[go: up one dir, main page]

CN105097980A - Thin film solar cell and manufacturing method thereof - Google Patents

Thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
CN105097980A
CN105097980A CN201410203029.XA CN201410203029A CN105097980A CN 105097980 A CN105097980 A CN 105097980A CN 201410203029 A CN201410203029 A CN 201410203029A CN 105097980 A CN105097980 A CN 105097980A
Authority
CN
China
Prior art keywords
layer
isolation layer
isolation
solar cell
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410203029.XA
Other languages
Chinese (zh)
Other versions
CN105097980B (en
Inventor
肖旭东
杨世航
马续航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHK filed Critical Chinese University of Hong Kong CUHK
Priority to CN201410203029.XA priority Critical patent/CN105097980B/en
Publication of CN105097980A publication Critical patent/CN105097980A/en
Application granted granted Critical
Publication of CN105097980B publication Critical patent/CN105097980B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The application provides a thin-film solar cell, which comprises a metal substrate, a first isolation layer arranged on the metal substrate, a second isolation layer arranged on the first isolation layer, a back electrode layer arranged on the second isolation layer and a copper indium gallium selenide light absorption layer arranged on the back electrode layer, wherein the first isolation layer and the second isolation layer are used for preventing metal elements in the metal substrate from entering the copper indium gallium selenide light absorption layer, and the second isolation layer comprises sodium elements, wherein the sodium elements can be supplemented to the copper indium gallium selenide light absorption layer to repair point defects caused by selenium deficiency in the copper indium gallium selenide light absorption layer. In addition, the application also provides a method for manufacturing the thin film solar cell.

Description

薄膜太阳能电池及其制造方法Thin film solar cell and manufacturing method thereof

技术领域technical field

本申请涉及太阳能电池领域,具体地,涉及一种铜铟镓硒薄膜太阳能电池及其制造方法。The present application relates to the field of solar cells, in particular to a copper indium gallium selenide thin film solar cell and a manufacturing method thereof.

背景技术Background technique

铜铟镓硒(Cu(In,Ga)Se2,简称CIGS)薄膜太阳能电池最近三十年发展迅速,其具有成本低、效率高和稳定性好的特点。CIGS薄膜太阳能电池为多层薄膜层叠结构,其一般包括衬底、背电极层、光吸收层(溅射后硒化、或者共蒸发沉积的P型半导体CuInxGa(1-x)Se2)、缓冲层(例如水浴法生产的CdS)、本征氧化锌层(溅射法生成的本征氧化锌)和窗口层(溅射法生成的掺铝氧化锌)。最外侧的光入射面还有栅格电极,用于引出光电流。Copper indium gallium selenide (Cu(In,Ga)Se 2 , referred to as CIGS) thin-film solar cells have developed rapidly in the last 30 years, and have the characteristics of low cost, high efficiency and good stability. CIGS thin-film solar cells are multi-layer thin-film laminated structures, which generally include a substrate, a back electrode layer, a light-absorbing layer (selenized after sputtering, or a P-type semiconductor CuInxGa(1-x)Se2 deposited by co-evaporation), and a buffer layer (such as CdS produced by water bath method), intrinsic zinc oxide layer (intrinsic zinc oxide produced by sputtering method) and window layer (aluminum-doped zinc oxide produced by sputtering method). There is also a grid electrode on the outermost light incident surface, which is used to extract photocurrent.

由于CIGS是P型半导体,所以其中往往会存在点缺陷,一般表现为缺硒。这样的缺陷可以通过将钠原子引入该点来修复,钠的扩散可以优化CIGS光吸收层的性能。在现有技术中通常在背电极层与CIGS光吸收层之间增加一层氟化钠来向光吸收层补充微量的钠元素。氟化钠薄膜一般采用热蒸发获得,厚度约10nm,沉积速度慢,并且很难沉积均匀。而且,氟化钠具有很强的毒性和强腐蚀性,增加了生产过程中的不安全因素。Since CIGS is a P-type semiconductor, there are often point defects in it, which generally manifest as selenium deficiency. Such defects can be repaired by introducing sodium atoms into the spot, and the diffusion of sodium can optimize the performance of the CIGS light-absorbing layer. In the prior art, a layer of sodium fluoride is usually added between the back electrode layer and the CIGS light-absorbing layer to supplement a trace amount of sodium element to the light-absorbing layer. Sodium fluoride film is generally obtained by thermal evaporation, the thickness is about 10nm, the deposition speed is slow, and it is difficult to deposit uniformly. Moreover, sodium fluoride is highly toxic and corrosive, which increases unsafe factors in the production process.

发明内容Contents of the invention

本申请提供了一种至少能够部分改善上述现有技术中的缺陷的薄膜太阳能电池。The present application provides a thin-film solar cell capable of at least partially improving the defects in the above-mentioned prior art.

根据本申请的一个实施方式,提供了一种薄膜太阳能电池,其包括金属衬底、布置在金属衬底上的第一隔离层、布置在第一隔离层上的第二隔离层、布置在第二隔离层上的背电极层、布置在背电极层上的铜铟镓硒光吸收层,其中,第一隔离层和第二隔离层用于阻止金属衬底中的金属元素进入铜铟镓硒光吸收层,并且第二隔离层中包括钠元素,钠元素被补充至铜铟镓硒光吸收层。According to one embodiment of the present application, a thin-film solar cell is provided, which includes a metal substrate, a first isolation layer disposed on the metal substrate, a second isolation layer disposed on the first isolation layer, and a second isolation layer disposed on the second isolation layer. The back electrode layer on the two isolation layers, the copper indium gallium selenide light absorption layer arranged on the back electrode layer, wherein the first isolation layer and the second isolation layer are used to prevent metal elements in the metal substrate from entering the copper indium gallium selenide The light absorbing layer, and the second isolation layer includes sodium element, and the sodium element is supplemented to the CIGS light absorbing layer.

根据本申请的另一实施方式,提供了一种制造薄膜太阳能电池的方法,包括:提供金属衬底;在金属衬底上通过溅射法生成第一隔离层;在第一隔离层上通过溅射法生成第二隔离层;在第二隔离层上通过溅射法生成背电极层;以及在背电极层上形成铜铟镓硒光吸收层;其中,第一隔离层和第二隔离层用于阻止金属衬底中的金属元素进入铜铟镓硒光吸收层,第二隔离层中包括钠元素,钠元素被补充至铜铟镓硒光吸收层。According to another embodiment of the present application, there is provided a method for manufacturing a thin film solar cell, comprising: providing a metal substrate; forming a first isolation layer on the metal substrate by sputtering; forming a first isolation layer on the first isolation layer by sputtering generate a second isolation layer by sputtering on the second isolation layer; and form a copper indium gallium selenide light absorbing layer on the back electrode layer; where the first isolation layer and the second isolation layer are used In order to prevent metal elements in the metal substrate from entering the CIGS light-absorbing layer, the second isolation layer includes sodium element, and the sodium element is supplemented to the CIGS light-absorbing layer.

如上所述,在本申请提供的薄膜太阳能电池中,由于采用的双层隔离层,因此能够更好地阻止金属衬底中的金属元素、特别是铁元素进入铜铟镓硒光吸收层,从而保护该光吸收层的半导体特性不受到破坏,转换效率不会降低。而且,由于第二隔离层中包含钠元素,所以还能够在阻止铁元素的同时向光吸收层补充钠元素以优化铜铟镓硒光吸收层的性能。As mentioned above, in the thin-film solar cell provided by the present application, due to the double-layer isolation layer, it can better prevent metal elements in the metal substrate, especially iron elements, from entering the copper indium gallium selenide light absorption layer, thereby The semiconductor properties of the light absorbing layer are protected from being damaged, and the conversion efficiency is not reduced. Moreover, since the second isolation layer contains sodium element, it is also possible to supplement sodium element to the light absorbing layer while blocking iron element to optimize the performance of the CIGS light absorbing layer.

附图说明Description of drawings

图1为根据本申请一个实施方式的薄膜太阳能电池的多层结构示意图;1 is a schematic diagram of a multilayer structure of a thin film solar cell according to an embodiment of the present application;

图2为根据本申请另一实施方式的制造薄膜太阳能电池的方法的流程图;以及2 is a flowchart of a method for manufacturing a thin film solar cell according to another embodiment of the present application; and

图3为根据本申请一个实施方式的薄膜太阳能电池与现有技术中的薄膜太阳能电池的效率对比示意图。FIG. 3 is a schematic diagram illustrating the efficiency comparison between a thin film solar cell according to an embodiment of the present application and a thin film solar cell in the prior art.

具体实施方式Detailed ways

为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。可以理解,所述附图和详细说明只是对本申请优选实施方案的描述,而非以任何方式限制本申请的范围。For a better understanding of the application, various aspects of the application will be described in more detail with reference to the accompanying drawings. It should be understood that the drawings and detailed description are only descriptions of preferred embodiments of the present application, and are not intended to limit the scope of the present application in any way.

图1示出了根据本申请一个实施方式的薄膜太阳能电池1000的多层结构示意图。如图1所示,薄膜太阳能电池1000包括金属衬底100、布置在金属衬底100上的第一隔离层200、布置在第一隔离层200上的第二隔离层300、布置在第二隔离层300上的背电极层400和布置在背电极层400上的铜铟镓硒(CIGS)光吸收层500。FIG. 1 shows a schematic diagram of a multilayer structure of a thin film solar cell 1000 according to an embodiment of the present application. As shown in FIG. 1, a thin film solar cell 1000 includes a metal substrate 100, a first isolation layer 200 disposed on the metal substrate 100, a second isolation layer 300 disposed on the first isolation layer 200, and a second isolation layer 300 disposed on the second isolation layer. A back electrode layer 400 on layer 300 and a copper indium gallium selenide (CIGS) light absorbing layer 500 disposed on the back electrode layer 400 .

金属衬底100可以是柔性衬底,其中构成柔性金属衬底的材料一般包括不锈钢、纯钛、铝等金属中的一种或多种。柔性金属衬底具有重量轻、可弯曲的优点。在本实施方式中,金属衬底100可为不锈钢衬底。The metal substrate 100 may be a flexible substrate, wherein the material constituting the flexible metal substrate generally includes one or more of metals such as stainless steel, pure titanium, and aluminum. Flexible metal substrates have the advantage of being lightweight and bendable. In this embodiment, the metal substrate 100 may be a stainless steel substrate.

在一个实施方式中,第一隔离层200可为绝缘体隔离层,其例如包括三氧化二铝层、氧化硅层、铬层和纯钛层中的一种或多种。第一隔离层200可例如通过射频磁控溅射工艺形成在金属衬底100上,在一个实施方式中其厚度通常可例如为1-2微米。第一隔离层200还可以例如为三氧化二铝层。第一隔离层200可用于阻止金属衬底100中的金属元素、特别是铁元素进入CIGS光吸收层。In one embodiment, the first isolation layer 200 may be an insulator isolation layer, which includes, for example, one or more of an aluminum oxide layer, a silicon oxide layer, a chromium layer, and a pure titanium layer. The first isolation layer 200 can be formed on the metal substrate 100 by radio frequency magnetron sputtering process, and its thickness can be, for example, 1-2 microns in one embodiment. The first isolation layer 200 can also be, for example, an aluminum oxide layer. The first isolation layer 200 can be used to prevent metal elements in the metal substrate 100 , especially iron elements from entering the CIGS light absorbing layer.

在一个实施方式中,第二隔离层300可为绝缘体隔离层,其例如包括含钠玻璃薄层(SLGTF)。第二隔离层300可例如通过射频磁控溅射工艺形成在第一隔离层200上,其厚度通常可为200-300纳米。在本实施方式中,第二隔离层300为采用溅射法溅射靶材钠钙玻璃沉积形成的含钠玻璃薄层。第二隔离层300不仅可用于进一步阻止金属衬底100中的金属元素、特别是铁元素进入CIGS光吸收层,而且第二隔离层300中包括钠元素,其中,钠元素能够被补充至CIGS光吸收层以修复在CIGS光吸收层中由于缺硒导致的点缺陷。In one embodiment, the second isolation layer 300 may be an insulator isolation layer including, for example, a thin layer of sodium glass (SLGTF). The second isolation layer 300 can be formed on the first isolation layer 200 by, for example, radio frequency magnetron sputtering process, and its thickness can generally be 200-300 nm. In this embodiment, the second isolation layer 300 is a thin layer of soda-containing glass deposited by sputtering target material soda-lime glass. The second isolation layer 300 can not only be used to further prevent metal elements in the metal substrate 100, especially iron elements from entering the CIGS light absorbing layer, but also include sodium elements in the second isolation layer 300, wherein the sodium elements can be added to the CIGS light absorption layer. Absorbing layer to repair point defects caused by selenium deficiency in CIGS light absorbing layer.

使用三氧化二铝层和含钠玻璃薄层分别制造第一隔离层200和第二隔离层300,可以使这些隔离层具有良好的化学稳定性、高的沉积速率,并且与衬底和背电极之间的热膨胀系数匹配较好,成本低。而且,三氧化二铝层和含钠玻璃薄层可以采用统一的射频磁控溅射工艺来形成,工艺设备和条件简单。与现有技术中的氟化钠相比,含钠玻璃薄层不仅能够阻挡金属衬底100中的铁元素进入CIGS光吸收层,还能够以安全、可靠、无毒且成本低的方式向CIGS光吸收层提供钠元素,从而提高光吸收层的转换效率。The first isolation layer 200 and the second isolation layer 300 are produced respectively by using a layer of aluminum oxide and a thin layer of sodium-containing glass, which can make these isolation layers have good chemical stability, high deposition rate, and are compatible with the substrate and the back electrode. The thermal expansion coefficients between them are well matched, and the cost is low. Moreover, the aluminum oxide layer and the sodium-containing glass thin layer can be formed by a unified radio frequency magnetron sputtering process, and the process equipment and conditions are simple. Compared with sodium fluoride in the prior art, the thin layer of sodium-containing glass can not only prevent the iron element in the metal substrate 100 from entering the CIGS light absorption layer, but also provide CIGS with a safe, reliable, non-toxic and low-cost method. The light absorbing layer provides sodium element, thereby improving the conversion efficiency of the light absorbing layer.

在一个实施方式中,背电极层400可以为金属钼背电极导电层,也可采用射频磁控溅射生成金属钼背电极层。背电极层400可用于接收带有正电荷的载流子。In one embodiment, the back electrode layer 400 may be a metal molybdenum back electrode conductive layer, and the metal molybdenum back electrode layer may also be formed by radio frequency magnetron sputtering. The back electrode layer 400 may serve to receive positively charged carriers.

回到图1,根据本申请的一个实施方式的薄膜太阳能电池1000还可包括布置在CIGS光吸收层500上的缓冲层600、布置在缓冲层600上的本征氧化锌层700和布置在本征氧化锌层700上的窗口层800。其中,缓冲层600可例如为通过水浴法生产的硫化镉(Cds)缓冲层,本征氧化锌层700可例如为通过溅射法生成的本征氧化锌高阻层,窗口层800可例如为通过溅射法生成的掺铝氧化锌导电层。Returning to FIG. 1 , the thin film solar cell 1000 according to one embodiment of the present application may further include a buffer layer 600 disposed on the CIGS light absorbing layer 500, an intrinsic zinc oxide layer 700 disposed on the buffer layer 600, and an intrinsic zinc oxide layer disposed on the present application. Window layer 800 on zinc oxide layer 700. Wherein, the buffer layer 600 can be, for example, a cadmium sulfide (Cds) buffer layer produced by a water bath method, the intrinsic zinc oxide layer 700 can be, for example, an intrinsic zinc oxide high resistance layer generated by a sputtering method, and the window layer 800 can be, for example, Al-doped zinc oxide conductive layer produced by sputtering.

在根据本申请一个实施方式的薄膜太阳能电池工作时,阳光穿过窗口层800、本征氧化锌层700、缓冲层600,被CIGS光吸收层500吸收产生光生载流子。在内建电场的作用下于光吸收层500接近缓冲层600的区域,不同电荷的载流子分离,负电荷走向窗口层800,正电荷走向背电极层400。由此太阳能源源不断地转为可供使用的电力。When the thin-film solar cell according to one embodiment of the present application is working, sunlight passes through the window layer 800 , the intrinsic zinc oxide layer 700 , and the buffer layer 600 , and is absorbed by the CIGS light-absorbing layer 500 to generate photogenerated carriers. Under the action of the built-in electric field, in the region of the light absorbing layer 500 close to the buffer layer 600 , carriers of different charges are separated, negative charges move to the window layer 800 , and positive charges move to the back electrode layer 400 . Thus, the solar energy is continuously converted into usable electricity.

缓冲层600用于减缓CIGS光吸收层500和窗口层800之间晶格匹配不好而影响电池输出性能的问题,同时能有效地阻止窗口层800在制备过程中对CIGS光吸收层500的损伤,可消除由此引起的电池短路现象。低功率溅射的本征氧化锌层700有两个作用,一个是防止窗口层建设时对缓冲层的溅射伤害,另外一个是高电阻的本征氧化锌层起到防止电池漏电的作用。窗口层800用于接收带负电荷的载流子,从而防止CIGS薄膜太阳能电池发电时,因漏电问题导致器件性能下降。The buffer layer 600 is used to alleviate the problem of poor lattice matching between the CIGS light-absorbing layer 500 and the window layer 800 that affects the output performance of the battery, and at the same time effectively prevent the window layer 800 from damaging the CIGS light-absorbing layer 500 during the preparation process , can eliminate the battery short circuit phenomenon caused by it. The low-power sputtered intrinsic zinc oxide layer 700 has two functions, one is to prevent sputtering damage to the buffer layer during the construction of the window layer, and the other is to prevent battery leakage by the high-resistance intrinsic zinc oxide layer. The window layer 800 is used to receive negatively charged carriers, so as to prevent the performance of the CIGS thin-film solar cell from deteriorating due to leakage problems when generating electricity.

图2示出根据本申请另一实施方式的制造薄膜太阳能电池的方法2000的流程图。如图2所示,在步骤S201中,提供金属衬底100。如上所述,在本申请的一些实施方式中,可使用不锈钢箔形成柔性金属衬底100。FIG. 2 shows a flowchart of a method 2000 for manufacturing a thin film solar cell according to another embodiment of the present application. As shown in FIG. 2 , in step S201 , a metal substrate 100 is provided. As noted above, in some embodiments of the present application, stainless steel foil may be used to form the flexible metal substrate 100 .

在步骤S202中,在金属衬底100上通过溅射法生成第一隔离层200,其中,溅射法可包括射频磁控溅射工艺。在本实施方式中,通过射频磁控溅射工艺在金属衬底100上溅射一层三氧化二铝作为第一隔离层200,其厚度例如约为1-2微米。In step S202, the first isolation layer 200 is formed on the metal substrate 100 by a sputtering method, wherein the sputtering method may include a radio frequency magnetron sputtering process. In this embodiment, a layer of Al2O3 is sputtered on the metal substrate 100 by radio frequency magnetron sputtering process as the first isolation layer 200 , the thickness of which is about 1-2 microns, for example.

在步骤S203中,在第一隔离层200上通过溅射法生成第二隔离层300。在本实施方式中,通过射频磁控溅射工艺溅射靶材钠钙玻璃,然后沉积形成含钠玻璃薄层作为第二隔离层200,其厚度约为200-300纳米。含钠玻璃中含铁量很少,因此不会对CIGS光吸收层造成污染。In step S203 , the second isolation layer 300 is formed on the first isolation layer 200 by sputtering. In this embodiment, the target material soda-lime glass is sputtered by radio frequency magnetron sputtering process, and then a thin layer of soda-containing glass is deposited as the second isolation layer 200 with a thickness of about 200-300 nanometers. Sodium-containing glass contains very little iron, so it does not contaminate the CIGS light-absorbing layer.

在步骤S204中,在第二隔离层300上通过溅射法生成背电极层400。在本实施方式中,使用射频磁控溅射工艺溅射钼金属靶材,从而沉积形成钼背电极层作为背电极层400。In step S204 , a back electrode layer 400 is formed on the second isolation layer 300 by sputtering. In this embodiment, a molybdenum metal target is sputtered by using a radio frequency magnetron sputtering process, so as to deposit and form a molybdenum back electrode layer as the back electrode layer 400 .

在步骤S205中,在背电极层400上形成CIGS光吸收层500。其中,可通过溅射后硒化或通过共蒸发沉积来形成CIGS光吸收层500。在本实施方式中,使用射频磁控溅射硒化制备CIGS光吸收层,沉积的光吸收层厚度约为2微米。In step S205 , a CIGS light absorbing layer 500 is formed on the back electrode layer 400 . Wherein, the CIGS light absorbing layer 500 may be formed by selenization after sputtering or deposition by co-evaporation. In this embodiment, the CIGS light absorbing layer is prepared by radio frequency magnetron sputtering selenization, and the thickness of the deposited light absorbing layer is about 2 microns.

此外,如图2所示,在步骤S206中,在CIGS光吸收层500上使用化学水浴法沉积Cds(硫化镉)缓冲层600。应注意,也可使用其他能够替代Cds的材料作为缓冲层。在步骤S207中,在缓冲层600上使用溅射法生成本征氧化锌层700。在本实施方式中,在硫化镉缓冲层600上使用射频磁控溅射工艺溅射氧化锌陶瓷靶材,从而沉积本征氧化锌高阻层作为本征氧化锌层700。在步骤S208中,在本征氧化锌层700上生成窗口层800。其中,可使用掺铝氧化锌导电层作为窗口层800,也可通过使用n型的石墨烯薄膜作为导电窗口层800。n型的石墨烯薄膜包括多层层叠设置的单层石墨烯。In addition, as shown in FIG. 2 , in step S206 , a Cds (cadmium sulfide) buffer layer 600 is deposited on the CIGS light absorbing layer 500 using a chemical water bath method. It should be noted that other materials that can replace Cds can also be used as the buffer layer. In step S207 , an intrinsic zinc oxide layer 700 is formed on the buffer layer 600 using a sputtering method. In this embodiment, a zinc oxide ceramic target is sputtered on the cadmium sulfide buffer layer 600 using a radio frequency magnetron sputtering process, thereby depositing an intrinsic zinc oxide high resistance layer as the intrinsic zinc oxide layer 700 . In step S208 , a window layer 800 is formed on the intrinsic zinc oxide layer 700 . Wherein, an aluminum-doped zinc oxide conductive layer can be used as the window layer 800 , and an n-type graphene film can also be used as the conductive window layer 800 . The n-type graphene film includes a single layer of graphene arranged in a multilayer stack.

图3示出根据本申请一个实施方式的薄膜太阳能电池1000与现有技术中的薄膜太阳能电池的效率对比示意图。从图3中可以看出,设有根据本申请一个实施方式的三氧化二铝层(第一隔离层200)和含钠玻璃薄层(第二隔离层300)的薄膜太阳能电池1000的效率明显高于未设有该双层隔离层的太阳能电池。FIG. 3 is a schematic diagram showing the efficiency comparison between a thin film solar cell 1000 according to an embodiment of the present application and a thin film solar cell in the prior art. As can be seen from FIG. 3 , the efficiency of the thin-film solar cell 1000 provided with an aluminum oxide layer (first isolation layer 200 ) and a thin layer of sodium-containing glass (second isolation layer 300 ) according to one embodiment of the present application is significantly higher. higher than a solar cell not provided with the double-layer separator.

以上参照附图对本申请的示例性的实施方案进行了描述。本领域技术人员应该理解,上述实施方案仅仅是为了说明的目的而所举的示例,而不是用来进行限制。凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。The exemplary embodiments of the present application are described above with reference to the accompanying drawings. Those skilled in the art should understand that the above-mentioned embodiments are only examples for the purpose of illustration, rather than limitation. Any modification, equivalent replacement, etc. made under the teaching of the present application and the protection scope of the claims shall be included in the protection scope of the present application.

Claims (13)

1.一种薄膜太阳能电池,包括:1. A thin-film solar cell, comprising: 金属衬底;metal substrate; 第一隔离层,布置在所述金属衬底上;a first isolation layer arranged on the metal substrate; 第二隔离层,布置在所述第一隔离层上;a second isolation layer arranged on the first isolation layer; 背电极层,布置在所述第二隔离层上;以及a back electrode layer disposed on the second isolation layer; and 铜铟镓硒光吸收层,布置在所述背电极层上;a copper indium gallium selenide light absorbing layer arranged on the back electrode layer; 其中,所述第一隔离层和所述第二隔离层用于阻止所述金属衬底中的金属元素进入所述铜铟镓硒光吸收层,以及,Wherein, the first isolation layer and the second isolation layer are used to prevent metal elements in the metal substrate from entering the CIGS light absorbing layer, and, 其中,所述第二隔离层中包括能够补充至所述铜铟镓硒光吸收层以修复在其中由于缺硒导致的点缺陷的钠元素。Wherein, the second isolation layer includes sodium element that can be supplemented to the CIGS light absorbing layer to repair point defects therein caused by selenium deficiency. 2.如权利要求1所述的薄膜太阳能电池,其中,所述第一隔离层为三氧化二铝层或氧化硅层。2. The thin film solar cell according to claim 1, wherein the first isolation layer is an aluminum oxide layer or a silicon oxide layer. 3.如权利要求1所述的薄膜太阳能电池,其中,所述第二隔离层包括含钠玻璃层。3. The thin film solar cell of claim 1, wherein the second isolation layer comprises a soda-containing glass layer. 4.如权利要求1所述的薄膜太阳能电池,其中,所述金属衬底为柔性衬底,构成所述柔性衬底的材料包括不锈钢、钛和铝中的一种或多种。4. The thin film solar cell according to claim 1, wherein the metal substrate is a flexible substrate, and the material constituting the flexible substrate includes one or more of stainless steel, titanium and aluminum. 5.如权利要求1所述的薄膜太阳能电池,其中,所述背电极层为钼背电极导电层。5. The thin film solar cell according to claim 1, wherein the back electrode layer is a molybdenum back electrode conductive layer. 6.如权利要求1所述的薄膜太阳能电池,其中,所述第一隔离层和所述第二隔离层通过射频磁控溅射工艺被制造为分别具有1-2微米的厚度和200-300纳米的厚度。6. The thin-film solar cell as claimed in claim 1, wherein the first isolation layer and the second isolation layer are manufactured to have a thickness of 1-2 micrometers and a thickness of 200-300 μm, respectively, by a radio frequency magnetron sputtering process. nanometer thickness. 7.如权利要求1所述的薄膜太阳能电池,还包括缓冲层、窗口层和位于所述缓冲层和窗口层之间的本征氧化锌层,7. The thin film solar cell according to claim 1, further comprising a buffer layer, a window layer, and an intrinsic zinc oxide layer between the buffer layer and the window layer, 其中,所述缓冲层设置在所述铜铟镓硒光吸收层和所述窗口层之间,以降低所述铜铟镓硒光吸收层与所述窗口层之间的晶格失配,以及其中,所述窗口层设置在所述本征氧化锌层上,用于接收所述铜铟镓硒光吸收层生成的带负电荷的载流子,从而防止所述薄膜太阳能电池发电时产生的漏电。Wherein, the buffer layer is arranged between the CIGS light absorbing layer and the window layer, so as to reduce the lattice mismatch between the CIGS light absorbing layer and the window layer, and Wherein, the window layer is arranged on the intrinsic zinc oxide layer, and is used to receive the negatively charged carriers generated by the CIGS light absorbing layer, so as to prevent the Leakage. 8.一种制造薄膜太阳能电池的方法,包括:8. A method of making a thin film solar cell, comprising: 在金属衬底上通过溅射法生成第一隔离层;generating a first isolation layer on the metal substrate by sputtering; 在所述第一隔离层上通过溅射法生成第二隔离层;forming a second isolation layer on the first isolation layer by sputtering; 在所述第二隔离层上通过溅射法生成背电极层;以及forming a back electrode layer on the second isolation layer by sputtering; and 在所述背电极层上形成铜铟镓硒光吸收层;forming a copper indium gallium selenide light absorption layer on the back electrode layer; 其中,所述第一隔离层和所述第二隔离层用于阻止所述金属衬底中的金属元素进入所述铜铟镓硒光吸收层,并且所述第二隔离层中包括能够被补充至所述铜铟镓硒光吸收层以修复在所述铜铟镓硒光吸收层中由于缺硒导致的点缺陷的钠元素。Wherein, the first isolation layer and the second isolation layer are used to prevent metal elements in the metal substrate from entering the copper indium gallium selenide light absorption layer, and the second isolation layer includes to the CIGS light-absorbing layer to repair the sodium element of point defects caused by selenium deficiency in the CIGS light-absorbing layer. 9.如权利要求8所述的方法,其中,在所述背电极层上形成铜铟镓硒光吸收层的步骤包括通过溅射后硒化形成铜铟镓硒光吸收层或通过共蒸发沉积形成铜铟镓硒光吸收层。9. The method according to claim 8, wherein the step of forming a CIGS light absorbing layer on the back electrode layer comprises forming a CIGS light absorbing layer by sputtering followed by selenization or depositing by co-evaporation A copper indium gallium selenide light absorbing layer is formed. 10.如权利要求8所述的方法,其中,所述第一隔离层为三氧化二铝层或氧化硅层,并且具有1-2微米的厚度。10. The method of claim 8, wherein the first isolation layer is an aluminum oxide layer or a silicon oxide layer, and has a thickness of 1-2 micrometers. 11.如权利要求8所述的方法,其中,所述第二隔离层包括含钠玻璃层,并且具有200-300纳米的厚度。11. The method of claim 8, wherein the second isolation layer comprises a soda glass layer and has a thickness of 200-300 nanometers. 12.如权利要求8所述的方法,其中,所述金属衬底为柔性衬底,构成所述柔性衬底的材料包括不锈钢、钛和铝中的一种或多种。12. The method according to claim 8, wherein the metal substrate is a flexible substrate, and materials constituting the flexible substrate include one or more of stainless steel, titanium and aluminum. 13.如权利要求8所述的方法,还包括:13. The method of claim 8, further comprising: 在所述铜铟镓硒光吸收层上通过化学水浴法生成缓冲层;generating a buffer layer on the copper indium gallium selenide light absorbing layer by a chemical water bath method; 在所述缓冲层上通过溅射法生成本征氧化锌层;以及forming an intrinsic zinc oxide layer on the buffer layer by sputtering; and 在所述本征氧化锌层上生成窗口层。A window layer is formed on the intrinsic zinc oxide layer.
CN201410203029.XA 2014-05-14 2014-05-14 Thin film solar cell and method for manufacturing same Expired - Fee Related CN105097980B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410203029.XA CN105097980B (en) 2014-05-14 2014-05-14 Thin film solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410203029.XA CN105097980B (en) 2014-05-14 2014-05-14 Thin film solar cell and method for manufacturing same

Publications (2)

Publication Number Publication Date
CN105097980A true CN105097980A (en) 2015-11-25
CN105097980B CN105097980B (en) 2018-08-03

Family

ID=54578000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410203029.XA Expired - Fee Related CN105097980B (en) 2014-05-14 2014-05-14 Thin film solar cell and method for manufacturing same

Country Status (1)

Country Link
CN (1) CN105097980B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416346A (en) * 2018-04-28 2019-11-05 北京铂阳顶荣光伏科技有限公司 A copper indium gallium selenide solar cell module and its manufacturing method
WO2020019464A1 (en) * 2018-07-24 2020-01-30 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and method for preparing same
CN111384188A (en) * 2018-12-27 2020-07-07 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and preparation method thereof
CN116613230A (en) * 2023-06-26 2023-08-18 云谷(固安)科技有限公司 Solar cell and its preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836338A (en) * 2003-08-12 2006-09-20 山特维克知识产权股份有限公司 New metal strip product
CN102544138A (en) * 2012-02-08 2012-07-04 南开大学 Copper indium gallium selenium thin film solar cell provided with aluminum nitride (AIN) thin film layer
CN102751388A (en) * 2012-07-18 2012-10-24 林刘毓 A kind of preparation method of copper indium gallium selenide thin film solar cell
US20120305049A1 (en) * 2010-01-21 2012-12-06 Fujifilm Corporation Solar cell and solar cell manufacturing method
CN102903791A (en) * 2012-09-21 2013-01-30 深圳先进技术研究院 Method and system for manufacturing thin-film solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836338A (en) * 2003-08-12 2006-09-20 山特维克知识产权股份有限公司 New metal strip product
US20120305049A1 (en) * 2010-01-21 2012-12-06 Fujifilm Corporation Solar cell and solar cell manufacturing method
CN102544138A (en) * 2012-02-08 2012-07-04 南开大学 Copper indium gallium selenium thin film solar cell provided with aluminum nitride (AIN) thin film layer
CN102751388A (en) * 2012-07-18 2012-10-24 林刘毓 A kind of preparation method of copper indium gallium selenide thin film solar cell
CN102903791A (en) * 2012-09-21 2013-01-30 深圳先进技术研究院 Method and system for manufacturing thin-film solar cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416346A (en) * 2018-04-28 2019-11-05 北京铂阳顶荣光伏科技有限公司 A copper indium gallium selenide solar cell module and its manufacturing method
WO2020019464A1 (en) * 2018-07-24 2020-01-30 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and method for preparing same
CN111384188A (en) * 2018-12-27 2020-07-07 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and preparation method thereof
CN116613230A (en) * 2023-06-26 2023-08-18 云谷(固安)科技有限公司 Solar cell and its preparation method
CN116613230B (en) * 2023-06-26 2024-05-28 云谷(固安)科技有限公司 Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
CN105097980B (en) 2018-08-03

Similar Documents

Publication Publication Date Title
US20140352751A1 (en) Solar cell or tandem solar cell and method of forming same
KR101154786B1 (en) Solar cell apparatus and method of fabricating the same
CN207558806U (en) Thin-film solar cells
CN105794000A (en) Solar battery
CN106653898B (en) A kind of CZTS solar battery
CN103426943B (en) A kind of copper-zinc-tin-sulfur film solar cell rhythmo structure and its preparation method
CN101764169B (en) Solar cell element and manufacturing method thereof
US20120111388A1 (en) Solar Battery and Method For Manufacturing The Same
CN105097980B (en) Thin film solar cell and method for manufacturing same
CN104115283B (en) Solar cell module and manufacturing method thereof
KR20090100705A (en) Thin film type positive battery having tandem type of COS-based and CCS-based light absorbing layer and method for manufacturing same
CN103999236B (en) Solar cell and manufacturing method thereof
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
KR101154696B1 (en) Solar cell apparatus and method of fabricating the same
KR101300791B1 (en) Method for enhancing conductivity of molybdenum layer
KR101306529B1 (en) Solar cell and method of fabricating the same
CN103928566A (en) Method of making solar cells
CN104115278B (en) Solar cell and method of fabricating the same
KR101556465B1 (en) Manufacturing method for CIGS solar cells with a graphene back contact
KR101091319B1 (en) Solar cell and manufacturing method thereof
Murakami et al. Monolithically integrated CIGS sub-modules fabricated on new-structured flexible substrates
CN102163652A (en) Preparation method of thin-film solar cell
TWI430466B (en) Device structure for high efficiency cdte thin-film solar cell
CN105261666A (en) Thin-film solar cell
KR20130031020A (en) Solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180803

Termination date: 20200514