CN105093379A - Micro retardation film - Google Patents
Micro retardation film Download PDFInfo
- Publication number
- CN105093379A CN105093379A CN201410215844.8A CN201410215844A CN105093379A CN 105093379 A CN105093379 A CN 105093379A CN 201410215844 A CN201410215844 A CN 201410215844A CN 105093379 A CN105093379 A CN 105093379A
- Authority
- CN
- China
- Prior art keywords
- micro
- phase difference
- difference film
- bit phase
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000011347 resin Substances 0.000 claims description 39
- 229920005989 resin Polymers 0.000 claims description 39
- -1 acryl Chemical group 0.000 claims description 6
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 claims description 5
- 125000000524 functional group Chemical group 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical group C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 claims description 3
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- PQMOXTJVIYEOQL-UHFFFAOYSA-N Cumarin Natural products CC(C)=CCC1=C(O)C(C(=O)C(C)CC)=C(O)C2=C1OC(=O)C=C2CCC PQMOXTJVIYEOQL-UHFFFAOYSA-N 0.000 claims 1
- FSOGIJPGPZWNGO-UHFFFAOYSA-N Meomammein Natural products CCC(C)C(=O)C1=C(O)C(CC=C(C)C)=C(O)C2=C1OC(=O)C=C2CCC FSOGIJPGPZWNGO-UHFFFAOYSA-N 0.000 claims 1
- 229930016911 cinnamic acid Natural products 0.000 claims 1
- 235000013985 cinnamic acid Nutrition 0.000 claims 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 claims 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 claims 1
- 229920000768 polyamine Polymers 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- BAZVSMNPJJMILC-UHFFFAOYSA-N triadimenol Chemical compound C1=NC=NN1C(C(O)C(C)(C)C)OC1=CC=C(Cl)C=C1 BAZVSMNPJJMILC-UHFFFAOYSA-N 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 38
- 239000000758 substrate Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000003292 glue Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 229920002284 Cellulose triacetate Polymers 0.000 description 6
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229940114081 cinnamate Drugs 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- DKLSZWSCPZIYAW-UHFFFAOYSA-N (2-oxochromen-7-yl) 4-tert-butylbenzoate Chemical group C(C)(C)(C)C1=CC=C(C(=O)OC2=CC=C3C=CC(OC3=C2)=O)C=C1 DKLSZWSCPZIYAW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- NODFZXXHHNQVQI-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1.O=C1CCCC1 NODFZXXHHNQVQI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JTRMTKJQMQETGM-UHFFFAOYSA-N 1h-quinolin-2-one Chemical compound C1=CC=CC2=NC(O)=CC=C21.C1=CC=C2NC(=O)C=CC2=C1 JTRMTKJQMQETGM-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000005513 chalcones Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclo-pentanone Natural products O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical group C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种光学膜,且特别是有关于一种微位相差膜。The present invention relates to an optical film, and in particular to a micro retardation film.
背景技术Background technique
微位相差膜(PatternedRetarder,MicroRetarder)是在膜面上具有偶数列区域和奇数列区域的微结构光学膜。前述微位相差膜中奇偶列区域之间的相位差值(phasedifference)通常为λ/2,例如奇偶列区域的位相(phase)可分别为0与λ/2或是λ/4与-λ/4等等。因此,当微位相差膜贴附于显示器外层时,可以转换显示器奇偶列像素的光偏振态,而用以呈现3D影像。Micro-retarder film (Patterned Retarder, Micro Retarder) is a micro-structured optical film with even-numbered column regions and odd-numbered column regions on the film surface. The phase difference value (phasedifference) between the odd and even column regions in the aforementioned micro-retardation film is usually λ/2, for example, the phase (phase) of the odd and even column regions can be 0 and λ/2 or λ/4 and -λ/ 4 and so on. Therefore, when the micro-retardation film is attached to the outer layer of the display, it can convert the light polarization states of the pixels in the odd and even columns of the display to present 3D images.
最早的微位相差膜制法为机械加工法,先形成一层位相差层,然后再用刀模将奇数列或偶数列区域的位相差层去除,让奇数列与偶数列之间的相位差值为λ/2。The earliest micro-retardation film manufacturing method is a mechanical processing method. First, a layer of retardation layer is formed, and then the retardation layer in the odd-numbered or even-numbered column area is removed by a knife die, so that the phase difference between the odd-numbered and even-numbered columns The value is λ/2.
液晶ISO相制作法则是先将液晶涂布于整个基材上,再将奇数列或偶数列区域曝光,让奇数列或偶数列的位相值为λ/2。然后,再加热让未固化的液晶成为ISO相后再进行热固化,使其不具位相差(即其位相值为0)。The liquid crystal ISO phase production method is to first coat the liquid crystal on the entire substrate, and then expose the odd-numbered or even-numbered columns to make the phase value of the odd-numbered or even-numbered columns λ/2. Then, heat the uncured liquid crystal to become an ISO phase, and then perform thermal curing to make it have no phase difference (that is, its phase value is 0).
双区域配向法(使用摩擦或光配向的技术)则是让奇数列或偶数列区域具有不同的配向方向,让奇数列与偶数列区域之间的位相差值为λ/2。The dual-area alignment method (using rubbing or photo-alignment technology) is to allow the odd-numbered or even-numbered areas to have different alignment directions, so that the phase difference between the odd-numbered and even-numbered areas is λ/2.
上述各种方法在两种不同相位的交界处,多会有液晶排列紊乱的问题,导致漏光而形成亮线,造成3D影像的显示品质下降。In the above-mentioned various methods, at the junction of two different phases, there may be a problem of liquid crystal alignment disorder, resulting in light leakage and the formation of bright lines, resulting in a decrease in the display quality of 3D images.
发明内容Contents of the invention
因此,本发明的一方面在于提供一种微位相差膜,以解决上述的在两种不同相位的交界处会有漏光以致于产生亮线的问题,提升3D显示的品质。Therefore, one aspect of the present invention is to provide a micro-retardation film to solve the above-mentioned problem of light leakage at the junction of two different phases, resulting in bright lines, and improve the quality of 3D display.
本发明的上述微位相差膜由下至上包括:基材、微结构层、光配向层与液晶位相差层。上述的微结构层配置于该基材上,该微结构层具有多个梯形微突起,所述梯形微突起的底部夹角为12-85度。上述的光配向层共形地配置在该微结构层上,该液晶位相差层配置于该光配向层上。The micro-retardation film of the present invention comprises from bottom to top: a substrate, a microstructure layer, an optical alignment layer, and a liquid crystal retardation layer. The above-mentioned microstructure layer is configured on the base material, and the microstructure layer has a plurality of trapezoidal micro-protrusions, and the included angle at the bottom of the trapezoidal micro-protrusions is 12-85 degrees. The above optical alignment layer is configured conformally on the microstructure layer, and the liquid crystal retardation layer is configured on the optical alignment layer.
依据本发明一实施例,所述梯形微突起的底部夹角为12-65度。According to an embodiment of the present invention, the included angle at the bottom of the trapezoidal micro-protrusions is 12-65 degrees.
依据本发明另一实施例,所述梯形微突起的高度为0.5–2.0μm。According to another embodiment of the present invention, the height of the trapezoidal micro-protrusions is 0.5-2.0 μm.
依据本发明又一实施例,所述梯形微突起的底面与顶面的宽度为100–1000μm。According to yet another embodiment of the present invention, the width of the bottom surface and the top surface of the trapezoidal micro-protrusions is 100-1000 μm.
依据本发明再一实施例,该微结构层的材料为紫外线固化树脂或热固化树脂,例如可为丙烯酸树脂、硅氧树脂或聚胺甲酸酯。According to yet another embodiment of the present invention, the material of the microstructure layer is ultraviolet curable resin or thermal curable resin, such as acrylic resin, silicone resin or polyurethane.
依据本发明再一实施例,该基材的材料例如可为聚对苯二甲酸二乙酯、聚碳酸酯、三醋酸纤维素、聚甲基丙烯酸甲酯或环烯烃聚合物。According to yet another embodiment of the present invention, the material of the substrate may be, for example, polyethylene terephthalate, polycarbonate, cellulose triacetate, polymethyl methacrylate or cycloolefin polymer.
依据本发明再一实施例,该光配向层的材料可为光致交联型树脂(photo-inducedcross-linkingresin)、光致异构化型树脂(photo-inducedisomerizationresin)或光致裂解型树脂(photo-induceddecompositionresin),其具有可进行光聚合反应官能基,例如可为肉桂酸酯基、香豆素酯基、苯基苯乙烯酮基、马来酰亚胺基、喹啉酮基或双苯亚甲基。According to still another embodiment of the present invention, the material of the photo-alignment layer can be photo-induced cross-linking resin (photo-induced cross-linking resin), photo-induced isomerization resin (photo-induced isomerization resin) or photo-cleavage resin (photo -induceddecompositionresin), which has a photopolymerizable functional group, such as a cinnamate group, a coumarin ester group, a phenyl styryl ketone group, a maleimide group, a quinolinone group or a bisphenylene group methyl.
依据本发明再一实施例,该光配向层的厚度为50–100nm。According to yet another embodiment of the present invention, the thickness of the photo-alignment layer is 50-100 nm.
本发明的优点在于:本发明的微位相差膜,可以解决现有技术的微位相差膜在两种不同相位的交界处会有漏光以致于产生亮线的问题。The advantage of the present invention is that the micro-retardation film of the present invention can solve the problem of light leakage at the junction of two different phases of the prior art micro-retardation film so as to produce bright lines.
上述发明内容旨在提供本揭示内容的简化摘要,以使阅读者对本揭示内容具备基本的理解。此发明内容并非本揭示内容的完整概述,且其用意并非在指出本发明实施例的重要/关键元件或界定本发明的范围。在参阅下文实施方式后,本发明所属技术领域中具有通常知识者当可轻易了解本发明的基本精神及其他发明目的,以及本发明所采用的技术手段与实施方面。The above summary is intended to provide a simplified summary of the disclosure to provide readers with a basic understanding of the disclosure. This summary is not an extensive overview of the disclosure and it is not intended to identify key/critical elements of the embodiments of the invention or to delineate the scope of the invention. After referring to the following embodiments, those with ordinary knowledge in the technical field of the present invention can easily understand the basic spirit and other invention objectives of the present invention, as well as the technical means and implementation aspects adopted by the present invention.
附图说明Description of drawings
为让本发明的下述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:In order to make the following and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1A是绘示依据本发明一实施例的一种微位相差膜的俯视示意图;FIG. 1A is a schematic top view illustrating a micro-retardation film according to an embodiment of the present invention;
图1B是绘示图1A剖线B-B’的剖面结构示意图;Fig. 1B is a schematic diagram of a cross-sectional structure showing the section line B-B' in Fig. 1A;
图2是绘示依据本发明一实施例的一种微位相差膜的制造流程图;FIG. 2 is a flow chart illustrating the manufacture of a micro-retardation film according to an embodiment of the present invention;
图3A是显示在微结构层脱膜后,在微结构层的底面与斜面交界处留有残胶;Figure 3A shows that after the microstructure layer is stripped, there is residual glue at the junction of the bottom surface and the slope of the microstructure layer;
图3B-图9是显示各实验例与比较例以偏光显微镜观察所得的照片;Fig. 3B-Fig. 9 are the photographs showing each experimental example and comparative example observed with a polarizing microscope;
其中,符号说明:Among them, the symbol description:
100:微位相差膜100a:第一位相区100: micro-retardation film 100a: first phase region
100b:第二位相区100c:交界区100b: second phase area 100c: junction area
110:基材120:微结构层110: substrate 120: microstructure layer
122:梯形微突起124:顶面122: trapezoidal micro-protrusion 124: top surface
126:底面128:斜面126: bottom surface 128: slope
130:光配向层134:顶面130: photo-alignment layer 134: top surface
136:底面138:斜面136: Bottom surface 138: Inclined surface
140:液晶位相差层300:残胶140: liquid crystal phase difference layer 300: residual glue
h:梯形微突起的高度h: height of trapezoidal microprojection
θ:梯形微突起的斜面与底面延伸线的夹角。θ: Angle between the slope of the trapezoidal micro-protrusion and the extension line of the bottom surface.
具体实施方式Detailed ways
依据上述,提供一种微位相差膜,可以解决上述的微位相差膜在两种不同相位的交界处会有漏光以致于产生亮线的问题。在下面的叙述中,将会介绍上述的微位相差膜的例示结构与其例示的制造方法。为了容易了解所述实施例之故,下面将会提供不少技术细节。当然,并不是所有的实施例皆需要这些技术细节。同时,一些广为人知的结构或元件,仅会以示意的方式在附图中绘出,以适当地简化附图内容。According to the above, a micro-retardation film is provided, which can solve the above-mentioned problem that the micro-retardation film has light leakage at the junction of two different phases, resulting in bright lines. In the following description, an exemplary structure of the aforementioned micro-retardation film and an exemplary manufacturing method thereof will be introduced. For the sake of easy understanding of the described embodiments, a number of technical details will be provided below. Of course, not all embodiments require these technical details. Meanwhile, some well-known structures or elements are only drawn schematically in the drawings to appropriately simplify the contents of the drawings.
微位相差膜的结构Structure of Microretardation Film
请同时参考图1A-图1B,图1A是绘示依据本发明一实施例的一种微位相差膜的俯视示意图,图1B是绘示图1A剖线B-B’的剖面结构示意图。Please refer to FIG. 1A-FIG. 1B at the same time. FIG. 1A is a schematic top view of a micro-retardation film according to an embodiment of the present invention, and FIG. 1B is a schematic cross-sectional structure diagram showing the section line B-B' in FIG. 1A.
在图1A中,微位相差膜100具有第一位相区100a、第二位相区100b与交界区100c,其中第一位相区100a与第二位相区100b的位相差值为λ/2。在图1B的剖面结构示意图中,微位相差膜100具有基材110、微结构层120、共形的(conformal)光配向层130与液晶位相差层140。In FIG. 1A , the micro-retardation film 100 has a first phase region 100a, a second phase region 100b and a junction region 100c, wherein the phase difference between the first phase region 100a and the second phase region 100b is λ/2. In the schematic cross-sectional structure of FIG. 1B , the microretardation film 100 has a substrate 110 , a microstructure layer 120 , a conformal (conformal) photo-alignment layer 130 and a liquid crystal retardation layer 140 .
上述的基材110的材料例如可为聚对苯二甲酸二乙酯(polyethyleneterephthalate,PET)、聚碳酸酯(polycarbonate,PC)、三醋酸纤维素(triacetylcellulose,TAC)、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)或环烯烃聚合物(cyclo-olefinpolymer,COP)。基材110的位相差值越小越好,以免影响最后3D画面的显示效果。例如,基材110的位相差值可小于20nm,较佳为0nm。而基材的厚度约为25–200μm。The material of the above-mentioned substrate 110 can be, for example, polyethylene terephthalate (polyethyleneterephthalate, PET), polycarbonate (polycarbonate, PC), triacetylcellulose (triacetylcellulose, TAC), polymethyl methacrylate ( polymethylmethacrylate, PMMA) or cyclo-olefin polymer (cyclo-olefin polymer, COP). The smaller the phase difference value of the base material 110, the better, so as not to affect the display effect of the final 3D image. For example, the phase difference of the substrate 110 may be less than 20 nm, preferably 0 nm. The thickness of the substrate is about 25–200 μm.
上述的微结构层120具有多个梯形微突起122。梯形微突起122的顶面124、底面126与斜面128分别对应至微位相差膜100的第一位相区100a、第二位相区100b与交界区100c,如图1B所示。上述梯形微突起122的高度h主要是由液晶位相差层140的液晶材料的双折射率来决定的。液晶位相差层140的液晶材料的双折射率差值(Δn)越大,所需的高度h就越小,以让第一位相区100a与第二位相区100b的位相差值为λ/2。一般来说,梯形微突起122的高度h约为0.5–2.0μm,例如可为2μm。梯形微突起125的顶面124与底面126的宽度大约为100–1000μm,例如可为500μm。微结构层120的斜面128与底面126延伸线的夹角θ(亦即是梯形微突起122的底部夹角θ)较佳为12-85度,更佳为12-65度。The aforementioned microstructure layer 120 has a plurality of trapezoidal micro-protrusions 122 . The top surface 124 , the bottom surface 126 and the inclined surface 128 of the trapezoidal micro-protrusion 122 respectively correspond to the first phase region 100 a , the second phase region 100 b and the junction region 100 c of the micro-retardation film 100 , as shown in FIG. 1B . The height h of the trapezoidal micro-protrusions 122 is mainly determined by the birefringence of the liquid crystal material of the liquid crystal retardation layer 140 . The greater the birefringence difference (Δn) of the liquid crystal material of the liquid crystal phase difference layer 140, the smaller the required height h, so that the phase difference between the first phase region 100a and the second phase region 100b is λ/2 . Generally, the height h of the trapezoidal micro-protrusions 122 is about 0.5-2.0 μm, for example, 2 μm. The width of the top surface 124 and the bottom surface 126 of the trapezoidal micro-protrusion 125 is about 100-1000 μm, for example, 500 μm. The included angle θ between the slope 128 of the microstructure layer 120 and the extension line of the bottom surface 126 (that is, the included angle θ at the bottom of the trapezoidal micro-protrusions 122 ) is preferably 12-85 degrees, more preferably 12-65 degrees.
而微结构层120的材料为固化后的可固化树脂,其包括紫外线固化树脂(UVcurableresin)与热固化树脂(thermo-curableresin)。举例来说,上述的可固化树脂可为丙烯酸树脂(acrylicresin)、硅氧树脂(silicone)或热固型聚胺酯树脂(polyurethane)。上述的丙烯酸树脂例如可为甲基丙烯酸酯树脂,上述的硅氧树脂例如可为聚二甲基硅氧烷,上述的热固型聚胺酯树脂例如可为聚胺甲酸酯。The material of the microstructure layer 120 is cured curable resin, which includes UV curable resin and thermo-curable resin. For example, the above-mentioned curable resin can be acrylic resin, silicone resin or thermosetting polyurethane resin. The above-mentioned acrylic resin may be, for example, methacrylate resin, the above-mentioned silicone resin may be, for example, polydimethylsiloxane, and the above-mentioned thermosetting polyurethane resin may be, for example, polyurethane.
上述的光配向层130由于与微结构层120的表面共形,因此其也具有顶面134、底面136与斜面138等结构,三者分别对应至微位相差膜100的第一位相区100a、第二位相区100b与交界区100c,如图1B所示。光配向层130的厚度约为50–100nm。The above-mentioned photo-alignment layer 130 is conformal to the surface of the microstructure layer 120, so it also has structures such as a top surface 134, a bottom surface 136, and an inclined surface 138, which correspond to the first phase region 100a, The second phase region 100b and the junction region 100c are shown in FIG. 1B . The thickness of the photo-alignment layer 130 is about 50-100 nm.
光配向层130的材料为光固化后的光配向树脂。光配向树脂为一种光敏感材料,可利用线性偏极紫外光以特定方向照射光配向树脂,以引发各方异向性的光反应后,再诱导位于其上的液晶分子顺向排列。上述的光配向树脂属于光致交联型树脂(photo-inducedcross-linkingresin),其包含各种可以进行光聚合反应的官能基,例如可为肉桂酸酯基(cinnamate)、香豆素酯基(coumarin)、苯基苯乙烯酮基(chalcone)、马来酰亚胺基(maleimide)、喹啉酮基(quinolinone)或双苯亚甲基[bis(benzylidene)]。具有上述官能基的光配向树脂所需曝光能量较低,最低仅需5mJ/cm2即可产生配向效果。The material of the photo-alignment layer 130 is photo-cured photo-alignment resin. Photo-alignment resin is a kind of light-sensitive material, which can be irradiated with linear polarized ultraviolet light in a specific direction to trigger various anisotropic photo-reactions, and then induce the liquid crystal molecules on it to align in an orderly manner. The photo-alignment resin mentioned above belongs to photo-induced cross-linking resin (photo-induced cross-linking resin), which contains various functional groups capable of photopolymerization, such as cinnamate (cinnamate), coumarin ester ( coumarin), phenyl styrene ketone (chalcone), maleimide (maleimide), quinolinone (quinolinone) or bis(benzylidene)]. The photo-alignment resins with the above-mentioned functional groups require lower exposure energy, and only need 5mJ/cm 2 at the minimum to produce an alignment effect.
上述的液晶位相差层140,由于其上表面为平坦的,但其下方的光配向层130的表面为高低不平,因此让液晶位相差层140具有不同的厚度,造成入射的偏振光在通过具有不同厚度的液晶位相差层140之后,光线的电磁场的振动方向会被旋转至不同的角度。因此,通过液晶位相差层140不同厚度区域的光线将会具有不同的位相,让显示器可以显示3D影像。The above-mentioned liquid crystal retardation layer 140, since its upper surface is flat, but the surface of the photo-alignment layer 130 below it is uneven, so the liquid crystal retardation layer 140 has different thicknesses, causing the incident polarized light to pass through with After the liquid crystal phase difference layer 140 with different thicknesses, the vibration direction of the electromagnetic field of light will be rotated to different angles. Therefore, the light passing through regions of different thicknesses of the liquid crystal retardation layer 140 will have different phases, so that the display can display 3D images.
液晶位相差层140所用的液晶材料为聚合性液晶材料,包括可以光固化或热固化的液晶材料。由于液晶位相差层140在第一位相区100a的厚度与在第二位相区100b的厚度差值即为梯形微突起122的高度h,而且要让第一位相区100a与第二位相区100b的位相差值为λ/2。所以液晶材料的双折射率差值Δn以及液晶位相差层140在第一位相区100a的厚度与在第二位相区100b的厚度差值需要符合λ/2=Δn×h的关系式。The liquid crystal material used in the liquid crystal retardation layer 140 is a polymerizable liquid crystal material, including a liquid crystal material that can be cured by light or by heat. Since the thickness difference between the thickness of the liquid crystal phase difference layer 140 in the first phase region 100a and the second phase region 100b is the height h of the trapezoidal micro-protrusion 122, and the first phase region 100a and the second phase region 100b The phase difference value is λ/2. Therefore, the birefringence difference Δn of the liquid crystal material and the thickness difference between the first phase region 100 a and the second phase region 100 b of the liquid crystal retardation layer 140 must comply with the relational expression λ/2=Δn×h.
举例来说,当入射光的波长为560nm且液晶材料的双折射率差值为0.14时,液晶位相差层140在第一位相区100a的厚度为1μm,在第二位相区100b的厚度为3μm。再举一例来说,当入射光的波长为560nm且液晶材料的双折射率差值为0.56时,液晶位相差层140在第一位相区100a的厚度为0.5μm,在第二位相区100b的厚度为1.5μm。For example, when the wavelength of the incident light is 560nm and the birefringence difference of the liquid crystal material is 0.14, the thickness of the liquid crystal retardation layer 140 in the first phase region 100a is 1 μm, and the thickness in the second phase region 100b is 3 μm. . As another example, when the wavelength of the incident light is 560 nm and the birefringence difference of the liquid crystal material is 0.56, the thickness of the liquid crystal retardation layer 140 in the first phase region 100a is 0.5 μm, and the thickness of the second phase region 100b is 0.5 μm. The thickness is 1.5 μm.
微位相差膜的制造方法Manufacturing method of micro-retardation film
上述微位相差膜的制造方法请参考图2,其是绘示依据本发明一实施例的一种微位相差膜的制造流程图。下面的详细说明,请同时参照图1A-图1B与图2。Please refer to FIG. 2 for the manufacturing method of the aforementioned micro-retardation film, which is a flowchart illustrating a manufacturing process of a micro-retardation film according to an embodiment of the present invention. For the following detailed description, please refer to FIG. 1A-FIG. 1B and FIG. 2 at the same time.
首先,在步骤200中,先在基材110上涂布一层可固化树脂,涂布的方法可为任何可用的方法,例如狭缝涂布法(diecoating)或凹版印刷式涂布法(gravurecoating)。接着,利用具有立体图案的模具滚轮或模具印章压印上述的可固化树脂层,让可固化树脂层的表面形成梯形微突起122。在步骤220中,依据可固化树脂的材料来选择利用光或热,让可固化树脂固化。然后在步骤230中,让固化的树脂层脱膜,形成微结构层120。基材110与可固化树脂的材料已于上面详述过,因此不再赘述之。First, in step 200, a layer of curable resin is coated on the substrate 110, and the coating method can be any available method, such as slit coating (diecoating) or gravure coating (gravurecoating). ). Next, the above-mentioned curable resin layer is embossed with a mold roller or a mold stamp with a three-dimensional pattern, so that trapezoidal micro-protrusions 122 are formed on the surface of the curable resin layer. In step 220 , the curable resin is cured by using light or heat according to the material of the curable resin. Then in step 230 , the cured resin layer is stripped to form the microstructure layer 120 . The materials of the base material 110 and the curable resin have been described in detail above, and thus will not be repeated here.
在步骤240中,在微结构层120的上共形地涂布一层光配向树脂,涂布的方法可为任何可用的方法,例如旋转涂布法。然后在步骤250中,使用线性偏极光固化光配向树脂,形成光配向层130。上述线性偏极光的偏振方向与微位相差膜100的各位相区(亦即第一位相区100a、第二位相区100b与交界区100c)走向的夹角不为0或180度,亦即线性偏极光的偏振方向与微位相差膜100各位相区走向的夹角(以下简称为配向角)为非平行。此外,由于微结构层120是以斜面128连结顶面124与底面126,而非以垂直面连结顶面124与底面126,因此让位于斜面128上的光配向树脂更容易涂布上去,也更容易照射到偏极光而固化。In step 240, a layer of photo-alignment resin is conformally coated on the microstructure layer 120, and the coating method can be any available method, such as spin coating method. Then in step 250 , the photo-alignment resin is cured with linear polarized light to form the photo-alignment layer 130 . The angle between the polarization direction of the above-mentioned linearly polarized light and the direction of each phase region of the micro-retardation film 100 (that is, the first phase region 100a, the second phase region 100b, and the junction region 100c) is not 0 or 180 degrees, that is, linear The angle between the polarization direction of the polarized light and the direction of the phase regions of the micro-retardation film 100 (hereinafter referred to as the alignment angle) is non-parallel. In addition, since the microstructure layer 120 connects the top surface 124 and the bottom surface 126 with the inclined surface 128 instead of connecting the top surface 124 and the bottom surface 126 with the vertical surface, it is easier to coat the photo-alignment resin on the inclined surface 128. It is easier to cure when exposed to polarized light.
在步骤260中,在光配向层130之上涂布一层液晶层,涂布的方法可为任何可用的方法,例如旋转涂布法。然后在步骤270中,以光或热来固化液晶层,形成液晶位相差层140,完成微位相差膜100的制作。同样地,由于光配向层130是以斜面138连结顶面134与底面136,而非以垂直面连结顶面134与底面136,因此让位于斜面138上的液晶层更容易涂布上去,也更容易照射到光而固化。In step 260, a liquid crystal layer is coated on the photo-alignment layer 130, and the coating method can be any available method, such as spin coating method. Then in step 270 , the liquid crystal layer is cured by light or heat to form the liquid crystal retardation layer 140 , and the fabrication of the micro retardation film 100 is completed. Similarly, since the photo-alignment layer 130 connects the top surface 134 and the bottom surface 136 with the inclined surface 138 instead of connecting the top surface 134 and the bottom surface 136 with the vertical surface, it is easier to coat the liquid crystal layer on the inclined surface 138. It is easier to cure by exposure to light.
实施例Example
下面各实验例与比较例的微位相差膜的制做方法如下所述,唯一的差别为图1B中梯形微突起122的底部夹角θ大小不同而已。The manufacturing methods of the micro-retardation films of the following experimental examples and comparative examples are as follows. The only difference is that the angle θ at the bottom of the trapezoidal micro-protrusions 122 in FIG. 1B is different.
首先,在三醋酸纤维素(triacetylcellulose;TAC)基材上,涂布一层可用紫外光固化的丙烯酸树脂(acrylicresin)树脂。利用模具压印后,以紫外光照射树脂层,让树脂层固化定型后,进行脱膜,形成微结构层。First, a layer of acrylic resin curable by ultraviolet light is coated on a triacetylcellulose (TAC) substrate. After imprinting with a mold, the resin layer is irradiated with ultraviolet light, and after the resin layer is cured and shaped, the film is removed to form a microstructure layer.
接着,让甲乙酮(methylethylketone)与环戊酮(cyclopentanone)以1:1的重量比例配制成混合溶剂。然后在混合溶剂中加入光配向树脂(瑞士Rolic,型号ROP103,肉桂酸酯系,固含量10%),配制成固含量为1.25wt%的光配向树脂溶液。接下来,以旋转涂布法(3000rpm,40秒)让光配向树脂溶液共形地涂布在上述的微结构层之上,再烘干(100℃,2分钟)以去除溶剂。最后,以线性偏极紫外光(配向角为45°,照射剂量为180mJ/cm2)照射干燥后的光配向膜,让光配向膜固化。Next, let methyl ethyl ketone (methylethylketone) and cyclopentanone (cyclopentanone) be prepared into a mixed solvent at a weight ratio of 1:1. Then a photo-alignment resin (Rolic, Switzerland, model ROP103, cinnamate, solid content 10%) was added to the mixed solvent to prepare a photo-alignment resin solution with a solid content of 1.25 wt%. Next, the photo-alignment resin solution was conformally coated on the microstructure layer by spin coating (3000 rpm, 40 seconds), and then dried (100° C., 2 minutes) to remove the solvent. Finally, the dried photo-alignment film was irradiated with linearly polarized extreme ultraviolet light (alignment angle: 45°, irradiation dose: 180 mJ/cm 2 ), so that the photo-alignment film was cured.
接着,让液晶粉末溶解在环戊酮中,配制成固含量20wt%的液晶溶液。以旋转涂布法(1000rpm,20秒),将液晶溶液涂布在光配向层上,再烘干(60℃,5分钟)以去除溶剂。最后在氮气下,用紫外光(照射剂量为120mJ/cm2)照射液晶层,让其固化,形成液晶位相差层,完成微位相差膜。Next, the liquid crystal powder was dissolved in cyclopentanone to prepare a liquid crystal solution with a solid content of 20 wt%. The liquid crystal solution was coated on the photo-alignment layer by spin coating (1000 rpm, 20 seconds), and then dried (60° C., 5 minutes) to remove the solvent. Finally, under nitrogen, irradiate the liquid crystal layer with ultraviolet light (irradiation dose: 120mJ/cm 2 ), let it solidify, form a liquid crystal phase difference layer, and complete the micro phase difference film.
各实验例与比较例的3D显示画面的测试结果如下面表1以及图3A-图9所示。在图3B、图4、图5B、图9的照片中,偏光显微镜的光源的偏振方向是平行或垂直于样品的配向角。因此在一般的状况下,若没有漏光的问题,则观察到的显示画面会是全黑的。若交界区有漏光的问题,则会在第一位相区与第二位相区之间的交界区产生亮线。其中,图9若使用前述的观测条件,会无法观察到缺陷。所以,为了要凸显漏光的问题,因此偏光显微镜使用较强的光源,以凸显漏光的问题。The test results of the 3D display screens of the experimental examples and comparative examples are shown in Table 1 below and FIGS. 3A-9 . In the photographs of FIG. 3B, FIG. 4, FIG. 5B, and FIG. 9, the polarization direction of the light source of the polarizing microscope is parallel or perpendicular to the alignment angle of the sample. Therefore, under normal conditions, if there is no light leakage problem, the observed display screen will be completely black. If there is a problem of light leakage in the boundary region, bright lines will be generated in the boundary region between the first phase region and the second phase region. Among them, if the aforementioned observation conditions are used in FIG. 9 , defects cannot be observed. Therefore, in order to highlight the problem of light leakage, the polarizing microscope uses a stronger light source to highlight the problem of light leakage.
在图5A、图6、图7、图8中,偏光显微镜的光源的偏振方向与样品配向角之间的夹角为其他角度。此外,为了凸显微位相差膜在偏光显微镜下的相位差异,于微位向差膜上还增加一层1/4波板,因此可以观察到一亮区及一暗区交替排列的影像。In FIG. 5A , FIG. 6 , FIG. 7 , and FIG. 8 , the included angles between the polarization direction of the light source of the polarizing microscope and the sample alignment angle are other angles. In addition, in order to highlight the phase difference of the micro-retardation film under a polarizing microscope, a layer of 1/4 wave plate is added to the micro-retardation film, so that an image in which a bright area and a dark area are alternately arranged can be observed.
表1:各实验例与比较例的梯形微突起的底部夹角对3D显示画面的影响Table 1: The influence of the bottom angle of the trapezoidal micro-protrusions of each experimental example and comparative example on the 3D display screen
由表1以及图3A-图9的结果可知,当微结构层中梯形微突起的底部夹角过大时(如比较例1的87.1°),越容易在微结构层的底面与斜面交界处产生留有残胶的问题(请见图3A的残胶300),让位在此处之上的液晶分子排列混乱,因此让微位相差膜的交界区产生亮线(请见图3B),而且像素还会有漏光的问题。From the results of Table 1 and Fig. 3A-Fig. 9, it can be seen that when the bottom angle of the trapezoidal micro-protrusions in the microstructure layer is too large (87.1° as in Comparative Example 1), it is easier for the bottom surface of the microstructure layer and the slope junction. The problem of residual glue (please see the residual glue 300 in FIG. 3A ) is generated, and the arrangement of the liquid crystal molecules on the place is disordered, so that the interface area of the micro-retardation film produces bright lines (please see FIG. 3B ), And the pixels will also have the problem of light leakage.
当微结构层中梯形微突起的底部夹角稍微减少时(如实验例1的84.3°),则可以减少微结构层的底面与斜面交界处的残胶问题,同时也可解决像素漏光的问题(请见图4)。When the bottom angle of the trapezoidal micro-protrusions in the microstructure layer is slightly reduced (84.3° as in Experimental Example 1), the problem of residual glue at the junction of the bottom surface of the microstructure layer and the slope can be reduced, and the problem of pixel light leakage can also be solved. (See Figure 4).
而实验例2-5的梯形微突起的底部夹角为12.5°-63.4°,不仅梯形微突起在脱膜后没有留下任何残胶,让微位相差膜的交界区不会产生亮线,像素也没有漏光的问题(请见图5A-图8)。However, the included angle at the bottom of the trapezoidal micro-protrusions in Experimental Example 2-5 is 12.5°-63.4°. Not only did the trapezoidal micro-protrusions not leave any residual glue after the film was removed, but also the junction area of the micro-retardation film would not produce bright lines. The pixels also do not suffer from light leakage (see Figures 5A-8).
但是当微结构层中梯形微突起的底部夹角继续减少时,虽然仍不会有残胶问题导致微位相差膜交界区的亮线问题,但是因为相位不均匀,造成像素又开始有漏光的问题(请见图9),造成显示品质下降。However, when the angle between the bottom of the trapezoidal micro-protrusions in the microstructure layer continues to decrease, although there will still be no problem of residual glue leading to the problem of bright lines in the junction area of the micro-retardation film, but due to the uneven phase, the pixels will start to have light leakage again. problem (see Figure 9), resulting in a decrease in display quality.
因此,由以上实施例可知,微结构层的梯形微突起的底部夹角不可过大,也不可过小,大约为12–85度时,可以获得正常的3D画面显示品质。Therefore, it can be known from the above embodiments that the included angle at the bottom of the trapezoidal micro-protrusions in the microstructure layer should not be too large or too small. When it is about 12-85 degrees, normal 3D image display quality can be obtained.
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为准。Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410215844.8A CN105093379A (en) | 2014-05-21 | 2014-05-21 | Micro retardation film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410215844.8A CN105093379A (en) | 2014-05-21 | 2014-05-21 | Micro retardation film |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105093379A true CN105093379A (en) | 2015-11-25 |
Family
ID=54574226
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410215844.8A Pending CN105093379A (en) | 2014-05-21 | 2014-05-21 | Micro retardation film |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105093379A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107367784A (en) * | 2016-05-12 | 2017-11-21 | Jxtg能源株式会社 | Optical phase difference component and projector |
| CN114940015A (en) * | 2022-05-07 | 2022-08-26 | 宁波维真显示科技股份有限公司 | Flexible 3DLED and preparation device and preparation method thereof |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1614465A (en) * | 2003-11-06 | 2005-05-11 | 精工爱普生株式会社 | Liquid crystal display device and electronic apparatus |
| JP2006084510A (en) * | 2004-09-14 | 2006-03-30 | Dainippon Printing Co Ltd | Retardation plate |
| JP2009251530A (en) * | 2008-04-10 | 2009-10-29 | Kaneka Corp | Coating film for optical compensation, optical element and manufacturing method of coating film for optical compensation |
| JP2010044280A (en) * | 2008-08-15 | 2010-02-25 | Toppan Printing Co Ltd | Retardation substrate and liquid crystal display device |
| JP2011164563A (en) * | 2010-01-14 | 2011-08-25 | Sony Corp | Retardation element and manufacturing method of the same, display device, substrate with light absorbing layer and manufacturing method of the same |
| CN102262255A (en) * | 2010-05-27 | 2011-11-30 | 明基材料股份有限公司 | Patterned phase retardation film and method for manufacturing the same |
| CN102338901A (en) * | 2011-08-30 | 2012-02-01 | 明基材料有限公司 | Phase difference film and manufacturing method thereof and manufacturing method for roller |
| CN102401924A (en) * | 2011-12-01 | 2012-04-04 | 明基材料有限公司 | Patterned phase retardation film and method for manufacturing the same |
| CN102667593A (en) * | 2009-10-19 | 2012-09-12 | 株式会社Lg化学 | Patterned retardation film and its preparation method |
| CN202886787U (en) * | 2012-11-15 | 2013-04-17 | 京东方科技集团股份有限公司 | Phase difference plate and display device |
| CN103323898A (en) * | 2012-03-20 | 2013-09-25 | 远东新世纪股份有限公司 | Method for manufacturing phase difference plate |
| US20130293817A1 (en) * | 2010-08-02 | 2013-11-07 | Sharp Kabushiki Kaisha | Liquid crystal display device |
-
2014
- 2014-05-21 CN CN201410215844.8A patent/CN105093379A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1614465A (en) * | 2003-11-06 | 2005-05-11 | 精工爱普生株式会社 | Liquid crystal display device and electronic apparatus |
| JP2006084510A (en) * | 2004-09-14 | 2006-03-30 | Dainippon Printing Co Ltd | Retardation plate |
| JP2009251530A (en) * | 2008-04-10 | 2009-10-29 | Kaneka Corp | Coating film for optical compensation, optical element and manufacturing method of coating film for optical compensation |
| JP2010044280A (en) * | 2008-08-15 | 2010-02-25 | Toppan Printing Co Ltd | Retardation substrate and liquid crystal display device |
| CN102667593A (en) * | 2009-10-19 | 2012-09-12 | 株式会社Lg化学 | Patterned retardation film and its preparation method |
| JP2011164563A (en) * | 2010-01-14 | 2011-08-25 | Sony Corp | Retardation element and manufacturing method of the same, display device, substrate with light absorbing layer and manufacturing method of the same |
| CN102262255A (en) * | 2010-05-27 | 2011-11-30 | 明基材料股份有限公司 | Patterned phase retardation film and method for manufacturing the same |
| US20130293817A1 (en) * | 2010-08-02 | 2013-11-07 | Sharp Kabushiki Kaisha | Liquid crystal display device |
| CN102338901A (en) * | 2011-08-30 | 2012-02-01 | 明基材料有限公司 | Phase difference film and manufacturing method thereof and manufacturing method for roller |
| CN102401924A (en) * | 2011-12-01 | 2012-04-04 | 明基材料有限公司 | Patterned phase retardation film and method for manufacturing the same |
| CN103323898A (en) * | 2012-03-20 | 2013-09-25 | 远东新世纪股份有限公司 | Method for manufacturing phase difference plate |
| CN202886787U (en) * | 2012-11-15 | 2013-04-17 | 京东方科技集团股份有限公司 | Phase difference plate and display device |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107367784A (en) * | 2016-05-12 | 2017-11-21 | Jxtg能源株式会社 | Optical phase difference component and projector |
| CN107367784B (en) * | 2016-05-12 | 2020-11-24 | Jxtg能源株式会社 | Optical retardation member and projector |
| CN114940015A (en) * | 2022-05-07 | 2022-08-26 | 宁波维真显示科技股份有限公司 | Flexible 3DLED and preparation device and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8520175B2 (en) | Patterned retarder film and method for manufacturing the same | |
| US7969541B2 (en) | Retardation film, method of manufacturing the same, and display | |
| TWI549819B (en) | Patterned retarder | |
| JP5885348B2 (en) | Method for producing patterned retardation film | |
| US20110292329A1 (en) | Patterned Retarder Film and Method for Manufacturing | |
| US10048419B2 (en) | Metallic wire grid polarizer and manufacturing method thereof | |
| JP2005516236A (en) | Method for producing patterned optical element | |
| TWI519866B (en) | A method of manufacturing a liquid crystal element, and a liquid crystal cell | |
| US10732463B1 (en) | Fabrication of nano-scale alignment patterns for liquid crystals to create switchable optical components | |
| US9995943B2 (en) | Phase difference plate and manufacturing method thereof, display device | |
| US20180292707A1 (en) | Display panel and manufacturing method thereof | |
| TW201310140A (en) | Pattern phase difference plate and manufacturing method thereof, and liquid crystal display device | |
| CN101387792B (en) | Manufacturing method of photoalignment film and alignment liquid | |
| US10203555B2 (en) | Process for producing a phase difference control component and liquid crystal display device | |
| TWI437332B (en) | A method for preparing composite phase difference plate | |
| CN105093379A (en) | Micro retardation film | |
| CN101556406B (en) | Manufacturing method of display substrate and liquid crystal cell | |
| US8828650B2 (en) | Method for making a retarder | |
| CN102317824A (en) | Polarization split element and method for manufacturing the same | |
| US9846266B2 (en) | Liquid crystalline polymer film with diffractive optical noise removed and method of manufacturing the same | |
| JP2015068949A (en) | Retardation film and method for manufacturing the same, polarizer, and image display device | |
| KR101310416B1 (en) | Method for making a retarder | |
| US20120182517A1 (en) | Method for manufacturing micro retarder without alignment layer | |
| US20220026609A1 (en) | Fast Making of Transparent Angularly Selective Polymer Films and Plates | |
| CN104375229A (en) | Manufacturing method of retardation film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151125 |
|
| WD01 | Invention patent application deemed withdrawn after publication |