CN105294374A - Method for preparing paraxylene and propylene by methanol and/or dimethyl ether - Google Patents
Method for preparing paraxylene and propylene by methanol and/or dimethyl ether Download PDFInfo
- Publication number
- CN105294374A CN105294374A CN201410245420.6A CN201410245420A CN105294374A CN 105294374 A CN105294374 A CN 105294374A CN 201410245420 A CN201410245420 A CN 201410245420A CN 105294374 A CN105294374 A CN 105294374A
- Authority
- CN
- China
- Prior art keywords
- reaction
- reaction zone
- catalyst
- product
- methanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 234
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 title claims abstract description 90
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 title claims abstract description 90
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000006243 chemical reaction Methods 0.000 claims abstract description 155
- 239000003054 catalyst Substances 0.000 claims abstract description 83
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000005977 Ethylene Substances 0.000 claims abstract description 42
- 238000005804 alkylation reaction Methods 0.000 claims abstract description 23
- 238000005899 aromatization reaction Methods 0.000 claims abstract description 17
- 239000002808 molecular sieve Substances 0.000 claims description 35
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 35
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 23
- 229910021536 Zeolite Inorganic materials 0.000 claims description 15
- 239000010457 zeolite Substances 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 9
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 9
- 229910000510 noble metal Inorganic materials 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 150000002910 rare earth metals Chemical class 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- -1 siloxane compound Chemical class 0.000 claims description 6
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 2
- 239000006227 byproduct Substances 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 43
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000011068 loading method Methods 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000029936 alkylation Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 150000003738 xylenes Chemical class 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- GDHNMQIBSKTFPO-UHFFFAOYSA-N lanthanum silver Chemical compound [Ag].[La] GDHNMQIBSKTFPO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101000809257 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 4 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 102100038463 Ubiquitin carboxyl-terminal hydrolase 4 Human genes 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种甲醇和/或二甲醚反应制对二甲苯和丙烯的方法,属于化学化工领域。The invention relates to a method for preparing p-xylene and propylene by reacting methanol and/or dimethyl ether, which belongs to the field of chemical industry.
背景技术Background technique
对二甲苯(PX)和丙烯均是重要的基本化工原料。目前,对二甲苯主要经芳烃联合装置得到,首先将石脑油通过连续重整制得含芳烃的重整生成油,然后经芳烃抽提、芳烃分馏、歧化及烷基转移、二甲苯异构化以及吸附分离等单元最大限度地得到PX产品。由于对二甲苯在三个异构体的含量受热力学控制,对二甲苯在C8混合芳烃中只占23%左右,所以整个PX生产工艺过程中物料循环处理量大,设备庞大,操作费用高。特别是二甲苯三个异构体的沸点相差很小,采用通常的蒸馏技术不能得到高纯度对二甲苯,而必须采用昂贵的吸附分离工艺。丙烯主要来源于石油炼厂以及石脑油蒸汽裂解生产乙烯的副产品,或者以天然气加工制得的丙烷为原料进行生产。对二甲苯主要用于生产聚酯,丙烯主要用于制备聚丙烯、丙烯腈以及生产聚酯所需的1,3-丙二醇,随着全球经济的快速发展,作为化工基本原料的对二甲苯和丙烯的需求量也逐年递增。Both p-xylene (PX) and propylene are important basic chemical raw materials. At present, p-xylene is mainly obtained through aromatics complex. First, naphtha is continuously reformed to obtain aromatics-containing reformed oil, and then through aromatics extraction, aromatics fractionation, disproportionation and alkylation, and xylene isomerization Chemical and adsorption separation units to maximize the production of PX. Since the content of p-xylene in the three isomers is controlled by thermodynamics, p-xylene only accounts for about 23% of C 8 mixed aromatics, so the entire PX production process has a large amount of material circulation, huge equipment, and high operating costs. . In particular, the difference between the boiling points of the three isomers of xylene is very small, and high-purity p-xylene cannot be obtained by ordinary distillation techniques, but an expensive adsorption separation process must be used. Propylene is mainly derived from petroleum refineries and naphtha steam cracking to produce ethylene by-products, or from natural gas processing propane as raw material for production. P-xylene is mainly used to produce polyester, and propylene is mainly used to prepare polypropylene, acrylonitrile and 1,3-propanediol required for the production of polyester. With the rapid development of the global economy, p-xylene and The demand for propylene is also increasing year by year.
甲醇制备芳烃是非石油路线生产芳烃的新途径。中国专利CN101244969公开了一种C1-C2烃类或甲醇芳构化与催化剂再生的流化床装置,利用该装置及催化剂,可随时调节芳构化反应器内的催化剂的结焦状态,从而达到连续高效转化C1-C2烃类或甲醇并高选择性生成芳烃的目的。中国专利CN1880288公开了一种甲醇转化制芳烃工艺,在改性ZSM-5分子筛催化剂上,甲醇催化转化为以芳烃为主的产物,具有芳烃的总选择性高,工艺操作灵活的优点。美国专利US4615995公开了一种担载了Zn和Mn的ZSM-5分子筛催化剂,用于甲醇转化制备烯烃和芳烃,通过调变催化剂中Zn和Mn的含量可以改变产物中低碳烯烃/芳烃化合物的比值。The preparation of aromatics from methanol is a new way to produce aromatics by non-petroleum route. Chinese patent CN101244969 discloses a kind of C 1 -C 2 hydrocarbons or methanol aromatization and catalyst regeneration fluidized bed device, utilize this device and catalyst, can adjust the coking state of the catalyst in the aromatization reactor at any time, thereby The purpose of continuously and efficiently converting C 1 -C 2 hydrocarbons or methanol and generating aromatics with high selectivity is achieved. Chinese patent CN1880288 discloses a process for methanol conversion to aromatics. On the modified ZSM-5 molecular sieve catalyst, methanol is catalytically converted into aromatics-based products, which has the advantages of high overall selectivity of aromatics and flexible process operation. U.S. Patent No. 4,615,995 discloses a ZSM-5 molecular sieve catalyst loaded with Zn and Mn for methanol conversion to prepare olefins and aromatics. The content of low-carbon olefins/aromatics in the product can be changed by adjusting the content of Zn and Mn in the catalyst. ratio.
甲醇制烯烃和甲醇制丙烯是非石油路线生产乙烯、丙烯的新途径。1976年MobilOil公司进行了甲醇在ZSM-5分子筛催化剂上转化为碳氢化合物的反应。USP4,035,430中公开了甲醇在ZSM-5分子筛催化剂上转化汽油的过程;USP4,542,252中公开了甲醇在ZSM-5分子筛催化剂上制取低碳烯烃的技术;USP3,911,041,USP4,049,573,USP4,100,219,JP60-126233,JP61-97231和JP62-70324中公开了使用磷、镁、硅或碱金属元素改性的ZSM-5分子筛催化剂由甲醇制取低碳烯烃的反应;USP5,367,100中公开了大连化学物理研究所使用磷和镧改性的ZSM-5分子筛催化剂由甲醇或甲醇和/或二甲醚制取低碳烯烃的反应,其乙烯和丙烯总选择性仅为65wt%左右,乙烯、丙烯和丁烯总选择性大于85wt%。Methanol to olefins and methanol to propylene are new ways to produce ethylene and propylene by non-petroleum routes. In 1976, Mobil Oil Company carried out the conversion reaction of methanol to hydrocarbons on ZSM-5 molecular sieve catalyst. USP4,035,430 discloses the process of methanol converting gasoline on the ZSM-5 molecular sieve catalyst; USP4,542,252 discloses the technology of methanol producing low-carbon olefins on the ZSM-5 molecular sieve catalyst; USP3,911,041, USP4,049,573, USP4 , 100,219, JP60-126233, JP61-97231 and JP62-70324 disclose the use of ZSM-5 molecular sieve catalysts modified by phosphorus, magnesium, silicon or alkali metal elements to prepare low-carbon olefins from methanol; USP5,367,100 discloses Dalian Institute of Chemical Physics has used ZSM-5 molecular sieve catalyst modified by phosphorus and lanthanum to produce light olefins from methanol or methanol and/or dimethyl ether. The total selectivity of ethylene and propylene is only about 65wt%, and ethylene , propylene and butene total selectivity greater than 85wt%.
CN101767038B和CN101780417B公开了一种甲醇制对二甲苯联产低碳烯烃催化剂及方法,指出在金属和硅烷化改性催化剂上实现了在一个反应过程中由甲醇直接制取三大基础化学品乙烯、丙烯和对二甲苯的目的。反应所得烃类产物中对二甲苯在芳烃中的选择性大于80wt%以上,乙烯和丙烯在C1-C5低碳烃中选择性大于80wt%以上。但是该方法的弊端是要获得高纯度的乙烯产品必须要通过深冷分离技术,投资和能耗均较大,直接影响了该过程的经济性。CN101767038B and CN101780417B disclose a catalyst and method for the co-production of low-carbon olefins from methanol to p-xylene, pointing out that the three basic chemicals ethylene, ethylene, and The purpose of propylene and p-xylene. Among the hydrocarbon products obtained from the reaction, the selectivity of p-xylene in aromatic hydrocarbons is greater than 80 wt%, and the selectivity of ethylene and propylene in C1 - C5 low-carbon hydrocarbons is greater than 80 wt%. However, the disadvantage of this method is that cryogenic separation technology must be used to obtain high-purity ethylene products, and the investment and energy consumption are large, which directly affects the economy of the process.
此外,CN101780417B涉及甲醇转化制备对二甲苯和低碳烯烃(乙烯和丙烯)的方法,其中不涉及为了进一步增产丙烯避免乙烯分离的困难,将富含乙烯的C2 -组份回炼进一步与甲醇烷基化增产丙烯的过程。CN102464550A公开了一种联产低碳烯烃和对二甲苯的方法,所述方法为包括碳四、碳五烃进入第一反应区制烯烃,这是C4或液化气裂解制烯烃过程,其中也不涉及乙烯和甲醇/二甲醚烷基化制丙烯的过程。In addition, CN101780417B relates to the method for preparing p - xylene and low-carbon olefins (ethylene and propylene) by methanol conversion, which does not involve in order to further increase the production of propylene and avoid the difficulty of ethylene separation. The process of alkylation to increase the production of propylene. CN102464550A discloses a method for co-producing light olefins and p-xylene, the method includes C4 and C5 hydrocarbons entering the first reaction zone to produce olefins, which is a process of C4 or liquefied gas cracking to produce olefins, wherein also The process of producing propylene by alkylation of ethylene and methanol/dimethyl ether is not involved.
发明内容Contents of the invention
本发明的目的是提供一种甲醇和/或二甲醚制对二甲苯和丙烯的方法。The object of the present invention is to provide a kind of method that methyl alcohol and/or dimethyl ether make p-xylene and propylene.
为此,本发明提供一种甲醇和/或二甲醚制对二甲苯和丙烯的方法,包括以下步骤:For this reason, the present invention provides a kind of method for methyl alcohol and/or dimethyl ether system p-xylene and propylene, comprises the following steps:
a)将含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触反应;由所述反应系统出来的富含乙烯的C2 -组分返回所述反应系统,并与原料在所述催化剂上继续反应以生成丙烯;a) The raw material containing methanol and/or dimethyl ether is contacted and reacted with the catalyst in the reaction system; the ethylene -rich C2- component coming out of the reaction system is returned to the reaction system, and is mixed with the raw material in the The reaction continues on the catalyst to produce propylene;
b)从所述反应系统出来的C6 +组分,经分离得到产物对二甲苯;和b) C 6 + components from the reaction system are separated to obtain the product p-xylene; and
c)从所述反应系统出来的C3组分经分离得到产物丙烯。 c ) The C3 component coming out of the reaction system is separated to obtain the product propylene.
在一个优选实施方式中,所述反应系统包括第一反应区和第二反应区,并且所述方法包括以下步骤:In a preferred embodiment, the reaction system comprises a first reaction zone and a second reaction zone, and the method comprises the following steps:
a)将含有甲醇和/或二甲醚的原料首先通过第一反应区与催化剂I接触发生芳构化反应,然后进入第二反应区与催化剂II接触发生烷基化化反应;由所述第二反应区出来的富含乙烯的C2 -组分返回所述第二反应区,并与所述第二反应区内的甲醇和/或二甲醚在所述催化剂II上发生烷基化反应以生成丙烯;a) The raw material containing methanol and/or dimethyl ether first passes through the first reaction zone to contact catalyst I for aromatization reaction, and then enters the second reaction zone to contact catalyst II for alkylation reaction; The ethylene -rich C2- components from the second reaction zone are returned to the second reaction zone, and undergo an alkylation reaction with methanol and/or dimethyl ether in the second reaction zone on the catalyst II to generate propylene;
b)从所述第二反应区出来的C6 +组分经进一步分离得到产物对二甲苯;和b) the C 6 + component from the second reaction zone is further separated to obtain the product p-xylene; and
c)从所述第二反应区出来的C3组分经进一步分离得到丙烯。 c ) The C3 component coming out of the second reaction zone is further separated to obtain propylene.
在一个优选实施方式中,所述反应系统包括第一反应区和第二反应区,并且所述方法包括以下步骤:In a preferred embodiment, the reaction system comprises a first reaction zone and a second reaction zone, and the method comprises the following steps:
a)将含有甲醇和/或二甲醚的原料首先通过第一反应区与催化剂I接触发生芳构化反应,得到生成物A,所述生成物A经分离系统分离后,富含乙烯的C2 -组分返回到所述第二反应区,并与进入到第二反应区的甲醇和/或二甲醚在催化剂II上进行烷基化反应,得到生成物B;生成物A和生成物B中的富含乙烯的C2 -组分继续返回到第二反应区,并与第二反应区内的甲醇和/或二甲醚在催化剂II接触发生烷基化反应以生成丙烯;a) The raw material containing methanol and/or dimethyl ether is first contacted with the catalyst I through the first reaction zone to undergo an aromatization reaction to obtain the product A. After the product A is separated by the separation system, the ethylene-rich C 2 - The components are returned to the second reaction zone, and carry out an alkylation reaction with methanol and/or dimethyl ether entering the second reaction zone on the catalyst II to obtain product B; product A and product The ethylene -rich C2- component in B continues to return to the second reaction zone, and contacts with methanol and/or dimethyl ether in the second reaction zone on catalyst II for an alkylation reaction to generate propylene;
b)所述生成物A和生成物B中的C6 +组分经进一步分离得到产品对二甲苯;和b) the C 6 + components in the product A and product B are further separated to obtain the product p-xylene; and
c)所述生成物A和生成物B中的C3组分经进一步分离得到产品丙烯。 c ) The C3 component in the product A and product B is further separated to obtain the product propylene.
在一个优选实施方式中,所述催化剂、所述催化剂I和催化剂II含有相同或不同的改性沸石分子筛催化剂。In a preferred embodiment, the catalyst, the catalyst I and the catalyst II contain the same or different modified zeolite molecular sieve catalysts.
在一个优选实施方式中,所述改性沸石分子筛催化剂是由ZSM-5和/或ZSM-11沸石分子筛经贵金属和稀土金属改性以及硅氧烷基化合物改性得到的。In a preferred embodiment, the modified zeolite molecular sieve catalyst is obtained by modifying ZSM-5 and/or ZSM-11 zeolite molecular sieves with noble metals, rare earth metals and siloxane compounds.
在一个优选实施方式中,所述改性沸石分子筛催化剂中,所述贵金属的含量为所述催化剂总重量的0.1-10wt%。In a preferred embodiment, in the modified zeolite molecular sieve catalyst, the content of the noble metal is 0.1-10 wt% of the total weight of the catalyst.
在一个优选实施方式中,所述稀土金属的含量为所述催化剂总重量的0.1-5wt%。In a preferred embodiment, the content of the rare earth metal is 0.1-5 wt% of the total weight of the catalyst.
在一个优选实施方式中,由硅氧烷基化合物改性担载的Si量为所述改性沸石分子筛催化剂的总重量的1-10wt%。In a preferred embodiment, the amount of Si modified and supported by the siloxane-based compound is 1-10 wt% of the total weight of the modified zeolite molecular sieve catalyst.
在一个优选实施方式中,所述贵金属为银;所述稀土金属为镧。In a preferred embodiment, the noble metal is silver; the rare earth metal is lanthanum.
在一个优选实施方式中,所述硅氧烷基化合物改性所采用的硅氧烷基化合物,结构式如下式所示:In a preferred embodiment, the siloxane-based compound used for modification of the siloxane-based compound has a structural formula as shown in the following formula:
其中R1、R2、R3和R4各自独立地是C1-10烷基。Wherein R 1 , R 2 , R 3 and R 4 are each independently a C 1-10 alkyl group.
在一个优选实施方式中,所述硅氧烷基化合物为正硅酸乙酯。In a preferred embodiment, the siloxane-based compound is ethyl orthosilicate.
在一个优选实施方式中,所述反应区包括一个反应器或多个通过串联和/或并联方式连接的反应器;并且优选地,所述反应器任选自固定床、流化床和移动床反应器中的一种或多种。In a preferred embodiment, the reaction zone comprises one reactor or a plurality of reactors connected in series and/or in parallel; and preferably, the reactor is selected from fixed bed, fluidized bed and moving bed One or more of the reactors.
在一个优选实施方式中,所述第一反应区和所述第二反应区在同一个反应器内;并且优选地,所述反应器任选自固定床、流化床和移动床反应器中的一种或多种。In a preferred embodiment, the first reaction zone and the second reaction zone are in the same reactor; and preferably, the reactor is selected from fixed bed, fluidized bed and moving bed reactors one or more of .
在一个优选实施方式中,所述第一反应区包括一个反应器或多个通过串联和/或并联方式连接的反应器;所述第二反应区包括一个反应器或多个通过串联和/或并联方式连接的反应器;并且所述第一反应区和所述第二反应区之间,通过串联或并联的方式连接;并且优选地,所述反应器任选自固定床、流化床和移动床反应器中的一种或多种。In a preferred embodiment, the first reaction zone includes one reactor or multiple reactors connected in series and/or in parallel; the second reaction zone includes one reactor or multiple reactors connected in series and/or A reactor connected in parallel; and between the first reaction zone and the second reaction zone, connected in series or in parallel; and preferably, the reactor is selected from fixed bed, fluidized bed and One or more of moving bed reactors.
本发明的有益效果包括但不限于以下方面:本发明提供一种以甲醇和/或二甲醚制对二甲苯和丙烯的新方法,其中通过将反应产物中的富含乙烯的C2 -组分回炼与甲醇和/或二甲醚发生烷基化反应进一步生成丙烯,最终获得高选择性对二甲苯和丙烯,一方面避免了乙烯产品分离的高昂费用,另一方面可以进一步增产具有更大市场需求的丙烯产品,从而可以有效提高该技术的经济性。The beneficial effects of the present invention include but are not limited to the following aspects: The present invention provides a new method for producing p-xylene and propylene with methanol and/or dimethyl ether, wherein the ethylene - rich C 2 -group in the reaction product Alkylation reaction with methanol and/or dimethyl ether to further generate propylene, and finally obtain p-xylene and propylene with high selectivity. On the one hand, it avoids the high cost of ethylene product separation, and on the other hand, it can further increase production with more Propylene products in large market demand can effectively improve the economics of this technology.
附图说明Description of drawings
图1是根据本发明一种实施方案的方法的流程图。Figure 1 is a flow diagram of a method according to one embodiment of the invention.
图2是根据本发明另一种实施方案的方法的流程图。Figure 2 is a flow diagram of a method according to another embodiment of the invention.
图3是根据本发明另一种实施方案的方法的流程图。Figure 3 is a flow chart of a method according to another embodiment of the invention.
图4是根据本发明另一种实施方案的方法的流程图。Figure 4 is a flow diagram of a method according to another embodiment of the invention.
具体实施方式detailed description
在本发明的方法中,将甲醇和/或二甲醚芳构化反应、乙烯与甲醇和/或二甲醚烷基化反应两个反应过程耦合,同时高选择性制备对二甲苯和丙烯。具体地,首先原料甲醇和/或二甲醚在反应系统中与催化剂(催化剂存在于反应器中)接触进行芳构化反应,生成的产物进入分离系统(例如分馏塔等)分离;经分离系统分离后,得到C6 +组分(碳数等于大于6的芳烃)、C4-C5组分(碳数为4和5的烃类)、C3组分(碳数等于3的丙烯和丙烷)和富含乙烯的C2 -组分(碳数小于等于2的烃类及CO、CO2和H2)以及水(H2O),其中,富含乙烯的C2 -组分返回反应系统,C6 +组分经进一步分离(例如精馏塔、结晶分离系统等)得到对二甲苯,C3组分经进一步分离(例如精馏塔等)得到丙烯,而少量C4-C5组分和H2O收集后用于其它目的。其中所述反应系统可以为一个单独的反应区,也可以为两个以上反应区的组合,多个反应区可以在同一个反应器中,也可以是分别在多个串联或并联的反应器中。优选地,所述反应器为固定床、流化床或移动床中的任意一种或任意几种。In the method of the present invention, two reaction processes, the aromatization reaction of methanol and/or dimethyl ether and the alkylation reaction of ethylene and methanol and/or dimethyl ether, are coupled to simultaneously prepare p-xylene and propylene with high selectivity. Specifically, at first the raw material methanol and/or dimethyl ether are contacted with the catalyst (the catalyst exists in the reactor) in the reaction system to carry out the aromatization reaction, and the generated product enters the separation system (such as a fractionation tower, etc.) for separation; After separation, C 6 + components (aromatics with a carbon number equal to or greater than 6), C 4 -C 5 components (hydrocarbons with a carbon number of 4 and 5), and C 3 components (propylene with a carbon number equal to 3 and Propane) and ethylene - rich C 2 -components (hydrocarbons with carbon number less than or equal to 2 and CO, CO 2 and H 2 ) and water (H 2 O), wherein, ethylene - rich C 2 -components return Reaction system, C 6 + components are further separated (such as rectification tower, crystallization separation system, etc.) to obtain p-xylene, C 3 components are further separated (such as rectification tower, etc.) to obtain propylene, and a small amount of C 4 -C 5 components and H 2 O are collected and used for other purposes. Wherein said reaction system can be a single reaction zone, also can be the combination of two or more reaction zones, a plurality of reaction zones can be in the same reactor, also can be respectively in a plurality of serial or parallel reactors . Preferably, the reactor is any one or more of fixed bed, fluidized bed or moving bed.
在一个优选实施方式中,根据本发明的方法的一种反应流程如图1所示。在图1中,反应系统由具有一个反应区的一个反应器组成,其中原料甲醇和/或二甲醚在该反应系统的反应区中与其中的催化剂接触反应,生成的产物经分离系统分离后,得到C6 +组分、C4-C5组分、C3组分和C2 -组分(包括富含乙烯的C2 -组分和驰放气)以及H2O,其中,富含乙烯的C2 -组分返回反应系统,C6 +组分经进一步分离得到对二甲苯,C3组分经进一步分离得到丙烯。In a preferred embodiment, a reaction scheme according to the method of the present invention is shown in FIG. 1 . In Figure 1, the reaction system is composed of a reactor with a reaction zone, wherein the raw material methanol and/or dimethyl ether is contacted with the catalyst in the reaction zone of the reaction system, and the resulting product is separated by the separation system , to obtain C 6 + components, C 4 -C 5 components, C 3 components and C 2 -components (including ethylene - rich C 2 -components and purge gas) and H 2 O, in which, rich The C 2 - component containing ethylene is returned to the reaction system, the C 6 + component is further separated to obtain p-xylene, and the C 3 component is further separated to obtain propylene.
在一个优选实施方式中,根据本发明的方法的一种反应流程如图2所示。在图2中,反应系统由具有两个反应区的一个反应器组成,第一反应区的主反应为甲醇和/或二甲醚芳构化反应,第二反应区的主反应为乙烯(第一反应区的副产物)与甲醇和/或二甲醚烷基化反应。原料甲醇和/或二甲醚首先通过第一反应区并与其中的催化剂I接触反应,然后通过第二反应区并与其中的催化剂II接触反应,生成的产物进入分离系统分离;经分离系统分离后得到C6 +组分、C4-C5组分、C3组分和C2 -组分(包括富含乙烯的C2 -组分和驰放气)以及H2O,其中富含乙烯的C2 -组分返回第二反应区并和进入第二反应区的甲醇和/或二甲醚与催化剂II接触进行烷基化反应;C6 +组分经进一步分离得到对二甲苯,C3组分进一步分离得到丙烯。In a preferred embodiment, a reaction scheme according to the method of the present invention is shown in FIG. 2 . In Fig. 2, the reaction system is made up of a reactor with two reaction zones, the main reaction of the first reaction zone is methanol and/or dimethyl ether aromatization reaction, and the main reaction of the second reaction zone is ethylene (No. A by-product of a reaction zone) is alkylated with methanol and/or dimethyl ether. The raw material methanol and/or dimethyl ether first pass through the first reaction zone and contact with the catalyst I therein for reaction, then pass through the second reaction zone and contact with the catalyst II therein for the reaction, and the generated products enter the separation system for separation; they are separated by the separation system Finally, C 6 + components, C 4 -C 5 components, C 3 components and C 2 -components (including ethylene - rich C 2 -components and purge gas) and H 2 O are obtained, which are rich in The C 2 -component of ethylene is returned to the second reaction zone and is contacted with methanol and/or dimethyl ether entering the second reaction zone to carry out an alkylation reaction with catalyst II; the C 6 + component is further separated to obtain p-xylene, The C3 component is further separated to obtain propylene.
在一个优选实施例中,根据本发明的方法的一种反应流程如图3所示。在图3中,反应系统由分别在两个并联的反应器中的两个反应区组成,第一反应区的主反应为甲醇和/或二甲醚芳构化反应,第二反应区的主反应为乙烯(第一反应区的副产物)与甲醇和/或二甲醚烷基化反应。首先甲醇和/或二甲醚在反应区与催化剂I接触进行芳构化生成产物A,产物A进入分离系统分离;分离后得到的富含乙烯的C2 -组分返回到第二反应区,与进入到第二反应区的甲醇和/或二甲醚在催化剂II上进行烷基化反应生成产物B,产物B进入分离系统分离;经分离系统分离后,其中富含乙烯的C2 -组分返回到第二反应区,并且其中所述产物A和产物B经分离系统分离后得到的C6 +组分经进一步分离得到对二甲苯,C3组分进一步分离得到丙烯。In a preferred embodiment, a reaction scheme according to the method of the present invention is shown in FIG. 3 . In Fig. 3, the reaction system is composed of two reaction zones respectively in two parallel reactors, the main reaction in the first reaction zone is the aromatization reaction of methanol and/or dimethyl ether, and the main reaction in the second reaction zone is The reaction is the alkylation of ethylene (by-product of the first reaction zone) with methanol and/or dimethyl ether. First, methanol and/or dimethyl ether are contacted with catalyst I in the reaction zone for aromatization to generate product A, and product A enters the separation system for separation; the ethylene -rich C2- component obtained after separation is returned to the second reaction zone, Alkylation reaction with methanol and/or dimethyl ether entering the second reaction zone on catalyst II to generate product B, which enters the separation system for separation; after separation by the separation system, the C 2 -group rich in ethylene The parts are returned to the second reaction zone, and the C 6 + component obtained after the product A and product B are separated by the separation system is further separated to obtain p-xylene, and the C 3 component is further separated to obtain propylene.
在一个优选实施方式中,根据本发明的方法的一种反应流程如图4所示。在图4中,除了反应系统由分别在同一个反应器中的两个反应区组成之外,其反应过程与上述关于图3所描述的过程相同,这里不再赘述,这样的反应系统可以通过多段进料实现。In a preferred embodiment, a reaction scheme according to the method of the present invention is shown in FIG. 4 . In Fig. 4, except that the reaction system is composed of two reaction zones respectively in the same reactor, its reaction process is the same as that described above with respect to Fig. 3, and will not be repeated here. Such a reaction system can be passed through Multi-stage feeding is realized.
在本发明中,所使用的催化剂为ZSM-5和/或ZSM-11沸石分子筛经贵金属和稀土金属联合改性并且经硅氧烷基化合物表面修饰得到的改性ZSM-5和/或ZSM-11沸石分子筛催化剂。当反应区为两个时,分别存在于其中的所述催化剂I和催化剂II可以为相同或不同的催化剂。例如,在一个优选实施方式中,所述催化剂I和催化剂II为同一种催化剂或相同的催化剂。更优选地,本发明中使用的所述催化剂、催化剂I或催化剂II经硅氧烷基化合物表面修饰后,Si的担载量为该催化剂总重量的1-10wt%。In the present invention, the catalysts used are ZSM-5 and/or ZSM-11 zeolite molecular sieves modified ZSM-5 and/or ZSM- 11 Zeolite molecular sieve catalyst. When there are two reaction zones, the catalyst I and catalyst II respectively present therein may be the same or different catalysts. For example, in a preferred embodiment, the catalyst I and the catalyst II are the same catalyst or the same catalyst. More preferably, after the surface of the catalyst, catalyst I or catalyst II used in the present invention is modified with a siloxane compound, the loading amount of Si is 1-10 wt% of the total weight of the catalyst.
在一个优选实施方案中,本发明使用的催化剂的制备过程如下:In a preferred embodiment, the preparation process of the catalyst used in the present invention is as follows:
(1)将ZSM-5和/或ZSM-11沸石分子筛原粉经NH4 +离子交换、焙烧制备成酸性沸石分子筛。(1) Prepare ZSM-5 and/or ZSM-11 zeolite molecular sieve raw powder through NH 4 + ion exchange and roasting to prepare acidic zeolite molecular sieve.
(2)将上述酸性沸石分子筛浸渍在贵金属和稀土金属的可溶性盐溶液中,得到金属改性的沸石分子筛。(2) Immersing the above-mentioned acidic zeolite molecular sieve in a soluble salt solution of noble metal and rare earth metal to obtain a metal-modified zeolite molecular sieve.
(3)使用硅氧烷基试剂对上述金属改性沸石分子筛进行表面修饰,进一步调变分子筛外表面酸性和孔结构,得到改性沸石分子筛催化剂。(3) Surface modification of the metal-modified zeolite molecular sieve with a siloxane-based reagent to further adjust the acidity and pore structure of the outer surface of the molecular sieve to obtain a modified zeolite molecular sieve catalyst.
优选地,本发明中使用的所述催化剂、催化剂I或催化剂II经贵金属和稀土金属联合改性后,贵金属含量为该催化剂总重量的0.1-10wt%;稀土金属含量为该催化剂总重量的0.1-5wt%。Preferably, after the catalyst, catalyst I or catalyst II used in the present invention is jointly modified by noble metal and rare earth metal, the content of noble metal is 0.1-10wt% of the total weight of the catalyst; the content of rare earth metal is 0.1% by weight of the total weight of the catalyst. -5 wt%.
优选地,本发明中使用的贵金属为银;稀土金属为镧,其以它们的可溶性盐的形式使用。Preferably, the noble metal used in the present invention is silver; the rare earth metal is lanthanum, which is used in the form of their soluble salts.
优选地,本发明中使用的硅氧烷基化合物如下式所示:Preferably, the siloxane-based compound used in the present invention is represented by the following formula:
其中R1、R2、R3和R4各自独立地是C1-10烷基,如甲基、乙基、丙基、丁基、戊基、己基、庚基和辛基,以及它们的异构体形式。Wherein R 1 , R 2 , R 3 and R 4 are each independently C 1-10 alkyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl, and their isomeric form.
优选地,使用的硅氧烷基化合物为正硅酸四乙酯。Preferably, the siloxane-based compound used is tetraethylorthosilicate.
优选地,在本发明中的所述第一反应区和第二反应区均可使用固定床反应工艺,同时可以与再生器结合采用流化床或移动床反应工艺。所述第一反应区和第二反应区可以分别为在一个反应器中或在多个串联或并联的相同或不同反应器中,通过多段进料实现。Preferably, both the first reaction zone and the second reaction zone in the present invention can use a fixed-bed reaction process, and at the same time, a fluidized-bed or moving-bed reaction process can be used in combination with the regenerator. The first reaction zone and the second reaction zone can be implemented in one reactor or in a plurality of the same or different reactors connected in series or in parallel, respectively, through multi-stage feeding.
在本发明方法中,甲醇和/或二甲醚芳构化反应、乙烯与甲醇和/或二甲醚烷基化反应温度在300-600℃范围内,并且甲醇和/或二甲醚芳构化反应优选的反应温度为450-520℃,乙烯与甲醇和/或二甲醚烷基化反应优选反应温度为350-500℃。In the method of the present invention, methanol and/or dimethyl ether aromatization reaction, ethylene and methanol and/or dimethyl ether alkylation reaction temperature are in the range of 300-600°C, and methanol and/or dimethyl ether aromatization The preferred reaction temperature for the alkylation reaction is 450-520°C, and the preferred reaction temperature for the alkylation reaction of ethylene with methanol and/or dimethyl ether is 350-500°C.
在本发明方法中,甲醇和/或二甲醚芳构化反应进料质量空速以甲醇和/或二甲醚计为0.1-10h-1,优选为1-5h-1。其中乙烯与甲醇和/或二甲醚摩尔比在0.1-10范围内任意选择,一般优选为0.5-5。In the method of the present invention, the mass space velocity of methanol and/or dimethyl ether aromatization reaction feed is 0.1-10h -1 , preferably 1-5h -1 , calculated as methanol and/or dimethyl ether. Wherein the molar ratio of ethylene to methanol and/or dimethyl ether is arbitrarily selected within the range of 0.1-10, generally preferably 0.5-5.
本发明中,所述C2 -组分指分子式中碳原子数小于等于2的组分,包括乙烯以及乙烷、甲烷、CO、CO2和H2等,即C2 -组分包括富含乙烯的C2 -组分和驰放气。驰放气主要为乙烷、甲烷、CO、CO2和H2等。In the present invention, the C 2 -component refers to a component with carbon atoms less than or equal to 2 in the molecular formula, including ethylene, ethane, methane, CO, CO 2 and H 2 , etc., that is, the C 2 -component includes C 2 -component of ethylene and purge gas. The purge gas is mainly ethane, methane, CO, CO 2 and H 2 and so on.
本发明中,所述C3组分指分子式中碳原子数等于3的化合物,包括丙烯、丙烷等。In the present invention, the C3 component refers to a compound with 3 carbon atoms in the molecular formula, including propylene, propane and the like.
本发明中,所述C4-C5组分指分子式中碳原子数等于4、5的组分,包括异丁烷、异丁烯、丁烷、1-丁烯、2-丁烯、异戊烷、新戊烷、戊烷、1-戊烯、2-戊稀等。In the present invention, the C 4 -C 5 component refers to a component with carbon atoms equal to 4 or 5 in the molecular formula, including isobutane, isobutene, butane, 1-butene, 2-butene, and isopentane , Neopentane, pentane, 1-pentene, 2-pentene, etc.
本发明中,所述C6 +组分指分子式中碳原子数大于等于6的组分,包括对二甲苯以及其他的芳烃及其衍生物等。In the present invention, the C 6 + component refers to a component with 6 or more carbon atoms in the molecular formula, including p-xylene and other aromatic hydrocarbons and their derivatives.
下面通过实施例详述本发明,但本发明并不局限于这些实施例。The present invention is described in detail below by examples, but the present invention is not limited to these examples.
气相色谱仪在线分析产物组成,分析条件为:The gas chromatograph analyzes the product composition on-line, and the analysis conditions are:
色谱型号:VarianCP3800Chromatography model: VarianCP3800
色谱柱:CPWax52CB毛细管色谱柱Chromatographic column: CPWax52CB capillary column
载气:氦气,5ml/minCarrier gas: helium, 5ml/min
柱箱温度:60-220℃,程序升温,15℃/minOven temperature: 60-220°C, programmed temperature rise, 15°C/min
进样口温度:260℃Injection port temperature: 260°C
检测器:氢火焰离子化检测器(FID)Detector: Hydrogen Flame Ionization Detector (FID)
检测器温度:300℃Detector temperature: 300°C
实施例1Example 1
催化剂的制备:银镧与硅烷改性的HZSM-5分子筛催化剂和HZSM-11Catalyst preparation: silver lanthanum and silane modified HZSM-5 molecular sieve catalyst and HZSM-11 分子筛催化剂Molecular sieve catalyst
1)将500gZSM-5沸石分子筛原粉(抚顺石化公司催化剂厂)(SiO2/Al2O3=68)和500gZSM-11沸石分子筛原粉(南开大学催化剂厂)(SiO2/Al2O3=50)分别在550℃下焙烧去除模板剂,在80℃水浴中用0.5摩尔当量硝酸铵溶液进行交换4次,交换后在120℃空气中烘干,550℃下焙烧3小时,分别得到HZSM-5、HZSM-11沸石分子筛。1) 500g ZSM-5 zeolite molecular sieve raw powder (Fushun Petrochemical Company Catalyst Factory) (SiO 2 /Al 2 O 3 =68) and 500g ZSM-11 zeolite molecular sieve raw powder (Nankai University Catalyst Factory) (SiO 2 /Al 2 O 3 =50) were roasted at 550°C to remove the template agent, exchanged 4 times with a 0.5 molar equivalent ammonium nitrate solution in a water bath at 80°C, dried in air at 120°C after the exchange, and roasted at 550°C for 3 hours to obtain HZSM respectively -5. HZSM-11 zeolite molecular sieve.
2)分别取步骤1)制备的HZSM-5和HZSM-11沸石分子筛100g压片成型,经破碎筛分后得到40-60目样品,用6%质量浓度的硝酸银(AgNO3)溶液常温浸渍4小时,倾出上层液体后120℃烘干,550℃空气中焙烧6小时,得到银改性Ag-HZSM-5和Ag-HZSM-11沸石分子筛。2) Take 100 g of the HZSM-5 and HZSM-11 zeolite molecular sieves prepared in step 1) respectively, and press them into tablets to obtain 40-60 mesh samples after crushing and screening, and impregnate them with 6% silver nitrate (AgNO 3 ) solution at room temperature After 4 hours, pour out the upper layer liquid, dry at 120°C, and bake in air at 550°C for 6 hours to obtain silver-modified Ag-HZSM-5 and Ag-HZSM-11 zeolite molecular sieves.
3)分别将步骤2)得到的Ag-HZSM-5和Ag-HZSM-11沸石分子筛用5wt%硝酸镧溶液(La(NO3)3·6H2O)常温浸渍4小时,倾出上层液体后120℃烘干,550℃空气中焙烧6小时,得到银和镧联合改性Ag-La-HZSM-5和Ag-La-HZSM-11沸石分子筛。3) respectively impregnating the Ag-HZSM-5 and Ag-HZSM-11 zeolite molecular sieves obtained in step 2) with 5wt% lanthanum nitrate solution (La(NO 3 ) 3 6H 2 O) at room temperature for 4 hours, and pouring out the upper liquid Drying at 120°C and calcination in air at 550°C for 6 hours to obtain Ag-La-HZSM-5 and Ag-La-HZSM-11 zeolite molecular sieves jointly modified by silver and lanthanum.
4)分别采用正硅酸乙酯(TEOS)常温浸渍步骤3)得到的Ag-La-HZSM-5和Ag-La-HZSM-11沸石分子筛24小时,倾出上层液体后120℃烘干、550℃空气中焙烧6小时得到银镧与硅烷化改性的HZSM-5和HZSM-11分子筛催化剂,催化剂分别命名为MTPP-08和MTPP-09。X射线荧光衍射(XRF)分析测定MTPP-08和MTPP-09催化剂各元素担载量,MTPP-08催化剂上Ag担载量为1.02wt%,La担载量为1.25wt%,硅烷化Si担载量以为2.32wt%;MTPP-09催化剂上Ag担载量为1.13wt%,La担载量为1.18wt%,硅烷化Si担载量以为2.16wt%。4) Use orthoethyl silicate (TEOS) to impregnate the Ag-La-HZSM-5 and Ag-La-HZSM-11 zeolite molecular sieves obtained in step 3) respectively at room temperature for 24 hours, pour out the upper liquid, and then dry it at 120°C and dry it at 550°C. ℃ in air for 6 hours to obtain silver lanthanum and silanized HZSM-5 and HZSM-11 molecular sieve catalysts, the catalysts were named MTPP-08 and MTPP-09. X-ray fluorescence diffraction (XRF) analysis and determination of the loading of each element of the MTPP-08 and MTPP-09 catalysts, the loading of Ag on the MTPP-08 catalyst was 1.02wt%, the loading of La was 1.25wt%, and the silanized Si loading The loading amount was 2.32wt%; the Ag loading amount on the MTPP-09 catalyst was 1.13wt%, the La loading amount was 1.18wt%, and the silylated Si loading amount was 2.16wt%.
实施例2Example 2
以甲醇制对二甲苯和丙烯p-xylene and propylene from methanol
根据图2所示的反应流程,将实施例1中制备的MTPP-08催化剂分别装入固定反应器的第一反应区和第二反应区中(各反应区均为10克)。第一反应区主要进行甲醇芳构化反应,反应后产物进入第二反应区,甲醇进料质量空速为2h-1,反应温度为500℃。其中反应产物分布中的富含乙烯的C2 -组分与甲醇共同进入第二反应区反应,其中乙烯/甲醇(摩尔比)为1/1,反应温度为400℃,第二反应区进行乙烯和甲醇烷基化反应。According to the reaction process shown in Figure 2, the MTPP-08 catalyst prepared in Example 1 was loaded into the first reaction zone and the second reaction zone of the fixed reactor respectively (each reaction zone is 10 grams). The first reaction zone mainly carries out methanol aromatization reaction, and the reaction product enters the second reaction zone, the mass space velocity of methanol feed is 2h -1 , and the reaction temperature is 500°C. The ethylene - rich C 2 -component in the distribution of the reaction product enters the second reaction zone together with methanol to react, wherein the ethylene/methanol (molar ratio) is 1/1, the reaction temperature is 400°C, and the second reaction zone carries out ethylene And methanol alkylation reaction.
采用气相色谱仪在线分析第一反应区和第二反应区混合产物组成,去除生成水后的产物分布如表1所示,再去除C2 -的返回组分后产品分布如表2所示。Gas chromatography was used to analyze the mixed product composition of the first reaction zone and the second reaction zone on-line. The product distribution after removing the generated water is shown in Table 1, and the product distribution after removing the C 2 - return component is shown in Table 2.
从表2可以看出,第一反应区和第二反应区总产物中去除C2 -组分后,产物中丙烯选择性为42.52wt%,对二甲苯选择性为38.05wt%,丙烯和对二甲苯总选择性为80.57wt%。对二甲苯在二甲苯异构体中的选择性为98.98wt%。As can be seen from Table 2 , after the C2 - component is removed from the total product of the first reaction zone and the second reaction zone, the selectivity of propylene in the product is 42.52wt%, the selectivity of p-xylene is 38.05wt%, and the selectivity of propylene and p-xylene The overall selectivity to xylenes was 80.57 wt%. The selectivity of p-xylene among xylene isomers was 98.98 wt%.
表1Table 1
*wt%,产物重量百分比组成,下同。*wt%, product weight percent composition, the same below.
表2Table 2
实施例3Example 3
以甲醇制对二甲苯和丙烯p-xylene and propylene from methanol
根据图3或4所示的反应流程,将实施例1中制备的MTPP-08和MTPP-09催化剂分别装入第一反应区和第二反应区(各反应区均为10克)。第一反应区进行甲醇芳构化反应,甲醇进料质量空速为2h-1,反应温度为500℃。第二反应区进行乙烯和甲醇烷基化反应,根据对比例中甲醇转化反应产物分布中富含乙烯的C2 -组分与甲醇共同进入第二反应区反应,其中乙烯/甲醇(摩尔比)为1/1,反应温度为400℃。According to the reaction process shown in Figure 3 or 4, the MTPP-08 and MTPP-09 catalysts prepared in Example 1 were loaded into the first reaction zone and the second reaction zone (each reaction zone is 10 grams) respectively. The methanol aromatization reaction is carried out in the first reaction zone, the methanol feeding mass space velocity is 2h -1 , and the reaction temperature is 500°C. The second reaction zone carries out the alkylation reaction of ethylene and methanol. According to the methanol conversion reaction product distribution in the comparative example, the ethylene -rich C2- component and methanol enter the second reaction zone for reaction, wherein ethylene/methanol (molar ratio) is 1/1, and the reaction temperature is 400°C.
采用气相色谱仪在线分析第一反应区和第二反应区混合产物组成,去除生成水后的产物分布如表3所示,再去除C2 -组分后的产品分布如表4所示。The gas chromatograph was used to analyze the mixed product composition of the first reaction zone and the second reaction zone online. The product distribution after removing the generated water is shown in Table 3, and the product distribution after removing the C 2 -component is shown in Table 4.
从表4可以看出,第一反应区和第二反应区总产物中去除C2 -组分后,产物中丙烯选择性为53.62wt%,对二甲苯选择性为30.59wt%,丙烯和对二甲苯总选择性为84.21wt%。对二甲苯在二甲苯异构体中的选择性为99.32wt%。As can be seen from Table 4, after the C2 - component is removed from the total product of the first reaction zone and the second reaction zone, the selectivity of propylene in the product is 53.62wt%, the selectivity of p-xylene is 30.59wt%, and the selectivity of propylene and p-xylene The total selectivity to xylenes was 84.21 wt%. The selectivity of p-xylene among xylene isomers was 99.32 wt%.
表3table 3
表4Table 4
对比例1Comparative example 1
以甲醇制对二甲苯并联产丙烯,但无Cp-xylene from methanol with co-production of propylene, but no C 22 -- 组分返回的进一步反应Further reactions of component returns
取10克实施例1中制备的MTPP-08催化剂装入反应器中进行甲醇转化反应,甲醇质量空速为2h-1,反应温度为500℃。采用气相色谱仪在线分析产物组成,去除生成水后的产物分布如表5所示。Take 10 grams of the MTPP-08 catalyst prepared in Example 1 and load it into a reactor for methanol conversion reaction. The methanol mass space velocity is 2h -1 and the reaction temperature is 500°C. The product composition was analyzed online by gas chromatography, and the distribution of the product after removing the generated water was shown in Table 5.
当反应器单独甲醇进料反应时,产物中丙烯的选择性仅为29.48wt%。When the reactor is reacted with only methanol feed, the selectivity of propylene in the product is only 29.48wt%.
表5甲醇转化反应结果Table 5 methanol conversion reaction results
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。本发明的范围由所附权利要求限定。The present invention has been described in detail above, but the present invention is not limited to the specific embodiments described herein. Those skilled in the art understand that other changes and modifications can be made without departing from the scope of the present invention. The scope of the invention is defined by the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410245420.6A CN105294374B (en) | 2014-06-04 | 2014-06-04 | A kind of methanol and/or dimethyl ether for paraxylene and propylene method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410245420.6A CN105294374B (en) | 2014-06-04 | 2014-06-04 | A kind of methanol and/or dimethyl ether for paraxylene and propylene method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105294374A true CN105294374A (en) | 2016-02-03 |
| CN105294374B CN105294374B (en) | 2017-10-03 |
Family
ID=55192309
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410245420.6A Active CN105294374B (en) | 2014-06-04 | 2014-06-04 | A kind of methanol and/or dimethyl ether for paraxylene and propylene method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105294374B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111187134A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | Method for preparing paraxylene and co-produced gasoline from methanol and/or dimethyl ether |
| CN111187133A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | A kind of method for preparing paraxylene co-production ethylbenzene and propylene by methanol and/or dimethyl ether, benzene |
| CN111187132A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | Method for preparing gasoline and co-producing p-xylene from methanol and/or dimethyl ether |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101177374A (en) * | 2006-11-07 | 2008-05-14 | 中国科学院大连化学物理研究所 | A method for producing propylene from methanol or dimethyl ether |
| CN101602643A (en) * | 2009-07-24 | 2009-12-16 | 中国海洋石油总公司 | A kind of method for methanol/dimethyl ether conversion to produce ethylene propylene co-production p-xylene |
| CN101607858A (en) * | 2009-07-24 | 2009-12-23 | 中国海洋石油总公司 | A method for preparing aromatics and co-producing propylene with methanol/dimethyl ether |
-
2014
- 2014-06-04 CN CN201410245420.6A patent/CN105294374B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101177374A (en) * | 2006-11-07 | 2008-05-14 | 中国科学院大连化学物理研究所 | A method for producing propylene from methanol or dimethyl ether |
| CN101602643A (en) * | 2009-07-24 | 2009-12-16 | 中国海洋石油总公司 | A kind of method for methanol/dimethyl ether conversion to produce ethylene propylene co-production p-xylene |
| CN101607858A (en) * | 2009-07-24 | 2009-12-23 | 中国海洋石油总公司 | A method for preparing aromatics and co-producing propylene with methanol/dimethyl ether |
Non-Patent Citations (1)
| Title |
|---|
| 朱志荣: ""ZSM-5分子筛择形功能的化学修饰及其对二甲苯催化合成的研究"", 《中国优秀博硕士学位论文全文数据库 (博士) 工程科技Ⅰ辑》 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111187134A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | Method for preparing paraxylene and co-produced gasoline from methanol and/or dimethyl ether |
| CN111187133A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | A kind of method for preparing paraxylene co-production ethylbenzene and propylene by methanol and/or dimethyl ether, benzene |
| CN111187132A (en) * | 2018-11-15 | 2020-05-22 | 中国科学院大连化学物理研究所 | Method for preparing gasoline and co-producing p-xylene from methanol and/or dimethyl ether |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105294374B (en) | 2017-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Differences between ZSM-5 and ZSM-11 zeolite catalysts in 1-hexene aromatization and isomerization | |
| KR101900063B1 (en) | Method for preparing paraxylene and propylene by methanol and/or dimethyl ether | |
| CN101767038B (en) | Catalyst for preparing p-xylene by conversion of methanol and its preparation method and application | |
| JP5873570B2 (en) | Catalyst for producing paraxylene by mixed conversion of methanol and / or dimethyl ether and C4 liquefied gas, and its production method and use | |
| JP2015515473A (en) | Formation process of xylene and light olefins from heavy aromatics | |
| CN101602643A (en) | A kind of method for methanol/dimethyl ether conversion to produce ethylene propylene co-production p-xylene | |
| CN104710265B (en) | A kind of method preparing xylol and propylene | |
| CN101417235A (en) | Movable bed catalyst for alkylation of toluene and methanol to produce paraxylene and low-carbon olefin | |
| WO2013151689A1 (en) | Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks | |
| CA2945839A1 (en) | Catalyst and method for aromatization of c3-c4 gases, light hydrocarbon fractions and aliphatic alcohols, as well as mixtures thereof | |
| CN104710267B (en) | A kind of methanol or/and the method for dimethyl ether paraxylene and propylene | |
| CN104710266B (en) | A kind of methanol is or/and the method for dimethyl ether xylol co-producing light olefins | |
| CN101456785B (en) | Method for co-production of low-carbon olefin by high-selectivity preparation of p-xylene | |
| CN105294374B (en) | A kind of methanol and/or dimethyl ether for paraxylene and propylene method | |
| CN106588528A (en) | Moving bed method for preparing paraxylene co-production low-carbon olefin through methyl alcohol and/or dimethyl ether | |
| KR101912398B1 (en) | Method for preparing paraxylene with co-production of propylene with high selectivity | |
| CN105272798B (en) | A kind of method of high selectivity production of para-xylene propylene simultaneously | |
| CN103920525A (en) | Preparation method and application of catalyst for alkylation of dimethyl ether and benzene | |
| CN108794288B (en) | A kind of method for preparing low-carbon olefins and co-producing p-xylene | |
| CN101293800B (en) | Method for preparing small-numerator olefin hydrocarbon with conversion integration of oxygen-containing compounds and light dydrocarbon | |
| CN104710268B (en) | Method for preparing p-xylene and co-producing low-carbon olefin through benzene and methanol or/and dimethyl ether | |
| CN104549432B (en) | The synthetic method of aromatic hydrocarbons methylation catalyst and dimethylbenzene | |
| RU2544550C1 (en) | Benzene alkylation method | |
| CN108786905B (en) | In-situ preparation method of catalyst for preparing toluene and co-producing p-xylene through alkylation of benzene and methanol | |
| CN108786906B (en) | In-situ preparation method of catalyst for co-production of p-xylene and low-carbon olefin from toluene prepared from benzene and methanol |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |