[go: up one dir, main page]

CN105233424A - Visible-waveband multifunctional laser medical instrument - Google Patents

Visible-waveband multifunctional laser medical instrument Download PDF

Info

Publication number
CN105233424A
CN105233424A CN201510757426.6A CN201510757426A CN105233424A CN 105233424 A CN105233424 A CN 105233424A CN 201510757426 A CN201510757426 A CN 201510757426A CN 105233424 A CN105233424 A CN 105233424A
Authority
CN
China
Prior art keywords
lens
laser
crystal
nonlinear optical
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510757426.6A
Other languages
Chinese (zh)
Inventor
朱海永
段延敏
朱鑫标
邵振华
张耀举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201510757426.6A priority Critical patent/CN105233424A/en
Publication of CN105233424A publication Critical patent/CN105233424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种可见波段多功能激光医疗机,包括机体,所述机体内依次设置有泵浦源、全反镜片、自拉曼激光晶体、Q开关、中间镜片、非线性光学晶体、输出镜片、耦合透镜和光纤,所述全反镜片与输出镜片组成了基频光和各阶斯托斯光的振荡腔,所述泵浦源、全反镜片、自拉曼激光晶体、Q开关、中间镜片、非线性光学晶体、输出镜片和耦合透镜的轴向中心线重合,通过控制非线性光学晶体的温度,实现输出与非线性光学晶体温度对应的激光波长。上述技术方案,结构设计合理、结构简单、工作稳定、操作方便且可以大大降低成本。

The invention discloses a multifunctional laser medical machine in the visible band, which includes a body, in which a pumping source, a total reflection lens, a self-Raman laser crystal, a Q switch, an intermediate lens, a nonlinear optical crystal, an output mirror, coupling lens and optical fiber, the total reflection mirror and the output mirror constitute the oscillation cavity of fundamental frequency light and Storrs light of each order, the pump source, total reflection mirror, self-Raman laser crystal, Q switch, The axial centerlines of the intermediate mirror, the nonlinear optical crystal, the output mirror and the coupling lens are coincident, and the output laser wavelength corresponding to the temperature of the nonlinear optical crystal is realized by controlling the temperature of the nonlinear optical crystal. The above technical scheme has reasonable structure design, simple structure, stable operation, convenient operation and can greatly reduce the cost.

Description

一种可见波段多功能激光医疗机A visible band multifunctional laser medical machine

技术领域technical field

本发明涉及医疗设备技术领域,具体涉及一种可见波段多功能激光医疗机。The invention relates to the technical field of medical equipment, in particular to a visible-band multifunctional laser medical machine.

背景技术Background technique

随着激光技术应用的突飞猛进,以激光器为基础的激光产业迅速发展,尤其在医疗方面的应用逐渐广泛。不同波长的激光有着不同的医疗应用价值,因此,对于输出不同波长的激光医疗机要求也越来越高。其中可见波段激光,可用于鲜红斑痣和眼科的激光治疗、激光微创手术、激光美容和清洗等领域。目前,国内激光医疗机已得到迅速发展,特别是多波长激光医疗机可满足不同的医疗需求,得到了特别的关注。大多数多波长医疗机的波长主要集中在近红外波段或近红外波长的激光与其倍频可见波段激光组成的双波长激光医疗机。施沃兹公司通过金绿宝石、Nd:YAG、Er:YAG和Ho:YAG等四种激光器组合输出多波长激光(见文献:中国激光医学杂志第6卷(1997)第2期,第97页),但其体积相对较大,使用起来不方便。对于可见波段的多波长激光获得较为复杂,所需的光学元件也较多,使得成本非常高,系统不稳定。With the rapid development of the application of laser technology, the laser industry based on lasers has developed rapidly, especially in medical applications. Lasers with different wavelengths have different medical application values. Therefore, the requirements for laser medical machines that output different wavelengths are also getting higher and higher. Among them, the visible band laser can be used in the fields of port wine stain and ophthalmology laser treatment, laser minimally invasive surgery, laser beauty and cleaning, etc. At present, domestic laser medical machines have developed rapidly, especially multi-wavelength laser medical machines can meet different medical needs, and have received special attention. The wavelength of most multi-wavelength medical machines is mainly concentrated in the near-infrared band or the dual-wavelength laser medical machine consisting of near-infrared wavelength laser and its frequency-doubled visible band laser. Schwartz Company outputs multi-wavelength laser through the combination of four lasers such as chrysoberyl, Nd:YAG, Er:YAG and Ho:YAG (see literature: Chinese Journal of Laser Medicine Volume 6 (1997) No. 2, page 97 ), but its relatively large size makes it inconvenient to use. The acquisition of multi-wavelength lasers in the visible band is more complicated, and more optical components are required, which makes the cost very high and the system unstable.

发明内容Contents of the invention

针对现有技术存在的不足,本发明的目的在于提供一种结构设计合理、结构简单、工作稳定、操作方便且可以大大降低成本的可见波段多功能激光医疗机。Aiming at the deficiencies in the prior art, the object of the present invention is to provide a visible band multifunctional laser medical machine with reasonable structural design, simple structure, stable operation, convenient operation and greatly reduced cost.

为实现上述目的,本发明提供了如下技术方案:一种可见波段多功能激光医疗机,包括机体,所述机体内依次设置有泵浦源、全反镜片、自拉曼激光晶体、Q开关、中间镜片、非线性光学晶体、输出镜片、耦合透镜和光纤,所述全反镜片与输出镜片组成了基频光和各阶斯托斯光的振荡腔,所述泵浦源、全反镜片、自拉曼激光晶体、Q开关、中间镜片、非线性光学晶体、输出镜片和耦合透镜的轴向中心线重合,通过控制非线性光学晶体的温度,实现输出与非线性光学晶体温度对应的激光波长。In order to achieve the above object, the present invention provides the following technical solutions: a visible band multifunctional laser medical machine, including a body, in which a pump source, a full reflection lens, a self-Raman laser crystal, a Q switch, Intermediate lens, nonlinear optical crystal, output lens, coupling lens and optical fiber, the total reflection lens and output lens form the oscillation cavity of fundamental frequency light and Storrs light of each order, the pump source, total reflection lens, Since the axial centerlines of the Raman laser crystal, Q switch, intermediate mirror, nonlinear optical crystal, output mirror and coupling lens coincide, by controlling the temperature of the nonlinear optical crystal, the laser wavelength corresponding to the temperature of the nonlinear optical crystal can be output .

通过采用上述技术方案,在泵浦源作用下,自拉曼激光晶体在全反镜片和输出镜片组成的腔内形成1.06微米波段的基频光,并不断地振荡加强;当基频光强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.06微米波段的基频光通过一次拉曼频移产生1.18微米波段的一阶斯托克斯光,同时在全反镜片和输出镜片组成的腔内振荡加强;当1.18微米波段的一阶斯托克斯光的强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.18微米波段的一阶斯托克斯光再次通过拉曼频移产生1.31微米波段的二阶斯托克斯光,也在全反镜片和输出镜片组成的腔内振荡加强。所以在全反镜片和输出镜片组成的腔内可同时存在着1.06微米波段的基频光、1.18微米波段的一阶斯托克斯光和1.31微米波段的二阶斯托克斯光。Q开关主要用来实现调Q脉冲激光运转,提高腔内基频光和一、二阶斯托克斯光的峰值功率。振荡腔内各个波长的激光通过温度可控的非线性光学晶体实现不同波长之间的和频或各自的倍频,实现各波长向可见波段激光的转换,中间镜片用来反射反方向传输的可见波段激光,最终可见波段激光都由输出镜片输出。其中通过改变非线性光学晶体的控制温度,可实现0.56、0.59和0.62微米波段不同的可见波段激光输出。输出镜片输出可见波段激光通过透镜耦合到光纤里,再通过光纤输出实现医疗应用。By adopting the above technical scheme, under the action of the pump source, the self-Raman laser crystal forms the fundamental frequency light of 1.06 micron band in the cavity composed of the total reflection lens and the output lens, and continuously oscillates and strengthens; when the intensity of the fundamental frequency light reaches From the Raman conversion threshold of the Raman laser crystal, part of the fundamental frequency light in the 1.06 micron band undergoes a Raman frequency shift to generate the first-order Stokes light in the 1.18 micron band, and at the same time in the cavity composed of the total reflection lens and the output lens Internal oscillation is strengthened; when the intensity of the first-order Stokes light in the 1.18-micron band reaches the Raman conversion threshold from the Raman laser crystal, part of the first-order Stokes light in the 1.18-micron band is generated again by Raman frequency shift The second-order Stokes light in the 1.31 micron waveband is also strengthened in the cavity composed of the total reflection mirror and the output mirror. Therefore, in the cavity composed of the total reflection lens and the output lens, the fundamental frequency light in the 1.06 micron band, the first-order Stokes light in the 1.18 micron band and the second-order Stokes light in the 1.31 micron band can exist simultaneously. The Q switch is mainly used to realize the operation of the Q-switched pulsed laser, and to increase the peak power of the fundamental frequency light and the first and second order Stokes light in the cavity. The laser of each wavelength in the oscillation cavity realizes the sum frequency or frequency doubling between different wavelengths through the temperature-controllable nonlinear optical crystal, and realizes the conversion of each wavelength to the visible band laser, and the middle lens is used to reflect the visible wave transmitted in the opposite direction Band lasers, and finally visible band lasers are output by the output lens. Among them, by changing the control temperature of the nonlinear optical crystal, different visible-band laser outputs in the 0.56, 0.59 and 0.62 micron wave bands can be realized. The output lens outputs visible-band laser through the lens and couples it into the optical fiber, and then outputs it through the optical fiber to achieve medical applications.

本发明进一步设置为:所述全反镜片上镀有从1.06微米到1.32微米波段激光的高反膜;中间镜片上镀有从1.06微米到1.32微米波段激光的增透膜和从0.56微米到0.62微米波段激光的高反膜;输出镜片上镀有从1.06微米到1.32微米波段激光的高反膜和从0.56微米到0.62微米波段激光的高透膜。通过本设置,结构设置更加合理,工作更加可靠。The present invention is further set as: the full-reflection lens is coated with a high-reflection film from 1.06 microns to 1.32 microns; High reflective film for laser in the micron band; the output lens is coated with a high reflective film for laser in the band from 1.06 micron to 1.32 micron and a high transmittance film for laser in the band from 0.56 micron to 0.62 micron. Through this setting, the structure setting is more reasonable and the work is more reliable.

本发明还进一步设置为:所述泵浦源为输出波长为808纳米或者880纳米的半导体激光器。通过本设置,泵浦源结构简单,工作稳定。In the present invention, it is further set that: the pumping source is a semiconductor laser with an output wavelength of 808 nm or 880 nm. With this configuration, the pump source has a simple structure and works stably.

本发明还进一步设置为:所述自拉曼激光晶体是钕离子掺杂的具有拉曼效应的激光晶体。通过本设置,自拉曼激光晶体结构简单,成本低。In the present invention, it is further set that: the self-Raman laser crystal is a laser crystal with Raman effect doped with neodymium ions. With this configuration, the self-Raman laser crystal structure is simple and the cost is low.

本发明还进一步设置为:所述非线性光学晶体底部设置有温控器,非线性光学晶体通过温控器实现温度控制。通过本设置,非线性光学晶体温度控制方便。The present invention is further configured as follows: a temperature controller is provided at the bottom of the nonlinear optical crystal, and the temperature control of the nonlinear optical crystal is realized through the temperature controller. With this setting, the temperature control of the nonlinear optical crystal is convenient.

本发明还进一步设置为:所述Q开关是对1.06微米到1.32微米波段高透过率的声光Q开关。通过本设置,操作更加方便。In the present invention, it is further set that: the Q switch is an acousto-optic Q switch with high transmittance in the 1.06 micron to 1.32 micron band. With this setting, the operation is more convenient.

本发明的优点是:与现有技术相比,本发明结构设置更加合理,在泵浦源作用下,自拉曼激光晶体在全反镜片和输出镜片组成的腔内形成1.06微米波段的基频光,并不断地振荡加强;当基频光强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.06微米波段的基频光通过一次拉曼频移产生1.18微米波段的一阶斯托克斯光,同时在全反镜片和输出镜片组成的腔内振荡加强;当1.18微米波段的一阶斯托克斯光的强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.18微米波段的一阶斯托克斯光再次通过拉曼频移产生1.31微米波段的二阶斯托克斯光,也在全反镜片和输出镜片组成的腔内振荡加强。所以在全反镜片和输出镜片组成的腔内可同时存在着1.06微米波段的基频光、1.18微米波段的一阶斯托克斯光和1.31微米波段的二阶斯托克斯光。Q开关主要用来实现调Q脉冲激光运转,提高腔内基频光和一、二阶斯托克斯光的峰值功率。振荡腔内各个波长的激光通过温度可控的非线性光学晶体实现不同波长之间的和频或各自的倍频,实现各波长向可见波段激光的转换,中间镜片用来反射反方向传输的可见波段激光,最终可见波段激光都由输出镜片输出。其中通过改变非线性光学晶体的控制温度,可实现0.56、0.59和0.62微米波段不同的可见波段激光输出。输出镜片输出可见波段激光通过透镜耦合到光纤里,再通过光纤输出实现医疗应用。结构设计合理、所需的光学元件较少,可以大大降低成本,系统稳定性好,操作方便。The advantages of the present invention are: compared with the prior art, the structure setting of the present invention is more reasonable, and under the action of the pump source, the self-Raman laser crystal forms a fundamental frequency of 1.06 micron in the cavity composed of the total reflection mirror and the output mirror. light, and continuously oscillate and strengthen; when the intensity of the fundamental frequency light reaches the Raman conversion threshold from the Raman laser crystal, part of the fundamental frequency light in the 1.06 micron band will produce a first-order Stokes in the 1.18 micron band through a Raman frequency shift At the same time, the oscillation in the cavity composed of the total reflection mirror and the output mirror is strengthened; when the intensity of the first-order Stokes light in the 1.18 micron band reaches the Raman conversion threshold of the Raman laser crystal, part of the 1.18 micron band The first-order Stokes light is again shifted by Raman frequency to generate second-order Stokes light in the 1.31 micron band, which is also strengthened in the cavity composed of the total reflection lens and the output lens. Therefore, in the cavity composed of the total reflection lens and the output lens, the fundamental frequency light in the 1.06 micron band, the first-order Stokes light in the 1.18 micron band and the second-order Stokes light in the 1.31 micron band can exist simultaneously. The Q switch is mainly used to realize the operation of the Q-switched pulsed laser, and to increase the peak power of the fundamental frequency light and the first and second order Stokes light in the cavity. The laser of each wavelength in the oscillation cavity realizes the sum frequency or frequency doubling between different wavelengths through the temperature-controllable nonlinear optical crystal, and realizes the conversion of each wavelength to the visible band laser, and the middle lens is used to reflect the visible wave transmitted in the opposite direction Band lasers, and finally visible band lasers are output by the output lens. Among them, by changing the control temperature of the nonlinear optical crystal, different visible-band laser outputs in the 0.56, 0.59 and 0.62 micron wave bands can be realized. The output lens outputs visible-band laser through the lens and couples it into the optical fiber, and then outputs it through the optical fiber to achieve medical applications. The structural design is reasonable, the required optical components are less, the cost can be greatly reduced, the system is stable, and the operation is convenient.

下面结合说明书附图和具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

附图说明Description of drawings

图1为本发明实施例的结构示意图。Fig. 1 is a schematic structural diagram of an embodiment of the present invention.

具体实施方式detailed description

参见图1,本发明公开的一种可见波段多功能激光医疗机,包括机体,所述机体内依次设置有泵浦源1、全反镜片2、自拉曼激光晶体3、Q开关4、中间镜片5、非线性光学晶体6、输出镜片8、耦合透镜9和光纤10,所述全反镜片2与输出镜片8组成了基频光和各阶斯托斯光的振荡腔,通过控制非线性光学晶体的温度,实现输出与非线性光学晶体温度对应的激光波长。本实施例,通过控制非线性光学晶体的温度,可以实现输出0.56微米、0.59微米或0.62微米的激光波长。Referring to Fig. 1 , a visible-band multifunctional laser medical machine disclosed by the present invention includes a body in which a pump source 1, a full-reflection mirror 2, a self-Raman laser crystal 3, a Q switch 4, and a middle Lens 5, nonlinear optical crystal 6, output lens 8, coupling lens 9 and optical fiber 10, described total reflection lens 2 and output lens 8 have formed the oscillation cavity of fundamental frequency light and Storrs light of each order, by controlling nonlinear The temperature of the optical crystal realizes outputting the laser wavelength corresponding to the temperature of the nonlinear optical crystal. In this embodiment, by controlling the temperature of the nonlinear optical crystal, the output laser wavelength of 0.56 micron, 0.59 micron or 0.62 micron can be realized.

作为优选的,所述泵浦源1、全反镜片2、自拉曼激光晶体3、Q开关4、中间镜片5、非线性光学晶体6、输出镜片8、耦合透镜9和光纤10依次从左往右水平设置,且泵浦源1、全反镜片2、自拉曼激光晶体3、Q开关4、中间镜片5、非线性光学晶体6、输出镜片8和耦合透镜9的轴向中心线重合。As preferably, the pumping source 1, the total reflection lens 2, the self-Raman laser crystal 3, the Q switch 4, the intermediate lens 5, the nonlinear optical crystal 6, the output lens 8, the coupling lens 9 and the optical fiber 10 are sequentially from the left Set horizontally to the right, and the axial centerlines of the pump source 1, the total reflection lens 2, the self-Raman laser crystal 3, the Q switch 4, the intermediate lens 5, the nonlinear optical crystal 6, the output lens 8 and the coupling lens 9 coincide .

所述全反镜片2上镀有从1.06微米到1.32微米波段激光的高反膜;中间镜片5上镀有从1.06微米到1.32微米波段激光的增透膜和从0.56微米到0.62微米波段激光的高反膜;输出镜片8上镀有从1.06微米到1.32微米波段激光的高反膜和从0.56微米到0.62微米波段激光的高透膜。The full-reflection lens 2 is coated with a high-reflection film from 1.06 microns to 1.32 microns; the middle lens 5 is coated with an anti-reflection film from 1.06 microns to 1.32 microns and a laser from 0.56 microns to 0.62 microns. High-reflection film; the output lens 8 is coated with a high-reflection film from 1.06 microns to 1.32 microns and a high-transmission film from 0.56 microns to 0.62 microns.

所述泵浦源1为输出波长为808纳米或者880纳米的半导体激光器。The pump source 1 is a semiconductor laser with an output wavelength of 808 nm or 880 nm.

所述自拉曼激光晶体3是钕离子掺杂的具有拉曼效应的激光晶体,如Nd:YVO4,、Nd:GdVO4、Nd:LuVO4The self-Raman laser crystal 3 is a laser crystal with Raman effect doped with neodymium ions, such as Nd:YVO 4 , Nd:GdVO 4 , Nd:LuVO 4 .

所述非线性光学晶体6底部设置有温控器7,非线性光学晶体6通过温控器7实现温度控制。作为优选的,所述非线性光学晶体6放置在温控器7上端面上。A temperature controller 7 is arranged at the bottom of the nonlinear optical crystal 6 , and the temperature of the nonlinear optical crystal 6 is controlled by the temperature controller 7 . Preferably, the nonlinear optical crystal 6 is placed on the upper end surface of the temperature controller 7 .

所述Q开关4是对1.06微米到1.32微米波段高透过率的声光Q开关。The Q switch 4 is an acousto-optic Q switch with high transmittance for the 1.06 micron to 1.32 micron band.

实际应用时,半导体激光器,即泵浦源输出波长为808纳米;全反镜片2镀有从有1.06微米到1.32微米波长激光的高反膜;所述自拉曼激光晶体3采用Nd:YVO4晶体;Q开关4是选择对1.06微米到1.32微米波段高透过率的声光Q开关;非线性光学晶体6采用LBO晶体;中间镜片5镀有1.06微米到1.32微米波段激光的增透膜,同时镀有对0.56微米到0.62微米波段激光的高反膜;输出镜片8镀有1.06微米到1.32微米波段激光的高反膜,同时镀对0.56微米到0.62微米波段激光的高透膜;通过耦合透镜9把输出的可见波段激光耦合到光纤10输出激光。In actual application, the output wavelength of the semiconductor laser, that is, the pump source, is 808 nanometers; the full-reflection lens 2 is coated with a high-reflection film from 1.06 microns to 1.32 microns of wavelength laser; the self-Raman laser crystal 3 is made of Nd:YVO 4 crystal; Q switch 4 is an acousto-optic Q switch with high transmittance for the 1.06 micron to 1.32 micron band; nonlinear optical crystal 6 uses LBO crystal; At the same time, it is coated with a high-reflection film for lasers in the 0.56 micron to 0.62 micron band; the output lens 8 is coated with a high-reflection film for 1.06 micron to 1.32 micron band lasers, and is coated with a high-transparency film for 0.56 micron to 0.62 micron band lasers; through coupling The lens 9 couples the output laser in the visible band to the optical fiber 10 to output the laser.

采用半导体激光器,即泵浦源输出808纳米激光泵浦自拉曼激光晶体3,产生1.06微米波段的基频光,基频光在全反镜片2和输出镜片8组成的腔内不断振荡并加强,当基频光强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.06微米波段的激光通过拉曼频移产生1.18微米波段的一阶斯托克斯光,1.18微米波段的一阶斯托克斯光在全反镜片2和输出镜片8组成的腔内不断振荡并加强,当1.18微米波段的一阶斯托克斯光的强度达到自拉曼激光晶体的拉曼转换阈值时,部分1.18微米波段一阶斯托克斯光再次频移产生1.31微米的二阶斯托克斯光。基频光以及各阶斯托克斯光在全反镜片2和输出镜片8组成的腔内同时谐振。通过温控器7控制非线性光学晶体6的温度,其中温控器7的调节温度范围为0摄氏度到90摄氏度,当非线性光学晶体6温度控制为89摄氏度时,满足1.06微米波段的基频光和1.18微米的一阶斯托克斯光和频的非临界相位匹配温度,输出可见波段激光为0.56微米波段的绿色激光;当非线性光学晶体6温度控制为41摄氏度时,满足1.18微米波段的一阶斯托克斯光倍频的非临界相位匹配温度,输出可见波段激光为0.59微米波段的黄色激光;当非线性光学晶体温度控制为9摄氏度时,满足1.18微米波段的一阶斯托克斯光和1.31微米波段的二阶斯托克斯光和频的非临界相位匹配温度,输出可见波段激光为0.62微米波段的红色激光。针对不同的医疗应用,只需要设置温控器7的温度,就可以输出0.56微米波段的绿色激光、0.59微米波段的黄色激光或0.62微米波段的红色激光。由于各种激光同光路,可以通过同一块耦合透镜9把输出的激光耦合到光纤10里,再输出开展应用。The semiconductor laser is used, that is, the pump source outputs 808 nanometer laser pumped from the Raman laser crystal 3 to generate the fundamental frequency light in the 1.06 micron band. , when the intensity of the fundamental frequency light reaches the Raman conversion threshold of the Raman laser crystal, part of the laser light in the 1.06 micron band generates first-order Stokes light in the 1.18 micron band through Raman frequency shift, and the first-order Stokes light in the 1.18 micron band The Stokes light continuously oscillates and intensifies in the cavity formed by the total reflection mirror 2 and the output mirror 8. When the intensity of the first-order Stokes light in the 1.18 micron waveband reaches the Raman conversion threshold from the Raman laser crystal, part of the The frequency of the first-order Stokes light in the 1.18 micron band is shifted again to generate the second-order Stokes light at 1.31 microns. The fundamental frequency light and Stokes light of each order resonate simultaneously in the cavity formed by the total reflection lens 2 and the output lens 8 . The temperature of the nonlinear optical crystal 6 is controlled by the temperature controller 7, wherein the temperature adjustment range of the temperature controller 7 is 0 degrees Celsius to 90 degrees Celsius. When the temperature of the nonlinear optical crystal 6 is controlled to 89 degrees Celsius, the fundamental frequency of the 1.06 micron band is satisfied. The non-critical phase matching temperature of light and the first-order Stokes optical sum frequency of 1.18 microns, and the output visible wavelength laser is a green laser in the 0.56 micron band; when the temperature of the nonlinear optical crystal 6 is controlled to 41 degrees Celsius, it meets the 1.18 micron band The non-critical phase matching temperature of the first-order Stokes optical frequency multiplication, the output visible wavelength laser is a yellow laser in the 0.59 micron band; when the nonlinear optical crystal temperature is controlled at 9 degrees Celsius, it meets the first-order Stokes in the 1.18 micron band The non-critical phase-matching temperature of the Kex light and the second-order Stokes light sum frequency of the 1.31 micron band, and the output visible band laser is the red laser of the 0.62 micron band. For different medical applications, only the temperature of the thermostat 7 needs to be set to output green laser light in the 0.56 micron band, yellow laser light in the 0.59 micron band or red laser light in the 0.62 micron band. Since all kinds of laser light have the same optical path, the output laser light can be coupled into the optical fiber 10 through the same coupling lens 9, and then output for application.

本发明还可以把自拉曼激光晶体3换作Nd:GdVO4晶体和Nd:LuVO4晶体,半导体激光器泵浦源1改成波长为880nm的,最终可获得类似的效果。非线性光学晶体6采用按相位匹配角度θ=90°,切割的LBO晶体。In the present invention, the self-Raman laser crystal 3 can also be replaced by Nd:GdVO 4 crystal and Nd:LuVO 4 crystal, and the pumping source 1 of the semiconductor laser can be changed to a wavelength of 880nm, and finally a similar effect can be obtained. The nonlinear optical crystal 6 adopts phase matching angle θ=90°, Cut LBO crystals.

本实用相对现有的医疗机具有着明显的优势,首先可以控制三种可见波段波长的输出,根据医疗方面的具体应用选择不同波长的输出:0.56微米波段的绿光激光,在治疗高间接胆红素血症、新生儿黄疸症等领域具有重要疗效;0.59微米的黄光激光在治疗鲜红斑痣、黄褐斑等领域具有重要疗效,另外在眼科治疗眼底黄斑疾病的重要光源;0.62微米的红光在激光医学上对组织的穿透能力强,可以达到组织深处。另外在光动力学疗法上,针对目前国际上开发的新一代治癌用高效光敏剂,需要采用对应的红色激光作为癌症治疗中的激发光源。有些医疗领域需要不同的激光的联合治疗,比如黄光与红光联合治疗视网膜血管病致黄斑水肿具有更好的疗效(见文献中国实用眼科杂志第21卷(2003)第1期,第28页)。其次,本发明中仅采用了一根自拉曼激光晶体和一根非线性光学晶体的组合来实现,节约成本,而且结构简单紧凑,易于操作,所需的光学元件较少,可以大大降低成本,系统稳定性好。Compared with the existing medical machines, this utility model has obvious advantages. Firstly, it can control the output of three visible band wavelengths, and select the output of different wavelengths according to the specific application in medical treatment: the green laser in the 0.56 micron band can be used in the treatment of high indirect gall bladder. The 0.59-micron yellow light laser has important curative effects in the treatment of port wine stains, chloasma and other fields, and is also an important light source in ophthalmology for the treatment of fundus macular diseases; the 0.62-micron laser In laser medicine, red light has a strong ability to penetrate tissues and can reach deep into tissues. In addition, in terms of photodynamic therapy, for the new generation of high-efficiency photosensitizers for cancer treatment currently developed internationally, it is necessary to use the corresponding red laser as the excitation light source in cancer treatment. Some medical fields require combined treatment of different lasers. For example, the combination of yellow light and red light in the treatment of macular edema caused by retinal vascular disease has better curative effect (see literature Chinese Journal of Practical Ophthalmology, Vol. 21 (2003), No. 1, p. 28 ). Secondly, the present invention only adopts a combination of a self-Raman laser crystal and a nonlinear optical crystal to realize cost saving, and the structure is simple and compact, easy to operate, less optical elements are required, and the cost can be greatly reduced , the system stability is good.

上述实施例对本发明的具体描述,只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限定,本领域的技术工程师根据上述发明的内容对本发明作出一些非本质的改进和调整均落入本发明的保护范围之内。The specific description of the present invention in the above-mentioned embodiments is only used to further illustrate the present invention, and can not be interpreted as limiting the protection scope of the present invention. Technical engineers in the field make some non-essential improvements and adjustments to the present invention according to the content of the above-mentioned invention. Into the protection scope of the present invention.

Claims (6)

1.一种可见波段多功能激光医疗机,包括机体,其特征在于:所述机体内依次设置有泵浦源(1)、全反镜片(2)、自拉曼激光晶体(3)、Q开关(4)、中间镜片(5)、非线性光学晶体(6)、输出镜片(8)、耦合透镜(9)和光纤(10),所述全反镜片(2)与输出镜片(8)组成了基频光和各阶斯托斯光的振荡腔,所述泵浦源(1)、全反镜片(2)、自拉曼激光晶体(3)、Q开关(4)、中间镜片(5)、非线性光学晶体(6)、输出镜片(8)和耦合透镜(9)的轴向中心线重合,通过控制非线性光学晶体(6)的温度,实现输出与非线性光学晶体温度对应的激光波长。1. A visible band multifunctional laser medical machine, comprising a body, is characterized in that: a pump source (1), a full reflection lens (2), a self-Raman laser crystal (3), Q switch (4), intermediate lens (5), nonlinear optical crystal (6), output lens (8), coupling lens (9) and optical fiber (10), the said total reflection lens (2) and output lens (8) The oscillation cavity of the fundamental frequency light and Storrs light of each order is formed, the pump source (1), the total reflection lens (2), the self-Raman laser crystal (3), the Q switch (4), the intermediate lens ( 5), the axial centerlines of the nonlinear optical crystal (6), the output lens (8) and the coupling lens (9) coincide, and by controlling the temperature of the nonlinear optical crystal (6), the output corresponds to the temperature of the nonlinear optical crystal laser wavelength. 2.根据权利要求1所述的一种可见波段多功能激光医疗机,其特征在于:所述全反镜片(2)上镀有从1.06微米到1.32微米波段激光的高反膜;中间镜片(5)上镀有从1.06微米到1.32微米波段激光的增透膜和从0.56微米到0.62微米波段激光的高反膜;输出镜片(8)上镀有从1.06微米到1.32微米波段激光的高反膜和从0.56微米到0.62微米波段激光的高透膜。2. A kind of visible band multifunctional laser medical machine according to claim 1, it is characterized in that: the high-reflection film from 1.06 micron to 1.32 micron waveband laser is coated on the described all-reflection lens (2); Middle lens ( 5) It is coated with an anti-reflection coating from 1.06 microns to 1.32 microns and a high reflection film from 0.56 microns to 0.62 microns; the output lens (8) is coated with a high reflection film from 1.06 microns to 1.32 microns Membranes and highly transparent membranes for lasers from 0.56 microns to 0.62 microns. 3.根据权利要求2所述的一种可见波段多功能激光医疗机,其特征在于:所述泵浦源(1)为输出波长为808纳米或者880纳米的半导体激光器。3. A visible-band multifunctional laser medical machine according to claim 2, characterized in that: the pump source (1) is a semiconductor laser with an output wavelength of 808 nanometers or 880 nanometers. 4.根据权利要求3所述的一种可见波段多功能激光医疗机,其特征在于:所述自拉曼激光晶体(3)是钕离子掺杂的具有拉曼效应的激光晶体。4. A visible-band multifunctional laser medical machine according to claim 3, characterized in that: the self-Raman laser crystal (3) is a laser crystal doped with neodymium ions and has a Raman effect. 5.根据权利要求4所述的一种可见波段多功能激光医疗机,其特征在于:所述非线性光学晶体(6)底部设置有温控器(7),非线性光学晶体(6)通过温控器(7)实现温度控制。5. A visible-band multifunctional laser medical machine according to claim 4, characterized in that: the bottom of the nonlinear optical crystal (6) is provided with a temperature controller (7), and the nonlinear optical crystal (6) passes Temperature controller (7) realizes temperature control. 6.根据权利要求5所述的一种可见波段多功能激光医疗机,其特征在于:所述Q开关(4)是对1.06微米到1.32微米波段高透过率的声光Q开关。6. A visible-band multifunctional laser medical machine according to claim 5, characterized in that: said Q switch (4) is an acousto-optic Q switch with high transmittance for the 1.06 micron to 1.32 micron band.
CN201510757426.6A 2015-11-09 2015-11-09 Visible-waveband multifunctional laser medical instrument Pending CN105233424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510757426.6A CN105233424A (en) 2015-11-09 2015-11-09 Visible-waveband multifunctional laser medical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510757426.6A CN105233424A (en) 2015-11-09 2015-11-09 Visible-waveband multifunctional laser medical instrument

Publications (1)

Publication Number Publication Date
CN105233424A true CN105233424A (en) 2016-01-13

Family

ID=55031400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510757426.6A Pending CN105233424A (en) 2015-11-09 2015-11-09 Visible-waveband multifunctional laser medical instrument

Country Status (1)

Country Link
CN (1) CN105233424A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069395A (en) * 2017-05-12 2017-08-18 温州大学 A kind of optional laser eyeground therapeutic equipment of multi-wavelength
CN111725698A (en) * 2020-07-30 2020-09-29 暨南大学 An all-solid-state Raman frequency-doubling deep red laser and a laser generating method
WO2021019431A1 (en) * 2019-07-30 2021-02-04 周珍妮 Optical meter for eyebrow coloring treatment
CN113133868A (en) * 2021-04-22 2021-07-20 河南省中医院(河南中医药大学第二附属医院) Age-related macular degeneration treatment device
CN117919021A (en) * 2024-03-21 2024-04-26 天津迈达医学科技股份有限公司 Optical path system for anterior ocular segment laser therapeutic apparatus and anterior ocular segment laser therapeutic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120165801A1 (en) * 2009-06-15 2012-06-28 Pantec Biosolutions Ag Monolithic, side pumped solid-state laser and applications thereof
CN103151699A (en) * 2013-02-19 2013-06-12 山东大学 535nm all-solid-state frequency doubled laser
CN104078832A (en) * 2014-07-02 2014-10-01 温州大学 Middle-infrared wave band self-cascade optical parametric oscillation laser device
CN205108783U (en) * 2015-11-09 2016-03-30 温州大学 Optional laser medicine of three -wavelength machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120165801A1 (en) * 2009-06-15 2012-06-28 Pantec Biosolutions Ag Monolithic, side pumped solid-state laser and applications thereof
CN103151699A (en) * 2013-02-19 2013-06-12 山东大学 535nm all-solid-state frequency doubled laser
CN104078832A (en) * 2014-07-02 2014-10-01 温州大学 Middle-infrared wave band self-cascade optical parametric oscillation laser device
CN205108783U (en) * 2015-11-09 2016-03-30 温州大学 Optional laser medicine of three -wavelength machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069395A (en) * 2017-05-12 2017-08-18 温州大学 A kind of optional laser eyeground therapeutic equipment of multi-wavelength
WO2021019431A1 (en) * 2019-07-30 2021-02-04 周珍妮 Optical meter for eyebrow coloring treatment
CN111725698A (en) * 2020-07-30 2020-09-29 暨南大学 An all-solid-state Raman frequency-doubling deep red laser and a laser generating method
CN113133868A (en) * 2021-04-22 2021-07-20 河南省中医院(河南中医药大学第二附属医院) Age-related macular degeneration treatment device
CN117919021A (en) * 2024-03-21 2024-04-26 天津迈达医学科技股份有限公司 Optical path system for anterior ocular segment laser therapeutic apparatus and anterior ocular segment laser therapeutic apparatus
CN117919021B (en) * 2024-03-21 2024-06-04 天津迈达医学科技股份有限公司 Optical path system for anterior ocular segment laser therapeutic apparatus and anterior ocular segment laser therapeutic apparatus

Similar Documents

Publication Publication Date Title
CN105233424A (en) Visible-waveband multifunctional laser medical instrument
CN101345388B (en) Solid laser device for simultaneously outputting red, yellow and green light and its laser generation method
CN103311782A (en) Thulium-doped fiber laser-based method and thulium-doped fiber laser-based device for generating quadruplicated frequency blue laser
CN101814692A (en) Medicinal all-solid-state yellow laser
CN101820132A (en) All solid-state medical double resonance intracavity sum frequency yellow light laser
CN106099633A (en) The laser instrument that a kind of mid-infrared width wavestrip laser exports simultaneously
CN101677174A (en) Four-wavelength Q adjusting external cavity type frequency doubling pulse laser
CN107069395A (en) A kind of optional laser eyeground therapeutic equipment of multi-wavelength
CN205108783U (en) Optional laser medicine of three -wavelength machine
CN100555053C (en) All-solid-state CW tunable yellow-orange coherent light source
CN205159777U (en) An eye-safe laser with selectable band and wavelength
CN202506001U (en) Total-solid double-wavelength laser treatment instrument for treating chloasma
CN102684062A (en) Intracavity sum-frequency 529nm laser
CN204615143U (en) A medical picosecond solid-state laser
CN202637114U (en) 1320 nanometer and 660 nanometer laser dual-wavelength medical surgical device
CN205122991U (en) Optional laser lamp -house of three -colour
CN102657556A (en) Medical surgical instrument with double laser wavelengths of 1,320nm and 660nm
CN109950779B (en) Five-wavelength laser light source for laser fundus photocoagulation treatment
CN101304152A (en) Coupled cavity self-Raman frequency doubling all-solid-state yellow laser
CN209516302U (en) Powder, red, orange, yellow, the optional output laser of green five kinds of colors
CN203235152U (en) Intracavity frequency-doubling all-solid-state raman yellow orange laser skin vascular disease therapeutic instrument
CN105048272B (en) One kind is based on LiIO3The all solid state laser and its method of work of crystal
CN206789869U (en) A kind of optional laser of visible waveband multi-wavelength
CN211017732U (en) A Novel Multiwavelength Solid State Raman Laser
CN205303940U (en) Full solid laser of 558nm wavelength single -frequency output

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160113

RJ01 Rejection of invention patent application after publication