CN105279496B - Method and device for face recognition - Google Patents
Method and device for face recognition Download PDFInfo
- Publication number
- CN105279496B CN105279496B CN201510703783.4A CN201510703783A CN105279496B CN 105279496 B CN105279496 B CN 105279496B CN 201510703783 A CN201510703783 A CN 201510703783A CN 105279496 B CN105279496 B CN 105279496B
- Authority
- CN
- China
- Prior art keywords
- information
- user equipment
- face
- face characteristic
- characteristic information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/166—Detection; Localisation; Normalisation using acquisition arrangements
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Collating Specific Patterns (AREA)
- Image Analysis (AREA)
Abstract
本发明提供一种人脸识别的方法和装置,该方法包括:获得前端设备采集到的第一用户设备信息和人脸图像的第一人脸特征信息;预先维护第二用户设备信息与第二人脸特征信息之间的关联关系;从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息;从多个第一用户设备信息关联的第二人脸特征信息中筛选出第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。通过本发明的技术方案,管理服务器不是只基于前端设备采集到的人脸图像的人脸特征信息,确定人脸识别结果,不完全依赖于人脸图像的人脸特征信息,从而可以提升人脸识别准确率,提升人脸识别的信度。
The present invention provides a method and device for face recognition. The method includes: obtaining the first user equipment information collected by front-end equipment and the first facial feature information of the face image; maintaining the second user equipment information in advance with the second The association relationship between the face feature information; searching the second user device information for information that matches the multiple first user device information within the period of collecting the first face feature information, and finding the information associated with the multiple first user device information The second facial feature information: selecting the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determining the face recognition result. Through the technical solution of the present invention, the management server does not determine the face recognition result only based on the face feature information of the face image collected by the front-end equipment, and does not completely depend on the face feature information of the face image, so that the face recognition can be improved. Improve the recognition accuracy and improve the reliability of face recognition.
Description
技术领域technical field
本发明涉及视频技术领域,尤其涉及一种人脸识别的方法和装置。The present invention relates to the field of video technology, in particular to a face recognition method and device.
背景技术Background technique
近年来,随着计算机、网络以及图像处理、传输技术的飞速发展,视频监控的普及化趋势越来越明显,视频监控正在逐步迈入高清化,智能化,视频监控系统可以应用于众多领域,如智能交通,智慧园区、平安城市等。In recent years, with the rapid development of computers, networks, image processing, and transmission technologies, the trend of popularization of video surveillance has become more and more obvious. Video surveillance is gradually becoming high-definition and intelligent. Video surveillance systems can be used in many fields. Such as intelligent transportation, smart park, safe city, etc.
随着计算机图像识别技术的快速发展,在视频监控系统中,人脸识别技术有了更多的应用需求,如出入口的人脸抓拍,人脸考勤,人员布控等,人脸提供了丰富的人脸特征信息,在人员辨识过程中可以起到重要作用。With the rapid development of computer image recognition technology, in video surveillance systems, face recognition technology has more application requirements, such as face capture at entrances and exits, face attendance, personnel control, etc. Face provides a wealth of human Facial feature information can play an important role in the process of person recognition.
在目前的人脸识别技术中,可以基于包含人脸的视频图像进行人脸识别。具体的,从包含人脸的视频图像中提取人脸特征信息,并将提取的人脸特征信息与人脸库中存储的人脸特征信息进行一一比对,得到人脸的相似度排序,并从人脸库中选取出相似度最高的人脸作为识别结果进行输出。In the current face recognition technology, face recognition can be performed based on video images containing faces. Specifically, extract the face feature information from the video image containing the face, and compare the extracted face feature information with the face feature information stored in the face database to obtain the similarity ranking of the faces, And select the face with the highest similarity from the face database as the recognition result for output.
上述方式完全依赖于视频图像的人脸特征信息,而视频图像对环境要求很高,受光线、角度影响,抗干扰能力差,人脸识别漏识率和误判率高,甚至无法区分是否为真实人脸,如衣服上的人脸图像、玻璃门上的人脸倒影等。The above method completely depends on the face feature information of the video image, and the video image has high requirements on the environment, is affected by light and angle, has poor anti-interference ability, and has a high rate of missed recognition and misjudgment in face recognition, and it is even impossible to distinguish whether it is a human face or not. Real faces, such as face images on clothes, face reflections on glass doors, etc.
发明内容Contents of the invention
本发明提供一种人脸识别的方法,应用于管理服务器上,所述方法包括以下步骤:获得前端设备采集到的第一用户设备信息和人脸图像的第一人脸特征信息;预先维护第二用户设备信息与第二人脸特征信息之间的关联关系;从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息;从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。The present invention provides a method for face recognition, which is applied to a management server. The method includes the following steps: obtaining the first user equipment information collected by the front-end device and the first face feature information of the face image; maintaining the first face feature information in advance 2. Association relationship between user equipment information and second facial feature information; search information from second user equipment information that matches multiple first user equipment information within the period of collecting first facial feature information, and find multiple The second facial feature information associated with the first user equipment information; selecting the second human face corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information Feature information to determine the face recognition result.
所述从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息之前,所述方法还包括:判断所有的第二人脸特征信息中是否存在与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息;如果是,将与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果;如果否,执行从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息的过程。Before searching the second user equipment information for information that matches a plurality of first user equipment information within the period of collecting the first facial feature information, and finding the second facial feature information associated with the multiple first user equipment information, The method also includes: judging whether there is second facial feature information whose similarity with the first facial feature information meets the preset requirements in all the second facial feature information; The second face feature information whose similarity between the face feature information meets the preset requirements is used as the face recognition result; if not, perform a search from the second user device information and collect multiple face feature information within the period of time. The process of finding the second facial feature information associated with multiple first user equipment information based on the information matched by the first user equipment information.
所述从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果的过程,具体包括:将所述第一人脸特征信息与所述的多个第一用户设备信息关联的每个第二人脸特征信息进行比对,得到所述的多个第一用户设备信息关联的每个第二人脸特征信息与所述第一人脸特征信息的相似度;选择相似度最高的第二人脸特征信息,作为人脸识别结果。The process of selecting the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determining the face recognition result, specifically The method includes: comparing the first facial feature information with each second facial feature information associated with the plurality of first user equipment information to obtain each of the plurality of first user equipment information associated The similarity between the second facial feature information and the first facial feature information; the second facial feature information with the highest similarity is selected as the face recognition result.
所述第二用户设备信息包括以下之一或任意组合:随身穿戴信息、移动终端的序列号、移动终端的MAC地址、移动终端的号码、SIM卡序列号;所述第一用户设备信息包括的内容与所述第二用户设备信息包括的内容相同。The second user equipment information includes one or any combination of the following: wearable information, the serial number of the mobile terminal, the MAC address of the mobile terminal, the number of the mobile terminal, and the serial number of the SIM card; the first user equipment information includes The content is the same as that included in the second user equipment information.
本发明提供一种人脸识别的装置,应用于管理服务器上,所述装置具体包括:获得模块,用于获得前端设备采集到的第一用户设备信息,并获得所述前端设备采集到的人脸图像所对应的第一人脸特征信息;维护模块,用于预先维护第二用户设备信息与第二人脸特征信息之间的关联关系;查询模块,用于从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息;确定模块,用于从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。The present invention provides a device for face recognition, which is applied to a management server. The device specifically includes: an obtaining module, which is used to obtain the first user device information collected by the front-end device, and obtain the person information collected by the front-end device. The first face feature information corresponding to the face image; the maintenance module is used to pre-maintain the association relationship between the second user equipment information and the second face feature information; the query module is used to search for information from the second user equipment information The information matched with the multiple first user equipment information within the period of collecting the first facial feature information is used to find the second facial feature information associated with the multiple first user equipment information; The second facial feature information corresponding to the first facial feature information is selected from the second facial feature information associated with the first user equipment information, and the face recognition result is determined.
所述查询模块,还用于在从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息之前,判断所有的第二人脸特征信息中是否存在与所述第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息;如果否,则执行从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息的过程;所述确定模块,还用于当查询结果为是时,则将与所述第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果。The query module is further configured to search the second user equipment information for information that matches a plurality of first user equipment information within the period of collecting the first facial feature information, and find the first user equipment information associated with the plurality of first user equipment information. Before the feature information of two people's faces, it is judged whether there is a second face feature information whose similarity with the first face feature information meets the preset requirements in all the second face feature information; if not, then execute The process of searching the second user equipment information for information that matches the multiple first user equipment information within the period of collecting the first facial feature information, and finding the second facial feature information associated with the multiple first user equipment information; The determination module is further configured to use the second facial feature information whose similarity with the first facial feature information meets the preset requirements as the face recognition result when the query result is yes.
所述确定模块,具体用于在从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果的过程中,将所述第一人脸特征信息与所述的多个第一用户设备信息关联的每个第二人脸特征信息进行比对,得到所述的多个第一用户设备信息关联的每个第二人脸特征信息与所述第一人脸特征信息的相似度;选择相似度最高的第二人脸特征信息,作为人脸识别结果。The determination module is specifically configured to filter out the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determine the person In the process of face recognition results, the first facial feature information is compared with each second facial feature information associated with the multiple first user equipment information to obtain the multiple first user The similarity between each second facial feature information associated with the device information and the first facial feature information; select the second facial feature information with the highest similarity as the face recognition result.
所述第二用户设备信息包括以下之一或任意组合:随身穿戴信息、移动终端的序列号、移动终端的MAC地址、移动终端的号码、SIM卡序列号;所述第一用户设备信息包括的内容与所述第二用户设备信息包括的内容相同。The second user equipment information includes one or any combination of the following: wearable information, the serial number of the mobile terminal, the MAC address of the mobile terminal, the number of the mobile terminal, and the serial number of the SIM card; the first user equipment information includes The content is the same as that included in the second user equipment information.
基于上述技术方案,本发明实施例中,可以基于前端设备采集到的用户设备信息和人脸图像的人脸特征信息,确定人脸识别结果,而不是只基于前端设备采集到的人脸图像的人脸特征信息,确定人脸识别结果,不完全依赖于人脸图像的人脸特征信息,从而通过多维度信息确定人脸识别结果,提升人脸识别准确率,降低人脸漏识别率和误判率,提升人脸识别的信度。Based on the above technical solution, in the embodiment of the present invention, the face recognition result can be determined based on the user equipment information collected by the front-end device and the face feature information of the face image, instead of only based on the face image collected by the front-end device. Face feature information, to determine the result of face recognition, does not completely depend on the face feature information of the face image, so as to determine the result of face recognition through multi-dimensional information, improve the accuracy of face recognition, and reduce the rate of missed recognition and errors improve the reliability of face recognition.
附图说明Description of drawings
图1是本发明一种实施方式中的人脸识别的方法的流程图;Fig. 1 is the flowchart of the method for face recognition in an embodiment of the present invention;
图2是本发明另一种实施方式中的人脸识别的方法的流程图;Fig. 2 is the flow chart of the method for face recognition in another embodiment of the present invention;
图3是本发明一种实施方式中的管理服务器的硬件结构图;FIG. 3 is a hardware structural diagram of a management server in an embodiment of the present invention;
图4是本发明一种实施方式中的人脸识别的装置的结构图。Fig. 4 is a structural diagram of a face recognition device in an embodiment of the present invention.
具体实施方式Detailed ways
针对现有技术中存在的问题,本发明实施例中提出一种人脸识别的方法,该方法可以应用在视频监控系统的管理服务器(如VM(Video Management,视频管理)服务器)上,如图1所示,该人脸识别的方法可以包括以下步骤:Aiming at the problems existing in the prior art, a method for face recognition is proposed in the embodiment of the present invention, which can be applied to a management server (such as a VM (Video Management, video management) server) of a video surveillance system, as shown in FIG. 1, the face recognition method may include the following steps:
步骤101,获得前端设备采集到的第一用户设备信息和人脸图像的第一人脸特征信息。其中,前端设备可采集到第一用户设备信息和人脸图像,将第一用户设备信息和人脸图像发送给管理服务器。管理服务器基于来自前端设备的第一用户设备信息,获得前端设备采集到的第一用户设备信息。管理服务器基于来自前端设备的人脸图像,获得人脸图像对应的第一人脸特征信息,该第一人脸特征信息即前端设备采集到的人脸图像的第一人脸特征信息。Step 101, obtaining first user equipment information collected by a front-end device and first facial feature information of a facial image. Wherein, the front-end device may collect the first user device information and face image, and send the first user device information and face image to the management server. The management server obtains the first user equipment information collected by the front-end device based on the first user equipment information from the front-end device. Based on the face image from the front-end device, the management server obtains the first face feature information corresponding to the face image, and the first face feature information is the first face feature information of the face image collected by the front-end device.
步骤102,预先维护第二用户设备信息与第二人脸特征信息之间的关联关系。Step 102, maintaining the association relationship between the second user equipment information and the second facial feature information in advance.
其中,第二用户设备信息与第二人脸特征信息之间的关联关系具体可以包括:第二用户设备信息与人员信息之间的对应关系,以及第二人脸特征信息与人员信息之间的对应关系;在预先维护第二用户设备信息与人员信息之间的对应关系、第二人脸特征信息与人员信息之间的对应关系的过程中,可以获得第二用户设备信息和人员信息,并在预先维护的设备信息库中存储第二用户设备信息和当前获得的人员信息之间的对应关系;获得人脸图像的第二人脸特征信息和人员信息,并在预先维护的特征信息库中存储第二人脸特征信息和当前获得的人员信息之间的对应关系。或者,获得第二用户设备信息、人脸图像的第二人脸特征信息和人员信息,并在预先维护的特征信息库中存储第二用户设备信息、第二人脸特征信息和当前获得的人员信息之间的对应关系。Wherein, the association relationship between the second user equipment information and the second facial feature information may specifically include: the correspondence between the second user equipment information and personnel information, and the correspondence between the second facial feature information and personnel information. Correspondence; in the process of pre-maintaining the correspondence between the second user equipment information and the personnel information, and the correspondence between the second facial feature information and the personnel information, the second user equipment information and personnel information can be obtained, and Store the corresponding relationship between the second user equipment information and the currently obtained personnel information in the pre-maintained device information database; obtain the second facial feature information and personnel information of the face image, and store them in the pre-maintained feature information database The corresponding relationship between the second facial feature information and the currently obtained personnel information is stored. Or, obtain the second user device information, the second facial feature information and personnel information of the face image, and store the second user device information, the second facial feature information and the currently obtained personnel information in the pre-maintained feature information database Correspondence between information.
步骤103,从第二用户设备信息中查找与采集第一人脸特征信息时段(前端设备采集到人脸图像的时间区间)内的多个第一用户设备信息匹配的信息(即第二用户设备信息),找到多个第一用户设备信息关联的第二人脸特征信息(多个第一用户设备信息对应的多个第二用户设备信息关联的第二人脸特征信息)。Step 103, look for information from the second user equipment information that matches a plurality of first user equipment information within the period of collecting the first facial feature information (the time interval in which the front-end equipment collects the facial image) (that is, the second user equipment information) to find the second facial feature information associated with multiple pieces of first user equipment information (the second facial feature information associated with multiple second user equipment information corresponding to multiple first user equipment information).
步骤104,从多个第一用户设备信息关联的第二人脸特征信息中筛选出第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。其中,该人脸识别结果即为前端设备采集到的人脸图像对应的人脸,并可输出对应的人员信息。Step 104: Select the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determine the face recognition result. Wherein, the face recognition result is the face corresponding to the face image collected by the front-end device, and the corresponding personnel information can be output.
本发明实施例中,在从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息之前,还可以判断所有的第二人脸特征信息(即特征信息库中存储的所有的第二人脸特征信息,其会包含第一用户设备信息对应的第二人脸特征信息)中,是否存在与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息;如果是,则可以直接将与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果;如果否,则执行从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息的过程。In the embodiment of the present invention, after searching the second user equipment information for information that matches the multiple first user equipment information within the period of collecting the first facial feature information, the second person associated with the multiple first user equipment information is found. Before the face feature information, it is also possible to judge all the second face feature information (that is, all the second face feature information stored in the feature information database, which will include the second face feature information corresponding to the first user equipment information) Among them, whether there is a second face feature information whose similarity with the first face feature information meets the preset requirements; if yes, the similarity with the first face feature information can be directly satisfied The required second face feature information is used as the face recognition result; if not, then perform a search from the second user device information for information that matches a plurality of first user device information within the period of collecting the first face feature information, and find A process of associating multiple pieces of first user equipment information with second facial feature information.
本发明实施例中,从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息(即第二用户设备信息),找到多个第一用户设备信息关联的第二人脸特征信息的过程,具体可以包括但不限于如下方式:利用采集第一人脸特征信息时段内的多个第一用户设备信息查询预先维护的第二用户设备信息与人员信息之间的对应关系,从第二用户设备信息中查找到与这多个第一用户设备信息匹配的第二用户设备信息,并得到这些第二用户设备信息对应的人员信息;利用得到的人员信息查询预先维护的第二人脸特征信息与人员信息之间的对应关系,得到对应的多个第二人脸特征信息,且得到的第二人脸特征信息为多个第一用户设备信息关联的第二人脸特征信息。In the embodiment of the present invention, the information (that is, the second user equipment information) that matches the multiple first user equipment information within the period of collecting the first facial feature information is searched from the second user equipment information, and multiple first user equipment information is found. The process of associating the second facial feature information with the device information may specifically include but not limited to the following methods: use multiple first user device information within the period of collecting the first facial feature information to query the pre-maintained second user device information and Correspondence between personnel information, find out the second user equipment information matching the plurality of first user equipment information from the second user equipment information, and obtain the personnel information corresponding to these second user equipment information; use the obtained The personnel information queries the correspondence between the pre-maintained second facial feature information and the personal information, and obtains a plurality of corresponding second facial feature information, and the obtained second facial feature information is a plurality of first user equipment information Associated second facial feature information.
本发明实施例中,在前端设备采集到人脸图像的时间区间,前端设备采集到多个第一用户设备信息,且多个第一用户设备信息对应多个第二人脸特征信息。基于此,从多个第一用户设备信息关联的第二人脸特征信息中筛选出第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果的过程,具体可以包括但不限于如下方式:将第一人脸特征信息与采集到人脸图像的时间区间对应的多个第一用户设备信息所关联的每个第二人脸特征信息进行比对,得到这多个第一用户设备信息关联的每个第二人脸特征信息与第一人脸特征信息的相似度;选择相似度最高的第二人脸特征信息,作为人脸识别结果。In the embodiment of the present invention, during the time interval when the front-end device collects the face image, the front-end device collects a plurality of first user device information, and the plurality of first user device information corresponds to a plurality of second face feature information. Based on this, the process of selecting the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with multiple first user equipment information, and determining the face recognition result may specifically include but not The method is limited to the following method: compare the first facial feature information with each second facial feature information associated with the plurality of first user equipment information corresponding to the time interval in which the facial image is collected, and obtain the plurality of first facial features. The similarity between each second facial feature information associated with the user equipment information and the first facial feature information; select the second facial feature information with the highest similarity as the face recognition result.
本发明实施例的上述过程中,第二用户设备信息具体可以包括但不限于以下之一或者任意组合:随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)、移动终端的序列号、移动终端的MAC(Media Access Control,媒体访问控制)地址、移动终端的号码、SIM(Subscriber Identity Module,客户识别模块)卡序列号等;第一用户设备信息包括的内容与第二用户设备信息包括的内容相同。In the above process of the embodiment of the present invention, the second user equipment information may specifically include but not limited to one or any combination of the following: wearable information (such as Bluetooth bracelet information, Bluetooth headset information, etc.), serial number of the mobile terminal, mobile The MAC (Media Access Control, Media Access Control) address of the terminal, the number of the mobile terminal, the SIM (Subscriber Identity Module, customer identification module) card serial number, etc.; the content included in the first user equipment information and the content included in the second user equipment information The content is the same.
例如,当第二用户设备信息为随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)时,则前端设备采集到的第一用户设备信息为随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)。当第二用户设备信息为移动终端的MAC地址时,则前端设备采集到的第一用户设备信息为移动终端的MAC地址时。For example, when the second user equipment information is wearable information (such as Bluetooth bracelet information, Bluetooth headset information, etc.), the first user equipment information collected by the front-end device is wearable information (such as Bluetooth bracelet information, Bluetooth headset information, etc.). information, etc.). When the second user equipment information is the MAC address of the mobile terminal, the first user equipment information collected by the front-end device is the MAC address of the mobile terminal.
当然,在实际应用中,第一用户设备信息和第二用户设备信息均并不局限于上述用户设备信息,对于其它用户设备信息,在此不再赘述。Of course, in practical applications, both the first user equipment information and the second user equipment information are not limited to the above user equipment information, and details about other user equipment information will not be repeated here.
基于上述技术方案,本发明实施例中,可以基于前端设备采集到的用户设备信息和人脸图像的人脸特征信息,确定人脸识别结果,而不是只基于前端设备采集到的人脸图像的人脸特征信息,确定人脸识别结果,不完全依赖于人脸图像的人脸特征信息,从而通过多维度信息确定人脸识别结果,提升人脸识别准确率,降低人脸漏识别率和误判率,提升人脸识别的信度。Based on the above technical solution, in the embodiment of the present invention, the face recognition result can be determined based on the user equipment information collected by the front-end device and the face feature information of the face image, instead of only based on the face image collected by the front-end device. Face feature information, to determine the result of face recognition, does not completely depend on the face feature information of the face image, so as to determine the result of face recognition through multi-dimensional information, improve the accuracy of face recognition, and reduce the rate of missed recognition and errors improve the reliability of face recognition.
以下结合具体的实施例,对上述过程进行进一步的说明。The above process will be further described below in conjunction with specific embodiments.
本发明实施例中提出一种人脸识别的方法,该方法可以应用在视频监控系统中,该视频监控系统至少可以包括前端设备(如摄像机)和管理服务器(如VM服务器),如图2所示,该人脸识别的方法具体可以包括以下步骤:In the embodiment of the present invention, a face recognition method is proposed, which can be applied in a video surveillance system. The video surveillance system can at least include a front-end device (such as a camera) and a management server (such as a VM server), as shown in FIG. 2 As shown, the method for face recognition may specifically include the following steps:
步骤201,管理服务器获得第二用户设备信息和人员信息,并在预先维护的设备信息库中存储该第二用户设备信息和该人员信息之间的对应关系。In step 201, the management server obtains the second user equipment information and personnel information, and stores the correspondence between the second user equipment information and the personnel information in a pre-maintained equipment information database.
其中,第二用户设备信息包括但不限于以下之一或者任意组合:人员的随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)、人员的移动终端信息(如移动终端的序列号、移动终端的MAC地址、移动终端的号码、SIM卡序列号等)。Wherein, the second user equipment information includes, but is not limited to, one or any combination of the following: wearable information of the person (such as Bluetooth bracelet information, Bluetooth headset information, etc.), mobile terminal information of the person (such as the serial number of the mobile terminal, mobile MAC address of the terminal, number of the mobile terminal, serial number of the SIM card, etc.).
其中,管理服务器可以在同一个设备信息库中存储人员的随身穿戴信息、人员的移动终端信息和人员信息之间的对应关系,例如,在设备信息库1中存储人员的随身穿戴信息、人员的移动终端信息和人员信息之间的对应关系。管理服务器也可以在不同的设备信息库中存储人员的随身穿戴信息和人员信息之间的对应关系、人员的移动终端信息和人员信息之间的对应关系,例如,在设备信息库1中存储人员的随身穿戴信息和人员信息之间的对应关系,在设备信息库2中存储人员的移动终端信息和人员信息之间的对应关系。Wherein, the management server may store the corresponding relationship between the personal wearable information, the personal mobile terminal information and the personal information in the same device information database, for example, store the personal wearable information, personal Correspondence between mobile terminal information and personnel information. The management server can also store the correspondence between personal wearable information and personnel information, and the correspondence between personnel's mobile terminal information and personnel information in different device information databases. The corresponding relationship between the personal wearable information and the personal information, and the corresponding relationship between the personal mobile terminal information and the personal information is stored in the device information library 2 .
步骤202,管理服务器获得人脸图像的第二人脸特征信息和人员信息,并在预先维护的特征信息库中存储该第二人脸特征信息和该人员信息之间的对应关系。其中,该人脸图像具体可以指包含人脸的视频图像。Step 202, the management server obtains the second facial feature information and person information of the face image, and stores the correspondence between the second facial feature information and the person information in a pre-maintained feature information database. Wherein, the face image may specifically refer to a video image including a face.
其中,第二人脸特征信息中可以包含该人脸图像,还可以包含人脸的其它信息,如两眼之间的距离,眉毛之间的距离,脸型特征等,对此不再赘述。Wherein, the second face feature information may include the face image, and may also include other information of the face, such as the distance between two eyes, the distance between eyebrows, facial features, etc., which will not be repeated here.
在具体应用场景下,可以采用相应方式获得第二用户设备信息、第二人脸特征信息和人员信息。例如,针对某园区,可以要求园区内人员提供自身的人员信息(如姓名、身份证、性别、年龄等)和第二用户设备信息,并采集该人员的人脸图像(这种采集是对准人员的采集,清晰度、准确度均很高)。In a specific application scenario, the second user equipment information, the second facial feature information, and the personnel information may be obtained in a corresponding manner. For example, for a park, people in the park can be required to provide their own personnel information (such as name, ID card, gender, age, etc.) Personnel collection, clarity, accuracy are very high).
针对步骤201和步骤202,管理服务器是在特征信息库和设备信息库中分别存储第二人脸特征信息和人员信息之间的对应关系、第二用户设备信息和人员信息之间的对应关系,在实际应用中,管理服务器还可以在同一个信息库(如特征信息库)中存储第二用户设备信息、第二人脸特征信息和当前获得的人员信息之间的对应关系,该过程在此不再详加赘述。For steps 201 and 202, the management server stores the correspondence between the second facial feature information and the personnel information, the correspondence between the second user equipment information and the personnel information in the characteristic information database and the equipment information database respectively, In practical applications, the management server may also store the correspondence between the second user equipment information, the second facial feature information, and the currently obtained personnel information in the same information database (such as a feature information database). No more details.
步骤203,管理服务器获得前端设备采集到的第一用户设备信息和人脸图像的第一人脸特征信息。其中,前端设备可以采集到第一用户设备信息和人脸图像,并将该第一用户设备信息和该人脸图像发送给管理服务器。进一步的,管理服务器可以基于来自前端设备的第一用户设备信息,获得前端设备采集到的第一用户设备信息。管理服务器还可以基于来自前端设备的人脸图像,获得该人脸图像对应的第一人脸特征信息,并且该第一人脸特征信息即为前端设备采集到的该人脸图像对应的第一人脸特征信息。Step 203, the management server obtains the first user equipment information and the first facial feature information of the facial image collected by the front-end equipment. Wherein, the front-end device may collect the first user device information and the face image, and send the first user device information and the face image to the management server. Further, the management server may obtain the first user equipment information collected by the front-end device based on the first user equipment information from the front-end device. The management server may also obtain the first face feature information corresponding to the face image based on the face image from the front-end device, and the first face feature information is the first face feature information corresponding to the face image collected by the front-end device. Facial feature information.
本发明实施例中,为了区分方便,将在特征信息库中存储的人脸特征信息称为第二人脸特征信息,将前端设备采集到的人脸图像对应的人脸特征信息称为第一人脸特征信息。将在设备信息库中存储的用户设备信息称为第二用户设备信息,将前端设备采集到的用户设备信息称为第一用户设备信息。In the embodiment of the present invention, for the convenience of distinction, the face feature information stored in the feature information database is called the second face feature information, and the face feature information corresponding to the face image collected by the front-end device is called the first face feature information. Facial feature information. The user equipment information stored in the equipment information database is called second user equipment information, and the user equipment information collected by the front-end device is called first user equipment information.
其中,通过安装在关键出入口的特定区域的前端设备(如摄像机)的图像传感器,可以抓拍到人脸图像,且前端设备将该人脸图像发送给管理服务器,由管理服务器获得前端设备采集到的人脸图像的第一人脸特征信息。Among them, through the image sensor of the front-end equipment (such as a camera) installed in a specific area of the key entrance and exit, the face image can be captured, and the front-end equipment sends the face image to the management server, and the management server obtains the information collected by the front-end equipment. The first face feature information of the face image.
其中,通过安装在关键出入口的特定区域的前端设备(如摄像机)的传感侦测模块(可以安装在前端设备上,如WIFI(Wireless Fidelity,无线保真)无线模块,蓝牙模块等),可以采集到第一用户设备信息,且前端设备将该第一用户设备信息发送给管理服务器,由管理服务器获得前端设备采集到的第一用户设备信息,且第一用户设备信息包括的内容与第二用户设备信息包括的内容相同。例如,当第二用户设备信息为随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)时,则前端设备采集到的第一用户设备信息为随身穿戴信息(如蓝牙手环信息、蓝牙耳机信息等)。当第二用户设备信息为移动终端的MAC地址时,则前端设备采集到的第一用户设备信息为移动终端的MAC地址时。当然,在实际应用中,第一用户设备信息和第二用户设备信息均并不局限于上述用户设备信息,对于其它用户设备信息,在此不再赘述。Wherein, through the sensing detection module (which can be installed on the front-end equipment, such as WIFI (Wireless Fidelity, wireless fidelity) wireless module, bluetooth module, etc.) The first user equipment information is collected, and the front-end device sends the first user equipment information to the management server, and the management server obtains the first user equipment information collected by the front-end device, and the content included in the first user equipment information is consistent with the second The user equipment information includes the same content. For example, when the second user equipment information is wearable information (such as Bluetooth bracelet information, Bluetooth headset information, etc.), the first user equipment information collected by the front-end device is wearable information (such as Bluetooth bracelet information, Bluetooth headset information, etc.). information, etc.). When the second user equipment information is the MAC address of the mobile terminal, the first user equipment information collected by the front-end device is the MAC address of the mobile terminal. Of course, in practical applications, both the first user equipment information and the second user equipment information are not limited to the above user equipment information, and details about other user equipment information will not be repeated here.
其中,由于位于同一区域的用户可能是多个,因此在每个采集时刻,前端设备采集到的第一用户设备信息均可以是多个第一用户设备信息。Wherein, since there may be multiple users located in the same area, at each collection moment, the first user equipment information collected by the front-end device may be a plurality of first user equipment information.
其中,前端设备在向管理服务器发送采集到的人脸图像时,还将人脸图像的采集时刻发送给管理服务器,由管理服务器记录人脸图像的第一人脸特征信息与采集时刻的对应关系。前端设备在向管理服务器发送采集到的第一用户设备信息时,还可以将第一用户设备信息的采集时刻发送给管理服务器,由管理服务器记录第一用户设备信息与采集时刻的对应关系。Wherein, when the front-end device sends the collected face image to the management server, it also sends the collection time of the face image to the management server, and the management server records the corresponding relationship between the first facial feature information of the face image and the collection time . When the front-end device sends the collected first user equipment information to the management server, it may also send the collection time of the first user equipment information to the management server, and the management server records the correspondence between the first user equipment information and the collection time.
其中,以通过前端设备的WIFI无线模块采集第一用户设备信息为例,WIFI无线模块周期性的发送Beacon(探测)报文,当移动终端位于WIFI无线模块的探测范围时,则移动终端会向WIFI无线模块返回响应报文,WIFI无线模块可以从移动终端返回的响应报文中获得第一用户设备信息,并获得第一用户设备信息的采集时刻。或者,移动终端主动周期性发送探测请求报文,当移动终端位于WIFI无线模块的探测范围时,则移动终端发送的探测请求报文会被WIFI无线模块接收到,WIFI无线模块可以从来自移动终端的探测请求报文中获得第一用户设备信息,并获得第一用户设备信息的采集时刻。Among them, taking the first user equipment information collected by the WIFI wireless module of the front-end equipment as an example, the WIFI wireless module periodically sends Beacon (detection) messages, and when the mobile terminal is within the detection range of the WIFI wireless module, the mobile terminal will send The WIFI wireless module returns a response message, and the WIFI wireless module can obtain the first user equipment information from the response message returned by the mobile terminal, and obtain the collection time of the first user equipment information. Alternatively, the mobile terminal actively and periodically sends a detection request message. When the mobile terminal is located within the detection range of the WIFI wireless module, the detection request message sent by the mobile terminal will be received by the WIFI wireless module, and the WIFI wireless module can receive data from the mobile terminal. Obtain the first user equipment information from the detection request message, and obtain the collection time of the first user equipment information.
其中,在前端设备向管理服务器发送采集到的第一用户设备信息时,在可设置的时间段T内,前端设备只向管理服务器发送一次第一用户设备信息。Wherein, when the front-end device sends the collected first user equipment information to the management server, within a configurable time period T, the front-end device only sends the first user equipment information to the management server once.
步骤204,管理服务器从第二用户设备信息中查找与采集第一人脸特征信息时段(即前端设备采集到人脸图像的时间区间)内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息(多个第一用户设备信息对应的多个第二用户设备信息关联的第二人脸特征信息)。Step 204, the management server searches the information of the second user equipment for information that matches the multiple first user equipment information within the period of collecting the first facial feature information (that is, the time interval during which the front-end equipment collects the facial image), and finds multiple The second facial feature information associated with a piece of first user equipment information (the second facial feature information associated with a plurality of second user equipment information corresponding to a plurality of first user equipment information).
本发明实施例中,管理服务器从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息(即第二用户设备信息),找到多个第一用户设备信息关联的第二人脸特征信息的过程,具体可以包括但不限于如下方式:管理服务器利用采集第一人脸特征信息时段内的多个第一用户设备信息查询预先维护的第二用户设备信息与人员信息之间的对应关系,管理服务器从第二用户设备信息中查找到与这多个第一用户设备信息匹配的第二用户设备信息,并得到这些第二用户设备信息对应的人员信息;管理服务器利用得到的人员信息查询预先维护的第二人脸特征信息与人员信息之间的对应关系,得到对应的多个第二人脸特征信息,且管理服务器得到的第二人脸特征信息为多个第一用户设备信息关联的第二人脸特征信息。In the embodiment of the present invention, the management server searches the second user equipment information for information that matches the multiple first user equipment information (that is, the second user equipment information) within the period of collecting the first facial feature information, and finds multiple first user equipment information. The process of associating the second facial feature information with user equipment information may specifically include but not limited to the following manner: the management server uses multiple first user equipment information within the period of collecting the first facial feature information to query the pre-maintained second facial feature information. The corresponding relationship between user equipment information and personnel information, the management server finds the second user equipment information that matches the plurality of first user equipment information from the second user equipment information, and obtains the information corresponding to the second user equipment information Personnel information; the management server uses the obtained personnel information to query the correspondence between the second human face feature information maintained in advance and the personnel information, and obtains a plurality of corresponding second human face feature information, and the second human face obtained by the management server The feature information is second face feature information associated with multiple pieces of first user equipment information.
步骤205,管理服务器从多个第一用户设备信息关联的第二人脸特征信息中筛选出第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。其中,该人脸识别结果即为前端设备采集到的人脸图像对应的人脸,管理服务器在得到人脸识别结果之后,还可以输出人脸识别结果对应的人员信息。In step 205, the management server selects the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determines the face recognition result. Wherein, the face recognition result is the face corresponding to the face image collected by the front-end device, and the management server may also output the personnel information corresponding to the face recognition result after obtaining the face recognition result.
其中,在前端设备采集到人脸图像的时间区间,前端设备采集到多个第一用户设备信息,管理服务器利用多个第一用户设备信息查询预先维护的第二用户设备信息与人员信息之间的对应关系,得到多个人员信息,并利用多个人员信息查询预先维护的第二人脸特征信息与人员信息之间的对应关系,得到多个第二人脸特征信息,即多个第一用户设备信息对应多个第二人脸特征信息。Among them, in the time interval when the front-end device collects the face image, the front-end device collects a plurality of first user device information, and the management server uses the plurality of first user device information to query the relationship between the pre-maintained second user device information and personnel information. Correspondence between the corresponding relationship, obtain a plurality of personnel information, and use the plurality of personnel information to query the corresponding relationship between the pre-maintained second facial feature information and personnel information, and obtain a plurality of second facial feature information, that is, multiple first facial feature information The user equipment information corresponds to a plurality of second facial feature information.
基于此,本发明实施例中,管理服务器从多个第一用户设备信息关联的第二人脸特征信息(多个第二人脸特征信息)中筛选出第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果的过程,具体可以包括但不限于如下方式:管理服务器将第一人脸特征信息与采集到人脸图像的时间区间对应的多个第一用户设备信息所关联的每个第二人脸特征信息进行比对,得到这多个第一用户设备信息关联的每个第二人脸特征信息与第一人脸特征信息的相似度;管理服务器选择相似度最高的第二人脸特征信息,作为人脸识别结果。Based on this, in the embodiment of the present invention, the management server selects the second face feature information corresponding to the first face feature information from the second face feature information (multiple second face feature information) associated with the first user equipment information. The facial feature information, the process of determining the face recognition result may specifically include but not limited to the following manner: the management server stores the first facial feature information and the plurality of first user device information corresponding to the time interval when the facial image is collected Each associated second face feature information is compared to obtain the similarity between each second face feature information associated with the plurality of first user equipment information and the first face feature information; the management server selects the highest similarity The second face feature information is used as the face recognition result.
其中,管理服务器在获得人脸图像的第一人脸特征信息之后,确定该人脸图像的采集时刻,考虑到误差等因素的影响,还可以确定采集到人脸图像的时间区间(即包含人脸图像的采集时刻的时间区间),而且,在采集到人脸图像的时间区间,管理服务器可以确定出多个第一用户设备信息。Wherein, after the management server obtains the first facial feature information of the facial image, it determines the collection time of the facial image, and in consideration of the influence of factors such as errors, it can also determine the time interval for collecting the facial image (that is, including the time interval of the facial image). The time interval of the time when the face image is collected), and, in the time interval when the face image is collected, the management server may determine a plurality of pieces of first user equipment information.
本发明实施例中,管理服务器在从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息之前,管理服务器还可以判断所有的第二人脸特征信息(即特征信息库中存储的所有的第二人脸特征信息,其会包含第一用户设备信息对应的第二人脸特征信息)中,是否存在与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息。如果是,则管理服务器可以直接将与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果,不再执行上述步骤204和步骤205。如果否,则管理服务器执行从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息的过程。In the embodiment of the present invention, the management server searches the second user equipment information for information that matches the multiple first user equipment information within the period of collecting the first facial feature information, and finds the first user equipment information associated with the multiple first user equipment information. Before the feature information of two faces, the management server can also judge all the second face feature information (that is, all the second face feature information stored in the feature information database, which will include the second person corresponding to the first user equipment information) In the face feature information), whether there is second face feature information whose similarity with the first face feature information meets the preset requirements. If so, the management server may directly use the second facial feature information whose similarity with the first facial feature information meets the preset requirements as the face recognition result, and the above step 204 and step 205 are not performed again. If not, the management server performs a search from the second user equipment information for information that matches multiple first user equipment information within the period of collecting the first facial feature information, and finds the second person associated with multiple first user equipment information The process of facial feature information.
基于上述方式,本发明实施例中,管理服务器是先判断所有的第二人脸特征信息中,是否存在与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息。当视频图像的第一人脸特征信息比较清晰时,则所有的第二人脸特征信息会存在与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息,这样可以直接将与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果,从而准确得出人脸识别结果。例如,当得到清晰的第一人脸特征信息1时,即使第一用户设备信息对应的第二人脸特征信息为第二人脸特征信息1、第二人脸特征信息2、第二人脸特征信息3,则管理服务器也是先判断所有的第二人脸特征信息(如第二人脸特征信息1-第二人脸特征信息1000)中,是否存在与第一人脸特征信息1之间的相似度满足预设要求的第二人脸特征信息,假设第二人脸特征信息100与第一人脸特征信息之间的相似度满足预设要求,则将第二人脸特征信息100作为人脸识别结果,该人脸识别结果会是一个准确的人脸识别结果,此时,管理服务器不需要从第二人脸特征信息1、第二人脸特征信息2、第二人脸特征信息3中选择第一人脸特征信息1对应的人脸识别结果,即可以得到准确的人脸识别结果。Based on the above method, in the embodiment of the present invention, the management server first judges whether there is second facial feature information whose similarity with the first facial feature information meets the preset requirements among all the second facial feature information. . When the first face feature information of the video image is relatively clear, then all the second face feature information will have the second face feature information whose similarity with the first face feature information meets the preset requirements, so The second facial feature information whose similarity with the first facial feature information satisfies the preset requirements can be directly used as the face recognition result, so as to accurately obtain the face recognition result. For example, when clear first facial feature information 1 is obtained, even if the second facial feature information corresponding to the first user equipment information is second facial feature information 1, second facial feature information 2, second facial feature information feature information 3, then the management server also first judges whether there is a gap between the first face feature information 1 and the first face feature information in all the second face feature information (such as the second face feature information 1-the second face feature information 1000). The second facial feature information whose similarity meets the preset requirements, assuming that the similarity between the second facial feature information 100 and the first facial feature information meets the preset requirements, then the second facial feature information 100 is used as The face recognition result, the face recognition result will be an accurate face recognition result. At this time, the management server does not need to obtain the second face feature information 1, the second face feature information 2, the second face feature information In step 3, the face recognition result corresponding to the first face feature information 1 is selected, and an accurate face recognition result can be obtained.
其中,管理服务器在获得人脸图像的第一人脸特征信息之后,还可以对该人脸图像进行分析,以检测出该人脸图像是否满足人脸识别要求,如人脸图像的光线是否符合要求、角度是否符合要求、两眼距离是否符合要求等,管理服务器可以使用Adaboost分类器检测人脸图像是否满足人脸识别要求,具体的检测过程不再详加赘述。如果人脸图像不满足人脸识别要求,则管理服务器将第一人脸特征信息与每个第二人脸特征信息进行比对,得到每个第二人脸特征信息与第一人脸特征信息的相似度,并选择相似度最高的第二人脸特征信息,作为人脸识别结果。或者,管理服务器直接将每个第二人脸特征信息,作为人脸识别结果,此时会有多个人脸识别结果。在管理服务器将第一人脸特征信息与每个第二人脸特征信息进行比对时,可以减少比对的特征点数量,例如,正常的人脸特征信息比对时,需要100个特征点,在人脸图像不满足人脸识别要求时,在人脸特征信息比对时,只使用20个特征点。Wherein, after the management server obtains the first face feature information of the face image, it can also analyze the face image to detect whether the face image satisfies the face recognition requirements, such as whether the light of the face image conforms to Requirements, whether the angle meets the requirements, whether the distance between the two eyes meets the requirements, etc., the management server can use the Adaboost classifier to detect whether the face image meets the face recognition requirements, and the specific detection process will not be described in detail. If the face image does not meet the face recognition requirements, the management server compares the first face feature information with each second face feature information to obtain each second face feature information and the first face feature information , and select the second face feature information with the highest similarity as the face recognition result. Alternatively, the management server directly uses each second face feature information as a face recognition result, and at this time there will be multiple face recognition results. When the management server compares the first face feature information with each second face feature information, the number of feature points for comparison can be reduced. For example, when comparing normal face feature information, 100 feature points are required , when the face image does not meet the face recognition requirements, only 20 feature points are used when comparing face feature information.
在一种具体应用中,如果人脸图像满足人脸识别要求,则管理服务器将第一人脸特征信息与特征信息库中的所有第二人脸特征信息(如第二人脸特征信息1-第二人脸特征信息1000)进行比对,得到特征信息库中的每个第二人脸特征信息与第一人脸特征信息的相似度,如果有相似度超过设定阈值(说明该相似度对应的第二人脸特征信息是与第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息),则选择相似度最高的第二人脸特征信息,作为人脸识别结果,不再执行上述步骤204和步骤205;如果没有相似度超过设定阈值,则将第一人脸特征信息与第一用户设备信息对应的每个第二人脸特征信息(如第二人脸特征信息1、第二人脸特征信息2、第二人脸特征信息3)进行比对,得到第一用户设备信息对应的每个第二人脸特征信息与第一人脸特征信息的相似度,并选择相似度最高的第二人脸特征信息,作为人脸识别结果。In a specific application, if the face image meets the face recognition requirements, the management server combines the first face feature information with all the second face feature information in the feature information database (such as the second face feature information 1- The second facial feature information (1000) is compared to obtain the similarity between each second facial feature information in the feature information base and the first facial feature information, if any similarity exceeds the set threshold (illustrating the similarity The corresponding second face feature information is the second face feature information whose similarity with the first face feature information meets the preset requirements), then the second face feature information with the highest similarity is selected as the face Recognition results, no longer perform the above step 204 and step 205; if no similarity exceeds the set threshold, each second facial feature information corresponding to the first user equipment information (such as the second Face feature information 1, the second face feature information 2, and the second face feature information 3) are compared to obtain each second face feature information corresponding to the first user equipment information and the first face feature information similarity, and select the second face feature information with the highest similarity as the face recognition result.
其中,在将两个人脸特征信息进行比对,得到两个人脸特征信息的相似度时,可以采用相似度算法进行处理,例如,相似度算法可以感知哈希算法、SIM(StructuralSIMilarity,结构相似性)算法等,在此不再详加赘述。Wherein, when comparing two face feature information to obtain the similarity of two face feature information, a similarity algorithm can be used for processing, for example, the similarity algorithm can perceive hash algorithm, SIM (Structural SIMilarity, structural similarity ) algorithm, etc., which will not be described in detail here.
基于上述技术方案,本发明实施例中,可以基于前端设备采集到的用户设备信息和人脸图像的人脸特征信息,确定人脸识别结果,而不是只基于前端设备采集到的人脸图像的人脸特征信息,确定人脸识别结果,不完全依赖于人脸图像的人脸特征信息,从而通过多维度信息确定人脸识别结果,提升人脸识别准确率,降低人脸漏识别率和误判率,提升人脸识别的信度。Based on the above technical solution, in the embodiment of the present invention, the face recognition result can be determined based on the user equipment information collected by the front-end device and the face feature information of the face image, instead of only based on the face image collected by the front-end device. Face feature information, to determine the result of face recognition, does not completely depend on the face feature information of the face image, so as to determine the result of face recognition through multi-dimensional information, improve the accuracy of face recognition, and reduce the rate of missed recognition and errors improve the reliability of face recognition.
基于与上述方法同样的发明构思,本发明实施例中还提供了一种人脸识别的装置,该人脸识别的装置应用在管理服务器上。其中,该人脸识别的装置可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,是通过其所在的管理服务器的处理器,将非易失性存储器中对应的计算机程序指令读取到内存中运行形成的。从硬件层面而言,如图3所示,为本发明提出的人脸识别的装置所在的管理服务器的一种硬件结构图,除了图3所示的处理器、网络接口、内存以及非易失性存储器外,管理服务器还可以包括其他硬件,如负责处理报文的转发芯片等;从硬件结构上来讲,该管理服务器还可能是分布式设备,可能包括多个接口卡,以便在硬件层面进行报文处理的扩展。Based on the same inventive concept as the above method, an embodiment of the present invention also provides a face recognition device, and the face recognition device is applied on a management server. Wherein, the device for face recognition can be implemented by software, or by hardware or a combination of software and hardware. Taking software implementation as an example, as a device in a logical sense, it is formed by reading the corresponding computer program instructions in the non-volatile memory into the memory for operation through the processor of the management server where it is located. From the hardware level, as shown in Figure 3, it is a hardware structural diagram of the management server where the face recognition device proposed by the present invention is located, except for the processor, network interface, memory and non-volatile memory shown in Figure 3 In addition to the non-volatile memory, the management server may also include other hardware, such as forwarding chips responsible for processing packets, etc.; in terms of hardware structure, the management server may also be a distributed device, which may include multiple interface cards, so as to implement Extensions for message handling.
如图4所示,为本发明提出的人脸识别的装置的结构图,所述装置具体包括:获得模块11,用于获得前端设备采集到的第一用户设备信息,并获得所述前端设备采集到的人脸图像所对应的第一人脸特征信息;维护模块12,用于预先维护第二用户设备信息与第二人脸特征信息之间的关联关系;查询模块13,用于从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息;确定模块14,用于从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果。As shown in FIG. 4 , it is a structural diagram of the device for face recognition proposed by the present invention. The device specifically includes: an obtaining module 11 for obtaining the first user device information collected by the front-end device, and obtaining the first user device information collected by the front-end device. The first face feature information corresponding to the collected face image; the maintenance module 12 is used to pre-maintain the association relationship between the second user equipment information and the second face feature information; the query module 13 is used to obtain from the first In the second user equipment information, search for information that matches a plurality of first user equipment information in the period of collecting the first facial feature information, and find the second facial feature information associated with a plurality of first user equipment information; the determination module 14 uses The second facial feature information corresponding to the first facial feature information is selected from the second facial feature information associated with the plurality of first user equipment information to determine a face recognition result.
所述查询模块13,还用于在从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息之前,判断所有的第二人脸特征信息中是否存在与所述第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息;如果否,则执行从第二用户设备信息中查找与采集第一人脸特征信息时段内的多个第一用户设备信息匹配的信息,找到多个第一用户设备信息关联的第二人脸特征信息的过程;所述确定模块14,还用于当查询结果为是时,将与所述第一人脸特征信息之间的相似度满足预设要求的第二人脸特征信息作为人脸识别结果。The query module 13 is further configured to search the second user equipment information for information that matches a plurality of first user equipment information within the period of collecting the first facial feature information, and find the information associated with the plurality of first user equipment information. Before the second facial feature information, it is judged whether there is a second facial feature information whose similarity with the first facial feature information meets the preset requirements in all the second facial feature information; if not, then Execute the process of searching the second user equipment information for information that matches the multiple first user equipment information within the period of collecting the first facial feature information, and finding the second facial feature information associated with the multiple first user equipment information; The determining module 14 is further configured to use the second facial feature information whose similarity with the first facial feature information satisfies a preset requirement as the face recognition result when the query result is yes.
所述确定模块14,具体用于在从所述的多个第一用户设备信息关联的第二人脸特征信息中筛选出所述第一人脸特征信息对应的第二人脸特征信息,确定人脸识别结果的过程中,将所述第一人脸特征信息与所述的多个第一用户设备信息关联的每个第二人脸特征信息进行比对,得到所述的多个第一用户设备信息关联的每个第二人脸特征信息与所述第一人脸特征信息的相似度;The determining module 14 is specifically configured to filter out the second facial feature information corresponding to the first facial feature information from the second facial feature information associated with the plurality of first user equipment information, and determine In the process of face recognition results, the first facial feature information is compared with each second facial feature information associated with the plurality of first user equipment information to obtain the plurality of first user equipment information. The similarity between each second facial feature information associated with the user equipment information and the first facial feature information;
选择相似度最高的第二人脸特征信息,作为人脸识别结果。Select the second face feature information with the highest similarity as the face recognition result.
本发明实施例中,所述第二用户设备信息包括以下之一或任意组合:随身穿戴信息、移动终端的序列号、移动终端的媒体访问控制MAC地址、移动终端的号码、客户识别模块SIM卡序列号;所述第一用户设备信息包括的内容与所述第二用户设备信息包括的内容相同。In the embodiment of the present invention, the second user equipment information includes one or any combination of the following: wearable information, serial number of the mobile terminal, media access control MAC address of the mobile terminal, number of the mobile terminal, customer identification module SIM card Serial number; the content included in the first user equipment information is the same as the content included in the second user equipment information.
其中,本发明装置的各个模块可以集成于一体,也可以分离部署。上述模块可以合并为一个模块,也可以进一步拆分成多个子模块。Wherein, each module of the device of the present invention can be integrated into one body, or can be deployed separately. The above modules can be combined into one module, or can be further split into multiple sub-modules.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。Through the description of the above embodiments, those skilled in the art can clearly understand that the present invention can be realized by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is a better implementation Way. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of a software product. The computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes the methods described in various embodiments of the present invention. Those skilled in the art can understand that the drawing is only a schematic diagram of a preferred embodiment, and the modules or processes in the drawing are not necessarily necessary for implementing the present invention.
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可进一步拆分成多个子模块。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。Those skilled in the art can understand that the modules in the device in the embodiment can be distributed in the device in the embodiment according to the description in the embodiment, or can be located in one or more devices different from the embodiment according to corresponding changes. The modules in the above embodiments can be combined into one module, and can also be further divided into multiple sub-modules. The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.
以上公开的仅为本发明的几个具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。The above disclosures are only a few specific embodiments of the present invention, however, the present invention is not limited thereto, and any changes conceivable by those skilled in the art shall fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510703783.4A CN105279496B (en) | 2015-10-26 | 2015-10-26 | Method and device for face recognition |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510703783.4A CN105279496B (en) | 2015-10-26 | 2015-10-26 | Method and device for face recognition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105279496A CN105279496A (en) | 2016-01-27 |
| CN105279496B true CN105279496B (en) | 2019-10-18 |
Family
ID=55148480
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510703783.4A Active CN105279496B (en) | 2015-10-26 | 2015-10-26 | Method and device for face recognition |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105279496B (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105872979B (en) * | 2016-05-31 | 2019-11-26 | 王方松 | A kind of method and device obtaining crowd's information in setting place |
| CN106408013A (en) * | 2016-09-12 | 2017-02-15 | 湖南数据魔方信息科技有限公司 | Method for applying video-based human body characteristic identification technology in wireless positioning |
| CN106548148A (en) * | 2016-10-26 | 2017-03-29 | 北京意泰物联软件科技有限公司 | Method and system for identifying unknown face in video |
| CN108540760B (en) * | 2017-03-01 | 2021-02-26 | 中国电信股份有限公司 | Video monitoring identification method, device and system |
| CN109766736A (en) * | 2017-11-09 | 2019-05-17 | 中国电信股份有限公司 | Face identification method, device and system |
| CN108271069A (en) * | 2017-12-11 | 2018-07-10 | 北京奇艺世纪科技有限公司 | The segment filter method and device of a kind of video frequency program |
| CN109963113B (en) * | 2017-12-14 | 2021-06-22 | 浙江宇视科技有限公司 | Method and device for monitoring interested target |
| CN108228742B (en) * | 2017-12-15 | 2021-10-22 | 深圳市商汤科技有限公司 | Face duplicate checking method and device, electronic equipment, medium and program |
| CN110825765B (en) * | 2019-10-23 | 2022-10-04 | 中国建设银行股份有限公司 | Face recognition method and device |
| CN113158823B (en) * | 2021-03-30 | 2023-05-12 | 浙江大华技术股份有限公司 | Face recognition method and device |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102184391A (en) * | 2011-05-19 | 2011-09-14 | 汉王科技股份有限公司 | Distributed type face recognition method and system as well as face recognition terminal |
| CN102360421A (en) * | 2011-10-19 | 2012-02-22 | 苏州大学 | Face identification method and system based on video streaming |
| US8244002B2 (en) * | 2009-03-18 | 2012-08-14 | Industrial Technology Research Institute | System and method for performing rapid facial recognition |
| CN103824058A (en) * | 2014-02-26 | 2014-05-28 | 杨勇 | Face recognition system and method based on locally distributed linear embedding algorithm |
| CN103995818A (en) * | 2013-02-15 | 2014-08-20 | 三星电子株式会社 | Electronic device and object recognition method in electronic device |
| CN104318217A (en) * | 2014-10-28 | 2015-01-28 | 吴建忠 | Face recognition information analysis method and system based on distributed cloud computing |
| CN104765739A (en) * | 2014-01-06 | 2015-07-08 | 南京宜开数据分析技术有限公司 | Large-scale face database searching method based on shape space |
| CN105205457A (en) * | 2015-09-10 | 2015-12-30 | 上海卓易科技股份有限公司 | Information acquisition system and method based on face recognition |
| CN106611151A (en) * | 2015-10-23 | 2017-05-03 | 杭州海康威视数字技术股份有限公司 | A human face identification method and apparatus |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102073859A (en) * | 2011-02-14 | 2011-05-25 | 汉王科技股份有限公司 | Child picking and sending system on basis of face identification and control method thereof |
| JP5975293B2 (en) * | 2013-02-22 | 2016-08-23 | 富士ゼロックス株式会社 | Authentication apparatus and program |
| CN104021398A (en) * | 2014-06-16 | 2014-09-03 | 北京云视智通科技有限公司 | Wearable intelligent device and method for assisting identity recognition |
-
2015
- 2015-10-26 CN CN201510703783.4A patent/CN105279496B/en active Active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8244002B2 (en) * | 2009-03-18 | 2012-08-14 | Industrial Technology Research Institute | System and method for performing rapid facial recognition |
| CN102184391A (en) * | 2011-05-19 | 2011-09-14 | 汉王科技股份有限公司 | Distributed type face recognition method and system as well as face recognition terminal |
| CN102360421A (en) * | 2011-10-19 | 2012-02-22 | 苏州大学 | Face identification method and system based on video streaming |
| CN102360421B (en) * | 2011-10-19 | 2014-05-28 | 苏州大学 | Face identification method and system based on video streaming |
| CN103995818A (en) * | 2013-02-15 | 2014-08-20 | 三星电子株式会社 | Electronic device and object recognition method in electronic device |
| CN104765739A (en) * | 2014-01-06 | 2015-07-08 | 南京宜开数据分析技术有限公司 | Large-scale face database searching method based on shape space |
| CN103824058A (en) * | 2014-02-26 | 2014-05-28 | 杨勇 | Face recognition system and method based on locally distributed linear embedding algorithm |
| CN104318217A (en) * | 2014-10-28 | 2015-01-28 | 吴建忠 | Face recognition information analysis method and system based on distributed cloud computing |
| CN105205457A (en) * | 2015-09-10 | 2015-12-30 | 上海卓易科技股份有限公司 | Information acquisition system and method based on face recognition |
| CN106611151A (en) * | 2015-10-23 | 2017-05-03 | 杭州海康威视数字技术股份有限公司 | A human face identification method and apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105279496A (en) | 2016-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105279496B (en) | Method and device for face recognition | |
| CN109344787B (en) | A specific target tracking method based on face recognition and pedestrian re-identification | |
| US20220092881A1 (en) | Method and apparatus for behavior analysis, electronic apparatus, storage medium, and computer program | |
| US11908238B2 (en) | Methods and systems for facial point-of-recognition (POR) provisioning | |
| US11501514B2 (en) | Universal object recognition | |
| CN107292240B (en) | Person finding method and system based on face and body recognition | |
| EP2113846B1 (en) | Behavior history searching device and behavior history searching method | |
| CN109635146B (en) | Target query method and system based on image characteristics | |
| CN105590097B (en) | Dual-camera collaborative real-time face recognition security system and method under dark vision conditions | |
| CN108875341A (en) | A kind of face unlocking method, device, system and computer storage medium | |
| US20070183634A1 (en) | Auto Individualization process based on a facial biometric anonymous ID Assignment | |
| CN105631430A (en) | Matching method and apparatus for face image | |
| CN105404860A (en) | Method and device for managing information of lost person | |
| US9947105B2 (en) | Information processing apparatus, recording medium, and information processing method | |
| CN106844492A (en) | A kind of method of recognition of face, client, server and system | |
| JP2022518469A (en) | Information processing methods and devices, storage media | |
| JP2017033547A (en) | Information processing apparatus, control method thereof, and program | |
| CN109815775A (en) | A kind of face identification method and system based on face character | |
| CN110162462A (en) | Test method, system and the computer equipment of face identification system based on scene | |
| CN110705476A (en) | Data analysis method, apparatus, electronic device and computer storage medium | |
| KR101252843B1 (en) | Method of Managing Image in a Mobile Communication Terminal | |
| CN103745223B (en) | A kind of method for detecting human face and device | |
| US10592687B2 (en) | Method and system of enforcing privacy policies for mobile sensory devices | |
| AU2017239587A1 (en) | Information processing device, authentication system, authentication method, and program | |
| CN109583296A (en) | One kind preventing error detection method, apparatus, system and computer storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20200602 Address after: 250001 whole floor, building 3, Aosheng building, 1166 Xinluo street, Jinan area, Jinan pilot Free Trade Zone, Shandong Province Patentee after: Jinan boguan Intelligent Technology Co., Ltd Address before: Hangzhou City, Zhejiang province 310051 Binjiang District West Street Jiangling Road No. 88 building 10 South Block 1-11 Patentee before: ZHEJIANG UNIVIEW TECHNOLOGIES Co.,Ltd. |