and FPGA to construct pulse width modulation waves of each power module based on master-slave control to ensure the consistency of the drive signals of each power module, thereby ensuring synchronization of the output voltage.
虽然现在的逆变器设备一般都具备故障自诊断功能,但如果有功率模块发生严重故障,依然会导致逆变器不能继续正常运行。随着信息技术的发展,生产厂商也在传统逆变器设备上增加了以太网通信功能,以促进逆变器的智能化发展,但一般只具备设备运行状态在线监测的功能,无法实现故障逆变器的健康运行。Although current inverters generally have a fault self-diagnosis function, if a serious fault occurs in a power module, it will still cause the inverter to fail to continue normal operation. With the development of information technology, manufacturers have also added Ethernet communication functions to traditional inverter equipment to promote the intelligent development of inverters, but generally only have the function of online monitoring of equipment operating status, and cannot realize fault reversal healthy operation of the transformer.
健康运行的逆变器设备,是保证新能源发电的稳定性和可靠性的关键之一。而风能、太阳能发电的生产环境多为海上或者沙漠,气候复杂多变且极其恶劣。这容易导致逆变器故障而使系统无法正常运行,从而导致电力事故。特别是海上风力发电,如果逆变器故障,不仅会导致供电故障,还会造成巨额维修费用。无论是从安全角度,还是从经济角度来看,都有必要实现逆变器故障后继续正常工作,降低系统的维修频率。Healthy operation of inverter equipment is one of the keys to ensure the stability and reliability of new energy power generation. The production environment of wind energy and solar power generation is mostly on the sea or in the desert, and the climate is complex and changeable and extremely harsh. This can easily lead to inverter failure and make the system unable to operate normally, resulting in electrical accidents. Especially for offshore wind power generation, if the inverter fails, it will not only cause power failure, but also cause huge maintenance costs. Whether it is from a safety point of view or an economic point of view, it is necessary to realize that the inverter can continue to work normally after a fault and reduce the maintenance frequency of the system.
发明内容Contents of the invention
为解决以上技术问题,本发明提供了一种并联逆变器动态重构方法,它具体包括以下步骤:In order to solve the above technical problems, the present invention provides a method for dynamic reconfiguration of parallel inverters, which specifically includes the following steps:
1)在主控制器和从控制器上部署重构相关的功能服务;1) Deploy refactoring-related functional services on the master controller and slave controllers;
2)主控制器发现所有从控制器设备,订阅逆变电路的状态变量,记录逆变器的运行状态;2) The master controller discovers all slave controller devices, subscribes to the state variables of the inverter circuit, and records the running status of the inverter;
3)逆变电路故障时,其相应从控制器报告故障给主控制器,主控制器控制故障设备的停运和备用设备的投运。3) When the inverter circuit fails, the corresponding slave controller reports the fault to the main controller, and the main controller controls the shutdown of the faulty equipment and the commissioning of the backup equipment.
上述并联逆变器动态重构方法,其特征在于:所述步骤1)由以下步骤组成:The dynamic reconfiguration method of the above-mentioned parallel inverter is characterized in that: the step 1) consists of the following steps:
1-1)在主控制器上部署数据管理库模块:用于记录逆变电路的地址、电压、电流和故障状态等状态变量;部署投退控制模块:控制逆变电路的投运和停运;部署DER交互模块:与分布式电源进行信息交互;1-1) Deploy the data management library module on the main controller: used to record state variables such as the address, voltage, current and fault status of the inverter circuit; deploy the commissioning and withdrawal control module: control the operation and shutdown of the inverter circuit ;Deploy DER interaction module: information interaction with distributed power supply;
1-2)在从控制器上部署状态变量发布服务:定期获取并发布逆变电路的电压、电流等状态变量值;部署故障通知服务:逆变电路发生故障时,则报告故障给主控制器;部署投退服务:完成主控制器发出的逆变电路停运或投运控制要求。1-2) Deploy the state variable publishing service on the slave controller: regularly obtain and publish the state variable values of the inverter circuit voltage, current, etc.; deploy fault notification service: when the inverter circuit fails, report the fault to the master controller ; Deployment commissioning and withdrawing service: complete the inverter circuit outage or commissioning control requirements issued by the main controller.
上述并联逆变器动态重构方法,其特征在于:所述步骤2)由以下步骤组成:The dynamic reconfiguration method of the above-mentioned parallel inverter is characterized in that: the step 2) consists of the following steps:
2-1)主控制器加入239.255.255.250组播地址;2-1) The main controller joins the 239.255.255.250 multicast address;
2-2)从控制器加入网络后,经组播地址239.255.255.250:1900发送简单服务发现协议报文给主控制器;2-2) After the slave controller joins the network, it sends a simple service discovery protocol message to the master controller via the multicast address 239.255.255.250:1900;
2-3)主控制器接收报文后,获取从控制器的设备描述文件,并将设备地址添加到主控制器的数据管理库中;2-3) After the master controller receives the message, it obtains the device description file of the slave controller, and adds the device address to the data management database of the master controller;
2-4)主控制器解析设备描述文件,获取并解析设备服务描述文件;2-4) The main controller parses the device description file, obtains and parses the device service description file;
2-5)主控制器订阅逆变电路的状态变量;2-5) The main controller subscribes to the state variable of the inverter circuit;
2-6)从控制器的状态变量发布服务定期获取逆变电路的状态变量值,并发送给主控制器;2-6) Obtain the state variable value of the inverter circuit regularly from the state variable publishing service of the controller, and send it to the main controller;
2-7)主控制器获取逆变电路的状态变量后,添加到数据管理库中。2-7) After the main controller obtains the state variable of the inverter circuit, it is added to the data management database.
上述并联逆变器动态重构方法,其特征在于:所述步骤3)由以下步骤组成:The dynamic reconfiguration method of the above-mentioned parallel inverter is characterized in that: the step 3) consists of the following steps:
3-1)逆变电路发生故障时,其相应从控制器通过故障通知服务报告给主控制器;3-1) When the inverter circuit fails, its corresponding slave controller reports to the master controller through the fault notification service;
3-2)主控制器记录逆变电路的故障状态到数据管理库中,并经DER交互模块向分布式电源请求停止发电;3-2) The main controller records the fault state of the inverter circuit into the data management database, and requests the distributed power supply to stop power generation through the DER interaction module;
3-3)分布式电源停止发电后,反馈成功停止发电信号给主控制器的DER交互模块,然后主控制器控制逆变器停运;3-3) After the distributed power generation stops power generation, the feedback signal of successfully stopping power generation is sent to the DER interactive module of the main controller, and then the main controller controls the inverter to stop;
3-4)主控制器经投退控制模块,向故障逆变电路和备用逆变电路的相应从控制器,分别发出停运控制请求和投运控制请求;3-4) The master controller sends out-of-service control requests and commissioning-control requests to the corresponding slave controllers of the faulty inverter circuit and the standby inverter circuit through the switch-on and switch-off control module;
3-5)故障逆变电路的相应从控制器,切断逆变电路功率管的驱动信号和直流侧电压,使其转入停运状态;3-5) The corresponding slave controller of the faulty inverter circuit cuts off the driving signal of the power tube of the inverter circuit and the DC side voltage, making it turn into a shutdown state;
3-6)备用逆变电路的相应从控制器,接通逆变电路功率管的驱动信号和直流侧电压,使其转入投运状态;3-6) The corresponding slave controller of the standby inverter circuit connects the driving signal of the power tube of the inverter circuit and the voltage of the DC side to make it enter the commissioning state;
3-7)主控制器控制逆变器运行,并向分布式电源请求继续发电;3-7) The main controller controls the operation of the inverter and requests the distributed power supply to continue generating power;
3-8)分布式电源继续发电,动态重构后的并联逆变器继续正常运行。3-8) The distributed power generation continues to generate electricity, and the parallel inverters after dynamic reconfiguration continue to operate normally.
本发明利用现有逆变器设备的以太网通信资源,基于已广泛应用的通用即插即用(UPnP)协议,实现并联逆变器的重构。主控制器记录各逆变器电路的运行状态数据,以供检修人员作进一步的分析;当设备故障时,主控制器自动执行并联逆变器的重构任务。在重构时,主控制器控制故障逆变电路的退出、备用逆变电路的投入运行。从而实现并联逆变器恢复故障前的功能结构和运行状态,保障设备运行的可靠性。The invention utilizes the Ethernet communication resource of the existing inverter equipment, and realizes the reconstruction of the parallel inverter based on the universal plug and play (UP n P) protocol that has been widely used. The main controller records the operating status data of each inverter circuit for further analysis by maintenance personnel; when the equipment fails, the main controller automatically performs the task of reconfiguring the parallel inverters. During reconfiguration, the main controller controls the exit of the faulty inverter circuit and the operation of the standby inverter circuit. In this way, the parallel inverter can restore the functional structure and operating state before the failure, and ensure the reliability of equipment operation.
附图说明Description of drawings
图1为并联逆变器动态重构的系统结构图;Figure 1 is a system structure diagram of dynamic reconfiguration of parallel inverters;
图2为系统中设备的功能组成示意图。Figure 2 is a schematic diagram of the functional composition of the devices in the system.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步的详细说明。应该指出的是下面说明仅仅是示例性的,而不是为了限制本发明的范围以及其应用。The technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings. It should be pointed out that the following description is only exemplary and not intended to limit the scope of the invention and its application.
1.项目实施方式1. Project implementation method
图1所示是并联逆变器动态重构的系统结构示意图,它包括了主控制器、多个从控制器和逆变电路并联系统。所述逆变电路并联系统包括多个并联的逆变电路,在交流母线侧同相的并联在一起,在直流母线侧同极性的并联在一起;所述从控制器的功能是标准化、模块化的,为保证设备的互操作性,从控制器1、从控制器2和备用从控制器的功能构造是一致的。Figure 1 is a schematic diagram of the system structure for dynamic reconfiguration of parallel inverters, which includes a master controller, multiple slave controllers and a parallel system of inverter circuits. The parallel inverter circuit system includes a plurality of parallel inverter circuits, connected in parallel with the same phase on the AC bus side, and connected in parallel with the same polarity on the DC bus side; the function of the slave controller is standardized and modularized. Yes, in order to ensure the interoperability of the equipment, the functional structures of slave controller 1, slave controller 2 and standby slave controller are consistent.
系统中其他设备的功能构成如图2所示,所述主控制器包括采样单元、驱动信号参数计算单元、编码单元和光纤收发单元;所述从控制器包括采样单元、电压/电流调节算法单元、解码单元、光纤收发单元、PWM波构造单元和故障诊断单元。主控制器采集交流母线电压、电流信号后,生成逆变器实际需要的驱动信号参数,将其编码后经光纤收发单元发送给各从控制器;从控制器对经光纤收发单元接收到的信息解码出驱动信号参数,再通过PWM波构造单元计算出相应的驱动信号给逆变器,从而确保各功率器件驱动信号的一致性。另外,针对电路的并联特性,故障诊断单元采用电流检测法来实现故障诊断。The functional composition of other devices in the system is shown in Figure 2. The master controller includes a sampling unit, a drive signal parameter calculation unit, an encoding unit, and an optical fiber transceiver unit; the slave controller includes a sampling unit, a voltage/current adjustment algorithm unit , a decoding unit, an optical fiber transceiver unit, a PWM wave construction unit and a fault diagnosis unit. After the main controller collects the AC bus voltage and current signals, it generates the driving signal parameters actually required by the inverter, encodes them and sends them to the slave controllers through the optical fiber transceiver unit; The parameters of the driving signal are decoded, and then the corresponding driving signal is calculated by the PWM wave construction unit to the inverter, so as to ensure the consistency of the driving signal of each power device. In addition, in view of the parallel connection characteristics of the circuit, the fault diagnosis unit adopts the current detection method to realize the fault diagnosis.
另一方面,为了能够使用UPnP协议来完成逆变器并联系统的重构,所述主控制器作为控制端(upnp-ctrl),部署了DER交互模块、数据管理模块和投退控制模块等功能;所述从控制器作为设备端(upnp-dev),还部署了投退服务、故障通知服务和状态变量发布服务。On the other hand, in order to be able to use the UPnP protocol to complete the reconstruction of the inverter parallel system, the main controller is used as the control terminal (upnp-ctrl), deploying functions such as a DER interaction module, a data management module, and a switching control module ; The slave controller, as the device side (upnp-dev), also deploys drop-in service, fault notification service and state variable publishing service.
一种并联逆变器动态重构方法,具体包括以下步骤:A method for dynamic reconfiguration of parallel inverters, specifically comprising the following steps:
1)在主控制器和从控制器上部署重构相关的功能服务;1) Deploy refactoring-related functional services on the master controller and slave controllers;
2)主控制器发现所有从控制器设备,订阅逆变电路的状态变量,记录逆变器的运行状态;2) The master controller discovers all slave controller devices, subscribes to the state variables of the inverter circuit, and records the running status of the inverter;
3)逆变电路故障时,其相应从控制器报告故障给主控制器,主控制器控制故障设备的停运和备用设备的投运。3) When the inverter circuit fails, the corresponding slave controller reports the fault to the main controller, and the main controller controls the shutdown of the faulty equipment and the commissioning of the backup equipment.
所述步骤1)由以下步骤组成:Described step 1) is made up of the following steps:
1-1)在主控制器上部署数据管理库模块:用于记录逆变电路的地址、电压、电流和故障状态等状态变量;部署投退控制模块:控制逆变电路的投运和停运;部署DER交互模块:与分布式电源进行信息交互;1-1) Deploy the data management library module on the main controller: used to record state variables such as the address, voltage, current and fault status of the inverter circuit; deploy the commissioning and withdrawal control module: control the operation and shutdown of the inverter circuit ;Deploy DER interaction module: information interaction with distributed power supply;
1-2)在从控制器上部署状态变量发布服务:定期获取并发布逆变电路的电压、电流等状态变量值;部署故障通知服务:逆变电路发生故障时,则报告故障给主控制器;部署投退服务:完成主控制器发出的逆变电路停运或投运控制要求。1-2) Deploy the state variable publishing service on the slave controller: regularly obtain and publish the state variable values of the inverter circuit voltage, current, etc.; deploy fault notification service: when the inverter circuit fails, report the fault to the master controller ; Deployment commissioning and withdrawing service: complete the inverter circuit outage or commissioning control requirements issued by the main controller.
所述步骤2)由以下步骤组成:Said step 2) consists of the following steps:
2-1)主控制器加入239.255.255.250组播地址;2-1) The main controller joins the 239.255.255.250 multicast address;
2-2)从控制器加入网络后,经组播地址239.255.255.250:1900发送简单服务发现协议报文给主控制器;2-2) After the slave controller joins the network, it sends a simple service discovery protocol message to the master controller via the multicast address 239.255.255.250:1900;
2-3)主控制器接收报文后,获取从控制器的设备描述文件,并将设备地址添加到主控制器的数据管理库中;2-3) After the master controller receives the message, it obtains the device description file of the slave controller, and adds the device address to the data management library of the master controller;
2-4)主控制器解析设备描述文件,获取并解析设备服务描述文件;2-4) The main controller parses the device description file, obtains and parses the device service description file;
2-5)主控制器订阅逆变电路的状态变量;2-5) The main controller subscribes to the state variable of the inverter circuit;
2-6)从控制器的状态变量发布服务定期获取逆变电路的状态变量值,并发送给主控制器;2-6) Obtain the state variable value of the inverter circuit regularly from the state variable publishing service of the controller, and send it to the main controller;
2-7)主控制器获取逆变电路的状态变量后,添加到数据管理库中。2-7) After the main controller obtains the state variable of the inverter circuit, it is added to the data management database.
所述步骤3)由以下步骤组成:Said step 3) consists of the following steps:
3-1)逆变电路发生故障时,其相应从控制器通过故障通知服务报告给主控制器;3-1) When the inverter circuit fails, its corresponding slave controller reports to the master controller through the fault notification service;
3-2)主控制器记录逆变电路的故障状态到数据管理库中,并经DER交互模块向分布式电源请求停止发电;3-2) The main controller records the fault state of the inverter circuit into the data management database, and requests the distributed power supply to stop power generation through the DER interaction module;
3-3)分布式电源停止发电后,反馈成功停止发电信号给主控制器的DER交互模块,然后主控制器控制逆变器停运;3-3) After the distributed power generation stops power generation, the feedback signal of successfully stopping power generation is sent to the DER interactive module of the main controller, and then the main controller controls the inverter to stop;
3-4)主控制器经投退控制模块,向故障逆变电路和备用逆变电路的相应从控制器,分别发出停运控制请求和投运控制请求;3-4) The master controller sends out-of-service control requests and commissioning-control requests to the corresponding slave controllers of the faulty inverter circuit and the standby inverter circuit through the switch-on and switch-off control module;
3-5)故障逆变电路的相应从控制器,切断逆变电路功率管的驱动信号和直流侧电压,使其转入停运状态;3-5) The corresponding slave controller of the faulty inverter circuit cuts off the driving signal of the power tube of the inverter circuit and the DC side voltage, making it turn into a shutdown state;
3-6)备用逆变电路的相应从控制器,接通逆变电路功率管的驱动信号和直流侧电压,使其转入投运状态;3-6) The corresponding slave controller of the standby inverter circuit connects the driving signal of the power tube of the inverter circuit and the voltage of the DC side to make it enter the commissioning state;
3-7)主控制器控制逆变器运行,并向分布式电源请求继续发电;3-7) The main controller controls the operation of the inverter and requests the distributed power supply to continue generating power;
3-8)分布式电源继续发电,动态重构后的并联逆变器继续正常运行。3-8) The distributed power generation continues to generate electricity, and the parallel inverters after dynamic reconfiguration continue to operate normally.
2.实施例2. Example
如图1所示的并联逆变器实例,包含了2个逆变电路和1个备用逆变电路。利用该实例,对逆变电路1发生故障时,并联逆变器进行的重构过程作具体说明。The parallel inverter example shown in Figure 1 includes two inverter circuits and one backup inverter circuit. Using this example, when the inverter circuit 1 fails, the reconfiguration process of the parallel inverter will be described in detail.
1)逆变电路1发生故障时,从控制器1的故障诊断单元将故障结果报告给故障通知服务进程;1) When a fault occurs in the inverter circuit 1, the fault diagnosis unit of the controller 1 reports the fault result to the fault notification service process;
2)从控制器1经故障通知服务通知主控制器,逆变电路1发生故障;2) The slave controller 1 notifies the master controller through the fault notification service that the inverter circuit 1 is faulty;
3)主控制器向分布式电源DER请求停止发电;3) The main controller requests the distributed power DER to stop power generation;
4)分布式电源DER反馈成功停止发电信号给主控制器,主控制器控制逆变器停运;4) The distributed power DER feedbacks the successful stop of power generation signal to the main controller, and the main controller controls the inverter to shut down;
5)主控制器经投退模块,向逆变电路1发出停运控制请求;5) The main controller sends an outage control request to the inverter circuit 1 through the switch-on/off module;
6)从控制器1经投退服务,切断逆变电路1的驱动信号和直流侧电压,使其停运;6) Cut off the driving signal and the DC side voltage of the inverter circuit 1 from the controller 1 to stop the operation;
7)主控制器经投退模块,向备用逆变电路发出投运控制请求;7) The main controller sends a commissioning control request to the standby inverter circuit through the commissioning and withdrawing module;
8)备用控制器经投退服务,接通备用逆变电路的驱动信号和直流侧电压,使其投运;8) After the standby controller is put into service, connect the driving signal of the standby inverter circuit and the DC side voltage to make it put into operation;
9)主控制器控制逆变器运行,并向分布式电源DER请求继续发电;9) The main controller controls the operation of the inverter and requests the distributed power DER to continue generating power;
10)分布式电源继续发电,备用逆变电路替代逆变电路1,与逆变电路2重构成新的并联逆变器继续运行。10) The distributed power supply continues to generate electricity, and the backup inverter circuit replaces the inverter circuit 1, and restructures with the inverter circuit 2 to form a new parallel inverter to continue running.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510222126.8A CN104898481A (en) | 2015-05-05 | 2015-05-05 | Dynamic reconstruction method for parallel inverters |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510222126.8A CN104898481A (en) | 2015-05-05 | 2015-05-05 | Dynamic reconstruction method for parallel inverters |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN104898481A true CN104898481A (en) | 2015-09-09 |
Family
ID=54031199
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510222126.8A Pending CN104898481A (en) | 2015-05-05 | 2015-05-05 | Dynamic reconstruction method for parallel inverters |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104898481A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019242696A1 (en) * | 2018-06-20 | 2019-12-26 | 东莞市李群自动化技术有限公司 | Distributed multi-node control system and method |
| CN113595422A (en) * | 2021-07-30 | 2021-11-02 | 深圳市英威腾交通技术有限公司 | Inverter device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020120723A1 (en) * | 2001-02-23 | 2002-08-29 | Forth J. Bradford | Systems for in the field configuration of intelligent electronic devices |
| EP1976177A1 (en) * | 2007-03-30 | 2008-10-01 | ABB Technology AG | Substation automation system with increased availability |
| CN101488668A (en) * | 2008-04-30 | 2009-07-22 | 江苏南自通华新能源电力有限公司 | Reconfigurable distributed access grid-connected inverter |
| CN102916484A (en) * | 2012-10-09 | 2013-02-06 | 青岛海汇德电气有限公司 | Distributed integral power supply system based on protocol IEC 61850 |
| CN103236712A (en) * | 2013-04-08 | 2013-08-07 | 嘉兴清源电气科技有限公司 | Direct-current micro-grid system and control method thereof |
-
2015
- 2015-05-05 CN CN201510222126.8A patent/CN104898481A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020120723A1 (en) * | 2001-02-23 | 2002-08-29 | Forth J. Bradford | Systems for in the field configuration of intelligent electronic devices |
| EP1976177A1 (en) * | 2007-03-30 | 2008-10-01 | ABB Technology AG | Substation automation system with increased availability |
| CN101488668A (en) * | 2008-04-30 | 2009-07-22 | 江苏南自通华新能源电力有限公司 | Reconfigurable distributed access grid-connected inverter |
| CN102916484A (en) * | 2012-10-09 | 2013-02-06 | 青岛海汇德电气有限公司 | Distributed integral power supply system based on protocol IEC 61850 |
| CN103236712A (en) * | 2013-04-08 | 2013-08-07 | 嘉兴清源电气科技有限公司 | Direct-current micro-grid system and control method thereof |
Non-Patent Citations (1)
| Title |
|---|
| 陈爱林 等: "变电站智能电子设备的动态重构技术", 《电力系统自动化》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019242696A1 (en) * | 2018-06-20 | 2019-12-26 | 东莞市李群自动化技术有限公司 | Distributed multi-node control system and method |
| CN113595422A (en) * | 2021-07-30 | 2021-11-02 | 深圳市英威腾交通技术有限公司 | Inverter device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7882220B2 (en) | Substation automation system with increased availability | |
| CN202756175U (en) | Yaw control system of wind generating set | |
| CN104898481A (en) | Dynamic reconstruction method for parallel inverters | |
| CN110880811B (en) | Communication device and method for battery energy storage power station | |
| CN106610601A (en) | Operation state monitoring device of IGBT component | |
| CN107359695A (en) | A kind of uninterruption power source, method of supplying power to and data center | |
| CN110323828A (en) | A kind of control circuit of backup power source and the control method of control circuit | |
| CN110445171A (en) | A kind of active power and frequency control method and system based on the soft lineal system of marine wind electric field | |
| CN102148508B (en) | Application of power combination technology based on phase shift pulse-width modulation (PMW) control policy in photovoltaic grid-connected system | |
| CN104297681A (en) | High-voltage circuit breaker state online monitoring and evaluating system | |
| CN109474000B (en) | Intelligent analysis system and method for distributed photovoltaic power supply of distribution transformer area | |
| CN102497010A (en) | Method and system for switching microgrid from grid-connected mode to island mode | |
| CN105262216A (en) | Intelligent power distribution cabinet control system | |
| CN102195285B (en) | Method for interfacing between valve base control device and upper automatic device | |
| CN107672624A (en) | Railway section fiber optic network signal control device and system | |
| CN105356504B (en) | A kind of current transformer and its control method and wind generator system | |
| CN107666157A (en) | A kind of AC-DC hybrid power grid | |
| CN202789325U (en) | Device for preventing PLC (Programmable Logic Controller) control system of wind power generator from galloping | |
| CN105932662A (en) | Large-scale photovoltaic DC serial boost system based on N-m equipment redundancy | |
| CN202798125U (en) | Redundant power supply system of photovoltaic grid-connected inverter control device | |
| CN102306116B (en) | Voting structure for two-out-of-three safety output in static mode and voting method thereof | |
| CN101714776A (en) | 10KV station electric control system of convertor station adopting selecting 2 from 3 logic | |
| CN205092586U (en) | Renewable energy grid -connected inverter monitored control system that communicates based on CAN bus | |
| CN202746090U (en) | Pulse-based host-backup communication judgment switching system for local control unit | |
| CN205176155U (en) | A VBE Judgment Logic Circuit of UHV DC System |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150909 |