CN105187037A - Pulse width modulation system control method and its error action preventing circuit - Google Patents
Pulse width modulation system control method and its error action preventing circuit Download PDFInfo
- Publication number
- CN105187037A CN105187037A CN201410231101.XA CN201410231101A CN105187037A CN 105187037 A CN105187037 A CN 105187037A CN 201410231101 A CN201410231101 A CN 201410231101A CN 105187037 A CN105187037 A CN 105187037A
- Authority
- CN
- China
- Prior art keywords
- voltage
- output
- level
- terminal
- microprocessor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Microcomputers (AREA)
Abstract
Description
技术领域technical field
本发明关于一种脉冲宽度调变系统控制方法,尤指一种可于微处理器建立本身内部各模块所需的电压阶段防止后级电路异常的脉冲宽度调变系统控制方法及其误动作防止电路。The present invention relates to a control method of a pulse width modulation system, especially a control method of a pulse width modulation system capable of preventing the abnormality of the subsequent circuit in the voltage stage required by the microprocessor to establish its own internal modules and its malfunction prevention circuit.
背景技术Background technique
脉冲宽度调变(PulseWidthModulation,PWM)系统已广泛地应用于各种电子装置,例如马达,以架构于控制电子装置的运作。传统脉冲宽度调变系统于控制后级电路作动时,须先在微处理器建立微处理器内的各模块所需的电压阶段时对其内部对应的模块分别建立对应的工作电压,而建立过程中须使脉冲宽度调变系统输出端皆保持致能准位电压(高准位电压),以保护后级电路不会有误作动情形发生,当各模块的所接收的电压已建立完成时,脉冲宽度调变系统才可输出禁能准位电压(低准位电压)而驱动后级电路开始作动。The Pulse Width Modulation (PWM) system has been widely used in various electronic devices, such as motors, to control the operation of the electronic devices. When the traditional pulse width modulation system controls the operation of the subsequent circuit, it must first establish the corresponding working voltage for the corresponding modules inside the microprocessor when the microprocessor establishes the voltage stage required by each module in the microprocessor, and establishes During the process, the output terminals of the pulse width modulation system must maintain the enable level voltage (high level voltage) to protect the subsequent circuit from malfunctioning. When the received voltage of each module has been established , the pulse width modulation system can output the disable level voltage (low level voltage) to drive the subsequent stage circuit to start to operate.
参见图1,其为传统脉冲宽度调变系统的电路架构示意图。如图1所示,传统脉冲宽度调变系统1包含微处理器11及缓冲电路12,其中微处理器11包括多个输入端111、多个输出端112、第一模块113及第二模块114。微处理器11的多个输入端111分别接收不同的工作电压,例如第一工作电压V1及第二工作电压V2,以分别供微处理器11内部的第一模块113及第二模块114使用,其中第一工作电压V1供第一模块113例如模拟/数字转换模块使用,第二工作电压V2供第二模块114例如输入/输出状态模块使用,且多个输出端112于第二模块114接收第二工作电压V2时对应地输出电压△V。缓冲电路12具有输入端121、启动端122、输出控制端123及电源端124,其中输入端121与启动端122与微处理器11的对应输出端112电源连接,且接收微处理器11的输出端112所输出的输出电压△V,电源端124接收第一工作电压V1,使缓冲电路12可通过第一工作电压V1而运作。缓冲电路12系判断输入端121及启动端122所接收的电压的电压准位是否等于或小于缓冲电路12所设定的一电压判断值而判断输入端121及启动端122所接收的电压的电压准位的大小,以对应控制输出控制端123的输出状态,例如为高准位电压、低准位电压或高阻抗输出等。Referring to FIG. 1 , it is a schematic diagram of a circuit architecture of a traditional pulse width modulation system. As shown in FIG. 1 , a conventional pulse width modulation system 1 includes a microprocessor 11 and a buffer circuit 12, wherein the microprocessor 11 includes a plurality of input terminals 111, a plurality of output terminals 112, a first module 113 and a second module 114 . The multiple input terminals 111 of the microprocessor 11 respectively receive different working voltages, such as the first working voltage V 1 and the second working voltage V 2 , which are respectively supplied to the first module 113 and the second module 114 inside the microprocessor 11. Use, wherein the first working voltage V 1 is used by the first module 113 such as the analog/digital conversion module, the second working voltage V 2 is used by the second module 114 such as the input/output status module, and a plurality of output terminals 112 are used in the second The module 114 outputs a voltage ΔV correspondingly when receiving the second working voltage V 2 . The buffer circuit 12 has an input terminal 121, a starting terminal 122, an output control terminal 123 and a power supply terminal 124, wherein the input terminal 121 and the starting terminal 122 are connected to the corresponding output terminal 112 of the microprocessor 11, and receive the output of the microprocessor 11 The output voltage ΔV outputted from the terminal 112 , the power supply terminal 124 receives the first working voltage V 1 , so that the buffer circuit 12 can operate with the first working voltage V 1 . The buffer circuit 12 judges whether the voltage level of the voltage received by the input terminal 121 and the starting terminal 122 is equal to or less than a voltage judgment value set by the buffer circuit 12 to determine the voltage of the voltage received by the input terminal 121 and the starting terminal 122 The magnitude of the level corresponds to the output state of the control output control terminal 123 , such as high level voltage, low level voltage or high impedance output.
参见图1并配合图2A、图2B、图2C和图2D,其中图2A、图2B、图2C和图2D为传统脉冲宽度调变系统的内部各电压的时序图。于传统脉冲宽度调变系统1开始运作时,微处理器11的第一模块113及第二模块114的作动实际上具有时序要求,即第一模块113及第二模块114依序运作,因此微处理器11的多个输入端111会依序接收第一工作电压V1及第二工作电压V2,其中第一工作电压V1及第二工作电压V2在提供给微处理器11时,系分别由0V上升至所需电压准位,当第一工作电压V1及第二工作电压V2分别达到所需电压准位而完成电压的建立时,微处理器11内部的第一模块113及第二模块114才可分别正常运作。Referring to FIG. 1 together with FIG. 2A , FIG. 2B , FIG. 2C and FIG. 2D , wherein FIG. 2A , FIG. 2B , FIG. 2C and FIG. 2D are timing diagrams of various internal voltages of a conventional pulse width modulation system. When the traditional pulse width modulation system 1 starts to operate, the actions of the first module 113 and the second module 114 of the microprocessor 11 actually have timing requirements, that is, the first module 113 and the second module 114 operate sequentially, so The multiple input terminals 111 of the microprocessor 11 receive the first operating voltage V 1 and the second operating voltage V 2 in sequence, wherein the first operating voltage V 1 and the second operating voltage V 2 are supplied to the microprocessor 11 , respectively rising from 0V to the required voltage level, when the first operating voltage V1 and the second operating voltage V2 respectively reach the required voltage level to complete the establishment of the voltage, the first module inside the microprocessor 11 113 and the second module 114 can operate normally respectively.
当脉冲宽度调变系统1开始运作而微处理器11于建立第一模块113及第二模块114的电压阶段时,首先,如图2A所示,于初始时点(t0)时,微处理器11的一输入端111开始接收第一工作电压V1。接着,于第一时点(t1)时,第一工作电压V1的电压准位由初始时点(t0)时的0V爬升至第一特定电压准位V1s,例如4.5V。此时,微处理器11的另一输入端111开始接收第二工作电压V2。的后,于第一时点(t1)至第二时点(t2)时,第一工作电压V1的电压准位已达到所需电压准位而完成电压建立,例如5V,故第一模块113开始运作,同时第二工作电压V2的电压准位由第一时点(t1)的0V爬升至第二特定电压准位V2s,例如2V。最后,于第三时点(t3)时,第二工作电压V2的电压准位已达到所需电压准位而完成电压建立,例如3.3V,故第二模块114也开始运作。When the pulse width modulation system 1 starts to operate and the microprocessor 11 is in the stage of establishing the voltage of the first module 113 and the second module 114, first, as shown in FIG. 2A , at the initial time point (t 0 ), the microprocessor 11 An input terminal 111 of the device 11 starts to receive the first working voltage V 1 . Then, at the first time point (t 1 ), the voltage level of the first operating voltage V 1 climbs from 0V at the initial time point (t 0 ) to a first specific voltage level V 1s , for example, 4.5V. At this time, another input terminal 111 of the microprocessor 11 starts to receive the second working voltage V 2 . After that, from the first time point (t 1 ) to the second time point (t 2 ), the voltage level of the first working voltage V 1 has reached the required voltage level and the voltage establishment is completed, for example, 5V, so the first A module 113 starts to operate, and at the same time, the voltage level of the second operating voltage V 2 climbs from 0V at the first time point (t 1 ) to a second specific voltage level V 2s , for example, 2V. Finally, at the third time point (t 3 ), the voltage level of the second operating voltage V 2 has reached the required voltage level to complete the voltage establishment, such as 3.3V, so the second module 114 also starts to operate.
由于微处理器11的多个输出端112的输出电压△V系对应于作为第二模块114(输入/输出状态模块)使用的第二工作电压V2而建立,且两者的电压准位也对应伴随着变化,因此输出电压△V实际上与第二工作电压V2的电压值相等,而于微处理器11的第二模块114接收第二工作电压V2的过程中,即如图2B所示,当微处理器11的输入端111于第一时点(t1)开始接收第二工作电压V2时,微处理器11的输出端112的输出电压△V亦对应地开始建立,且微处理器11的输出端112的输出电压△V系伴随着第二工作电压V2的电压准位而变化,亦即微处理器11的输出端112的输出电压△V对应第二工作电压V2而由第一时点(t1)时的0V爬升至第二时点(t2)的第二特定电压准位V2s,例如2V,并于第三时点(t3)时达到与第二工作电压V2相同的电压准位,例如3.3V。Since the output voltage ΔV of the multiple output terminals 112 of the microprocessor 11 is established corresponding to the second operating voltage V2 used as the second module 114 (input/output status module), and the voltage levels of the two are also Correspondence is accompanied by changes, so the output voltage ΔV is actually equal to the voltage value of the second operating voltage V2, and in the process of receiving the second operating voltage V2 by the second module 114 of the microprocessor 11, that is, as shown in Figure 2B As shown, when the input terminal 111 of the microprocessor 11 starts to receive the second operating voltage V 2 at the first time point (t 1 ), the output voltage ΔV of the output terminal 112 of the microprocessor 11 correspondingly starts to build up, And the output voltage ΔV of the output terminal 112 of the microprocessor 11 changes along with the voltage level of the second operating voltage V2, that is, the output voltage ΔV of the output terminal 112 of the microprocessor 11 corresponds to the second operating voltage V 2 climbs from 0V at the first time point (t 1 ) to the second specific voltage level V 2s at the second time point (t 2 ), such as 2V, and reaches it at the third time point (t 3 ). The same voltage level as the second working voltage V 2 , for example, 3.3V.
此外,于微处理器11的第二模块114接收第二工作电压V2的过程中,如图2C所示,缓冲电路12的输入端121及启动端122会接收微处理器11的输出端112所输出的输出电压△V,因此缓冲电路12的输入端121及启动端122的输入电压系对应于微处理器11的输出端112所输出的输出电压△V,即对应于第二工作电压V2。In addition, when the second module 114 of the microprocessor 11 receives the second operating voltage V2, as shown in FIG. The output voltage ΔV is output, so the input voltage of the input terminal 121 and the starting terminal 122 of the buffer circuit 12 corresponds to the output voltage ΔV output by the output terminal 112 of the microprocessor 11, that is, corresponds to the second operating voltage V 2 .
然而当微处理器11的第二模块114接收第二工作电压V2而开始建立第二工作电压V2的电压准位,且微处理器11提供给缓冲电路12的输入端121的输出电压△V(即为第二工作电压V2)开始建立,即微处理器11于第一时点(t1)开始建立输出电压△V且由第一时点(t1)时的0V爬升至第二时点(t1)的第二特定电压准位V2s,并于第三时点(t3)达到与第二工作电压V2相同的电压准位的过程中,缓冲电路12会根据其输入端121及启动端122所接收的输出电压△V而对应地使输出控制端123产生致能准位电压(高准位电压)或禁能准位电压(低准位电压)。当微处理器11的输出电压△V由第一时点(t1)时的0V爬升至第三时点(t3)而达到所需电压准位并完成电压建立时,于此输出电压△V上升的期间内,由于微处理器11的输出电压△V可能小于缓冲电路12所设定的电压判断值,例如图2A所示,当微处理器11的输出电压△V在尚未到达第二特定电压准位V2s时小于缓冲电路12设定的电压判断值,导致缓冲电路12识别其输入端121及启动端122皆为禁能准位电压(低准位电压),故缓冲电路12便于输出控制端123产生禁能准位电压VL(低准位电压),即缓冲电路12的输出控制端123于第一期间T1会产生禁能准位电压VL,如图2D所示,如此将使脉冲宽度调变系统1于建立第一模块113及第二模块114所需的电压阶段时输出禁能准位电压VL而造成后级电路14异常作动,导致后级电路14有损坏的风险存在。However, when the second module 114 of the microprocessor 11 receives the second operating voltage V2 and starts to establish the voltage level of the second operating voltage V2, and the microprocessor 11 provides the output voltage Δ V (that is, the second working voltage V 2 ) starts to build up, that is, the microprocessor 11 starts to build up the output voltage ΔV at the first time point (t 1 ) and climbs from 0V at the first time point (t 1 ) to the first time point (t 1 ). When the second specific voltage level V 2s at the second time point (t 1 ) reaches the same voltage level as the second operating voltage V 2 at the third time point (t 3 ), the buffer circuit 12 will The output voltage ΔV received by the input terminal 121 and the enabling terminal 122 correspondingly causes the output control terminal 123 to generate an enabling level voltage (high level voltage) or a disabling level voltage (low level voltage). When the output voltage △V of the microprocessor 11 climbs from 0V at the first time point (t 1 ) to the third time point (t 3 ) to reach the required voltage level and complete the voltage establishment, the output voltage △ During the rising period of V, since the output voltage ΔV of the microprocessor 11 may be lower than the voltage judgment value set by the buffer circuit 12, for example, as shown in FIG. 2A, when the output voltage ΔV of the microprocessor 11 has not yet reached the second When the specific voltage level V 2s is less than the voltage judgment value set by the buffer circuit 12, the buffer circuit 12 recognizes that its input terminal 121 and the starting terminal 122 are both disabled level voltages (low level voltages), so the buffer circuit 12 is convenient The output control terminal 123 generates a disabling level voltage V L (low level voltage), that is, the output control terminal 123 of the buffer circuit 12 will generate a disabling level voltage V L during the first period T 1 , as shown in FIG. 2D , In this way, the pulse width modulation system 1 will output the disabled level voltage V L when establishing the required voltage stages of the first module 113 and the second module 114, which will cause the subsequent circuit 14 to operate abnormally, causing the subsequent circuit 14 to have Risk of damage exists.
发明内容Contents of the invention
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。A brief overview of the invention is given below in order to provide a basic understanding of some aspects of the invention. It should be understood that this summary is not an exhaustive overview of the invention. It is not intended to identify key or critical parts of the invention nor to delineate the scope of the invention. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
本发明解决传统脉冲宽度调变系统的输出状态在微处理器建立各模块所需的电压阶段时系输出禁能准位电压(低准位电压),造成后级电路异常的问题。The invention solves the problem that the output state of the traditional pulse width modulation system is outputting the disabled level voltage (low level voltage) when the microprocessor establishes the voltage stage required by each module, which causes the abnormality of the subsequent stage circuit.
本发明的目的在于提供一种脉冲宽度调变系统控制方法及其误动作防止电路,当微处理器在依序建立内部各模块所需的电压过程中,脉冲宽度调变系统的误动作防止电路可持续的输出致能准位电压至缓冲电路的启动端,使缓冲电路的输出端为高阻抗输出,如此一来,可避免后级电路于微处理器在依序建立内部各模块所需的电压过程中产生异常作动,进而保护后级电路,以解决传统脉冲宽度调变系统于建立各模块的所需电压阶段时输出端禁能准位电压(低准位电压)至后级电路,导致后级电路异常作动而容易损坏的缺失。The purpose of the present invention is to provide a pulse width modulation system control method and its malfunction prevention circuit. When the microprocessor is sequentially establishing the voltage required by each internal module, the malfunction prevention circuit of the pulse width modulation system Continuously output the enable level voltage to the start-up end of the buffer circuit, so that the output end of the buffer circuit is a high-impedance output. In this way, it can avoid the need for the subsequent circuit in the microprocessor to sequentially build internal modules. Abnormal action occurs during the voltage process, thereby protecting the subsequent stage circuit, to solve the problem that the traditional pulse width modulation system establishes the required voltage stage of each module, and the output terminal disables the level voltage (low level voltage) to the subsequent stage circuit. Defects that cause abnormal operation of the subsequent stage circuit and are easily damaged.
根据本发明的构想,本发明提供一种脉冲宽度调变系统控制方法,其中脉冲宽度调变系统与后级电路电源连接且包含微处理器、缓冲电路及误动作防止电路,误动作防止电路系电源连接于微处理器的第一输出端及缓冲电路的启动端之间,且缓冲电路具有输出控制端电源连接于后级电路,控制方法包含步骤:(a)依序提供第一工作电压以及第二工作电压至微处理器;(b)于微处理器接收第二工作电压,且第二工作电压由零上升至所需电压准位的电压建立过程中,对应第二工作电压的建立于微处理器的第一输出端建立输出电压;(c)通过误动作防止电路将输出电压置换为致能准位电压,并输出至启动端;以及(d)根据启动端的致能准位电压而使缓冲电路的输出控制端为高阻抗输出,以防止后级电路产生误动作。According to the idea of the present invention, the present invention provides a control method for a pulse width modulation system, wherein the pulse width modulation system is connected to the power supply of the subsequent stage circuit and includes a microprocessor, a buffer circuit and a malfunction prevention circuit, and the malfunction prevention circuit system The power supply is connected between the first output terminal of the microprocessor and the starting terminal of the buffer circuit, and the buffer circuit has an output control terminal power supply connected to the subsequent circuit, and the control method includes the steps of: (a) providing the first operating voltage and The second operating voltage is sent to the microprocessor; (b) the microprocessor receives the second operating voltage, and the second operating voltage rises from zero to the required voltage level during the voltage establishment process, corresponding to the establishment of the second operating voltage at The first output terminal of the microprocessor establishes an output voltage; (c) replaces the output voltage with the enabling level voltage by the malfunction prevention circuit, and outputs it to the starting terminal; and (d) according to the enabling level voltage of the starting terminal Make the output control terminal of the buffer circuit a high-impedance output to prevent malfunction of the subsequent stage circuit.
进一步地,该误动作防止电路包含:Further, the malfunction prevention circuit includes:
一第一开关,该第一开关的一电流输入端接收该第二工作电压;a first switch, a current input terminal of the first switch receives the second working voltage;
一第一电阻,该第一电阻的一端与该第一输出端电源连接,并接收该输出电压,该第一电阻的另一端与该第一开关的一控制端电源连接;A first resistor, one end of the first resistor is connected to the first output terminal power supply, and receives the output voltage, and the other end of the first resistor is connected to a control terminal power supply of the first switch;
一第二电阻,该第二电阻的一端与该第一开关的一电流输出端电源连接;a second resistor, one end of the second resistor is connected to a current output end of the first switch;
一第二开关,该第二开关的一控制端与该第二电阻的另一端电源连接,该第二开关的一电流输出端与一接地端电源连接;以及a second switch, a control end of the second switch is connected to the other end of the second resistor with a power supply, and a current output end of the second switch is connected to a ground terminal with a power supply; and
一第三电阻,该第三电阻的一端与该第二开关的一电流输入端电源连接,该第三电阻的另一端接收该第一工作电压。A third resistor, one end of the third resistor is connected to a current input end of the second switch, and the other end of the third resistor receives the first working voltage.
进一步地,在该步骤(c)中,该输出电压使该第一开关及该第二开关截止,使该第一工作电压经由该第三电阻及该第二开关的该电流输入端而传送至该启动端,以构成该致能准位电压。Further, in the step (c), the output voltage turns off the first switch and the second switch, so that the first operating voltage is transmitted to the The start terminal is used to form the enable level voltage.
进一步地,还包括步骤:该缓冲电路依据一输入端或该启动端上的电压的准位是否等于或小于一电压判断值而判断该缓冲电路的该输入端或该启动端上的电压准位大小,以对应控制该输出控制端的输出状态。Further, it also includes a step: the buffer circuit judges the voltage level of the input terminal or the starting terminal of the buffer circuit according to whether the voltage level of the input terminal or the starting terminal is equal to or lower than a voltage judgment value Size, to control the output state of the output control terminal correspondingly.
进一步地,当该微处理器接收该第一工作电压时,该第一工作电压系由零爬升至一所需电压准位,且当该第一工作电压达到该所需电压准位而完成电压建立时,该第一工作电压的电压准位等于该电压判断值。Further, when the microprocessor receives the first operating voltage, the first operating voltage climbs from zero to a required voltage level, and when the first operating voltage reaches the required voltage level, the voltage is completed When established, the voltage level of the first working voltage is equal to the voltage judging value.
进一步地,当该缓冲电路的该输入端或该启动端上的电压的准位等于该电压判断值时,该缓冲电路判断该输入端或该启动端上的电压的准位为致能准位,当该缓冲电路的该输入端或该启动端上的电压的准位小于该电压判断值时,该缓冲电路判断该输入端或该启动端上的电压的准位为禁能准位。Further, when the voltage level of the input terminal or the activation terminal of the buffer circuit is equal to the voltage judgment value, the buffer circuit judges that the voltage level of the input terminal or the activation terminal is the enabling level When the voltage level of the input terminal or the activation terminal of the buffer circuit is lower than the voltage judgment value, the buffer circuit judges that the voltage level of the input terminal or the activation terminal is a disabled level.
进一步地,当该缓冲电路的该输入端上的电压为致能准位而该启动端上的电压为禁能准位时,该缓冲电路的该输出控制端上的电压为致能准位,当该缓冲电路的该输入端上的电压为禁能准位而该启动端上的电压为禁能准位时,该缓冲电路的该输出控制端上的电压为禁能准位,当该缓冲电路的该输入端上的电压为致能准位或禁能准位而该启动端上的电压为致能准位时,该缓冲电路的该输出控制端为该高阻抗输出。Further, when the voltage on the input end of the buffer circuit is an enable level and the voltage on the start end is a disable level, the voltage on the output control end of the buffer circuit is an enable level, When the voltage on the input terminal of the buffer circuit is a disable level and the voltage on the start terminal is a disable level, the voltage on the output control terminal of the buffer circuit is a disable level, when the buffer When the voltage on the input terminal of the circuit is the enabling level or the disabling level and the voltage on the starting terminal is the enabling level, the output control terminal of the buffer circuit is the high-impedance output.
根据本发明的构想,本发明另提供一种误动作防止电路,系应用于脉冲宽度调变系统中,且连接于微处理器的第一输出端及缓冲电路的启动端之间,其中微处理器系依序接收第一工作电压以及第二工作电压,当微处理器接收第二工作电压时,第一输出端系建立与第二工作电压相对应且由零爬升至所需电压准位的输出电压,误动作防止电路系包含:第一开关,第一开关的电流输入端接收第二工作电压;第一电阻,第一电阻的一端与第一输出端电源连接,并接收输出电压,第一电阻的另一端与第一开关的控制端电源连接;第二电阻,第二电阻的一端与第一开关的电流输出端电源连接;第二开关,第二开关的控制端与第二电阻的另一端电源连接,第二开关的电流输出端与接地端电源连接;以及第三电阻,第三电阻的一端与第二开关的电流输入端电源连接,第三电阻的另一端接收第一工作电压;其中,当输出电压由零爬升至所需电压准位时,第一开关以及第二开关截止,使第一工作电压经由第三电阻及第二开关的电流输入端而传送至启动端,使缓冲电路的输出控制端为高阻抗输出。According to the idea of the present invention, the present invention also provides a malfunction prevention circuit, which is applied in a pulse width modulation system and connected between the first output terminal of the microprocessor and the start terminal of the buffer circuit, wherein the microprocessor The device receives the first operating voltage and the second operating voltage in sequence. When the microprocessor receives the second operating voltage, the first output terminal establishes a voltage corresponding to the second operating voltage and climbs from zero to the required voltage level. The output voltage and malfunction prevention circuit system includes: a first switch, the current input terminal of the first switch receives the second working voltage; a first resistor, one end of the first resistor is connected to the power supply of the first output terminal, and receives the output voltage, the second The other end of a resistor is connected to the power supply of the control terminal of the first switch; the second resistor is connected to the power supply of the current output terminal of the first switch; the second switch is connected to the control terminal of the second switch. The other end is connected to the power supply, the current output end of the second switch is connected to the ground end power supply; and the third resistor, one end of the third resistor is connected to the power supply of the current input end of the second switch, and the other end of the third resistor receives the first operating voltage ; Wherein, when the output voltage climbs from zero to the required voltage level, the first switch and the second switch are turned off, so that the first operating voltage is transmitted to the starting terminal through the third resistor and the current input terminal of the second switch, so that The output control terminal of the buffer circuit is a high-impedance output.
进一步地,该微处理器具有一第一模块、一第二模块以及一第三模块,该第一模块接收该第一工作电压,该第二模块接收该第二工作电压,该第三模块接收一第三工作电压,该微处理器于接收该第二工作电压后接收该第三工作电压,该第三工作电压系由零爬升至一所需电压准位,且该第一模块、该第二模块以及该第三模块依序启动。Further, the microprocessor has a first module, a second module and a third module, the first module receives the first operating voltage, the second module receives the second operating voltage, and the third module receives a The third working voltage, the microprocessor receives the third working voltage after receiving the second working voltage, the third working voltage climbs from zero to a required voltage level, and the first module, the second modules and the third module are started sequentially.
进一步地,当该第三模块开始运作一默认时间后,该微处理器进行一重置动作,使该第一输出端的该输出电压的电压准位由该微处理器控制。Further, after the third module starts to operate for a default time, the microprocessor performs a reset action, so that the voltage level of the output voltage of the first output terminal is controlled by the microprocessor.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
当微处理器在依序建立内部各模块所需的电压的过程中,脉冲宽度调变系统的误动作防止电路可持续的输出致能准位电压至缓冲电路的启动端,使缓冲电路的输出端为高阻抗输出,如此一来,可避免后级电路于微处理器在依序建立内部各模块所需的电压的过程中产生异常作动,进而保护后级电路。When the microprocessor is in the process of sequentially establishing the voltage required by each internal module, the pulse width modulation system malfunction prevention circuit can continuously output the enable level voltage to the start terminal of the buffer circuit, so that the output of the buffer circuit The terminal is a high-impedance output. In this way, it can prevent the subsequent circuit from abnormal operation during the process of establishing the voltage required by the internal modules in sequence by the microprocessor, thereby protecting the subsequent circuit.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为传统脉冲宽度调变系统的电路架构示意图;FIG. 1 is a schematic diagram of a circuit architecture of a conventional pulse width modulation system;
图2A为图1所示的第一种传统脉冲宽度调变系统的内部各电压的时序图;FIG. 2A is a timing diagram of various internal voltages of the first conventional pulse width modulation system shown in FIG. 1;
图2B为图1所示的第一种传统脉冲宽度调变系统的内部各电压的时序图;FIG. 2B is a timing diagram of various internal voltages of the first conventional pulse width modulation system shown in FIG. 1;
图2C为图1所示的第一种传统脉冲宽度调变系统的内部各电压的时序图;FIG. 2C is a timing diagram of various internal voltages of the first conventional pulse width modulation system shown in FIG. 1;
图2D为图1所示的第一种传统脉冲宽度调变系统的内部各电压的时序图;FIG. 2D is a timing diagram of various internal voltages of the first conventional pulse width modulation system shown in FIG. 1;
图3为本发明较佳实施例的脉冲宽度调变系统的电路架构示意图;FIG. 3 is a schematic diagram of a circuit architecture of a pulse width modulation system according to a preferred embodiment of the present invention;
图4为图3所示的缓冲电路的输入端、启动端及输出端之间的作动关系真值表;FIG. 4 is a truth table of the actuation relationship between the input terminal, the starting terminal and the output terminal of the buffer circuit shown in FIG. 3;
图5A为图3所示的第一种脉冲宽度调变系统的内部各电压的时序图;FIG. 5A is a timing diagram of various internal voltages of the first pulse width modulation system shown in FIG. 3;
图5B为图3所示的第二种脉冲宽度调变系统的内部各电压的时序图;FIG. 5B is a timing diagram of various internal voltages of the second pulse width modulation system shown in FIG. 3;
图5C为图3所示的第三种脉冲宽度调变系统的内部各电压的时序图;FIG. 5C is a timing diagram of various internal voltages of the third pulse width modulation system shown in FIG. 3;
图5D为图3所示的第四种脉冲宽度调变系统的内部各电压的时序图;FIG. 5D is a timing diagram of various internal voltages of the fourth pulse width modulation system shown in FIG. 3 ;
图6为本发明较佳实施例的脉冲宽度调变系统的控制方法流程图。FIG. 6 is a flowchart of a control method of a pulse width modulation system according to a preferred embodiment of the present invention.
附图标记:Reference signs:
1:传统脉冲宽度调变系统;1: Traditional pulse width modulation system;
11:微处理器;11: Microprocessor;
111:输入端;111: input terminal;
112:输出端;112: output terminal;
113:第一模块;113: the first module;
114:第二模块;114: the second module;
12:缓冲电路;12: buffer circuit;
121:输入端;121: input terminal;
122:启动端;122: start terminal;
123:输出控制端;123: output control terminal;
124:电源端;124: power terminal;
14:后级电路;14: Post-stage circuit;
V1:第一工作电压;V 1 : the first working voltage;
V2:第二工作电压;V 2 : the second working voltage;
△V:输出电压;△V: output voltage;
t0:初始时点;t 0 : initial time point;
t1:第一时点;t 1 : the first time point;
t2:第二时点;t 2 : the second time point;
t3:第三时点;t 3 : the third time point;
T1:第一期间;T 1 : the first period;
T2:第二期间;T 2 : the second period;
VL:禁能准位电压;V L : Disable level voltage;
V1s:第一特定电压准位;V 1s : the first specific voltage level;
V2s:第二特定电压准位;V 2s : the second specific voltage level;
3:脉冲宽度调变系统;3: Pulse width modulation system;
31:微处理器;31: microprocessor;
311:第一输入端;311: the first input terminal;
312:第二输入端;312: the second input terminal;
313:第一输出端;313: the first output terminal;
314:第二输出端;314: the second output terminal;
315:第三输入端;315: the third input terminal;
316:第一模块;316: the first module;
317:第二模块;317: the second module;
318:第三模块;318: the third module;
32:缓冲电路;32: buffer circuit;
321:输入端;321: input terminal;
322:启动端;322: start terminal;
323:输出控制端;323: output control terminal;
324:电源端;324: power terminal;
33:误动作防止电路;33: Malfunction prevention circuit;
34:后级电路;34: Post-stage circuit;
Q1:第一开关;Q 1 : the first switch;
Q2:第二开关;Q 2 : the second switch;
R1:第一电阻;R 1 : the first resistor;
R2:第二电阻;R 2 : the second resistor;
R3:第三电阻;R 3 : the third resistor;
G:接地端;G: ground terminal;
V1’:第一工作电压;V 1 ': the first working voltage;
V2’:第二工作电压;V 2 ': the second working voltage;
V3’:第三工作电压;V 3 ': the third working voltage;
△V’:输出电压;△V': output voltage;
R4:第一拉升电阻;R 4 : the first pull-up resistor;
R5:第二拉升电阻;R 5 : the second pull-up resistor;
A、B、C:缓冲电路的输入端、启动端、输出控制端各自状态;A, B, C: the respective states of the input terminal, start terminal, and output control terminal of the buffer circuit;
V1s’:第一特定电压准位;V 1s ': the first specific voltage level;
V2s’:第二特定电压准位。V 2s ′: the second specific voltage level.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Elements and features described in one drawing or one embodiment of the present invention may be combined with elements and features shown in one or more other drawings or embodiments. It should be noted that representation and description of components and processes that are not related to the present invention and known to those of ordinary skill in the art are omitted from the drawings and descriptions for the purpose of clarity. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
参见图3,为本发明较佳实施例的脉冲宽度调变系统的电路架构示意图。如图3所示,脉冲宽度调变系统3与一后级电路34电源连接,以控制后级电路34的运作。脉冲宽度调变系统3系包含微处理器31、缓冲电路32及误动作防止电路33,其中微处理器31至少包括第一输入端311、第二输入端312、第一输出端313、第二输出端314、第一模块316以及第二模块317。微处理器31的第一输入端311及第二输入端312分别接收不同的工作电压,例如为5V的第一工作电压V1’及为3.3V的第二工作电压V2’,用以分别供微处理器31内部的第一模块316及第二模块317使用,其中第一工作电压V1’供第一模块316例如模拟/数字转换模块使用,第二工作电压V2’供第二模块317例如输入/输出状态模块使用。在上述实施例中,当第一工作电压V1’及第二工作电压V2’在提供给微处理器31时,分别由0V上升至所需电压准位,例如5V及3.3V,而当第一工作电压V1’及第二工作电压V2’分别达到所需电压准位而完成电压建立时,微处理器31内部的第一模块316及第二模块317才可分别开始运作。Referring to FIG. 3 , it is a schematic diagram of a circuit architecture of a pulse width modulation system according to a preferred embodiment of the present invention. As shown in FIG. 3 , the pulse width modulation system 3 is connected to a power supply of a subsequent circuit 34 to control the operation of the latter circuit 34 . The pulse width modulation system 3 includes a microprocessor 31, a buffer circuit 32 and a malfunction prevention circuit 33, wherein the microprocessor 31 at least includes a first input terminal 311, a second input terminal 312, a first output terminal 313, a second The output terminal 314 , the first module 316 and the second module 317 . The first input terminal 311 and the second input terminal 312 of the microprocessor 31 respectively receive different operating voltages, for example, the first operating voltage V 1 ′ of 5V and the second operating voltage V 2 ′ of 3.3V, for respectively It is used by the first module 316 and the second module 317 inside the microprocessor 31, wherein the first working voltage V 1 ' is used by the first module 316 such as an analog/digital conversion module, and the second working voltage V 2 ' is used by the second module 317 such as input/output status modules are used. In the above embodiment, when the first operating voltage V 1 ′ and the second operating voltage V 2 ′ are supplied to the microprocessor 31, they rise from 0V to required voltage levels, such as 5V and 3.3V, respectively. When the first working voltage V 1 ′ and the second working voltage V 2 ′ respectively reach the required voltage level and the voltage establishment is completed, the first module 316 and the second module 317 inside the microprocessor 31 can respectively start to operate.
第一输出端313及第二输出端314用以输出一输出电压△V’,其中输出电压△V’在第二工作电压V2’建立的过程中,即由0V上升至所需电压准位时,对应第二工作电压V2’的建立而建立,即当第二工作电压V2’由0V上升至所需电压准位时,输出电压△V’亦由0V同步上升至所需电压准位,此外,输出电压△V’与第二工作电压V2’在电压的建立过程中,输出电压△V’与第二工作电压V2’的电压值系彼此相同。另外,在本实施例中,第一模块316以及第二模块317之间存在启动时序,即第一模块316及第二模块317依序启动。此外,在其它实施例中,第二输出端314还与一第二拉升电阻R5电源连接,且经由第二拉升电阻R5而接收第二工作电压V2’。The first output terminal 313 and the second output terminal 314 are used to output an output voltage ΔV', wherein the output voltage ΔV' rises from 0V to the required voltage level during the establishment of the second operating voltage V 2 ' , it is established corresponding to the establishment of the second working voltage V 2 ', that is, when the second working voltage V 2 ' rises from 0V to the required voltage level, the output voltage △V' also rises synchronously from 0V to the required voltage level In addition, the voltage values of the output voltage ΔV' and the second operating voltage V 2 ' are the same as each other during the voltage establishment process. In addition, in this embodiment, there is a startup sequence between the first module 316 and the second module 317 , that is, the first module 316 and the second module 317 are started up sequentially. In addition, in other embodiments, the second output terminal 314 is also connected to a second pull-up resistor R 5 and receives the second operating voltage V 2 ′ through the second pull-up resistor R 5 .
缓冲电路32具有输入端321、启动端322、输出控制端323及电源端324,其中输入端321与微处理器31的第二输出端314电性电源连接。输出控制端323与后级电路34及一第一拉升电阻R4电源连接,且经由第一拉升电阻R4而接收第一工作电压V1’。电源端324接收第一工作电压V1’,缓冲电路32系于第一工作电压V1’建立完成时开始运作。The buffer circuit 32 has an input terminal 321 , a start terminal 322 , an output control terminal 323 and a power supply terminal 324 , wherein the input terminal 321 is electrically connected to the second output terminal 314 of the microprocessor 31 . The output control terminal 323 is connected to the power supply of the subsequent circuit 34 and a first pull-up resistor R 4 , and receives the first operating voltage V 1 ′ through the first pull-up resistor R 4 . The power terminal 324 receives the first operating voltage V 1 ′, and the buffer circuit 32 starts to operate when the first operating voltage V 1 ′ is established.
参见图4并配合图3,其中图4系为图3所示的缓冲电路的输入端、启动端及输出端之间的作动关系真值表。于本实施例中,缓冲电路32根据输入端321及启动端322所接收的电压的电压准位而控制输出控制端323的输出状态。还进一步说明,缓冲电路32判断输入端321或启动端322所接收的电压的电压准位是否等于或小于缓冲电路32所设定的一电压判断值而判断输入端321或启动端322所接收的电压的电压准位大小,并根据输入端321或启动端322的判断结果而对应控制输出控制端323的输出状态,其中当输入端321或启动端322所接收的电压的电压准位等于缓冲电路32所设定的一电压判断值时,缓冲电路32系判断输入端321或启动端322所接收的电压的电压准位为致能准位电压(高准位电压),反之,当输入端321或启动端322所接收的电压的电压准位小于缓冲电路32所设定的一电压判断值时,缓冲电路32判断输入端321或启动端322所接收的电压的电压准位为禁能准位电压(低准位电压)。此外,当缓冲电路32判断输入端321接收到致能准位电压(高准位电压)而启动端322接收到禁能准位电压(低准位电压)时,缓冲电路32的输出控制端323产生致能准位电压,即如图4所示的状态A。当缓冲电路32判断输入端321接收到禁能准位电压(低准位电压)而启动端322接收到禁能准位电压(低准位电压)时,缓冲电路32的输出控制端323产生禁能准位电压(低准位电压),如状态B。当缓冲电路32判断启动端322接收到致能准位电压(高准位电压)时,无论输入端321为致能准位电压或禁能准位电压,缓冲电路32的输出控制端323皆为高阻抗输出,如状态C,此时缓冲电路32的输出控制端323上的电压将因第一拉升电阻R4接收的第一工作电压V1’而为第一工作电压V1’。在上述实施例中,当第一工作电压V1’已达到所需电压准位(5V)而完成电压建立时,第一工作电压V1’的电压准位等于缓冲电路32的所设定的一电压判断值。Referring to FIG. 4 together with FIG. 3 , FIG. 4 is a truth table of the actuation relationship between the input terminal, the start terminal and the output terminal of the buffer circuit shown in FIG. 3 . In this embodiment, the buffer circuit 32 controls the output state of the output control terminal 323 according to the voltage levels of the voltages received by the input terminal 321 and the enabling terminal 322 . It is further explained that the buffer circuit 32 judges whether the voltage level of the voltage received by the input terminal 321 or the starting terminal 322 is equal to or less than a voltage judgment value set by the buffer circuit 32 to determine whether the voltage received by the input terminal 321 or the starting terminal 322 The voltage level of the voltage, and correspondingly control the output state of the output control terminal 323 according to the judgment result of the input terminal 321 or the starting terminal 322, wherein when the voltage level of the voltage received by the input terminal 321 or the starting terminal 322 is equal to the buffer circuit When a voltage judgment value is set by 32, the buffer circuit 32 judges that the voltage level of the voltage received by the input terminal 321 or the starting terminal 322 is the enabling level voltage (high level voltage), otherwise, when the input terminal 321 Or when the voltage level of the voltage received by the starting terminal 322 is less than a voltage judgment value set by the buffer circuit 32, the buffer circuit 32 judges that the voltage level of the voltage received by the input terminal 321 or the starting terminal 322 is a disabled level voltage (low level voltage). In addition, when the buffer circuit 32 determines that the input terminal 321 receives the enable level voltage (high level voltage) and the enable terminal 322 receives the disable level voltage (low level voltage), the output control terminal 323 of the buffer circuit 32 The enabling level voltage is generated, that is, the state A shown in FIG. 4 . When the buffer circuit 32 judges that the input terminal 321 receives the disabling level voltage (low level voltage) and the enabling terminal 322 receives the disabling level voltage (low level voltage), the output control terminal 323 of the buffering circuit 32 generates a disabling voltage. Enable level voltage (low level voltage), such as state B. When the buffer circuit 32 judges that the enabling terminal 322 receives the enabling level voltage (high level voltage), no matter whether the input terminal 321 is the enabling level voltage or the disabling level voltage, the output control terminal 323 of the buffering circuit 32 is all High impedance output, such as state C, the voltage on the output control terminal 323 of the buffer circuit 32 will be the first working voltage V 1 ′ due to the first working voltage V 1 ′ received by the first pull-up resistor R 4 . In the above-mentioned embodiment, when the first working voltage V 1 ′ has reached the required voltage level (5V) and the voltage establishment is completed, the voltage level of the first working voltage V 1 ′ is equal to the set voltage level of the buffer circuit 32 A voltage judgment value.
误动作防止电路33电源连接在微处理器31的第一输出端313及缓冲电路32的启动端322之间,用以当第二模块317开始接收第二工作电压V2’,而第二工作电压V2’开始由0V上升至所需电压准位的电压建立过程中,即第一输出端313所输出的输出电压△V’在由0V上升至所需电压准位的电压建立过程中,输出一致能准位电压(高准位电压)至缓冲电路32的启动端322,使缓冲电路32的输出控制端323为高阻抗输出。The malfunction prevention circuit 33 power supply is connected between the first output terminal 313 of the microprocessor 31 and the starting terminal 322 of the buffer circuit 32, for when the second module 317 starts to receive the second working voltage V 2 ', and the second working The voltage V 2 ' begins to rise from 0V to the voltage establishment process of the required voltage level, that is, the output voltage ΔV' output by the first output terminal 313 is in the voltage establishment process of rising from 0V to the required voltage level, Outputting an enabling level voltage (high level voltage) to the start terminal 322 of the buffer circuit 32 makes the output control terminal 323 of the buffer circuit 32 a high-impedance output.
参见图3,在此实施例中,误动作防止电路33包含第一开关Q1、第二开关Q2、第一电阻R1、第二电阻R2及第三电阻R3。其中,第一电阻R1的一端与第一输出端313电源连接,并接收输出电压△V’,第一电阻R1的另一端与第一开关Q1的控制端电源连接。第一开关Q1的电流输入端接收第二工作电压V2’,第一开关Q1的电流输出端与第二电阻R2的一端电源连接。第二电阻R2的另一端与第二开关Q2的控制端电源连接。第二开关Q2的电流输入端与缓冲电路32的启动端322及第三电阻R3的一端电源连接,第二开关Q2的电流输出端与一接地端G电源连接。第三电阻R3的另一端接收第一工作电压V1’。Referring to FIG. 3 , in this embodiment, the malfunction prevention circuit 33 includes a first switch Q 1 , a second switch Q 2 , a first resistor R 1 , a second resistor R 2 and a third resistor R 3 . Wherein, one end of the first resistor R1 is connected to the power supply of the first output terminal 313 and receives the output voltage ΔV', and the other end of the first resistor R1 is connected to the control terminal of the first switch Q1. The current input terminal of the first switch Q 1 receives the second working voltage V 2 ′, and the current output terminal of the first switch Q 1 is connected to a power source of one terminal of the second resistor R 2 . The other end of the second resistor R2 is connected to the control end of the second switch Q2 for power supply. The current input end of the second switch Q2 is connected to the start-up end 322 of the buffer circuit 32 and one end of the third resistor R3 for power supply, and the current output end of the second switch Q2 is connected to a ground terminal G for power supply. The other end of the third resistor R 3 receives the first working voltage V 1 ′.
在一些实施例中,第一开关Q1可为PNP双载子接面晶体管(bipolarjunctiontransistor)或P型金氧半场效晶体管(metal-oxide-semiconductorfield-effecttransistor),第二开关Q2可为NPN双载子接面晶体管或N型金氧半场效晶体管,但不以此为限。In some embodiments, the first switch Q1 can be a PNP bipolar junction transistor or a P-type metal-oxide-semiconductor field-effect transistor, and the second switch Q2 can be an NPN. Bipolar junction transistor or N-type metal oxide semiconductor field effect transistor, but not limited thereto.
参见图5A、图5B、图5C和图5D并配合图3及图4,其中图5A、图5B、图5C和图5D为图3所示的脉冲宽度调变系统的内部各电压的时序图。如图3至图5D所示,当脉冲宽度调变系统3开始运作而微处理器31开始建立第一模块316以及第二模块317所需的电压阶段时,微处理器31因第一模块316及第二模块317之间存在启动时序,因此微处理器31的第一输入端311及第二输入端312依序接收第一工作电压V1’及第二工作电压V2’,故如图5A所示,在初始时点(t0)时,微处理器31的第一输入端311开始接收第一工作电压V1’。接着,在第一时点(t1)时,第一工作电压V1’的电压准位由初始时点(t0)时的0V爬升至第一特定电压准位V1s’,例如4.5V。此时,微处理器31的第二输入端312开始接收第二工作电压V2’。的后,在第一时点(t1)至第二时点(t2)时,第一工作电压V1’的电压准位已达到所需电压准位,例如5V,故第一模块316开始运作,同时第二工作电压V2’的电压准位由第一时点(t1)时的0V爬升至第二特定电压准位V2s’,例如2V。最后,在第三时点(t3)时,第二工作电压V2’的电压准位已达到所需电压准位,例如3.3V,故第二模块317开始运作。Referring to Fig. 5A, Fig. 5B, Fig. 5C and Fig. 5D together with Fig. 3 and Fig. 4, Fig. 5A, Fig. 5B, Fig. 5C and Fig. 5D are timing diagrams of the internal voltages of the pulse width modulation system shown in Fig. 3 . As shown in Fig. 3 to Fig. 5D, when the pulse width modulation system 3 starts to operate and the microprocessor 31 starts to establish the voltage stages required by the first module 316 and the second module 317, the microprocessor 31 is activated by the first module 316 There is a start-up sequence between the second module 317, so the first input terminal 311 and the second input terminal 312 of the microprocessor 31 receive the first operating voltage V 1 ' and the second operating voltage V 2 ' in sequence, so as shown in As shown in 5A, at the initial time point (t 0 ), the first input terminal 311 of the microprocessor 31 starts to receive the first operating voltage V 1 ′. Next, at the first time point (t 1 ), the voltage level of the first operating voltage V 1 ' climbs from 0V at the initial time point (t 0 ) to a first specific voltage level V 1s ', for example 4.5V . At this moment, the second input terminal 312 of the microprocessor 31 starts to receive the second working voltage V 2 ′. After that, from the first time point (t 1 ) to the second time point (t 2 ), the voltage level of the first operating voltage V 1 ′ has reached the required voltage level, for example, 5V, so the first module 316 At the same time, the voltage level of the second working voltage V 2 ′ climbs from 0V at the first time point (t 1 ) to a second specific voltage level V 2s ′, for example, 2V. Finally, at the third time point (t 3 ), the voltage level of the second operating voltage V 2 ′ has reached the required voltage level, eg 3.3V, so the second module 317 starts to operate.
此外,当微处理器31的第一输入端311开始接收第一工作电压V1’时,缓冲电路32的电源端324也开始接收第一工作电压V1’,对应如图5B。接着,于第一时点(t1)时,第一工作电压V1’的电压准位由初始时点(t0)时的0V爬升至第一特定电压准位V1s’,例如4.5V。如此一来,可使缓冲电路32的启动端322的第一工作电压V1’的电压准位为等于缓冲电路32的所设定的一电压判断值。In addition, when the first input terminal 311 of the microprocessor 31 starts to receive the first working voltage V 1 ′, the power supply terminal 324 of the buffer circuit 32 also starts to receive the first working voltage V 1 ′, as shown in FIG. 5B . Next, at the first time point (t 1 ), the voltage level of the first operating voltage V 1 ' climbs from 0V at the initial time point (t 0 ) to a first specific voltage level V 1s ', for example 4.5V . In this way, the voltage level of the first working voltage V 1 ′ of the start-up terminal 322 of the buffer circuit 32 can be equal to a voltage judgment value set by the buffer circuit 32 .
由于微处理器31的第一输出端313及第二输出端314的输出电压△V’对应于作为第二模块317(输入/输出状态模块)使用的第二工作电压V2’而建立,且两者的电压准位也对应伴随着变化,因此输出电压△V’实际上与第二工作电压V2’的电压值相等,而于微处理器31的第二模块317接收第二工作电压V2’的过程中,如图5C所示,当微处理器31的第二输入端312于第一时点(t1)开始接收第二工作电压V2’时,第一开关Q1的电流输入端于此时对应接收第二工作电压V2’,微处理器31的第一输出端313及第二输出端314的输出电压△V’也对应地开始建立,且微处理器31的第一输出端313及第二输出端的输出电压△V’也伴随着第二工作电压V2’的电压准位而变化,即微处理器31的第一输出端313及第二输出端314的输出电压△V’也由第一时点(t1)时的0V爬升至第二时点(t1)的第二特定电压准位V2s’,例如2V,并于第三时点(t3)时达到与第二工作电压V2’相同的电压准位,例如3.3V。Since the output voltage ΔV' of the first output terminal 313 and the second output terminal 314 of the microprocessor 31 corresponds to the second operating voltage V 2 ' used as the second module 317 (input/output status module), and The voltage levels of the two also change correspondingly, so the output voltage ΔV' is actually equal to the voltage value of the second working voltage V 2 ', and the second module 317 of the microprocessor 31 receives the second working voltage V 2 ', as shown in Figure 5C, when the second input terminal 312 of the microprocessor 31 starts to receive the second operating voltage V 2 ' at the first time point (t 1 ), the current of the first switch Q 1 At this time, the input terminal correspondingly receives the second working voltage V 2 ′, and the output voltage ΔV’ of the first output terminal 313 and the second output terminal 314 of the microprocessor 31 also starts to build correspondingly, and the first output terminal 313 of the microprocessor 31 The output voltage ΔV' of the first output terminal 313 and the second output terminal also changes with the voltage level of the second operating voltage V 2 ', that is, the output of the first output terminal 313 and the second output terminal 314 of the microprocessor 31 The voltage ΔV' also rises from 0V at the first time point (t 1 ) to the second specific voltage level V 2s ' at the second time point (t 1 ), such as 2V, and at the third time point (t3) At this time, the same voltage level as the second working voltage V 2 ′, for example, 3.3V, is reached.
而当微处理器31于第一时点(t1)开始建立输出电压△V’且由第一时点(t1)时的0V爬升至第二时点(t1)的第二特定电压准位V2s’,并于第三时点(t3)达到与第二工作电压V2’相同的电压准位的过程中,由于微处理器31的第一输出端313所输出的输出电压△V’为第二工作电压V2’,而误动作防止电路33的第一开关Q1的电流输入端接收第二工作电压V2’,故微处理器31的第一输出端313与第一开关Q1的电流输入端的电压变化系相等,使得第一开关Q1呈现截止状态,对应使第二开关Q2为截止状态,此时,第二开关Q2的电流输入端将经由第三电阻R3而接收第一工作电压V1’,并将第一工作电压V1’引导至缓冲电路32的启动端322,如此一来,缓冲电路32将因启动端322接收到已完成电压建立且等于缓冲电路32的电压判断值的第一工作电压V1’而判断启动端322为致能准位电压(高准位电压),故缓冲电路32的输出控制端323将为高阻抗输出,此时缓冲电路32的输出控制端323上的电压将因电源连接于第一拉升电阻R4而第一拉升电阻R4接收第一工作电压V1’而形成一致能准位电压,如图5D所示。And when the microprocessor 31 starts to build the output voltage ΔV' at the first time point (t 1 ) and climbs from 0V at the first time point (t 1 ) to the second specific voltage at the second time point (t 1 ). level V 2s ', and in the process of reaching the same voltage level as the second operating voltage V 2 ' at the third time point (t3), due to the output voltage Δ output from the first output terminal 313 of the microprocessor 31 V' is the second operating voltage V 2 ', and the current input end of the first switch Q 1 of the malfunction prevention circuit 33 receives the second operating voltage V 2 ', so the first output end 313 of the microprocessor 31 is connected to the first The voltage changes at the current input ends of the switch Q1 are equal, so that the first switch Q1 is in an off state, and the second switch Q2 is correspondingly in an off state. At this time, the current input end of the second switch Q2 will pass through the third resistor R 3 receives the first operating voltage V 1 ′, and guides the first operating voltage V 1 ′ to the start-up terminal 322 of the buffer circuit 32. In this way, the buffer circuit 32 will receive the completed voltage establishment and the start-up terminal 322 Equal to the first operating voltage V 1 ' of the voltage judgment value of the buffer circuit 32, and the start terminal 322 is determined to be the enabling level voltage (high level voltage), so the output control terminal 323 of the buffer circuit 32 will be a high-impedance output. The voltage on the output control terminal 323 of the buffer circuit 32 will form a consistent enable level voltage because the power supply is connected to the first pull - up resistor R4 and the first pull - up resistor R4 receives the first operating voltage V1', as shown in the figure 5D.
相较传统脉冲宽度调变系统,由于本发明的脉冲宽度调变系统3具有电源连接于微处理器31的第一输出端313及缓冲电路32的启动端322之间的误动作防止电路33,在微处理器31的第一输出端313所输出的输出电压△V’由0V上升至所需电压准位的过程中(如图5A所示的第一时点(t1)时至第三时点(t3)之间),误动作防止电路33将输出电压△V’置换为致能准位电压的第一工作电压V1’,并输出至缓冲电路32的启动端322(如图5B所示),使缓冲电路32的输出控制端323在微处理器31的第一输出端313所输出的输出电压△V’由0V上升至所需电压准位的过程中为高阻抗输出,并经由第一拉升电阻R4所接收的第一工作电压V1’而拉升为致能准位电压(如图5D所示的第一时点(t1)时至第三时点(t3)之间),故可避免后级电路34产生误动作的情况,进而保护后级电路34。Compared with the traditional pulse width modulation system, since the pulse width modulation system 3 of the present invention has a power supply connected between the first output terminal 313 of the microprocessor 31 and the start terminal 322 of the buffer circuit 32, the malfunction prevention circuit 33, During the process of the output voltage ΔV' output by the first output terminal 313 of the microprocessor 31 rising from 0V to the required voltage level (from the first time point (t 1 ) to the third time point shown in FIG. 5A time point (t 3 )), the malfunction prevention circuit 33 replaces the output voltage ΔV' with the first working voltage V 1 ' of the enable level voltage, and outputs it to the start terminal 322 of the buffer circuit 32 (as shown in 5B), so that the output control terminal 323 of the buffer circuit 32 is a high-impedance output when the output voltage ΔV' output by the first output terminal 313 of the microprocessor 31 rises from 0V to the required voltage level, And the first working voltage V1' received by the first pull - up resistor R4 is pulled up to the enabling level voltage (from the first time point (t 1 ) to the third time point (t ) as shown in FIG. 5D 3 )), so that the subsequent circuit 34 can be prevented from malfunctioning, thereby protecting the subsequent circuit 34.
图6为本发明较佳实施例的脉冲宽度调变系统的控制方法流程图。如图3至图6所示,为了避免后级电路34于脉冲宽度调变系统3建立各模块所需的电压阶段产生异常作动,本发明的脉冲宽度调变系统3执行下列控制方法:首先,依序提供给微处理器31一第一工作电压V1’以及一第二工作电压V2’,以分别提供给第一模块316以及第二模块317使用(步骤S1)。接着,于该微处理器31的第二模块317接收第二工作电压V2’,且第二工作电压V2’由0V上升至所需电压准位的电压建立过程中,微处理器31对应第二工作电压V2’的建立而建立一输出电压△V’(步骤S2)。接续,误动作防止电路33接收输出电压△V’,使第一开关Q1截止,并驱使第二开关Q2截止,使一致能准位电压,即为第一工作电压V1’输出至缓冲电路32的启动端322(步骤S3)。最后,缓冲电路32的输出控制端323根据启动端322的致能准位电压而为高阻抗输出,以保护后级电路(步骤S4)。FIG. 6 is a flowchart of a control method of a pulse width modulation system according to a preferred embodiment of the present invention. As shown in Fig. 3 to Fig. 6, in order to prevent the post-stage circuit 34 from generating abnormal actions at the voltage stage required by the pulse width modulation system 3 to establish each module, the pulse width modulation system 3 of the present invention executes the following control method: first , sequentially provide a first operating voltage V 1 ′ and a second operating voltage V 2 ′ to the microprocessor 31, so as to be provided to the first module 316 and the second module 317 respectively (step S1). Next, in the second module 317 of the microprocessor 31 receives the second operating voltage V 2 ′, and during the voltage establishment process in which the second operating voltage V 2 ′ rises from 0V to the required voltage level, the microprocessor 31 corresponds to The establishment of the second working voltage V 2 ' establishes an output voltage ΔV' (step S2). Next, the malfunction prevention circuit 33 receives the output voltage △V', turns off the first switch Q1, and drives the second switch Q2 to turn off, so that the same enable level voltage, that is, the first operating voltage V1' is output to the buffer The activation terminal 322 of the circuit 32 (step S3). Finally, the output control terminal 323 of the buffer circuit 32 is a high-impedance output according to the enabling level voltage of the enabling terminal 322 to protect subsequent circuits (step S4 ).
参见图3、图5A、图5B、图5C和图5D,在一些实施例中,微处理器31还可接收例如1.5V的一第三工作电压V3’,且具有第三输入端315以及第三模块318。第三输入端315接收第三工作电压V3’,以供第三模块318例如核心运算模块使用。此外,第一模块316、第二模块317以及第三模块318之间也存在启动时序,即第一模块316、第二模块317及第三模块318依序启动。另外,如图5A所示,当第二模块317所接收的第二工作电压V2’完成电压建立,即于时间第三时点(t3)时,第三工作电压V3’开始提供给第三模块318,且由0V上升至所需电压准位,例如1.5V,而当第三工作电压V3’达到所需电压准位而完成电压的建立,微处理器31内部的第三模块318才可开始运作。Referring to FIG. 3, FIG. 5A, FIG. 5B, FIG. 5C and FIG. 5D, in some embodiments, the microprocessor 31 can also receive a third operating voltage V 3 ′ such as 1.5V, and has a third input terminal 315 and The third module 318 . The third input terminal 315 receives the third operating voltage V 3 ′ for use by the third module 318 such as the core computing module. In addition, there is also a startup sequence among the first module 316 , the second module 317 and the third module 318 , that is, the first module 316 , the second module 317 and the third module 318 are started up sequentially. In addition, as shown in FIG. 5A, when the second working voltage V 2 ′ received by the second module 317 completes voltage establishment, that is, at the third time point (t 3 ), the third working voltage V 3 ′ starts to be provided to The third module 318, and rises from 0V to the required voltage level, such as 1.5V, and when the third operating voltage V 3 ′ reaches the required voltage level to complete the establishment of the voltage, the third module inside the microprocessor 31 318 to start operation.
又在一些实施例中,当微处理器31内部的第三模块318因第三工作电压V3’已完成电压的建立而开始运作一默认时间后,微处理器31将进行重置动作,使微处理器31的第一输出端313以及以第二输出端314所输出的输出电压△V’的电压准位的大小由微处理器31控制,而当输出电压△V’的电压准位小于第一开关Q1的电流输入端所接收的第二工作电压V2’时,第一开关Q1导通,对应使第二开关Q2导通,使缓冲电路32的启动端322经由导通的第二开关Q2而与接地端G电源连接,故缓冲电路32的启动端322上的电压将因与接地端G电源连接为禁能准位电压,以驱动后级电路34开始运作。Also in some embodiments, when the third module 318 inside the microprocessor 31 starts to operate for a default time due to the establishment of the third working voltage V 3 ′, the microprocessor 31 will perform a reset action, so that The first output terminal 313 of the microprocessor 31 and the voltage level of the output voltage ΔV' output by the second output terminal 314 are controlled by the microprocessor 31, and when the voltage level of the output voltage ΔV' is less than When the current input terminal of the first switch Q1 receives the second operating voltage V2', the first switch Q1 is turned on, and the second switch Q2 is turned on correspondingly, so that the starting terminal 322 of the buffer circuit 32 is turned on The second switch Q 2 of the second switch Q2 is connected to the ground terminal G power supply, so the voltage on the start terminal 322 of the buffer circuit 32 will be connected to the ground terminal G power supply as a disabled level voltage to drive the subsequent stage circuit 34 to start operation.
综上所述,本发明系提供一种脉冲宽度调变系统控制方法及其误动作防止电路,当微处理器在依序建立内部各模块所需的电压的过程中,脉冲宽度调变系统的误动作防止电路可持续的输出致能准位电压至缓冲电路的启动端,使缓冲电路的输出端为高阻抗输出,如此一来,可避免后级电路于微处理器在依序建立内部各模块所需的电压的过程中产生异常作动,进而保护后级电路。To sum up, the present invention provides a control method of a PWM system and its malfunction prevention circuit. When the microprocessor is in the process of sequentially establishing the voltage required by each internal module, the pulse width modulation system The malfunction prevention circuit can continuously output the enable level voltage to the start-up terminal of the buffer circuit, so that the output terminal of the buffer circuit is a high-impedance output. In this way, it can prevent the subsequent stage circuit from being sequentially established by the microprocessor. Abnormal operation occurs during the voltage required by the module, thereby protecting the subsequent circuit.
最后应说明的是:虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。Finally, it should be noted that although the present invention and its advantages have been described in detail above, it should be understood that various changes, substitutions and modifications can be made without departing from the spirit and scope of the present invention defined by the appended claims. transform. Moreover, the scope of the present invention is not limited to the specific embodiments of the procedures, devices, means, methods and steps described in the specification. Those of ordinary skill in the art will readily appreciate from the disclosure of the present invention that existing and future devices that perform substantially the same function or obtain substantially the same results as the corresponding embodiments described herein can be used in accordance with the present invention. The developed process, device, means, method or steps. Accordingly, the appended claims are intended to include within their scope such processes, means, means, methods or steps.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410231101.XA CN105187037B (en) | 2014-05-28 | 2014-05-28 | Pulse width modulation system control method and its error action preventing circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410231101.XA CN105187037B (en) | 2014-05-28 | 2014-05-28 | Pulse width modulation system control method and its error action preventing circuit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105187037A true CN105187037A (en) | 2015-12-23 |
| CN105187037B CN105187037B (en) | 2018-09-28 |
Family
ID=54908927
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410231101.XA Active CN105187037B (en) | 2014-05-28 | 2014-05-28 | Pulse width modulation system control method and its error action preventing circuit |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105187037B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060006741A1 (en) * | 2004-07-07 | 2006-01-12 | Tassitino Frederick Jr | AC power supply apparatus, methods and computer program products using PWM synchronization |
| CN1925305A (en) * | 2005-08-31 | 2007-03-07 | 台达电子工业股份有限公司 | Fan control device and method |
| CN101562439A (en) * | 2008-04-14 | 2009-10-21 | 三菱电机株式会社 | Digital signal input device and method of controlling the same |
| TW201329683A (en) * | 2012-01-10 | 2013-07-16 | Green Solution Tech Co Ltd | Power-good signal generator and controller with power sequencingfree |
-
2014
- 2014-05-28 CN CN201410231101.XA patent/CN105187037B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060006741A1 (en) * | 2004-07-07 | 2006-01-12 | Tassitino Frederick Jr | AC power supply apparatus, methods and computer program products using PWM synchronization |
| CN1925305A (en) * | 2005-08-31 | 2007-03-07 | 台达电子工业股份有限公司 | Fan control device and method |
| CN101562439A (en) * | 2008-04-14 | 2009-10-21 | 三菱电机株式会社 | Digital signal input device and method of controlling the same |
| TW201329683A (en) * | 2012-01-10 | 2013-07-16 | Green Solution Tech Co Ltd | Power-good signal generator and controller with power sequencingfree |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105187037B (en) | 2018-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105845068B (en) | A kind of power supply circuit of source drive module, display panel and display device | |
| US9799295B2 (en) | Scan driving circuit and liquid crystal display device having the circuit | |
| CN107403602A (en) | Shift register cell, shift-register circuit and display device | |
| US10402004B2 (en) | Touch control driving unit, driving method thereof and touch control driving circuit | |
| CN105513526B (en) | Power supply circuit and driving method of display panel | |
| WO2017128772A1 (en) | Shift register unit and driving method, shift register, gate driving circuit and display device | |
| TWI630591B (en) | Display device and protection circuit thereof | |
| CN104616614B (en) | The powering method and device of display module, detection method and device | |
| WO2019000903A1 (en) | Display device, power supply circuit and power supply method | |
| CN116032684A (en) | LIN bus driving circuit and device | |
| TW201621328A (en) | Voltage detection circuit | |
| CN107093394B (en) | A shift register unit and its voltage release method, gate drive circuit | |
| CN105322810A (en) | Power conversion device and protection method thereof when current feedback signal is abnormal | |
| US9000624B2 (en) | Power-good signal generator and controller with power sequencing free | |
| TWI574496B (en) | Driving device and driving method | |
| CN106547332B (en) | Power supply start reset circuit, power supply start reset method and electronic device thereof | |
| TWI454056B (en) | Power module and power supply system | |
| TW201535945A (en) | Power conversion system | |
| CN105187037B (en) | Pulse width modulation system control method and its error action preventing circuit | |
| CN104679200B (en) | The control method of time sequences after server system and its energization | |
| CN106356018B (en) | Shift register unit, shift register and display device | |
| TWI614991B (en) | Driving circuit, converter and driving method | |
| CN105990330A (en) | Electrostatic discharge protection device | |
| US10181684B1 (en) | Power connector | |
| KR20170061730A (en) | System of controlling power |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |