CN105023090A - Power generator unit coherence grouping scheme based on wide area information - Google Patents
Power generator unit coherence grouping scheme based on wide area information Download PDFInfo
- Publication number
- CN105023090A CN105023090A CN201510248905.5A CN201510248905A CN105023090A CN 105023090 A CN105023090 A CN 105023090A CN 201510248905 A CN201510248905 A CN 201510248905A CN 105023090 A CN105023090 A CN 105023090A
- Authority
- CN
- China
- Prior art keywords
- distance
- angle
- sampling
- difference
- anglediv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 238000005070 sampling Methods 0.000 claims description 58
- 230000001427 coherent effect Effects 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 14
- 239000013598 vector Substances 0.000 claims description 12
- 238000007417 hierarchical cluster analysis Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 3
- 238000007621 cluster analysis Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电力系统的控制领域,特别涉及基于广域信息的发电机组同调性识别方案。 The invention relates to the field of control of electric power systems, in particular to a scheme for identifying coherence of generating sets based on wide-area information.
背景技术 Background technique
随着电力系统规模日益扩大,结构日趋复杂,电力系统安全性分析的计算复杂度大大增加。为简化计算,常常需要通过发电机组的同调性分析将系统里的机组分为若干个同调群,再利用动态等值对系统化简 [1]。此外,当电力系统受到严重扰动导致发电机组发生失步振荡时,需要采用紧急解列措施来防止事故进一步扩大而造成全网崩溃,其中同调机群的准确识别是进行快速解列的前提[2]。 With the increasing scale and complex structure of power system, the computational complexity of power system security analysis is greatly increased. In order to simplify the calculation, it is often necessary to divide the units in the system into several coherence groups through the coherence analysis of the generating units, and then use the dynamic equivalent to simplify the system [1] . In addition, when the power system is severely disturbed and the generating units undergo out-of-step oscillations, emergency decommissioning measures are required to prevent the accident from further expanding and causing the entire network to collapse. Accurate identification of the coherent generator group is a prerequisite for rapid decoupling [2] .
同调性是指受到扰动后系统中的发电机动态响应行为具有相似或一致性,主要反映的是发电机摇摆曲线的相似程度,将动态行为相似的机组群称为同调机群,将这些机组群划归入不同的组合即为同调分群。同调分群方法有很多,传统基于模型参数的方法可分为:电气距离分群法[3]、状态空间分群法[4]、慢同调法[5]等。这些方法大都过于依赖系统模型参数的精确度,采用线性化分析对系统的非线性模型进行近似,且计算过程较为复杂,难以满足大规模电力系统实时、快速、准确的分群要求。广域测量系统(Wide Area Measurement System-WAMS)的发展和应用给电力系统同调机群的识别提供了新的途径,通过电网中配置的相量测量单元(Phasor Measurement Unit-PMU)可以实时获取包括发电机功角和转子角速度在内的系统中各种电气量,对实时响应的电气量信息进行数字信号特征提取,从中获得同调性识别信息。这类基于实时电气量的数据挖掘方法在不受模型参数影响的基础上,不仅充分考虑到系统故障的信息,还能够很好地回避系统的强非线性等问题[6]。文献[7]利用WAMS得到的发电机功角信息进行三角函数拟合得到初步分群结果,再利用离散Fréchet距离计算完成最终分群。文献[8]在系统聚类分析的基础上,以WAMS测量的各机功角轨迹之间距离最小为准则,对功角曲线进行聚类分析,实现了多机系统同调机组的合理分群。 Coherence refers to the similarity or consistency of the dynamic response behavior of generators in the system after being disturbed. Grouping into different groups is called homology grouping. There are many methods of coherence grouping, and traditional methods based on model parameters can be divided into: electrical distance grouping method [3] , state space grouping method [4] , slow coherence method [5] and so on. Most of these methods rely too much on the accuracy of system model parameters, and use linearization analysis to approximate the nonlinear model of the system, and the calculation process is relatively complicated, which is difficult to meet the real-time, fast and accurate clustering requirements of large-scale power systems. The development and application of the Wide Area Measurement System (Wide Area Measurement System-WAMS) provides a new way for the identification of the power system coherent fleet. Through the phasor measurement unit (Phasor Measurement Unit-PMU) configured in the power grid, real-time information including power generation can be obtained. Various electrical quantities in the system, including mechanical power angle and rotor angular velocity, perform digital signal feature extraction on the real-time response electrical quantity information, and obtain coherence identification information from it. This kind of data mining method based on real-time electrical quantities is not affected by model parameters, not only fully considers the information of system faults, but also can well avoid problems such as strong nonlinearity of the system [6] . Literature [7] uses the generator power angle information obtained by WAMS to perform trigonometric function fitting to obtain preliminary grouping results, and then uses discrete Fréchet distance calculation to complete the final grouping. On the basis of system cluster analysis, literature [8] carried out cluster analysis on the power angle curves based on the minimum distance between the power angle trajectories measured by WAMS, and realized the reasonable grouping of multi-machine system coherent units.
参考文献 references
[1]安军,穆钢,徐炜彬.基于主成分分析法的电力系统同调机群识别[J].电网技术,2009,33(3):25-28. [1] An Jun, Mu Gang, Xu Weibin. Recognition of power system coherent clusters based on principal component analysis [J]. Power Grid Technology, 2009,33(3):25-28.
[2]高鹏,王建全,甘德强,等.电力系统失步解列综述[J].电力系统自动化,2005,29(19):90-97. [2] Gao Peng, Wang Jianquan, Gan Deqiang, et al. A review of power system out-of-step separation [J]. Electric Power System Automation, 2005,29(19):90-97.
[3]Pai M A;Adgaonkar R P.Electromechanical distance measure for decomposition of power systems[J].Electrical Power&Energy Systems,1984,6(4):249-254. [3]Pai M A; Adgaonkar R P.Electromechanical distance measure for decomposition of power systems[J].Electrical Power&Energy Systems,1984,6(4):249-254.
[4]殷监,薛飞,陈允平.分群理论在电力系统暂态稳定预测和控制中的应用[J].电力情报,2002,(1):1-4. [4] Yin Jian, Xue Fei, Chen Yunping. Application of Grouping Theory in Power System Transient Stability Prediction and Control [J]. Electric Power Information, 2002, (1): 1-4.
[5]宋洪磊,吴俊勇,冀鲁豫.基于慢同调理论和希尔伯特-黄变换的发电机在线同调识别[J].电力自动化 设备,2013,33(8):70-77. [5] Song Honglei, Wu Junyong, Ji Luyu. On-line coherence recognition of generators based on slow coherence theory and Hilbert-Huang transform [J]. Electric Power Automation Equipment, 2013, 33(8): 70-77.
[6]倪敬敏,沈沉,谭伟等.一种基于非平衡点处线性化的同调识别方法[J].电力系统自动化,2010,34(20):7~12. [6] Ni Jingmin, Shen Shen, Tan Wei, etc. A method of coherence recognition based on linearization at non-equilibrium points [J]. Electric Power System Automation, 2010,34(20):7~12.
[7]冯康恒,张艳霞,刘志雄,等.基于广域信息的同调机群在线识别方法[J].电网技术,2014,38(8):2082-2086 [7] Feng Kangheng, Zhang Yanxia, Liu Zhixiong, et al. Online identification method of coherent cluster based on wide area information [J]. Power Grid Technology, 2014,38(8):2082-2086
[8]史坤鹏,穆钢,李婷,等.基于经验模式分解的聚类树方法及其在同调机组分群中的应用[J].电网技术,2007,31(22):21-25. [8] Shi Kunpeng, Mu Gang, Li Ting, etc. Clustering tree method based on empirical mode decomposition and its application in coherent unit grouping [J]. Power Grid Technology, 2007, 31(22):21-25.
发明内容 Contents of the invention
本发明基于广域信息测量系统,提出一种具有一定自适应性的发电机组同调分群新方案,该方案从层次聚类分析法的角度出发,计算发电机组电气量间的各项差异指标,加权后得到机组的结构差异度,以此为标准进行分群。本发明的技术方案如下: Based on the wide-area information measurement system, the present invention proposes a new coherent grouping scheme of generator sets with certain self-adaptiveness. The scheme starts from the perspective of hierarchical clustering analysis method, calculates the difference indexes among the electrical quantities of generator sets, and weights Finally, the structural difference degree of the unit is obtained, which is used as the standard for grouping. Technical scheme of the present invention is as follows:
一种基于广域信息的发电机组同调分群方案,该方法利用相量测量单元对发电机组功角轨迹和转子角速度进行特征提取,以获得能反应同调性的信息,所提取的特征包括四个指标的比较:方向比较DirDiv(δi,δj),转角比较AngleDiv(δi,δj),位置比较LocDiv(δi,δj)以及转子角速度即转速的比较SpeedDiv(δi,δj),其中δi,δj为不同发电机组的功角轨迹,1≤i≠j≤m,m为总轨迹数,轨迹δi由δi1,δi2,...,δin构成,轨迹δj由δj1,δj2,...,δjn构成,n为采样点数,其中, A coherent grouping scheme for generator sets based on wide-area information. This method uses phasor measurement units to extract features from the power angle trajectory and rotor angular velocity of generator sets to obtain information that can reflect coherence. The extracted features include four indicators Comparison: direction comparison DirDiv (δ i , δ j ), angle comparison AngleDiv (δ i , δ j ), position comparison LocDiv (δ i , δ j ) and rotor angular velocity, that is, speed comparison SpeedDiv (δ i , δ j ) , where δ i , δ j are the power angle trajectories of different generator sets, 1≤i≠j≤m, m is the total number of trajectories, and the trajectory δ i is composed of δ i1 , δ i2 ,...,δ in , and the trajectory δ j consists of δ j1 , δ j2 ,..., δ jn , n is the number of sampling points, where,
(1)方向比较DirDiv(δi,δj)表示功角轨迹δi,δj在总体变化趋势上偏转程度的差异,δis,δjs分别是轨迹δi,δj采样的起始点,δie,δje分别是轨迹δi,δj采样的终止点,用向量和的夹角来表示轨迹之间的方向差异DirDiv(δi,δj); (1) Direction comparison DirDiv(δ i , δ j ) represents the difference in deflection degree of power angle trajectories δ i , δ j in the overall change trend, δ is , δ js are the starting points of sampling of trajectories δ i , δ j respectively, δ ie , δ je are the termination points of the trajectory δ i , δ j sampling respectively, and the vector and angle of To represent the direction difference DirDiv(δ i ,δ j ) between trajectories;
(2)转角比较AngleDiv(δi,δj)反映轨迹内部的方向变化特征,设轨迹在采样点δp处的夹角表示为β,转角表示为θ,a为本采样点δp与上一采样点δp-1之间的距离,且b为本采样点与下一采样点δp+1之间的距离,且c为采样点δp-1和δp+1之间的距离,则夹角β为: (2) Angle comparison AngleDiv(δ i , δ j ) reflects the directional change characteristics inside the trajectory. Let the angle between the trajectory at the sampling point δ p be denoted as β, and the rotational angle be denoted as θ. The distance between a sampling point δ p-1 , and b is the distance between this sampling point and the next sampling point δ p+1 , and c is the distance between sampling points δ p-1 and δ p+1 , and the included angle β is:
β=arccos((a2+b2-c2)/2ab) β = arccos((a 2 +b 2 -c 2 )/2ab)
根据夹角β和向量叉乘方向判别的右手定则求得转角θ,转角θ的计算公式为: According to the right-hand rule of the angle β and vector cross product direction, the rotation angle θ is obtained, and the calculation formula of the rotation angle θ is:
由上式可得,外向变化的转角θ为正值,内向变化的转角θ为负值,转角比较AngleDiv(δi,δj)是一个随采样时间变化的累加量,计算式为: It can be obtained from the above formula that the outwardly changing rotation angle θ is a positive value, and the inwardly changing rotation angle θ is a negative value. The angle comparison AngleDiv(δ i ,δ j ) is an accumulative quantity that changes with the sampling time, and the calculation formula is:
在理想同调机群的情况下,δi和δj的每一个采样点的转角差值都为0,AngleDiv也为0,在功角曲线最不匹配的情况下,每个采样点的转角互为相反方向,也就是说在采样时间内2条轨迹呈对立锯齿状,这时AngleDiv为1; In the case of an ideal coherent fleet, the angle difference of each sampling point of δ i and δ j is 0, and AngleDiv is also 0. In the case of the most mismatched power angle curve, the rotation angle of each sampling point is equal to In the opposite direction, that is to say, the two trajectories are oppositely sawtoothed during the sampling time, and AngleDiv is 1 at this time;
(3)位置比较LocDiv(δi,δj)反映发电机功角轨迹之间的相对距离,计算公式如下: (3) Position comparison LocDiv(δ i ,δ j ) reflects the relative distance between generator power angle trajectories, the calculation formula is as follows:
其中dist(u,v)表示u、v两点之间的欧氏距离,u、v分别为δi,δj轨迹上的任一采样点;h(δi,δj)为δi,δj的直接Hausdorff距离,即δi中的每一点到δj中所有点的距离最小值集合中的最大距离,若h(δi,δj)=d,则δi中的每一采样点到δj中最近采样点的距离都不超过d,d反应曲线间的距离差异,H(δi,δj)为h(δi,δj)和h(δj,δi)中的最大值,若H(δi,δj)=d,则说明δi中的每一采样点到δj中最近采样点的距离和δj中的每一采样点到δi中最近采样点的距离都不超过d; Where dist(u, v) represents the Euclidean distance between two points u and v, u and v are any sampling points on the trajectory of δ i and δ j respectively; h(δ i , δ j ) is δ i , The direct Hausdorff distance of δ j is the maximum distance from each point in δ i to the minimum distance set of all points in δ j . If h(δ i , δ j )=d, then each sample in δ i The distance from the point to the nearest sampling point in δ j does not exceed d, and the distance difference between d response curves, H(δ i ,δ j ) is h(δ i ,δ j ) and h(δ j ,δ i ) The maximum value of , if H(δ i , δ j )=d, it shows the distance from each sampling point in δ i to the nearest sampling point in δ j and the distance from each sampling point in δ j to the nearest sampling point in δ i The distance between the points does not exceed d;
(4)转速比较SpeedDiv(δi,δj)表示发电机组转子角速度的差异,如下式 (4) Speed comparison SpeedDiv(δ i , δ j ) represents the difference in angular velocity of the rotor of the generator set, as follows
两发电机转子角速度变化的差异用角速度采样值之间的欧式距离来衡量,ωi(t)、ωj(t)分别表示第i和j台发电机组在采样时刻t的采样值; The difference between the angular velocity changes of the rotors of the two generators is measured by the Euclidean distance between the angular velocity sampling values, and ω i (t) and ω j (t) represent the sampling values of the i and j generator sets at the sampling time t, respectively;
该发电机组同调分群方案包括下列的步骤: The generator set coherent grouping scheme includes the following steps:
第一步:计算电力系统中两两发电机之间的上述四项指标,分别将值依次存入DirDiv、AngleDiv、LocDiv和SpeedDiv四个矩阵中,若系统中有m台发电机,则矩阵为m阶对称方阵,各方阵的对角线元素均为零; Step 1: Calculate the above four indicators between two generators in the power system, and store the values in the four matrices of DirDiv, AngleDiv, LocDiv and SpeedDiv respectively. If there are m generators in the system, the matrix is A symmetrical square matrix of order m, the diagonal elements of each matrix are all zero;
第二步:定义W={WD,WA,WL,WS}为特征权重,分别对应以上四个特征;各权重满足:(1)所有权重取值均大于或等于零;(2)WD+WA+WL+WS=1,由于每一个特征的值域是不同的,所以要对各个特征差异值进行归一化处理,归一化处理方法为将所得四个矩阵中每一元素除以各矩阵中元素的最大值;再利用变异系数法的思想计算权重,利用所得权重对上述四项指标进行加权求和构成轨迹结构差异度: Step 2: Define W={W D , W A , W L , W S } as the feature weight, corresponding to the above four features respectively; each weight satisfies: (1) all weight values are greater than or equal to zero; (2) W D +W A +W L +W S =1, since the value range of each feature is different, it is necessary to normalize the difference value of each feature. The normalization process is to divide the obtained four matrices Divide each element by the maximum value of the elements in each matrix; then use the idea of variation coefficient method to calculate the weight, and use the obtained weight to weight and sum the above four indicators to form the trajectory structure difference:
SDIV=WD×DirDiv+WA×AngleDiv+WL×LocDiv+WS×SpeedDiv SDIV=W D ×DirDiv+W A ×AngleDiv+W L ×LocDiv+W S ×SpeedDiv
第三步:计算得到发电机组的差异度矩阵SDIV,然后利用层次聚类分析法进行聚类; The third step: Calculate the difference degree matrix SDIV of the generator set, and then use the hierarchical clustering analysis method to cluster;
第四步:聚类结束后,选择合适的阈值ε对聚类树形解进行划分即可获得最终分群结果; Step 4: After the clustering is over, select an appropriate threshold ε to divide the clustering tree solution to obtain the final clustering result;
作为优选实施方式,其中,利用变异系数法的思想计算权重的步骤为: As a preferred embodiment, wherein, the steps of calculating the weight using the idea of the coefficient of variation method are:
1)分别获取DirDiv、AngleDiv、LocDiv和SpeedDiv矩阵主对角线以上的所有元素,将其依次存入矩阵X的4列,则矩阵中的4列存储4个不同指标下各发电机之间的差异值向量;若有m台发电机组,则矩阵 X的行数p=m(m-1)/2,列数q=4; 1) Obtain all the elements above the main diagonal of the DirDiv, AngleDiv, LocDiv and SpeedDiv matrices respectively, and store them in the 4 columns of the matrix X in turn, then the 4 columns in the matrix store the distance between the generators under 4 different indicators Difference value vector; if there are m generator sets, then the number of rows p=m(m-1)/2 of the matrix X, and the number of columns q=4;
2)计算各特征指标的平均值和标准差,即求X各列向量的均值和标准差; 2) Calculate the mean value and standard deviation of each feature index, that is, find the mean value and standard deviation of each column vector of X;
3)计算各指标的变异系数; 3) Calculate the coefficient of variation of each index;
4)对各指标的变异系数进行归一化处理,得到各指标的权重; 4) Normalize the coefficient of variation of each index to obtain the weight of each index;
设S={s1,s2,...,sm}分别代表系统中的m台发电机组,用层次聚类分析法进行聚类的步骤如下: Let S={s 1 ,s 2 ,...,s m } respectively represent m generating units in the system, and the steps of clustering by hierarchical clustering analysis are as follows:
1)置每个si为一个类,共形成m个类:s1,s2,...,sm; 1) Set each s i as a class, forming m classes in total: s 1 , s 2 ,..., s m ;
2)从现有的m个类中,找出轨迹结构差异度SDIV最小的两个类sr和sk; 2) From the existing m classes, find out the two classes s r and s k with the smallest trajectory structure difference degree SDIV;
3)将类sr和sk合并成一个新类srk,现有类的数m将减1; 3) Merge classes s r and s k into a new class s rk , and the number m of existing classes will be reduced by 1;
4)检测所有样本,若所有的样本都属于同一个类,则终止本算法;否则,返回2)。 4) Detect all samples, if all samples belong to the same class, then terminate the algorithm; otherwise, return to 2).
本发明的有益效果如下: The beneficial effects of the present invention are as follows:
1.利用广域测量系统中的PMU测量到的发电机功角轨迹和转子角速度就能实现同调机群的划分,避免了系统模型参数对分群的影响; 1. Using the generator power angle trajectory and rotor angular velocity measured by the PMU in the wide-area measurement system can realize the division of the coherent machine group, avoiding the influence of the system model parameters on the grouping;
2.能够根据多机系统的不同运行状况,灵活并客观地确定特征权重值,具有一定的自适应性; 2. It can flexibly and objectively determine the feature weight value according to the different operating conditions of the multi-machine system, and has certain adaptability;
3.全面考虑了发电机功角轨迹的多方面特征信息,能够对复杂电力系统的同调性进行准确识别,具有实用价值。 3. It fully considers the multi-aspect characteristic information of the power angle trajectory of the generator, and can accurately identify the coherence of the complex power system, which has practical value.
附图说明 Description of drawings
图1轨迹的方向差异度 The degree of direction difference of the trajectory in Figure 1
图2轨迹的转角示意图 Figure 2 Schematic diagram of the corner of the trajectory
图3聚类树和利用阈值ε进行分群 Figure 3 Clustering tree and clustering using threshold ε
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进行说明。 The present invention will be described below in conjunction with the accompanying drawings and embodiments.
本发明通过对广域测量系统得到的发电机组功角轨迹和转子角速度进行特征提取,以获得能反应同调性的信息。所提取的特征包括四个指标的比较:方向比较DirDiv(δi,δj),转角比较AngleDiv(δi,δj),位置比较LocDiv(δi,δj)以及转子角速度即转速的比较SpeedDiv(δi,δj)。其中δi,δj为不同发电机组的功角轨迹,1≤i≠j≤m(m为总轨迹数),轨迹δi由δi1,δi2,...,δin构成(n为采样点数)。 The invention obtains the information that can reflect the coherence by extracting the features of the generating set power angle track and the rotor angular velocity obtained by the wide-area measuring system. The extracted features include the comparison of four indicators: the direction comparison DirDiv(δ i ,δ j ), the rotation angle comparison AngleDiv(δ i ,δ j ), the position comparison LocDiv(δ i ,δ j ) and the rotor angular velocity, that is, the rotation speed SpeedDiv(δ i ,δ j ). Where δ i , δ j are the power angle trajectories of different generator sets, 1≤i≠j≤m (m is the total number of trajectories), and the trajectory δ i is composed of δ i1 , δ i2 ,...,δ in (n is Sampling points).
(4)方向比较。DirDiv(δi,δj)表示功角轨迹δi,δj在总体变化趋势上偏转程度的差异。图1为未失稳发电机i和失稳发电机j之间的方向比较,δis,δjs分别是轨迹采样的起始点,δie,δje分别是轨迹采样的终止点。用两向量Li和Lj的夹角来表示轨迹之间的方向差异DirDiv(δi,δj)。 (4) Direction comparison. DirDiv(δ i , δ j ) represents the difference in the degree of deflection of the power angle trajectory δ i , δ j in the overall trend. Figure 1 shows the direction comparison between the unstabilized generator i and the unstable generator j, where δ is and δ js are the starting points of trajectory sampling respectively, and δ ie and δ je are the ending points of trajectory sampling respectively. Use the angle between two vectors L i and L j To represent the direction difference DirDiv(δ i ,δ j ) between trajectories.
(5)转角比较。AngleDiv(δi,δj)反映了轨迹内部的方向变化特征,体现了功角轨迹内部波动程度差异。 如图2所示,轨迹在采样点处的夹角表示为β,轨迹的转角表示为θ1和θ2。由图可知,a,b,c分别为夹角β的邻边和对边,则夹角β的计算式如下。 (5) Corner comparison. AngleDiv(δ i ,δ j ) reflects the directional change characteristics inside the trajectory, and reflects the difference in the degree of fluctuation within the power angle trajectory. As shown in Figure 2, the included angle of the trajectory at the sampling point is represented by β, and the rotation angles of the trajectory are represented by θ 1 and θ 2 . It can be seen from the figure that a, b, and c are the adjacent and opposite sides of the included angle β respectively, and the calculation formula of the included angle β is as follows.
β=arccos((a2+b2-c2)/2ab) (1) β = arccos((a 2 +b 2 -c 2 )/2ab) (1)
根据上式和向量叉乘方向判别的右手定则可得,转角θ的计算公式为: According to the above formula and the right-hand rule of vector cross product direction discrimination, the calculation formula of the rotation angle θ is:
根据式(2),外向变化的角θ1为正值,内向变化的角θ2为负值。因此,两两发电机功角轨迹的转角变化差值是一个累加量,如式(3)所示。 According to formula (2), the angle θ 1 of outward change is positive, and the angle θ 2 of inward change is negative. Therefore, the difference between the angle changes of the power angle trajectories of two generators is an accumulative quantity, as shown in formula (3).
上式表明,AngleDiv(δi,δj)将每一采样时刻两两发电机功角变化趋势的差值进行了累加,从微观上量化了每时刻发电机动态特性的差异。在理想同调机群的情况下,δi和δj的每一个采样点的转角差值都为0,AngleDiv也为0。功角曲线最不匹配的情况下,每个采样点的转角互为相反方向,也就是说在采样时间内2条轨迹呈对立锯齿状,这时AngleDiv为1。 The above formula shows that AngleDiv(δ i , δ j ) accumulates the difference between the power angle change trends of two generators at each sampling time, and quantifies the difference in dynamic characteristics of generators at each time from the microcosm. In the case of an ideal coherent fleet, the angle difference of each sampling point of δ i and δ j is 0, and AngleDiv is also 0. In the case where the power angle curves do not match the most, the rotation angles of each sampling point are opposite to each other, that is to say, the two trajectories are opposite to each other in the sampling time, and AngleDiv is 1 at this time.
(6)位置比较LocDiv(δi,δj)。区分同调机群的重要标准为发电机功角轨迹之间的相对距离。本发明中LocDiv(δi,δj)的计算采用Hausdorff距离公式,该距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距离的一种定义形式,用来反映轨迹在空间上的接近程度。 (6) Position comparison LocDiv(δ i ,δ j ). An important criterion for distinguishing coherent units is the relative distance between generator power angle trajectories. Among the present invention, the calculation of LocDiv (δ i , δ j ) adopts the Hausdorff distance formula, which is a measure of similarity between two groups of point sets, and it is a defined form of distance between two point sets. It is used to reflect the proximity of the trajectory in space.
LocDiv(δi,δj)=H(δi,δj)=max(h(δi,δj),h(δj,δi)) (4) LocDiv(δ i ,δ j )=H(δ i ,δ j )=max(h(δ i ,δ j ),h(δ j ,δ i )) (4)
其中dist(a,b)表示a、b两点之间的欧氏距离,h(δi,δj)为δi,δj的直接Hausdorff距离,即δi中的每一点到δj中所有点的距离最小值集合中的最大距离。若h(δi,δj)=d,则δi中的每一采样点到δj中最近采样点的距离都不超过d,d恰好反应了曲线间的距离差异。H(δi,δj)为h(δi,δj)和h(δj,δi)中的最大值,若H(δi,δj)=d,则说明δi中的每一采样点到δj中最近采样点的距离和δj中的每一采样点到δi中最近采样点的距离都不超过d,H(δi,δj)代表了功角轨迹间的相对距离。 Where dist(a,b) represents the Euclidean distance between a and b, h(δ i , δ j ) is the direct Hausdorff distance of δ i , δ j , that is, each point in δ i to δ j The maximum distance in the set of minimum distances for all points. If h(δ i , δ j )=d, then the distance from each sampling point in δ i to the nearest sampling point in δ j does not exceed d, and d just reflects the distance difference between the curves. H(δ i ,δ j ) is the maximum value of h(δ i ,δ j ) and h(δ j ,δ i ), if H(δ i ,δ j )=d, it means that each of δ i The distance from a sampling point to the nearest sampling point in δ j and the distance from each sampling point in δ j to the nearest sampling point in δ i do not exceed d, H(δ i , δ j ) represents the distance between power angle trajectories relative distance.
(4)转速比较。电力系统受到较大扰动后,系统潮流分布的突变使得各发电机输出功率发生变化,导致原动机与发电机之间的功率平衡被破坏,在机组轴上产生加速或减速转矩,结果各发电机的功角因转速差异而产生相对变化。所以在分析影响功角变化的因素时,各发电机的转速与同步转速的偏差也是重要且变化比较明显的指标,考虑速度偏差的影响也将有助于正确快速地分群。这里用SpeedDiv(δi,δj)来表示发电 机转子角速度的差异,式(6)给出了速度信息的比较公式。 (4) Speed comparison. After the power system is greatly disturbed, the sudden change in the power flow distribution of the system will cause the output power of each generator to change, resulting in the destruction of the power balance between the prime mover and the generator, and the acceleration or deceleration torque will be generated on the shaft of the unit. The power angle of the engine changes relative to the speed difference. Therefore, when analyzing the factors that affect the change of power angle, the deviation between the rotational speed of each generator and the synchronous rotational speed is also an important indicator that changes significantly. Considering the influence of speed deviation will also help to group correctly and quickly. Here, SpeedDiv(δ i , δ j ) is used to represent the difference in the angular velocity of the generator rotor, and formula (6) gives the comparison formula of the speed information.
两发电机转子角速度变化的差异用欧式距离来衡量,ωi(t)、ωj(t)分别表示第i和j台发电机在采样时刻t的采样值。 The difference between the rotor angular velocity changes of the two generators is measured by the Euclidean distance, and ω i (t) and ω j (t) represent the sampling values of the i and j generators at the sampling time t, respectively.
计算电力系统中两两发电机之间的四项差异值,分别将值依次存入DirDiv、AngleDiv、LocDiv和SpeedDiv四个矩阵中。若系统中有m台发电机,则矩阵为m阶对称方阵,各方阵的对角线元素(发电机与自身比较为对角线元素)均为零。 Calculate the four difference values between two generators in the power system, and store the values in the four matrices of DirDiv, AngleDiv, LocDiv and SpeedDiv respectively. If there are m generators in the system, the matrix is a symmetrical square matrix of order m, and the diagonal elements of each matrix (the diagonal elements of the generator compared with itself) are all zero.
以上四指标的加权求和便构成了轨迹结构差异度的计算值: The weighted sum of the above four indicators constitutes the calculated value of the trajectory structure difference:
SDIV=WD×DirDiv+WA×AngleDiv+WL×LocDiv+WS×SpeedDiv (7) SDIV=W D ×DirDiv+W A ×AngleDiv+W L ×LocDiv+W S ×SpeedDiv (7)
定义W={WD,WA,WL,WS}为特征权重,分别对应以上四个特征。各权重满足:(1)所有权重取值均大于或等于零;(2)WD+WA+WL+WS=1。由于每一个特征的值域是不同的,所以要对各个特征差异值进行归一化处理。本发明采用的归一化处理方法为将所得四矩阵中每一元素除以各矩阵中元素的最大值。 Define W={W D , W A , W L, W S } as the feature weight, corresponding to the above four features respectively. Each weight satisfies: (1) all weight values are greater than or equal to zero; (2) W D +W A +W L +W S =1. Since the value range of each feature is different, it is necessary to normalize the difference value of each feature. The normalization processing method adopted in the present invention is to divide each element in the obtained four matrices by the maximum value of the elements in each matrix.
本方案利用变异系数法的思想计算权重,具体计算步骤为: This program uses the idea of variation coefficient method to calculate the weight, and the specific calculation steps are as follows:
1)分别获取DirDiv、AngleDiv、LocDiv和SpeedDiv矩阵主对角线以上的所有元素,将其依次存入矩阵X的4列,则矩阵中的4列存储4个不同指标下各发电机之间的差异值向量。若有m台发电机,则矩阵X的行数p=m(m-1)/2,列数q=4。 1) Obtain all the elements above the main diagonal of the DirDiv, AngleDiv, LocDiv and SpeedDiv matrices respectively, and store them in the 4 columns of the matrix X in turn, then the 4 columns in the matrix store the distance between the generators under 4 different indicators A vector of difference values. If there are m generators, the number of rows of the matrix X is p=m(m-1)/2, and the number of columns is q=4.
2)计算各特征指标的平均值和标准差,即求X各列向量的均值和标准差。其中i=1,2,...,p;j=1,2,3,4。 2) Calculate the average value and standard deviation of each feature index, that is, calculate the average value and standard deviation of each column vector of X. where i=1,2,...,p; j=1,2,3,4.
3)计算各指标的变异系数,j=1,2,3,4。 3) Calculate the coefficient of variation of each index, j=1,2,3,4.
4)对各指标的变异系数进行归一化处理,得到各指标的权重。 4) Normalize the coefficient of variation of each index to obtain the weight of each index.
其中,j=1,2,3,4。所以各权重为WD=W1,WA=W2,WL=W3,WS=W4。 Among them, j=1,2,3,4. Therefore, the respective weights are W D =W 1 , W A =W 2 , W L =W 3 , and W S =W 4 .
利用所求得的权重值WD、WA、WL、WS和公式(7)即可计算出发电机之间的结构差异度矩阵SDIV。 Using the obtained weight values W D , WA , W L , WS and formula (7), the structural difference degree matrix SDIV between generators can be calculated.
再利用层次聚类分析法进行聚类。层次聚类方法又称为树聚类算法,通过一种分层的架构体系,利用数据的关联规则,将样本数据反复进行分割或合并,以形成一个自底向上的聚类树形解。假定S={s1,s2,...,sm}分别代表系统中的m台发电机,其具体步骤如下: Clustering is then performed using hierarchical clustering analysis. Hierarchical clustering method, also known as tree clustering algorithm, uses a layered architecture system and uses data association rules to repeatedly divide or merge sample data to form a bottom-up clustering tree solution. Assuming that S={s 1 ,s 2 ,...,s m } respectively represent m generators in the system, the specific steps are as follows:
第一步:置每个si为一个类,共形成m个类:s1,s2,...,sm。 Step 1: Set each s i as a class, forming m classes in total: s 1 , s 2 ,...,s m .
第二步:从现有的m个类中,找出轨迹结构差异度SDIV最小的两个类sr和sk。 The second step: from the existing m classes, find out the two classes s r and s k with the smallest trajectory structure difference degree SDIV.
第三步:将类sr和sk合并成一个新类srk,现有类的数m将减1。 Step 3: Combine classes s r and s k into a new class s rk , and the number m of existing classes will be reduced by 1.
第四步:检测所有样本,若所有的样本都属于同一个类,则终止本算法;否则,返回第二步。 Step 4: Detect all samples, if all samples belong to the same class, then terminate the algorithm; otherwise, return to the second step.
聚类结束后,选择合适的阈值ε对聚类结果进行划分即可获得最终分群结果,如图3所示,图中是8台发电机的情况,根据所给的ε分成了两群。 After the clustering is over, select the appropriate threshold ε to divide the clustering results to obtain the final clustering results, as shown in Figure 3, the figure shows the situation of 8 generators, which are divided into two groups according to the given ε.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510248905.5A CN105023090A (en) | 2015-05-15 | 2015-05-15 | Power generator unit coherence grouping scheme based on wide area information |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510248905.5A CN105023090A (en) | 2015-05-15 | 2015-05-15 | Power generator unit coherence grouping scheme based on wide area information |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105023090A true CN105023090A (en) | 2015-11-04 |
Family
ID=54413043
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510248905.5A Pending CN105023090A (en) | 2015-05-15 | 2015-05-15 | Power generator unit coherence grouping scheme based on wide area information |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105023090A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105741188A (en) * | 2016-01-26 | 2016-07-06 | 重庆大学 | Method for dividing electromagnetic transient coherent generator groups of double-feed wind generator groups |
| CN106487026A (en) * | 2016-08-25 | 2017-03-08 | 天津大学 | A kind of Coherent Generator Group method for quickly identifying based on wide area measurement information |
| CN106844422A (en) * | 2016-12-02 | 2017-06-13 | 上海电机学院 | It is a kind of to be based on three wind power plant unit polymerizations of increment cluster |
| CN107492887A (en) * | 2017-09-04 | 2017-12-19 | 清华大学 | A kind of region partitioning method and system of wide area energy internet |
| CN108923414A (en) * | 2018-06-15 | 2018-11-30 | 华北电力大学 | Coherent unit grouping method based on panel data weighted clustering |
| CN109672169A (en) * | 2018-11-15 | 2019-04-23 | 国网福建省电力有限公司 | A kind of more generating set grouping methods of electric system |
| CN110943473A (en) * | 2019-07-01 | 2020-03-31 | 浙江大学 | A generator coherence identification method based on wide-area measurement system and clustering theory |
| WO2020130810A1 (en) * | 2018-12-17 | 2020-06-25 | Technische Universiteit Delft | Method and monitoring system for generator slow-coherency online identification and dynamic tracking |
| CN112542856A (en) * | 2019-09-23 | 2021-03-23 | 中国电力科学研究院有限公司 | Grouping method and system for new energy generator set |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102364490A (en) * | 2011-10-26 | 2012-02-29 | 华北电力大学 | Automatic Cohomology Recognition Method Based on Analytic Hierarchy Model |
| US20130138651A1 (en) * | 2011-11-28 | 2013-05-30 | Bin Lu | System and method employing a self-organizing map load feature database to identify electric load types of different electric loads |
| CN106487026A (en) * | 2016-08-25 | 2017-03-08 | 天津大学 | A kind of Coherent Generator Group method for quickly identifying based on wide area measurement information |
-
2015
- 2015-05-15 CN CN201510248905.5A patent/CN105023090A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102364490A (en) * | 2011-10-26 | 2012-02-29 | 华北电力大学 | Automatic Cohomology Recognition Method Based on Analytic Hierarchy Model |
| US20130138651A1 (en) * | 2011-11-28 | 2013-05-30 | Bin Lu | System and method employing a self-organizing map load feature database to identify electric load types of different electric loads |
| CN106487026A (en) * | 2016-08-25 | 2017-03-08 | 天津大学 | A kind of Coherent Generator Group method for quickly identifying based on wide area measurement information |
Non-Patent Citations (5)
| Title |
|---|
| 冯康恒等: "基于广域信息的同调机群在线识别方法", 《电网技术》 * |
| 孙吉贵等: "聚类算法研究", 《软件学报》 * |
| 李传栋等: "基于优化层次聚类法的大电网机组分群研究", 《华东电力》 * |
| 牛东晓等: "电网运行安全性评价体系分析及应用", 《华东电力》 * |
| 袁冠等: "基于结构相似度的轨迹聚类算法", 《通信学报》 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105741188A (en) * | 2016-01-26 | 2016-07-06 | 重庆大学 | Method for dividing electromagnetic transient coherent generator groups of double-feed wind generator groups |
| CN105741188B (en) * | 2016-01-26 | 2019-09-27 | 重庆大学 | Electromagnetic Transient Coherent Grouping Method for Doubly-fed Wind Turbine Generator Group |
| CN106487026B (en) * | 2016-08-25 | 2019-04-23 | 天津大学 | A fast identification method of coherent fleet based on wide-area measurement information |
| CN106487026A (en) * | 2016-08-25 | 2017-03-08 | 天津大学 | A kind of Coherent Generator Group method for quickly identifying based on wide area measurement information |
| CN106844422A (en) * | 2016-12-02 | 2017-06-13 | 上海电机学院 | It is a kind of to be based on three wind power plant unit polymerizations of increment cluster |
| CN107492887B (en) * | 2017-09-04 | 2020-05-15 | 清华大学 | Region division method and system for wide area energy Internet |
| CN107492887A (en) * | 2017-09-04 | 2017-12-19 | 清华大学 | A kind of region partitioning method and system of wide area energy internet |
| CN108923414A (en) * | 2018-06-15 | 2018-11-30 | 华北电力大学 | Coherent unit grouping method based on panel data weighted clustering |
| CN108923414B (en) * | 2018-06-15 | 2021-03-09 | 华北电力大学 | Coherent unit clustering method based on weighted clustering of panel data |
| CN109672169A (en) * | 2018-11-15 | 2019-04-23 | 国网福建省电力有限公司 | A kind of more generating set grouping methods of electric system |
| WO2020130810A1 (en) * | 2018-12-17 | 2020-06-25 | Technische Universiteit Delft | Method and monitoring system for generator slow-coherency online identification and dynamic tracking |
| NL2022217B1 (en) * | 2018-12-17 | 2020-07-03 | Univ Delft Tech | Method and monitoring system for generator slow-coherency online identification and dynamic tracking |
| CN110943473A (en) * | 2019-07-01 | 2020-03-31 | 浙江大学 | A generator coherence identification method based on wide-area measurement system and clustering theory |
| CN112542856A (en) * | 2019-09-23 | 2021-03-23 | 中国电力科学研究院有限公司 | Grouping method and system for new energy generator set |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105023090A (en) | Power generator unit coherence grouping scheme based on wide area information | |
| Nguyen et al. | Smart grid line event classification using supervised learning over PMU data streams | |
| CN109657613B (en) | Abnormal Load Identification Method of Large-Scale Power Grid Based on Power Method and Parallel Computing Technology | |
| CN104993482B (en) | Partition synthesis method and device for on-line analysis of power system transient stability | |
| CN106849069B (en) | A Transient Stability Evaluation Method of Power System Based on Pin-SVM | |
| CN111654038B (en) | Method and system for identifying transient instability of power system based on track characteristics | |
| CN104865474B (en) | A kind of method for monitoring low-frequency oscillation source in real time based on PMU data | |
| CN107194499A (en) | The Forecasting Methodology and prediction meanss of region wind-powered electricity generation short term power | |
| CN106709147B (en) | A batch automatic calculation method of short-circuit fault limit clearing time based on BPA | |
| CN110021961A (en) | A kind of online synchronization recognition method of electric system containing wind power plant | |
| CN112909939A (en) | Power system transient stability assessment method based on load flow characteristics before and after fault | |
| CN105353305A (en) | Motor rotor eccentricity fault diagnosis method based on completely self-adaptive matrix pencil | |
| CN107919666A (en) | A kind of area power grid transient stability based on wide area response is in line generalization pre-judging method | |
| CN102510072B (en) | Power grid system transient destabilization differentiation method | |
| CN106487026A (en) | A kind of Coherent Generator Group method for quickly identifying based on wide area measurement information | |
| CN110969214A (en) | An Online Construction Method of Transient Safety Domain Based on Support Vector Machine Synthesis Model | |
| CN108875202B (en) | A coherent clustering method for multi-index panel data based on feature extraction | |
| Gao et al. | Machine learning-based reliability improvement of ambient mode extraction for smart grid utilizing isolation forest | |
| CN111488947A (en) | Fault detection method and device for power system equipment | |
| CN103280783B (en) | Method for calculating failure critical clearing time based on critical unit pair | |
| Chen et al. | Coherent clustering method based on weighted clustering of multi-indicator panel data | |
| CN102231174A (en) | Method for calculating minimum tangential load | |
| CN105116323B (en) | A kind of electrical fault detection method based on RBF | |
| CN110943473A (en) | A generator coherence identification method based on wide-area measurement system and clustering theory | |
| Ma et al. | The application of a generator coherency identification method based on linearization in complex power system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151104 |
|
| RJ01 | Rejection of invention patent application after publication |