CN105374677B - A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates - Google Patents
A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates Download PDFInfo
- Publication number
- CN105374677B CN105374677B CN201410421647.1A CN201410421647A CN105374677B CN 105374677 B CN105374677 B CN 105374677B CN 201410421647 A CN201410421647 A CN 201410421647A CN 105374677 B CN105374677 B CN 105374677B
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- algan
- source
- hemt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 title claims abstract description 41
- 230000005669 field effect Effects 0.000 title claims abstract description 16
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 64
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 30
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 30
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims abstract description 13
- 230000000737 periodic effect Effects 0.000 claims abstract description 12
- 230000006911 nucleation Effects 0.000 claims abstract description 10
- 238000010899 nucleation Methods 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000002238 carbon nanotube film Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims abstract description 3
- 238000009954 braiding Methods 0.000 claims abstract 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 24
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 14
- 230000033228 biological regulation Effects 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 230000004888 barrier function Effects 0.000 claims description 9
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 4
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 238000005336 cracking Methods 0.000 claims 1
- 238000005036 potential barrier Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000000407 epitaxy Methods 0.000 abstract description 8
- 238000000927 vapour-phase epitaxy Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 238000009941 weaving Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明提供一种在大尺寸Si衬底上制备高电子迁移率场效应晶体管(HEMT)的方法,尤其涉及一种采用碳纳米管作为周期性介质掩膜,采用选区外延(SAG)方法制备无龟裂、高晶体质量的AlGaN/GaN HEMT器件方法。在Si衬底上采用金属有机化学气相外延技术生长AlN成核层和AlGaN籽晶层;然后采用低压化学气相沉积法(LPCVD),生长排列整齐的多层碳纳米管,通过生长和编织,最终形成连续的碳纳米管薄膜;在此基础上采用选区外延(SAG)方法,利用GaN在介质掩膜和衬底上生长的选择性,把GaN外延层限制在没有介质掩膜的区域中生长,形成分立的窗口,从而释放整个外延层中的张应力;采用多周期Al组分渐变的Aly1Ga1‑y1N/GaN超晶格或AlN/Aly1Ga1‑y1N/GaN超晶格作为应力调控层,获得无龟裂、高晶体质量的GaN外延层。在此基础上制备AlGaN/GaN HEMT器件。
The invention provides a method for preparing a high electron mobility field-effect transistor (HEMT) on a large-size Si substrate, in particular to a method for preparing a HEMT using a carbon nanotube as a periodic dielectric mask and using a selective area epitaxy (SAG) method. Cracked, High Crystal Quality AlGaN/GaN HEMT Device Approach. The AlN nucleation layer and the AlGaN seed layer are grown on the Si substrate by metal organic chemical vapor phase epitaxy; then the low-pressure chemical vapor deposition (LPCVD) is used to grow neatly arranged multilayer carbon nanotubes, through growth and braiding, and finally Form a continuous carbon nanotube film; on this basis, the selective area epitaxy (SAG) method is used to limit the growth of the GaN epitaxial layer in the area without a dielectric mask by using the selectivity of GaN growth on the dielectric mask and the substrate. Formation of discrete windows to release tensile stress throughout the epitaxial layer; Al y1 Ga 1‑y1 N/GaN superlattice or AlN/Al y1 Ga 1‑y1 N/GaN superlattice with multi-period Al compositional gradient As a stress control layer, a GaN epitaxial layer with no cracks and high crystal quality is obtained. On this basis, AlGaN/GaN HEMT devices are prepared.
Description
技术领域technical field
本发明涉及一种在大尺寸Si衬底上制备高电子迁移率[场效应]晶体管(HEMT,high electron mobility transistor)的方法。尤其涉及一种采用碳纳米管作为周期性介质掩膜,采用选区[外延]生长,(selective area growth,SAG)方法制备无龟裂、高晶体质量的AlGaN/GaN HEMT 器件方法,属于半导体光电子技术领域。 The invention relates to a method for preparing a high electron mobility [field effect] transistor (HEMT, high electron mobility transistor) on a large-size Si substrate. In particular, it relates to a method of using carbon nanotubes as a periodic dielectric mask and using selective area growth (selective area growth, SAG) method to prepare AlGaN/GaN HEMT devices with no cracks and high crystal quality, which belongs to semiconductor optoelectronic technology field.
背景技术Background technique
高电子迁移率场效应晶体管(HEMT),又称调制掺杂场效应晶体管(MODFET,modulation-doped field effect transistor),是一种以衬底材料与另一种宽带材料形成的异质界面的二维电子气导电的场效应晶体管(FET)。因其沟道中无杂质,基本上不存在电离杂质散射对电子运动的影响,因此电子迁移率更高而得名。HEMT的工作原理是通过控制删极电压的变化使源极、漏极之间的沟道电流产生相应的变化,从而达到放大信号的目的。其优点是具有高的频率和低的噪声特性。HEMT现已用于卫星电视、移动通信、军事通信和雷达系统的接收电路中。自1980年GaAs 基HEMT研制成功以来,得到了很快的发展。GaAs基HEMT在射频、微波及毫米波低频段已得到广泛的应用。InP器件比GaAs HEMT有更高的工作频率和更低的噪声,用于毫米波高频段和亚毫米波频段。GaN HEMT器件的特点是耐高温、大功率,有着巨大的应用前景,特别是在10-40GHz占据优势地位。High Electron Mobility Field Effect Transistor (HEMT), also known as modulation-doped field effect transistor (MODFET, modulation-doped field effect transistor), is a dual A field-effect transistor (FET) that conducts electricity through a dimensional electron gas. Because there are no impurities in the channel, there is basically no impact of ionized impurity scattering on electron movement, so the electron mobility is higher. The working principle of HEMT is to change the channel current between the source and the drain by controlling the change of the gate voltage, so as to achieve the purpose of amplifying the signal. Its advantages are high frequency and low noise characteristics. HEMTs are already used in receiving circuits for satellite TV, mobile communications, military communications and radar systems. Since GaAs-based HEMT was successfully developed in 1980, it has developed rapidly. GaAs-based HEMTs have been widely used in radio frequency, microwave and millimeter wave low frequency bands. InP devices have a higher operating frequency and lower noise than GaAs HEMTs, and are used in the millimeter wave high frequency band and submillimeter wave frequency band. GaN HEMT devices are characterized by high temperature resistance and high power, and have great application prospects, especially in the dominant position in 10-40GHz.
AlGaN/GaN HEMT 由于作为沟道层的GaN带隙宽度大(3.4eV)、击穿电压高(3.3MV/cm)、饱和电子速度大(2.8*107s-1)和二维电子气面密度高(1013cm2)等特性,导致GaN基HEMT的研究向更高工作频率、更大输出功率、更高工作温度和实用化方向发展。GaN基HEMT还可以用于高速开关集成电路和高压DC-DC变换器方面。 AlGaN/GaN HEMT生长在半绝缘的(0001)Si面SiC或(0001)蓝宝石衬底上,在核化层后生长一层半绝缘的GaN(约2μm)沟道层,接着生长不掺杂的 AlGaN 隔离层,掺Si的AlGaN和不掺杂的AlGaN 势垒层。二维电子气形成在沟道层/隔离层界面。Si 衬底尺寸大、价廉可以降低外延生长成本。对比硬度大、导热差的绝热蓝宝石衬底,简化衬底减薄等加工工艺,降低器件制作工艺成本。AlGaN/GaN HEMT has a large bandgap width (3.4eV), high breakdown voltage (3.3MV/cm), high saturation electron velocity (2.8*10 7 s -1 ) and two-dimensional electron gas surface of GaN as the channel layer. High density (10 13 cm 2 ) and other characteristics lead to the development of GaN-based HEMT research towards higher operating frequency, greater output power, higher operating temperature and practical application. GaN-based HEMTs can also be used in high-speed switching integrated circuits and high-voltage DC-DC converters. AlGaN/GaN HEMTs are grown on semi-insulating (0001) Si-faced SiC or (0001) sapphire substrates, a layer of semi-insulating GaN (about 2 μm) channel layer is grown after the nucleation layer, and then undoped AlGaN spacer layer, Si-doped AlGaN and undoped AlGaN barrier layer. Two-dimensional electron gas is formed at the channel layer/isolating layer interface. The large size and low price of Si substrate can reduce the cost of epitaxial growth. Compared with the heat-insulating sapphire substrate with high hardness and poor thermal conductivity, the processing technology such as substrate thinning is simplified, and the cost of device manufacturing process is reduced.
在Si上金属有机物气相外延(metalorganic vapor phase epitaxy,MOVPE)生长GaN的难点在于:GaN纤维锌矿结构的(0001)与金刚石结构的Si(111)衬底的晶格失配为20.4%,会产生大量的位错;GaN与Si之间的热失配高达56%,外延生长结束后的降温工程中,外延层将承受很大的张应力。由于外延层厚度远小于衬底厚度,所以在外延层中会产生微裂纹,严重影响GaN器件特性。Si衬底上直接生长GaN时,NH3容易与衬底Si发生反应而在衬底表面形成非晶态的SiN,影响GaN的生长质量。金属Ga与衬底Si之间也有很强的化学反应,会对衬底造成回溶,从而破坏界面的平整。在高温生长时,衬底中的Si会扩散至缓冲层表面,如果控制不当,将会影响GaN的生长模式,从而破坏晶体质量。此外由于Si是非极性半导体,在其上生长GaN、AlN或其他极性半导体时将会产生一些化合物极性相关的问题。The difficulty of growing GaN on Si by metalorganic vapor phase epitaxy (MOVPE) lies in the fact that the lattice mismatch between the GaN wurtzite structure (0001) and the diamond structure Si (111) substrate is 20.4%. A large number of dislocations are generated; the thermal mismatch between GaN and Si is as high as 56%, and the epitaxial layer will bear a large tensile stress during the cooling project after the epitaxial growth. Since the thickness of the epitaxial layer is much smaller than that of the substrate, microcracks will occur in the epitaxial layer, which seriously affects the characteristics of GaN devices. When GaN is directly grown on the Si substrate, NH 3 is easy to react with the substrate Si to form amorphous SiN on the substrate surface, which affects the growth quality of GaN. There is also a strong chemical reaction between the metal Ga and the substrate Si, which will cause the substrate to dissolve back, thereby destroying the flatness of the interface. When growing at high temperature, Si in the substrate will diffuse to the surface of the buffer layer. If not properly controlled, it will affect the growth mode of GaN, thereby destroying the crystal quality. In addition, since Si is a non-polar semiconductor, some problems related to the polarity of the compound will arise when GaN, AlN or other polar semiconductors are grown on it.
采用合适的缓冲层是解决Si衬底生长GaN时晶格失配、Si扩散和极性问题的有效手段,同时在一定程度上也可以缓解薄膜中的应力。为此人们尝试过许多方法,如AlAs、AlN、以及AlGaN/AlN等复合缓冲层。其中AlN结果最好,其主要优点是既可以和GaN在同一反应室进行生长,又可以避免高温生长时SiN的形成。根据其应力释放机理提出许多解决方法:The use of a suitable buffer layer is an effective means to solve the problems of lattice mismatch, Si diffusion and polarity when growing GaN on Si substrates, and it can also relieve the stress in the film to a certain extent. Many methods have been tried for this reason, such as composite buffer layers such as AlAs, AlN, and AlGaN/AlN. Among them, AlN has the best results, and its main advantage is that it can be grown in the same reaction chamber as GaN, and can avoid the formation of SiN during high temperature growth. Many solutions have been proposed based on its stress relief mechanism:
(1)缓冲层应力补偿法:通过缓冲层对上层GaN提供一个压应力来补偿热失配造成的张应力。如采用5个梯度的AlxGa1-xN(x=0.87、0.67、0.47、0.27和0.07)缓冲层,结果表明龟裂密度明显减少,且光学特性也有较大提高。(1) Buffer layer stress compensation method: the buffer layer provides a compressive stress to the upper layer GaN to compensate the tensile stress caused by thermal mismatch. For example, using five gradient AlxGa1 -xN (x=0.87, 0.67, 0.47, 0.27 and 0.07) buffer layers, the results show that the crack density is significantly reduced, and the optical properties are also greatly improved.
(2)插入层应力剪裁法:通过插入层来调节薄膜内部的应力状态,或阻挡由于热失配从衬底传入的张应力的传播。如超晶格插入层法:插入10个周期的AlN/GaN超晶格作插入层,生长GaN总厚度为2μm,随着超晶格插入层层数的增加,张应变减少。TEM显示位错密度随厚度变化而减小。(2) Insertion layer stress clipping method: adjust the stress state inside the film through the insertion layer, or block the propagation of the tensile stress introduced from the substrate due to thermal mismatch. For example, the superlattice insertion layer method: insert 10 cycles of AlN/GaN superlattice as the insertion layer, and the total thickness of GaN growth is 2 μm. As the number of superlattice insertion layers increases, the tensile strain decreases. TEM shows that the dislocation density decreases with thickness.
然而采用目前主流的插入层方法不能够完全消除应力,且存在缺陷密度大,翘曲等问题。况且降低GaN位错密度有效的常规ELOG(epitaxial lateral overgrowth, ELOG)技术难于应用到AlGaN上,因为Al 原子在生长表面的迁移能力较差,AlGaN会在掩膜上沉积。However, the current mainstream insertion layer method cannot completely eliminate stress, and there are problems such as high defect density and warpage. Moreover, conventional ELOG (epitaxial lateral overgrowth, ELOG) technology, which is effective in reducing GaN dislocation density, is difficult to apply to AlGaN, because Al atoms have poor migration ability on the growth surface, and AlGaN will be deposited on the mask.
本发明,在大尺寸Si衬底上,采用碳纳米管作为周期性介质掩膜,采用选区外延(SAG)方法制备无龟裂、高晶体质量的AlGaN/GaN HEMT器件,不仅可以有效地解决至今技术中仍存在的不良应力及缺陷,有效地缓解翘曲。In the present invention, on a large-size Si substrate, carbon nanotubes are used as a periodic dielectric mask, and an AlGaN/GaN HEMT device with no cracks and high crystal quality is prepared by a selective area epitaxy (SAG) method, which can not only effectively solve the current problem The undesired stress and defects that still exist in the technology can effectively alleviate the warpage.
发明内容Contents of the invention
本发明提供一种在大尺寸Si衬底上制备高电子迁移率场效应晶体管(HEMT)的方法, 本发明的技术方案如下:在Si衬底上,(1)采用金属有机化学气相外延技术生长AlN成核层和AlGaN籽晶层。(2)然后采用低压化学气相沉积法(LPCVD,Low Pressure ChemicalVapor Deposition),采用乙炔作为载气,同时采用5nm的Fe作为催化剂,生长排列整齐的多层碳纳米管。生长后的碳纳米管直径为15nm。通过生长和编织,最终由平行排列的碳纳米管阵列可以形成连续的碳纳米管薄膜。(3)在此基础上采用选区外延(SAG)方法,利用GaN在介质掩膜和衬底上生长的选择性,把GaN外延层限制在没有隐蔽膜的区域中生长,形成分立的窗口,利用“受控小平面生长工艺”使位错弯曲,从而在整个面积上降低穿透位错密度,释放整个外延层中的张应力,获得无龟裂、高晶体质量的GaN外延层。(4)在此基础上生长多周期Al组分渐变的Aly1Ga1-y1N/GaN超晶格或AlN/Aly1Ga1-y1N/GaN超晶格作为应力调控层。(5)最终制备AlGaN/GaN HEMT 器件。该方法包括以下步骤:The invention provides a method for preparing a high electron mobility field-effect transistor (HEMT) on a large-size Si substrate. The technical scheme of the invention is as follows: on the Si substrate, (1) grow AlN nucleation layer and AlGaN seed layer. (2) Then, low pressure chemical vapor deposition (LPCVD, Low Pressure Chemical Vapor Deposition) is used, acetylene is used as the carrier gas, and 5nm Fe is used as the catalyst to grow neatly arranged multilayer carbon nanotubes. The diameter of the grown carbon nanotubes is 15 nm. Through growth and weaving, the carbon nanotube arrays arranged in parallel can finally form a continuous carbon nanotube film. (3) On this basis, the selective area epitaxy (SAG) method is adopted, and the selectivity of GaN growth on the dielectric mask and the substrate is used to limit the growth of the GaN epitaxial layer in the area without a concealed film to form a discrete window. The "controlled facet growth process" bends the dislocations, thereby reducing the threading dislocation density over the entire area, releasing the tensile stress in the entire epitaxial layer, and obtaining a GaN epitaxial layer with no cracks and high crystal quality. (4) On this basis, grow Al y1 Ga 1-y1 N/GaN superlattice or AlN/Al y1 Ga 1-y1 N/GaN superlattice with multi-period Al composition gradient as the stress control layer. (5) Finally prepare the AlGaN/GaN HEMT device. The method includes the following steps:
步骤一,在金属有机化合物气相外延反应室中,在氢气(H2)气氛下,在Si衬底上,温度1000℃~1500℃下,通入TMAl作为III族源,NH3作为V族源,生长0.1~0.5微米厚AlN成核层;在此基础上,温度1000℃~1500℃下,通入TMAl、TMGa作为III族源,NH3作为V族源,生长0.1~1微米厚AlGaN籽晶层。Step 1: In the metal organic compound vapor phase epitaxy reaction chamber, under the hydrogen (H 2 ) atmosphere, on the Si substrate, at a temperature of 1000 ° C to 1500 ° C, feed TMAl as the source of group III, and NH 3 as the source of group V , grow a 0.1-0.5 micron thick AlN nucleation layer; on this basis, at a temperature of 1000 ° C ~ 1500 ° C, feed TMAl, TMGa as the III source, NH3 as the V source, and grow a 0.1-1 micron thick AlGaN seed crystal layer.
步骤二,采用低压化学气相沉积法(LPCVD)生长排列整齐的多层碳纳米管。在生长过程中,采用乙炔作为载气,同时采用Fe作为催化剂。生长后的碳纳米管直径为15nm。通过生长和编织,最终由平行排列的碳纳米管阵列形成连续的碳纳米管薄膜。In the second step, a low-pressure chemical vapor deposition (LPCVD) method is used to grow neatly arranged multilayer carbon nanotubes. During the growth process, acetylene was used as the carrier gas, and Fe was used as the catalyst. The diameter of the grown carbon nanotubes is 15 nm. Through growth and weaving, a continuous carbon nanotube film is finally formed by parallel arrays of carbon nanotubes.
步骤三,在氢气(H2)气氛下,在1000℃~1500℃下,通入TMGa作为III族源,NH3作为V族源,在此基础上采用选区外延(SAG)方法,利用GaN在介质掩膜和衬底上生长的选择性,把GaN外延层限制在没有介质掩膜的区域中生长,形成分立的窗口,释放整个外延层中的张应力,生长0.1~1微米GaN合并层。Step 3: In a hydrogen (H 2 ) atmosphere, at 1000°C to 1500°C, feed TMGa as the Group III source and NH 3 as the V group source. On this basis, use the selective area epitaxy (SAG) method to use GaN in The selectivity of the growth on the dielectric mask and the substrate limits the growth of the GaN epitaxial layer in the area without a dielectric mask, forming discrete windows, releasing the tensile stress in the entire epitaxial layer, and growing a 0.1-1 micron GaN merged layer.
步骤四,在氢气(H2)气氛下,在1000℃~1500℃下,通入TMGa、TMAl作为III族源,NH3作为V族源生长多周期非对称结构的Al组分梯度渐变的Aly1Ga1-y1N/GaN超晶格或AlN/Aly1Ga1-y1N/GaN超晶格,作为应力调控层,超晶格周期数为1~20。其中超晶格阱层GaN的厚度为1~5nm,超晶格Aly1Ga1-y1N垒层的厚度为1~5nm,超晶格AlN插入层的厚度为1~5nm;Step 4: In a hydrogen (H 2 ) atmosphere, at 1000°C to 1500°C, inject TMGa and TMAl as Group III sources, and NH 3 as Group V sources to grow Al with a multi-period asymmetrical Al composition gradient The y1 Ga 1-y1 N/GaN superlattice or the AlN/Al y1 Ga 1-y1 N/GaN superlattice is used as the stress control layer, and the period number of the superlattice is 1-20. The thickness of the superlattice well layer GaN is 1-5nm, the thickness of the superlattice Al y1 Ga 1-y1 N barrier layer is 1-5nm, and the thickness of the superlattice AlN insertion layer is 1-5nm;
Al组分y1随着应力调控层超晶格周期数的增加从1梯度减少至0(0≤y1≤1)。The Al composition y 1 gradually decreases from 1 to 0 (0≤y1≤1) with the increase of the period number of the superlattice in the stress regulation layer.
步骤五,在氢气(H2)气氛下,在1050℃~1200℃下,通入TMGa作为III族源,NH3作为V族源生长2~4微米厚μ-GaN半绝缘层。接着通入TMGa、TMAl作为III族源,NH3作为V族源,SiH4作为n型掺杂源生长不掺杂的5nm~15nm AlGaN隔离层,10nm~20nm 掺Si的AlGaN和不掺杂的AlGaN势垒层。Step 5, in a hydrogen (H 2 ) atmosphere, at 1050° C. to 1200° C., feed TMGa as a group III source, and NH 3 as a V group source to grow a 2-4 micron thick μ-GaN semi-insulating layer. Then pass through TMGa, TMAl as III source, NH 3 as V source, SiH 4 as n-type dopant source to grow undoped 5nm~15nm AlGaN isolation layer, 10nm~20nm Si-doped AlGaN and undoped AlGaN AlGaN barrier layer.
本发明一种在大尺寸Si衬底上制备高电子迁移率场效应晶体管(HEMT)的方法,采用碳纳米管作为周期性介质掩膜,采用选区外延(SAG)方法制备无龟裂、高晶体质量的AlGaN/GaN HEMT器件,不仅可以有效地解决至今技术尚且存在的应力及缺陷,有效缓解翘曲,而且可以有效提高热导。The invention discloses a method for preparing a high electron mobility field-effect transistor (HEMT) on a large-size Si substrate, using carbon nanotubes as a periodic dielectric mask, and adopting a selective area epitaxy (SAG) method to prepare crack-free, high-crystallinity High-quality AlGaN/GaN HEMT devices can not only effectively solve the stress and defects that still exist in the current technology, effectively alleviate warpage, but also effectively improve thermal conductivity.
附图说明Description of drawings
图1是本发明实施例1中一种采用碳纳米管作为周期性介质掩膜以及采用Aly1Ga1-y1N/GaN超晶格应力调控层的新型结构AlGaN/GaN HEMT 器件的剖面图;1 is a cross-sectional view of a novel structure AlGaN/GaN HEMT device using carbon nanotubes as a periodic dielectric mask and using an Al y1 Ga 1-y1 N/GaN superlattice stress regulation layer in Embodiment 1 of the present invention;
图2是本发明实施例2中一种采用碳纳米管作为周期性介质掩膜以及采用AlN/Aly1Ga1-y1N/GaN超晶格新型结构AlGaN/GaN HEMT 器件的剖面图;2 is a cross-sectional view of an AlGaN/GaN HEMT device with a new structure using carbon nanotubes as a periodic dielectric mask and using AlN/Al y1 Ga 1-y1 N/GaN superlattice in Embodiment 2 of the present invention;
图3(a)是普通结构的没有采用碳纳米管作为周期性介质掩膜以及没有采用Aly1Ga1-y1N/GaN超晶格或AlN/Aly1Ga1-y1N/GaN超晶格应力调控层的AlGaN/GaN HEMT器件的SEM照片: 图3(b)、(c)是采用本发明实施例1和实施例2新型结构的AlGaN/GaN HEMT器件的SEM照片。Figure 3(a) is a general structure without using carbon nanotubes as a periodic dielectric mask and without using Al y1 Ga 1-y1 N/GaN superlattice or AlN/Al y1 Ga 1-y1 N/GaN superlattice SEM photos of AlGaN/GaN HEMT devices with stress regulation layer: Fig. 3(b) and (c) are SEM photos of AlGaN/GaN HEMT devices adopting the novel structure of Example 1 and Example 2 of the present invention.
具体实施方式Detailed ways
本发明提供一种在大尺寸Si衬底上制备高电子迁移率场效应晶体管(HEMT)的方法。使用三甲基镓(TMGa),三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,在Si衬底上,先低温生长AlN成核层和AlGaN籽晶层。在此基础上创造性采用碳纳米管作为周期性介质掩膜,采用选区外延(SAG)方法,并通过设计应力调控层结构,获得无龟裂、高晶体质量的AlGaN外延层。并进一步制备AlGaN/GaN HEMT 器件。The invention provides a method for preparing a high electron mobility field effect transistor (HEMT) on a large-scale Si substrate. Using trimethylgallium (TMGa), trimethylaluminum (TMAl) as group III source, ammonia gas (NH 3 ) as group V source, silane (SiH 4 ) as n-type doping source, on Si substrate, An AlN nucleation layer and an AlGaN seed layer are grown at low temperature first. On this basis, creatively use carbon nanotubes as a periodic dielectric mask, adopt the selective area epitaxy (SAG) method, and design the structure of the stress control layer to obtain a crack-free, high-quality AlGaN epitaxial layer. And further prepare AlGaN/GaN HEMT devices.
图1是根据本发明一个实施例的用于实现本发明的AlGaN/GaN HEMT器件侧面剖视图。图1中包括Si 衬底101,AlN成核层和AlGaN籽晶层 102,碳纳米管掩膜103,GaN 合并层104;Aly1Ga1-y1N/GaN超晶格应力调控层105,u-GaN(undoped GaN)半绝缘层106。u-AlGaN(undoped AlGaN)隔离层107,n-AlGaN(n-doped AlGaN)和u-AlGaN(undoped AlGaN)势垒层108。Fig. 1 is a side cross-sectional view of an AlGaN/GaN HEMT device for realizing the present invention according to an embodiment of the present invention. 1 includes Si substrate 101, AlN nucleation layer and AlGaN seed layer 102, carbon nanotube mask 103, GaN merged layer 104; Al y1 Ga 1-y1 N/GaN superlattice stress control layer 105, u - GaN (undoped GaN) semi-insulating layer 106 . u-AlGaN (undoped AlGaN) isolation layer 107 , n-AlGaN (n-doped AlGaN) and u-AlGaN (undoped AlGaN) barrier layer 108 .
图2是根据本发明一个实施例的用于实现本发明的AlGaN/GaN HEMT器件侧面剖视图。图1中包括Si 衬底201,AlN成核层和AlGaN籽晶层 202,碳纳米管掩膜203,GaN 合并层204;AlN/Aly1Ga1-y1N/GaN超晶格应力调控层205,u-GaN(undoped GaN)半绝缘层206。u-AlGaN(undoped AlGaN)隔离层207,n-AlGaN(n-doped AlGaN)和u-AlGaN(undoped AlGaN)势垒层208。Fig. 2 is a side cross-sectional view of an AlGaN/GaN HEMT device for realizing the present invention according to an embodiment of the present invention. 1 includes Si substrate 201, AlN nucleation layer and AlGaN seed layer 202, carbon nanotube mask 203, GaN merged layer 204; AlN/Al y1 Ga 1-y1 N/GaN superlattice stress control layer 205 , u-GaN (undoped GaN) semi-insulating layer 206 . u-AlGaN (undoped AlGaN) isolation layer 207 , n-AlGaN (n-doped AlGaN) and u-AlGaN (undoped AlGaN) barrier layer 208 .
其中,Si衬底上的周期性介质掩膜采用碳纳米管,而应力调控层采用Al组分渐变的AlGaN/AlGaN超晶格或AlN/AlGaN/GaN超晶格结构或其它结构,只要是满足Al组分梯度渐变原则的都可以。Among them, the periodic dielectric mask on the Si substrate adopts carbon nanotubes, and the stress regulation layer adopts AlGaN/AlGaN superlattice or AlN/AlGaN/GaN superlattice structure or other structures with gradually changing Al composition, as long as it satisfies The Al composition gradient principle can be used.
实施例1Example 1
使用Aixtron公司,紧耦合垂直反应室MOCVD生长系统。生长过程中使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,二茂镁(Cp2Mg)作为p型掺杂源,首先在MOCVD反应室中将Si衬底101加热到1080℃,在H2气氛下,使用TMGa、TMAl作为III族源,NH3作为V族源,生长0.1微米厚AlN成核层;接着,在1080℃、H2气氛下,通入TMAl、TMGa作为III族源,NH3作为V族源,生长0.5微米厚AlGaN籽晶层102。采用低压化学气相沉积法(LPCVD)生长排列整齐的多层碳纳米管。在生长过程中,采用乙炔作为载气,同时采用5nm的Fe作为催化剂。生长后的碳纳米管直径为15nm。通过生长和编织,最终由平行排列的碳纳米管阵列可以形成连续的碳纳米管薄膜103。在 1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源生长1μm GaN合并层104;在1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源生长20个周期的非对称结构的Al组分梯度渐变的(3nm)Aly1Ga1-y1N/(3nm)GaN超晶格插入层,作为应力调控层105。其中Al组分y1随超晶格周期数增加从1阶梯式减少至0.05,Al组分阶梯变化是通过控制TMAl的流量实现(随超晶格周期数增加Al组分y1依次为1、0.95、0.9、0.85、0.8、0.75、0.7、0.65、0.6、0.55、0.5、0.45、0.4、0.35、0.3、0.25、0.2、0.15、0.1、0.05);在氢气(H2)气氛下,在1080℃下,通入TMGa作为III族源,NH3作为V族源生长2μm厚u-GaN半绝缘层106。接着,在1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源,SiH4作为n型掺杂源生长不掺杂的15nm AlGaN隔离层107,20nm 掺Si的AlGaN和20nm 不掺杂的AlGaN势垒层108。Use Aixtron company, tightly coupled vertical reaction chamber MOCVD growth system. During the growth process, trimethylgallium (TMGa) and trimethylaluminum (TMAl) were used as Group III sources, ammonia gas (NH 3 ) was used as Group V sources, silane (SiH 4 ) was used as n-type dopant sources, and dimagnesocene (Cp 2 Mg) as the p-type doping source, firstly heat the Si substrate 101 to 1080°C in the MOCVD reaction chamber, use TMGa, TMAl as the III source, and NH 3 as the V source in the H 2 atmosphere, A 0.1 micron-thick AlN nucleation layer is grown; then, at 1080° C. under H 2 atmosphere, feed TMAl and TMGa as group III sources, and NH 3 as V group source, and grow a 0.5 micron thick AlGaN seed layer 102 . Aligned multilayer carbon nanotubes were grown by low-pressure chemical vapor deposition (LPCVD). During the growth process, acetylene was used as the carrier gas, and 5nm Fe was used as the catalyst. The diameter of the grown carbon nanotubes is 15 nm. Through growth and weaving, finally a continuous carbon nanotube film 103 can be formed from parallel arrays of carbon nanotubes. At 1080°C under H2 atmosphere, inject TMGa and TMAl as Group III source, and NH3 as Group V source to grow 1 μm GaN merged layer 104; at 1080°C under H2 atmosphere, inject TMGa and TMAl as Group III source , NH 3 is used as the V group source to grow 20 periods of asymmetric structure with gradually changing Al composition (3nm) Al y1 Ga 1-y1 N/(3nm)GaN superlattice insertion layer, as the stress control layer 105 . Among them, the Al composition y1 decreases stepwise from 1 to 0.05 with the increase of the superlattice period number, and the step change of the Al composition is realized by controlling the flow rate of TMAl (with the increase of the superlattice period number, the Al composition y1 is 1 , 0.95 in turn , 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05); in a hydrogen (H2) atmosphere, at 1080 ° C , injecting TMGa as a group III source, and NH 3 as a group V source to grow a u-GaN semi-insulating layer 106 with a thickness of 2 μm. Next, at 1080°C under H 2 atmosphere, inject TMGa and TMAl as Group III source, NH 3 as Group V source, and SiH 4 as n-type doping source to grow undoped 15nm AlGaN isolation layer 107, 20nm doped with Si AlGaN and 20nm undoped AlGaN barrier layer 108 .
实施例2Example 2
使用Aixtron公司,紧耦合垂直反应室MOCVD生长系统。生长过程中使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,二茂镁(Cp2Mg)作为p型掺杂源,首先在MOCVD反应室中将Si衬底201加热到1080℃,在H2气氛下,使用TMGa、TMAl作为III族源,NH3作为V族源,生长0.1微米厚AlN成核层;接着,在1080℃、H2气氛下,通入TMAl、TMGa作为III族源,NH3作为V族源,生长0.5微米厚AlGaN籽晶层202。采用低压化学气相沉积法(LPCVD)生长排列整齐的多层碳纳米管。在生长过程中,采用乙炔作为载气,同时采用5nm的Fe作为催化剂。生长后的碳纳米管直径为15nm。通过生长和编织,最终由平行排列的碳纳米管阵列可以形成连续的碳纳米管薄膜203。在 1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源生长1μm GaN合并层204;在1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源生长20个周期的非对称结构的Al组分梯度渐变的(3nm)AlN/(3nm)Aly1Ga1-y1N/(3nm)GaN超晶格插入层,作为应力调控层205。其中Al组分y1随超晶格周期数增加从1阶梯式减少至0.05,Al组分阶梯变化是通过控制TMAl的流量实现(随超晶格周期数增加Al组分y1依次为1、0.95、0.9、0.85、0.8、0.75、0.7、0.65、0.6、0.55、0.5、0.45、0.4、0.35、0.3、0.25、0.2、0.15、0.1、0.05);在氢气(H2)气氛下,在1080℃下,通入TMGa作为III族源,NH3作为V族源生长2μm厚u-GaN半绝缘层206。接着,在1080℃、H2气氛下,通入TMGa、TMAl作为III族源,NH3作为V族源,SiH4作为n型掺杂源生长不掺杂的15nm AlGaN隔离层207,20nm 掺Si的AlGaN和20nm 不掺杂的AlGaN势垒层208。Use Aixtron company, tightly coupled vertical reaction chamber MOCVD growth system. During the growth process, trimethylgallium (TMGa) and trimethylaluminum (TMAl) were used as Group III sources, ammonia gas (NH 3 ) was used as Group V sources, silane (SiH 4 ) was used as n-type dopant sources, and dimagnesocene (Cp 2 Mg) as the p-type dopant source, firstly heat the Si substrate 201 to 1080°C in the MOCVD reaction chamber, use TMGa and TMAl as the Group III source, and NH 3 as the V group source in the H 2 atmosphere, A 0.1-micron-thick AlN nucleation layer is grown; then, at 1080° C. under H 2 atmosphere, TMAl and TMGa are introduced as Group III sources, and NH 3 is used as V-group sources to grow a 0.5-micron thick AlGaN seed layer 202 . Aligned multilayer carbon nanotubes were grown by low-pressure chemical vapor deposition (LPCVD). During the growth process, acetylene was used as the carrier gas, and 5nm Fe was used as the catalyst. The diameter of the grown carbon nanotubes is 15 nm. Through growth and weaving, finally a continuous carbon nanotube film 203 can be formed from parallel arrays of carbon nanotubes. At 1080°C under H2 atmosphere, inject TMGa and TMAl as Group III source, and NH3 as Group V source to grow 1 μm GaN merged layer 204; at 1080°C under H2 atmosphere, inject TMGa and TMAl as Group III source , NH 3 was used as V group source to grow 20 cycles of asymmetric structure Al composition gradient (3nm)AlN/(3nm)Al y1 Ga 1-y1 N/(3nm)GaN superlattice insertion layer, as stress Regulatory layer 205 . Among them, the Al composition y1 decreases stepwise from 1 to 0.05 with the increase of the superlattice period number, and the step change of the Al composition is realized by controlling the flow rate of TMAl (with the increase of the superlattice period number, the Al composition y1 is 1 , 0.95 in turn , 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05); in a hydrogen (H2) atmosphere, at 1080 ° C , feed TMGa as the III group source, and NH 3 as the V group source to grow a u-GaN semi-insulating layer 206 with a thickness of 2 μm. Next, at 1080°C under H 2 atmosphere, inject TMGa and TMAl as Group III source, NH 3 as Group V source, and SiH 4 as n-type dopant source to grow undoped 15nm AlGaN isolation layer 207, 20nm doped with Si AlGaN and 20nm undoped AlGaN barrier layer 208 .
如图3(b)、(c)SEM照片所示, 采用本发明中技术:碳纳米管作为周期性介质掩膜,采用选区外延(SAG)方法,并通过设计应力调控层结构,获得无龟裂、高晶体质量的AlGaN/GaN HEMT器件。而没有采用炭纳米管作为周期性介质掩膜以及没有采用Aly1Ga1-y1N/GaN超晶格或AlN/Aly1Ga1-y1N/GaN超晶格的普通方法制备的AlGaN/GaN HEMT器件表面有明显的龟裂。As shown in the SEM photos of Figure 3 (b), (c), the technology of the present invention is adopted: carbon nanotubes are used as a periodic dielectric mask, the selected area epitaxy (SAG) method is adopted, and the structure of the stress regulation layer is designed to obtain a turtle-free cracked, high crystal quality AlGaN/GaN HEMT devices. AlGaN/GaN prepared by ordinary methods without using carbon nanotubes as periodic dielectric masks and without using Al y1 Ga 1-y1 N/GaN superlattice or AlN/Al y1 Ga 1-y1 N/GaN superlattice There are obvious cracks on the surface of the HEMT device.
以上所述的实施例仅为说明本发明的技术思想及特点,其描述较为具体和详细,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,因此不能仅以此来限定本发明的专利范围,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,即凡依据本发明所揭示的精神所作的变化,仍应涵盖在本发明的专利范围内。The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its description is more specific and detailed. Its purpose is to enable those of ordinary skill in the art to understand the content of the present invention and implement it accordingly. To limit the patent scope of the present invention, but it should not be construed as a limitation of the scope of the present invention. It should be pointed out that for those skilled in the art, some modifications and improvements can be made without departing from the concept of the present invention, that is, all changes made according to the spirit disclosed in the present invention should still include Within the patent scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410421647.1A CN105374677B (en) | 2014-08-25 | 2014-08-25 | A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410421647.1A CN105374677B (en) | 2014-08-25 | 2014-08-25 | A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105374677A CN105374677A (en) | 2016-03-02 |
| CN105374677B true CN105374677B (en) | 2018-05-22 |
Family
ID=55376758
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410421647.1A Active CN105374677B (en) | 2014-08-25 | 2014-08-25 | A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105374677B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106783547B (en) * | 2016-12-30 | 2020-08-21 | 东莞市中镓半导体科技有限公司 | Method for fabricating high electron mobility field effect transistors on silicon substrates |
| CN106711024B (en) * | 2016-12-30 | 2020-08-21 | 东莞市中镓半导体科技有限公司 | A method of fabricating high electron mobility field effect transistors on silicon substrates |
| CN110034174A (en) * | 2019-02-28 | 2019-07-19 | 华灿光电(苏州)有限公司 | High electron mobility transistor epitaxial wafer and preparation method thereof |
| CN112397586B (en) * | 2020-11-23 | 2022-06-21 | 江苏大学 | A normally-on silicon substrate high electron mobility transistor and its manufacturing method |
| CN112397587B (en) * | 2020-11-23 | 2022-06-21 | 江苏大学 | A normally-on high electron mobility transistor and its manufacturing method |
| CN117199122A (en) * | 2022-05-26 | 2023-12-08 | 华为技术有限公司 | Semiconductor device, electronic chip, and electronic apparatus |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200814151A (en) * | 2006-09-05 | 2008-03-16 | Promos Technologies Inc | Method for manufacturing a semiconductor device |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120012271A (en) * | 2010-07-30 | 2012-02-09 | 성균관대학교산학협력단 | Graphene manufacturing method, graphene sheet and the device using the same |
| US9024310B2 (en) * | 2011-01-12 | 2015-05-05 | Tsinghua University | Epitaxial structure |
| JP2012160662A (en) * | 2011-02-02 | 2012-08-23 | Hitachi Cable Ltd | Method of manufacturing epitaxial wafer for transistors |
-
2014
- 2014-08-25 CN CN201410421647.1A patent/CN105374677B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200814151A (en) * | 2006-09-05 | 2008-03-16 | Promos Technologies Inc | Method for manufacturing a semiconductor device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105374677A (en) | 2016-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105374677B (en) | A kind of method that high electron mobility field-effect transistor is prepared on large scale Si substrates | |
| CN100576467C (en) | Method for Improving Gallium Nitride-Based Transistor Material and Device Performance Using Indium Doping | |
| JP6318474B2 (en) | Manufacturing method of semiconductor device | |
| EP2727133B1 (en) | Method for manufacturing a thick epitaxial layer of gallium nitride on a silicon or similar substrate and layer obtained using said method | |
| CN103066103B (en) | The substrate breakdown voltage of the group III-nitride on silicon substrate is improved one's methods | |
| JP3836697B2 (en) | Semiconductor element | |
| TWI786156B (en) | A heterostructure for a high electron mobility transistor and a method of producing the same | |
| CN102925968A (en) | Strain control method of nitride single crystal thin film | |
| JP2009049121A (en) | Heterojunction field effect transistor and manufacturing method thereof | |
| JP2005167275A (en) | Semiconductor element | |
| CN105702826B (en) | A method of preparing flawless GaN film on a si substrate | |
| JP3753068B2 (en) | Method for manufacturing epitaxial wafer for field effect transistor | |
| JP5817283B2 (en) | Manufacturing method of semiconductor device | |
| CN111863945A (en) | A kind of preparation method of high resistance gallium nitride and its heterostructure | |
| CN113948389B (en) | Silicon-based AlGaN/GaN HEMT based on SiSn epitaxial layer on back surface of substrate and preparation method | |
| CN107887255B (en) | A method for epitaxial growth of high-resistance GaN thin films | |
| US9281187B2 (en) | Method for manufacturing nitride semiconductor device | |
| CN106783547B (en) | Method for fabricating high electron mobility field effect transistors on silicon substrates | |
| CN105679650B (en) | Method for preparing high-mobility AlGaN/GaN electronic power device on Si substrate | |
| JP2012256704A (en) | Semiconductor device and manufacturing method thereof | |
| CN110534626B (en) | Superlattice quantum dot structure and manufacturing method thereof | |
| JP3987360B2 (en) | Epitaxial substrate, epitaxial substrate for electronic device, and electronic device | |
| CN108155224A (en) | Gallium nitride epitaxial slice, epitaxy method and gallium nitride based transistor | |
| CN111690907B (en) | Aluminum nitride film and preparation method and application thereof | |
| CN106711024B (en) | A method of fabricating high electron mobility field effect transistors on silicon substrates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |