CN105071807B - A kind of analog-digital converter adjustment scaling method and system - Google Patents
A kind of analog-digital converter adjustment scaling method and system Download PDFInfo
- Publication number
- CN105071807B CN105071807B CN201510428444.XA CN201510428444A CN105071807B CN 105071807 B CN105071807 B CN 105071807B CN 201510428444 A CN201510428444 A CN 201510428444A CN 105071807 B CN105071807 B CN 105071807B
- Authority
- CN
- China
- Prior art keywords
- sampling
- calibration
- analog
- straight line
- digital converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明涉及电路模块校准领域,尤其是涉及一种模数转换器调校标定方法及系统。The invention relates to the field of circuit module calibration, in particular to an analog-to-digital converter calibration method and system.
背景技术Background technique
将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter),A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。A circuit that converts analog signals into digital signals is called an analog-to-digital converter (A/D converter or ADC, Analog to Digital Converter). It is converted into a digital signal with discrete time and discrete amplitude. Therefore, A/D conversion generally goes through four processes of sampling, holding, quantization and encoding.
模数转换器经过一定时间的使用以后,转换值会发生偏差,影响输出精度,此时需要对模数转换器进行调校标定。After the analog-to-digital converter has been used for a certain period of time, the conversion value will deviate, which will affect the output accuracy. At this time, the analog-to-digital converter needs to be calibrated.
中华人民共和国国家知识产权局于2014年09月10日公开了名称为“具有自适应误差校准功能的电荷耦合流水线模数转换器”的专利文献(公开号:CN104038225A),其包括一个电荷耦合流水线模数转换器核、一个共模误差校准模块、一个差模误差校准模块、一个输入共模电压偏移补偿模块、一个数字后台校准模块和一个误差校准控制器模块。本发明能够自动检测全差分结构电荷耦合流水线模数转换器中由于非理想特性而引起的差模误差、共模误差、输入共模电压偏移误差和电路正常工作之后由于温度和电压波动带来的误差,并对这些误差进行校准。此方案并未公开合适的校准算法。The State Intellectual Property Office of the People's Republic of China published a patent document titled "Charge-Coupled Pipeline Analog-to-Digital Converter with Adaptive Error Calibration Function" on September 10, 2014 (publication number: CN104038225A), which includes a charge-coupled pipeline An analog-to-digital converter core, a common-mode error calibration block, a differential-mode error calibration block, an input common-mode voltage offset compensation block, a digital background calibration block, and an error calibration controller block. The invention can automatically detect the differential mode error, common mode error, input common mode voltage offset error caused by non-ideal characteristics in the fully differential structure charge-coupled pipeline analog-to-digital converter, and the temperature and voltage fluctuations caused by the normal operation of the circuit. errors and to calibrate for these errors. This scheme does not expose a suitable calibration algorithm.
发明内容Contents of the invention
本发明主要是解决现有技术所存在的缺少对模数转换器进行合理校准的方法和装置的技术问题,提供一种可以有效校准模数转换器的输出准确度的模数转换器调校标定方法及系统。The present invention mainly solves the technical problem in the prior art that lacks a method and device for reasonably calibrating the analog-to-digital converter, and provides an analog-to-digital converter calibration that can effectively calibrate the output accuracy of the analog-to-digital converter methods and systems.
本发明针对上述技术问题主要是通过下述技术方案得以解决的:一种模数转换器调校标定方法,包括以下步骤:The present invention mainly solves the above-mentioned technical problems through the following technical solutions: a method for calibrating and calibrating an analog-to-digital converter, comprising the following steps:
S01、获取采样曲线;S01. Obtain a sampling curve;
S02、将采样曲线自动分段并进行直线拟合,获得最终分段方法;S02. Automatically segment the sampling curve and perform straight line fitting to obtain the final segmentation method;
S03、利用分段得到的直线段分别进行校准。S03. Perform calibration using the straight line segments obtained by segmenting.
作为优选,获取采样曲线具体为:模数转换器的模拟电压输入口输入模拟电压信号,此模拟电压信号呈线性从0一直增大到模数转换器的输入电压上限,模数转换器进行采样,并对采样数据进行保存。Preferably, obtaining the sampling curve is specifically: the analog voltage input port of the analog-to-digital converter inputs an analog voltage signal, and the analog voltage signal increases linearly from 0 to the upper limit of the input voltage of the analog-to-digital converter, and the analog-to-digital converter performs sampling , and save the sampled data.
作为优选,步骤S02具体为:Preferably, step S02 is specifically:
S021、需要处理的n个采样数据点为(xi,yi),i=1,2…n,设定最大距离值dmax、最大残差平方和emax和最小残差平方和emin,最小距离dmin为0;S021. The n sampling data points to be processed are ( xi , y i ), i=1, 2...n, set the maximum distance value d max , the maximum residual square sum e max and the minimum residual square sum e min , the minimum distance d min is 0;
S022、计算各个采样数据点处的曲率,即S022, calculate the curvature at each sampling data point, namely
曲率 curvature
Δxi为xi的微小变化量,Δyi为yi的微小变化量,对n个曲率按大小排序并存储在数组c[n]中,此数组里只要存储排序后得到的K(i)中的i值即可;Δx i is the small change of x i , Δy i is the small change of y i , sort the n curvatures according to their size and store them in the array c[n]. In this array, only the K(i) obtained after sorting is stored. The value of i in is enough;
S023、设采样曲线需分为m段,m初始值为2,每段采样曲线含有3个以上采样数据点;S023. It is assumed that the sampling curve needs to be divided into m segments, the initial value of m is 2, and each sampling curve contains more than 3 sampling data points;
S024、判断m是否小于等于n/3,如果是,则进入步骤S025,否则进入步骤S029;S024, judge whether m is less than or equal to n/3, if yes, then enter step S025, otherwise enter step S029;
S025、从数组c[n]中取前m-1个数,查询此m-1个数对应的采样点,以此m-1个采样点为分段点,将所有采样点分为m部分,利用最小二乘法拟合得到m段直线段;S025. Take the first m-1 numbers from the array c[n], query the sampling points corresponding to the m-1 numbers, use the m-1 sampling points as segmentation points, and divide all the sampling points into m parts , using the least squares method to fit m straight line segments;
S026、对相邻的直线段的过渡时刻进行处理,处理方式为将过渡时刻的y值设为两条直线段在过渡时刻的y值的平均数;S026, processing the transition time of adjacent straight line segments, the processing method is to set the y value of the transition time as the average number of the y values of the two straight line segments at the transition time;
S027、依次计算m=2,3,…,mmax时的评价函数g的值,S027, sequentially calculate the value of the evaluation function g when m=2, 3, ..., m max ,
其中,mmax为n/3,且取整数,mmin为2,e为第m段拟合直线上的点与实际点的纵坐标差值的平方和,即残差平方和,d为第m段拟合直线对应的各实际采样点到该拟合直线的距离中的最大值;in, m max is n/3, and takes an integer, m min is 2, e is the sum of the squares of the difference between the points on the fitting line of the mth segment and the actual point, that is, the sum of squares of the residual, and d is the mth segment The maximum value of the distance from each actual sampling point corresponding to the fitted straight line to the fitted straight line;
S028、m增大1,返回步骤S024;S028, increase m by 1, return to step S024;
S029、选择g中的最大值所对应的分段方法作为最终分段方法。S029. Select the segmentation method corresponding to the maximum value in g as the final segmentation method.
作为优选,利用本段的拟合直线进行校准具体为:As a preference, using the fitting straight line in this paragraph to calibrate is specifically:
A.从存储单元里取得此段直线的起点xsp和终点xfp的理想采样值,设为Ref1和Ref2;A. Obtain the ideal sampling values of the starting point x sp and the end point x fp of this straight line from the storage unit, set as Ref1 and Ref2;
B.取这两点的实际采样值,设为Avg1和Avg2;B. Take the actual sampling values of these two points and set them as Avg1 and Avg2;
C.计算校准增益系数CalGain和校准偏置CalOffset,即CalOffset=Avg1×CalGain-Ref1;C. Calculate the calibration gain coefficient CalGain and the calibration offset CalOffset, namely CalOffset=Avg1×CalGain-Ref1;
D.由校准增益系数CalGain和校准偏置CalOffset计算此段直线上每个点校准后的采样值newResult,即newResult=oldResult×CalGain-CalOffset,其中oldResult表示校准前由A/D转换器直接得到的采样值;D. Calculate the calibrated sampling value newResult of each point on the line from the calibration gain coefficient CalGain and calibration offset CalOffset, that is, newResult=oldResult×CalGain-CalOffset, where oldResult represents the value directly obtained by the A/D converter before calibration sample value;
E.将每段直线段的校准增益系数CalGain和校准偏置CalOffset与此段yi的范围进行对应存储,方便查询进行校准。E. Store the calibration gain coefficient CalGain and calibration offset CalOffset of each straight line segment corresponding to the range of this segment y i , so as to facilitate query and calibration.
作为优选,当A/D转换器进行转换时,根据转换值进行查询它所在的拟合后的直线段,利用此段的校准增益系数CalGain和校准偏置CalOffset对结果进行校准,校准后输出。Preferably, when the A/D converter performs conversion, query the fitted straight line segment where it is located according to the conversion value, use the calibration gain coefficient CalGain and calibration offset CalOffset of this segment to calibrate the result, and output it after calibration.
一种模数转换器调校标定系统,包括:An analog-to-digital converter calibration calibration system, comprising:
获取采样曲线单元,用于获得A/D转换器的采样曲线;obtaining a sampling curve unit for obtaining a sampling curve of the A/D converter;
存储单元,用于存储输入的模拟电压对应的理想转换值,以及分段拟合后的每段直线段的校准增益系数CalGain和校准偏置CalOffset和此段yi的范围;The storage unit is used to store the ideal conversion value corresponding to the input analog voltage, and the calibration gain coefficient CalGain and the calibration offset CalOffset and the range of this segment yi of each straight line segment after segment fitting;
自动分段单元,用于将A/D采样曲线进行合理的分段,以使拟合结果接近实际的采样曲线;Automatic segmentation unit, used to reasonably segment the A/D sampling curve, so that the fitting result is close to the actual sampling curve;
校准单元,用于将分段后拟合的每一段直线进行校准。The calibration unit is used for calibrating each section of straight line fitted after segmentation.
本发明带来的实质性效果是,可以对模数转换器进行校准,提高输出结果的准确度。The substantive effect brought by the invention is that the analog-to-digital converter can be calibrated and the accuracy of the output result can be improved.
附图说明Description of drawings
图1是本发明的一种模数转换器调校标定系统示意图;Fig. 1 is a schematic diagram of an analog-to-digital converter calibration calibration system of the present invention;
图2是本发明的一种模数转换器调校标定方法流程图;Fig. 2 is a flow chart of an analog-to-digital converter calibration method of the present invention;
图中:1、A/D转换器,2、获取采样曲线单元,3、存储单元,4、自动分段单元,5、校准单元。In the figure: 1. A/D converter, 2. Obtaining sampling curve unit, 3. Storage unit, 4. Automatic segmentation unit, 5. Calibration unit.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.
实施例:本实施例的一种模数转换器调校标定系统,包括:Embodiment: An analog-to-digital converter calibration system of this embodiment includes:
获取采样曲线单元2,用于获得A/D转换器的采样曲线;Obtaining a sampling curve unit 2 for obtaining a sampling curve of the A/D converter;
存储单元3,用于存储输入的模拟电压对应的理想转换值,以及分段拟合后的每段直线段的校准增益系数CalGain和校准偏置CalOffset和此段yi的范围;The storage unit 3 is used to store the ideal conversion value corresponding to the input analog voltage, and the calibration gain coefficient CalGain and the calibration offset CalOffset and the range of this segment yi of each straight line segment after segment fitting;
自动分段单元4,用于将A/D采样曲线进行合理的分段,以使拟合结果接近实际的采样曲线;Automatic segmentation unit 4 is used to reasonably segment the A/D sampling curve so that the fitting result is close to the actual sampling curve;
校准单元5,用于将分段后拟合的每一段直线进行校准。The calibration unit 5 is used to calibrate each segment of the straight line fitted after segmentation.
如图1所示,A/D转转模块1分别连接获取采样曲线单元、自动分段单元和校准单元,存储单元分别连接获取采样曲线单元、自动分段单元和校准单元,自动分段单元还与校准单元连接。As shown in Figure 1, the A/D transfer module 1 is respectively connected to obtain the sampling curve unit, the automatic segmentation unit and the calibration unit, the storage unit is respectively connected to the acquisition sampling curve unit, the automatic segmentation unit and the calibration unit, and the automatic segmentation unit is also connected to the calibration unit. Connect to calibration unit.
A/D转换器的调校标定的方法是:The calibration method of A/D converter is:
A.将A/D采样曲线自动分段直线拟合;A. Automatically fit the A/D sampling curve into segments;
B.将分段得到的直线段分别进行校准。B. Calibrate the straight line segments obtained by segmenting.
具体的调校标定方法如图2所示。The specific adjustment and calibration method is shown in Figure 2.
获取采样曲线单元获取采样曲线的方法为:Obtaining the sampling curve The method of obtaining the sampling curve by the unit is:
A.此单元开始工作时,A/D转换器的模拟电压输入口会输入具有此种特点的模拟电压信号,即此电压呈线性从0一直增大到转换器可输入的最大模拟电压值,并且其随时间变化的速度能满足此转换器采样率的要求,以保证得到的采样曲线的准确性;A. When the unit starts to work, the analog voltage input port of the A/D converter will input an analog voltage signal with such characteristics, that is, the voltage increases linearly from 0 to the maximum analog voltage value that the converter can input. And its time-varying speed can meet the sampling rate requirements of the converter to ensure the accuracy of the obtained sampling curve;
B.A/D转换器进行采样,获取采样曲线单元对得到的数据进行保存。B. The A/D converter performs sampling, and the acquisition sampling curve unit saves the obtained data.
获取采样曲线单元和自动分段单元可以定时查询A/D转换器是否空闲,若空闲则进行获取采样曲线操作或分段操作;否则不进行,校准时则继续使用上次的分段结果。The acquisition sampling curve unit and the automatic segmentation unit can regularly check whether the A/D converter is idle, and if it is idle, the acquisition sampling curve operation or segmentation operation is performed; otherwise, the last segmentation result will continue to be used during calibration.
自动分段单元是基于最小二乘法和优化算法进行分段。其中最小二乘法的原理为:已知采样数据点(xi,yi),i=1,2…n),设其拟合的数学模型为y=ax+b,利用残差的平方和最小,得出模型中的参数a、b,计算方法是将Q的表达式分别对a、b求偏导,并使其等于零,解这两个方程,得到a、b的值,即可得The automatic segmentation unit is segmented based on the least square method and optimization algorithm. The principle of the least squares method is: known sampling data points ( xi , y i ), i=1, 2...n), set the mathematical model fitted by it as y=ax+b, and use the sum of squares of the residual The minimum is to get the parameters a and b in the model. The calculation method is to take the partial derivative of the expression of Q to a and b respectively, and make it equal to zero. Solve these two equations to get the values of a and b, then you can get
而优化算法是综合分段数目、残差平方和以及实际采样点到拟合直线段的距离值三个指标选出最优的分段情况。The optimization algorithm is to select the optimal segmentation by combining the three indicators of the number of segments, the sum of the squares of the residuals, and the distance from the actual sampling point to the fitted straight line segment.
自动分段的步骤为:The steps of automatic segmentation are:
A.对于需要处理的n个采样数据点(xi,yi),i=1,2…n,首先给定一个最大距离值dmax、最大残差平方和emax和最小残差平方和emin,最小距离dmin为0;A. For n sampling data points ( xi , y i ) that need to be processed, i=1, 2...n, first give a maximum distance value d max , maximum residual square sum e max and minimum residual square sum e min , the minimum distance d min is 0;
B.计算各个采样数据点处的弯曲程度,即B. Calculate the degree of curvature at each sampled data point, ie
曲率 curvature
比较这n个曲率值的大小,对其进行排序,并存储在数组c[n]里,此数组里只要存储排序后得到的K(i)中的i值即可;Compare the size of these n curvature values, sort them, and store them in the array c[n]. In this array, it is only necessary to store the i value in K(i) obtained after sorting;
C.设此采样曲线需分为m段,由于环境影响采样曲线呈现非线性,所以m≥2,而若将其每两个点进行拟合没有多大意义,所以m≤n/3,m取整数,设此最大值为mmax,当m=2时,从数组c[n]里取得最大曲率对应的的i值,即数组里的第一个数,以此点为分段点,将此采样点前与后的采样点分别利用最小二乘法拟合,得到两段直线段,同理当m=3时,从数组c[n]里取出前两个数,以这两点为分段点,将采样点利用最小二乘法拟合,得到三段直线段,一直到m取最大值mmax;C. Assuming that the sampling curve needs to be divided into m segments, because the environmental impact sampling curve is nonlinear, so m≥2, and it does not make much sense to fit every two points, so m≤n/3, m is taken Integer, set the maximum value as m max , when m=2, obtain the i value corresponding to the maximum curvature from the array c[n], that is, the first number in the array, and use this point as the segment point, and divide The sampling points before and after this sampling point are respectively fitted by the least squares method to obtain two straight line segments. Similarly, when m=3, take the first two numbers from the array c[n], and use these two points as segments point, use the least squares method to fit the sampling points to obtain three straight line segments until m takes the maximum value m max ;
D.对相邻两条直线的过渡时刻进行处理。例如,直线L1、L2的过渡时刻为xp,经过分段直线拟合后,这一时刻对应的采样值y存在两个值和,可令 D. Process the transition moment between two adjacent straight lines. For example, the transition time of the straight lines L 1 and L 2 is x p , after the piecewise straight line fitting, there are two values of the sampling value y corresponding to this time and , can make
E.综合分段数、残差平方和以及实际采样点到拟合直线段的距离值选出最优的分段情况,引入功效函数gi,其值即为功效系数,规定gi∈(0,1),满意时,gi=1;不满意时,gi=0;其他情况取0-1之间的的数,由于要综合上述三个目标考虑,可以按照构成评价函数,进行优化选择,其中E. Select the optimal segment by combining the number of segments, the sum of squared residuals, and the distance from the actual sampling point to the fitted straight line segment, and introduce the efficacy function g i , whose value is the efficacy coefficient, specifying g i ∈( 0, 1), when satisfied, g i =1; when dissatisfied, g i =0; in other cases, take the number between 0-1, because the above three objectives should be considered comprehensively, you can follow Constitute an evaluation function for optimal selection, where
e为此段拟合直线段上的点与实际点的纵坐标差值的平方和,即残差平方和,d为此段拟合直线对应的各实际采样点到此直线的距离中的最大值,依次计算m=2,3,…,mmax时的评价函数g的值,比较选出最大值gmax,此种情况即为最优的分段情况,即选用此种分段方法。 e is the sum of the squares of the difference between the points on the fitted straight line and the actual point’s ordinate difference, that is, the sum of the squares of the residual error, and d is the maximum distance from each actual sampling point corresponding to the fitted straight line to the straight line. value, calculate the value of the evaluation function g when m=2, 3, ..., m max in turn, compare and select the maximum value g max , this situation is the optimal segmentation situation, that is, choose this segmentation method.
校准单元将分段得到的直线段进行校准的方法为:利用线性增益误差和偏置误差进行校准。The method for the calibration unit to calibrate the segmented straight line segments is: to calibrate by using the linear gain error and the offset error.
校准单元将分段得到的直线线段进行校准的步骤为:The calibration unit calibrates the segmented straight line segments as follows:
A.从存储单元里取得此段直线的起点xsp和终点xfp的理想采样值,设为Ref1和Ref2;A. Obtain the ideal sampling values of the starting point x sp and the end point x fp of this straight line from the storage unit, set as Ref1 and Ref2;
B.取这两点的实际采样值,设为Avg1和Avg2;B. Take the actual sampling values of these two points and set them as Avg1 and Avg2;
C.计算校准增益系数CalGain和校准偏置CalOffset,即CalOffset=Avg1×CalGain-Ref1;C. Calculate the calibration gain coefficient CalGain and the calibration offset CalOffset, namely CalOffset=Avg1×CalGain-Ref1;
D.由校准增益系数CalGain和校准偏置CalOffset计算此段直线上每个点校准后的采样值,即newResult=oldResult×CalGain-CalOffset,其中oldResult表示校准前由A/D转换器直接得到的采样值;D. Calculate the calibrated sampling value of each point on this straight line from the calibration gain coefficient CalGain and the calibration offset CalOffset, that is, newResult=oldResult×CalGain-CalOffset, where oldResult represents the value directly obtained by the A/D converter before calibration sample value;
E.将每段直线段的校准增益系数CalGain和校准偏置CalOffset与此段yi的范围进行对应存储,方便查询进行校准。E. Store the calibration gain coefficient CalGain and calibration offset CalOffset of each straight line segment corresponding to the range of this segment y i , so as to facilitate query and calibration.
当A/D转换器进行转换时,根据转换值进行查询它所在的拟合后的直线段,利用此段的校准增益系数CalGain和校准偏置CalOffset对结果进行校准,校准后输出。When the A/D converter is converting, query its fitted straight line segment according to the conversion value, use the calibration gain coefficient CalGain and calibration offset CalOffset of this segment to calibrate the result, and output it after calibration.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
尽管本文较多地使用了采样曲线、分段、评价函数等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。Although terms such as sampling curve, segment, and evaluation function are frequently used in this paper, the possibility of using other terms is not excluded. These terms are used only for the purpose of describing and explaining the essence of the present invention more conveniently; interpreting them as any kind of additional limitation is against the spirit of the present invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510428444.XA CN105071807B (en) | 2015-07-20 | 2015-07-20 | A kind of analog-digital converter adjustment scaling method and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510428444.XA CN105071807B (en) | 2015-07-20 | 2015-07-20 | A kind of analog-digital converter adjustment scaling method and system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105071807A CN105071807A (en) | 2015-11-18 |
| CN105071807B true CN105071807B (en) | 2018-03-13 |
Family
ID=54501112
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510428444.XA Expired - Fee Related CN105071807B (en) | 2015-07-20 | 2015-07-20 | A kind of analog-digital converter adjustment scaling method and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105071807B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105971976A (en) * | 2016-05-25 | 2016-09-28 | 广西柳工机械股份有限公司 | Method for measuring hydraulic pressure of engineering machine by means of voltage type pressure sensor |
| CN106885932A (en) * | 2017-02-09 | 2017-06-23 | 深圳市鼎阳科技有限公司 | A kind of oscillograph and its ADC uniformity compensation methods |
| CN107404575B (en) * | 2017-07-18 | 2020-04-17 | Oppo广东移动通信有限公司 | Method and device for optimizing screen control, storage medium and mobile terminal |
| CN110391814B (en) * | 2019-07-29 | 2023-03-10 | 中国电子科技集团公司第二十四研究所 | Integral Nonlinear Digital Correction Method for On-Chip Digital-to-Analog Converter |
| CN111121998A (en) * | 2019-12-20 | 2020-05-08 | 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) | Temperature measurement calibration method based on PT1000 temperature sensor |
| CN111352021B (en) * | 2020-03-10 | 2022-08-09 | 上海御渡半导体科技有限公司 | Signal calibration method of test equipment |
| CN111380648A (en) * | 2020-03-27 | 2020-07-07 | 辛成辉 | Self-calibration pressure sensor and self-calibration method thereof |
| CN112462312B (en) * | 2020-11-04 | 2021-08-06 | 胜达克半导体科技(上海)有限公司 | Automatic calibration method for chip testing machine and application thereof |
| CN112165330A (en) * | 2020-11-04 | 2021-01-01 | 中电智能科技有限公司 | Method for improving channel calibration effect of PLC analog input module |
| CN112217515B (en) * | 2020-12-14 | 2021-07-09 | 南京华士电子科技有限公司 | Control method and system for automatic AD calibration of converter |
| CN114184993A (en) * | 2021-11-09 | 2022-03-15 | 东风电驱动系统有限公司 | Data acquisition method with synchronous self-calibration |
| CN116358597A (en) * | 2021-12-28 | 2023-06-30 | 航天科工惯性技术有限公司 | Calibration method of inertial navigation equipment |
| CN116414178A (en) * | 2021-12-29 | 2023-07-11 | 杭州堃博生物科技有限公司 | Radio frequency control method, electronic device and computer readable storage medium |
| CN116558712A (en) * | 2023-05-12 | 2023-08-08 | 江苏天合储能有限公司 | A battery internal pressure measurement display calibration method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103175547A (en) * | 2011-12-21 | 2013-06-26 | 北京普源精电科技有限公司 | Parameter fitting method of data acquisition device |
| CN104038225A (en) * | 2014-06-17 | 2014-09-10 | 中国电子科技集团公司第五十八研究所 | Charge coupling production line analog-digital converter having self-adaption error calibration function |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7188030B2 (en) * | 2001-08-21 | 2007-03-06 | Applera Corporation | Automatic threshold setting for quantitative polymerase chain reaction |
-
2015
- 2015-07-20 CN CN201510428444.XA patent/CN105071807B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103175547A (en) * | 2011-12-21 | 2013-06-26 | 北京普源精电科技有限公司 | Parameter fitting method of data acquisition device |
| CN104038225A (en) * | 2014-06-17 | 2014-09-10 | 中国电子科技集团公司第五十八研究所 | Charge coupling production line analog-digital converter having self-adaption error calibration function |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105071807A (en) | 2015-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105071807B (en) | A kind of analog-digital converter adjustment scaling method and system | |
| CN103888141B (en) | Streamline gradually compares the method for self-calibrating and device of analog-digital converter | |
| DE60107075T2 (en) | A / D converter CALIBRATION | |
| CN102647187B (en) | Adc calibration apparatus | |
| US7612703B2 (en) | Pipelined analog-to-digital converter with calibration of capacitor mismatch and finite gain error | |
| CN111352021B (en) | Signal calibration method of test equipment | |
| CN101706520B (en) | A Digital Storage Oscilloscope with Gain Correction Function | |
| US9362938B2 (en) | Error measurement and calibration of analog to digital converters | |
| US20100073215A1 (en) | Unified architecture for folding adc | |
| CN103929178A (en) | Successive Approximation Analog-to-Digital Converter and Its Conversion Method | |
| EP3565122A1 (en) | Accuracy enhancement techniques for adcs | |
| CN102291141A (en) | Time-interleaved split ADC (Analog-to-Digital Converter) calibration structure without redundant channel and adaptive calibration method thereof | |
| JP2016152625A (en) | Circuit and method for dac mismatch error detection and correction in adc | |
| CN111669178B (en) | A High Precision Successive Approximation Analog-to-Digital Converter and Its Linearity Calibration Method | |
| US20110285563A1 (en) | Pipelined analog-to-digital converter and sub-converter stage | |
| US7994960B1 (en) | Data converter with redundancy for error correction in polarity decision | |
| US8816892B2 (en) | Segmented column-parallel analog-to-digital converter | |
| CN104796149A (en) | High-precision successive approximation type analog-digital converter and performance lifting method based on DNL (dynamic noise limiter) | |
| CN110995268B (en) | Multi-order successive approximation type n bit analog-to-digital converter | |
| CN107453756A (en) | A kind of front-end calibration method for pipeline ADC | |
| CN104296661B (en) | Absolute grating scale absolute signal Concordance method | |
| CN104270158B (en) | A cooperative reconstruction method with adaptive sparsity | |
| CN105571666A (en) | Flow compensation method, compensation device and flow sensor | |
| US9276599B2 (en) | Method and apparatus for non-uniform analog-to-digital conversion | |
| WO2009070001A2 (en) | A successive approximationregistrer (sar)analog-to-digital converter (adc) with programmable voltage reference |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180313 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |